at v5.11 43 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 33 * 34 * The pXx_index() functions return the index of the entry in the page 35 * table page which would control the given virtual address 36 * 37 * As these functions may be used by the same code for different levels of 38 * the page table folding, they are always available, regardless of 39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 40 * because in such cases PTRS_PER_PxD equals 1. 41 */ 42 43static inline unsigned long pte_index(unsigned long address) 44{ 45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 46} 47 48#ifndef pmd_index 49static inline unsigned long pmd_index(unsigned long address) 50{ 51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 52} 53#define pmd_index pmd_index 54#endif 55 56#ifndef pud_index 57static inline unsigned long pud_index(unsigned long address) 58{ 59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 60} 61#define pud_index pud_index 62#endif 63 64#ifndef pgd_index 65/* Must be a compile-time constant, so implement it as a macro */ 66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 67#endif 68 69#ifndef pte_offset_kernel 70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 71{ 72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 73} 74#define pte_offset_kernel pte_offset_kernel 75#endif 76 77#if defined(CONFIG_HIGHPTE) 78#define pte_offset_map(dir, address) \ 79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 80 pte_index((address))) 81#define pte_unmap(pte) kunmap_atomic((pte)) 82#else 83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 84#define pte_unmap(pte) ((void)(pte)) /* NOP */ 85#endif 86 87/* Find an entry in the second-level page table.. */ 88#ifndef pmd_offset 89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 90{ 91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 92} 93#define pmd_offset pmd_offset 94#endif 95 96#ifndef pud_offset 97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 98{ 99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 100} 101#define pud_offset pud_offset 102#endif 103 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 105{ 106 return (pgd + pgd_index(address)); 107}; 108 109/* 110 * a shortcut to get a pgd_t in a given mm 111 */ 112#ifndef pgd_offset 113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 114#endif 115 116/* 117 * a shortcut which implies the use of the kernel's pgd, instead 118 * of a process's 119 */ 120#ifndef pgd_offset_k 121#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 122#endif 123 124/* 125 * In many cases it is known that a virtual address is mapped at PMD or PTE 126 * level, so instead of traversing all the page table levels, we can get a 127 * pointer to the PMD entry in user or kernel page table or translate a virtual 128 * address to the pointer in the PTE in the kernel page tables with simple 129 * helpers. 130 */ 131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 132{ 133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 134} 135 136static inline pmd_t *pmd_off_k(unsigned long va) 137{ 138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 139} 140 141static inline pte_t *virt_to_kpte(unsigned long vaddr) 142{ 143 pmd_t *pmd = pmd_off_k(vaddr); 144 145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 146} 147 148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 149extern int ptep_set_access_flags(struct vm_area_struct *vma, 150 unsigned long address, pte_t *ptep, 151 pte_t entry, int dirty); 152#endif 153 154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 155#ifdef CONFIG_TRANSPARENT_HUGEPAGE 156extern int pmdp_set_access_flags(struct vm_area_struct *vma, 157 unsigned long address, pmd_t *pmdp, 158 pmd_t entry, int dirty); 159extern int pudp_set_access_flags(struct vm_area_struct *vma, 160 unsigned long address, pud_t *pudp, 161 pud_t entry, int dirty); 162#else 163static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 164 unsigned long address, pmd_t *pmdp, 165 pmd_t entry, int dirty) 166{ 167 BUILD_BUG(); 168 return 0; 169} 170static inline int pudp_set_access_flags(struct vm_area_struct *vma, 171 unsigned long address, pud_t *pudp, 172 pud_t entry, int dirty) 173{ 174 BUILD_BUG(); 175 return 0; 176} 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178#endif 179 180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 182 unsigned long address, 183 pte_t *ptep) 184{ 185 pte_t pte = *ptep; 186 int r = 1; 187 if (!pte_young(pte)) 188 r = 0; 189 else 190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 191 return r; 192} 193#endif 194 195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE 197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 198 unsigned long address, 199 pmd_t *pmdp) 200{ 201 pmd_t pmd = *pmdp; 202 int r = 1; 203 if (!pmd_young(pmd)) 204 r = 0; 205 else 206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 207 return r; 208} 209#else 210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 211 unsigned long address, 212 pmd_t *pmdp) 213{ 214 BUILD_BUG(); 215 return 0; 216} 217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 221int ptep_clear_flush_young(struct vm_area_struct *vma, 222 unsigned long address, pte_t *ptep); 223#endif 224 225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 226#ifdef CONFIG_TRANSPARENT_HUGEPAGE 227extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 228 unsigned long address, pmd_t *pmdp); 229#else 230/* 231 * Despite relevant to THP only, this API is called from generic rmap code 232 * under PageTransHuge(), hence needs a dummy implementation for !THP 233 */ 234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 235 unsigned long address, pmd_t *pmdp) 236{ 237 BUILD_BUG(); 238 return 0; 239} 240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 241#endif 242 243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 244static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 245 unsigned long address, 246 pte_t *ptep) 247{ 248 pte_t pte = *ptep; 249 pte_clear(mm, address, ptep); 250 return pte; 251} 252#endif 253 254#ifndef __HAVE_ARCH_PTEP_GET 255static inline pte_t ptep_get(pte_t *ptep) 256{ 257 return READ_ONCE(*ptep); 258} 259#endif 260 261#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 262/* 263 * WARNING: only to be used in the get_user_pages_fast() implementation. 264 * 265 * With get_user_pages_fast(), we walk down the pagetables without taking any 266 * locks. For this we would like to load the pointers atomically, but sometimes 267 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 268 * we do have is the guarantee that a PTE will only either go from not present 269 * to present, or present to not present or both -- it will not switch to a 270 * completely different present page without a TLB flush in between; something 271 * that we are blocking by holding interrupts off. 272 * 273 * Setting ptes from not present to present goes: 274 * 275 * ptep->pte_high = h; 276 * smp_wmb(); 277 * ptep->pte_low = l; 278 * 279 * And present to not present goes: 280 * 281 * ptep->pte_low = 0; 282 * smp_wmb(); 283 * ptep->pte_high = 0; 284 * 285 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 286 * We load pte_high *after* loading pte_low, which ensures we don't see an older 287 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 288 * picked up a changed pte high. We might have gotten rubbish values from 289 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 290 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 291 * operates on present ptes we're safe. 292 */ 293static inline pte_t ptep_get_lockless(pte_t *ptep) 294{ 295 pte_t pte; 296 297 do { 298 pte.pte_low = ptep->pte_low; 299 smp_rmb(); 300 pte.pte_high = ptep->pte_high; 301 smp_rmb(); 302 } while (unlikely(pte.pte_low != ptep->pte_low)); 303 304 return pte; 305} 306#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 307/* 308 * We require that the PTE can be read atomically. 309 */ 310static inline pte_t ptep_get_lockless(pte_t *ptep) 311{ 312 return ptep_get(ptep); 313} 314#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 315 316#ifdef CONFIG_TRANSPARENT_HUGEPAGE 317#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 318static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 319 unsigned long address, 320 pmd_t *pmdp) 321{ 322 pmd_t pmd = *pmdp; 323 pmd_clear(pmdp); 324 return pmd; 325} 326#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 327#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 328static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 329 unsigned long address, 330 pud_t *pudp) 331{ 332 pud_t pud = *pudp; 333 334 pud_clear(pudp); 335 return pud; 336} 337#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 338#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 339 340#ifdef CONFIG_TRANSPARENT_HUGEPAGE 341#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 342static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 343 unsigned long address, pmd_t *pmdp, 344 int full) 345{ 346 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 347} 348#endif 349 350#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 351static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 352 unsigned long address, pud_t *pudp, 353 int full) 354{ 355 return pudp_huge_get_and_clear(mm, address, pudp); 356} 357#endif 358#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 359 360#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 361static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 362 unsigned long address, pte_t *ptep, 363 int full) 364{ 365 pte_t pte; 366 pte = ptep_get_and_clear(mm, address, ptep); 367 return pte; 368} 369#endif 370 371 372/* 373 * If two threads concurrently fault at the same page, the thread that 374 * won the race updates the PTE and its local TLB/Cache. The other thread 375 * gives up, simply does nothing, and continues; on architectures where 376 * software can update TLB, local TLB can be updated here to avoid next page 377 * fault. This function updates TLB only, do nothing with cache or others. 378 * It is the difference with function update_mmu_cache. 379 */ 380#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 381static inline void update_mmu_tlb(struct vm_area_struct *vma, 382 unsigned long address, pte_t *ptep) 383{ 384} 385#define __HAVE_ARCH_UPDATE_MMU_TLB 386#endif 387 388/* 389 * Some architectures may be able to avoid expensive synchronization 390 * primitives when modifications are made to PTE's which are already 391 * not present, or in the process of an address space destruction. 392 */ 393#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 394static inline void pte_clear_not_present_full(struct mm_struct *mm, 395 unsigned long address, 396 pte_t *ptep, 397 int full) 398{ 399 pte_clear(mm, address, ptep); 400} 401#endif 402 403#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 404extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 405 unsigned long address, 406 pte_t *ptep); 407#endif 408 409#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 410extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 411 unsigned long address, 412 pmd_t *pmdp); 413extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 414 unsigned long address, 415 pud_t *pudp); 416#endif 417 418#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 419struct mm_struct; 420static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 421{ 422 pte_t old_pte = *ptep; 423 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 424} 425#endif 426 427/* 428 * On some architectures hardware does not set page access bit when accessing 429 * memory page, it is responsibilty of software setting this bit. It brings 430 * out extra page fault penalty to track page access bit. For optimization page 431 * access bit can be set during all page fault flow on these arches. 432 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 433 * where software maintains page access bit. 434 */ 435#ifndef pte_sw_mkyoung 436static inline pte_t pte_sw_mkyoung(pte_t pte) 437{ 438 return pte; 439} 440#define pte_sw_mkyoung pte_sw_mkyoung 441#endif 442 443#ifndef pte_savedwrite 444#define pte_savedwrite pte_write 445#endif 446 447#ifndef pte_mk_savedwrite 448#define pte_mk_savedwrite pte_mkwrite 449#endif 450 451#ifndef pte_clear_savedwrite 452#define pte_clear_savedwrite pte_wrprotect 453#endif 454 455#ifndef pmd_savedwrite 456#define pmd_savedwrite pmd_write 457#endif 458 459#ifndef pmd_mk_savedwrite 460#define pmd_mk_savedwrite pmd_mkwrite 461#endif 462 463#ifndef pmd_clear_savedwrite 464#define pmd_clear_savedwrite pmd_wrprotect 465#endif 466 467#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 468#ifdef CONFIG_TRANSPARENT_HUGEPAGE 469static inline void pmdp_set_wrprotect(struct mm_struct *mm, 470 unsigned long address, pmd_t *pmdp) 471{ 472 pmd_t old_pmd = *pmdp; 473 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 474} 475#else 476static inline void pmdp_set_wrprotect(struct mm_struct *mm, 477 unsigned long address, pmd_t *pmdp) 478{ 479 BUILD_BUG(); 480} 481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 482#endif 483#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 484#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 485static inline void pudp_set_wrprotect(struct mm_struct *mm, 486 unsigned long address, pud_t *pudp) 487{ 488 pud_t old_pud = *pudp; 489 490 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 491} 492#else 493static inline void pudp_set_wrprotect(struct mm_struct *mm, 494 unsigned long address, pud_t *pudp) 495{ 496 BUILD_BUG(); 497} 498#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 499#endif 500 501#ifndef pmdp_collapse_flush 502#ifdef CONFIG_TRANSPARENT_HUGEPAGE 503extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 504 unsigned long address, pmd_t *pmdp); 505#else 506static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 507 unsigned long address, 508 pmd_t *pmdp) 509{ 510 BUILD_BUG(); 511 return *pmdp; 512} 513#define pmdp_collapse_flush pmdp_collapse_flush 514#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 515#endif 516 517#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 518extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 519 pgtable_t pgtable); 520#endif 521 522#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 523extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 524#endif 525 526#ifdef CONFIG_TRANSPARENT_HUGEPAGE 527/* 528 * This is an implementation of pmdp_establish() that is only suitable for an 529 * architecture that doesn't have hardware dirty/accessed bits. In this case we 530 * can't race with CPU which sets these bits and non-atomic aproach is fine. 531 */ 532static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 533 unsigned long address, pmd_t *pmdp, pmd_t pmd) 534{ 535 pmd_t old_pmd = *pmdp; 536 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 537 return old_pmd; 538} 539#endif 540 541#ifndef __HAVE_ARCH_PMDP_INVALIDATE 542extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 543 pmd_t *pmdp); 544#endif 545 546#ifndef __HAVE_ARCH_PTE_SAME 547static inline int pte_same(pte_t pte_a, pte_t pte_b) 548{ 549 return pte_val(pte_a) == pte_val(pte_b); 550} 551#endif 552 553#ifndef __HAVE_ARCH_PTE_UNUSED 554/* 555 * Some architectures provide facilities to virtualization guests 556 * so that they can flag allocated pages as unused. This allows the 557 * host to transparently reclaim unused pages. This function returns 558 * whether the pte's page is unused. 559 */ 560static inline int pte_unused(pte_t pte) 561{ 562 return 0; 563} 564#endif 565 566#ifndef pte_access_permitted 567#define pte_access_permitted(pte, write) \ 568 (pte_present(pte) && (!(write) || pte_write(pte))) 569#endif 570 571#ifndef pmd_access_permitted 572#define pmd_access_permitted(pmd, write) \ 573 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 574#endif 575 576#ifndef pud_access_permitted 577#define pud_access_permitted(pud, write) \ 578 (pud_present(pud) && (!(write) || pud_write(pud))) 579#endif 580 581#ifndef p4d_access_permitted 582#define p4d_access_permitted(p4d, write) \ 583 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 584#endif 585 586#ifndef pgd_access_permitted 587#define pgd_access_permitted(pgd, write) \ 588 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 589#endif 590 591#ifndef __HAVE_ARCH_PMD_SAME 592static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 593{ 594 return pmd_val(pmd_a) == pmd_val(pmd_b); 595} 596 597static inline int pud_same(pud_t pud_a, pud_t pud_b) 598{ 599 return pud_val(pud_a) == pud_val(pud_b); 600} 601#endif 602 603#ifndef __HAVE_ARCH_P4D_SAME 604static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 605{ 606 return p4d_val(p4d_a) == p4d_val(p4d_b); 607} 608#endif 609 610#ifndef __HAVE_ARCH_PGD_SAME 611static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 612{ 613 return pgd_val(pgd_a) == pgd_val(pgd_b); 614} 615#endif 616 617/* 618 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 619 * TLB flush will be required as a result of the "set". For example, use 620 * in scenarios where it is known ahead of time that the routine is 621 * setting non-present entries, or re-setting an existing entry to the 622 * same value. Otherwise, use the typical "set" helpers and flush the 623 * TLB. 624 */ 625#define set_pte_safe(ptep, pte) \ 626({ \ 627 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 628 set_pte(ptep, pte); \ 629}) 630 631#define set_pmd_safe(pmdp, pmd) \ 632({ \ 633 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 634 set_pmd(pmdp, pmd); \ 635}) 636 637#define set_pud_safe(pudp, pud) \ 638({ \ 639 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 640 set_pud(pudp, pud); \ 641}) 642 643#define set_p4d_safe(p4dp, p4d) \ 644({ \ 645 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 646 set_p4d(p4dp, p4d); \ 647}) 648 649#define set_pgd_safe(pgdp, pgd) \ 650({ \ 651 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 652 set_pgd(pgdp, pgd); \ 653}) 654 655#ifndef __HAVE_ARCH_DO_SWAP_PAGE 656/* 657 * Some architectures support metadata associated with a page. When a 658 * page is being swapped out, this metadata must be saved so it can be 659 * restored when the page is swapped back in. SPARC M7 and newer 660 * processors support an ADI (Application Data Integrity) tag for the 661 * page as metadata for the page. arch_do_swap_page() can restore this 662 * metadata when a page is swapped back in. 663 */ 664static inline void arch_do_swap_page(struct mm_struct *mm, 665 struct vm_area_struct *vma, 666 unsigned long addr, 667 pte_t pte, pte_t oldpte) 668{ 669 670} 671#endif 672 673#ifndef __HAVE_ARCH_UNMAP_ONE 674/* 675 * Some architectures support metadata associated with a page. When a 676 * page is being swapped out, this metadata must be saved so it can be 677 * restored when the page is swapped back in. SPARC M7 and newer 678 * processors support an ADI (Application Data Integrity) tag for the 679 * page as metadata for the page. arch_unmap_one() can save this 680 * metadata on a swap-out of a page. 681 */ 682static inline int arch_unmap_one(struct mm_struct *mm, 683 struct vm_area_struct *vma, 684 unsigned long addr, 685 pte_t orig_pte) 686{ 687 return 0; 688} 689#endif 690 691/* 692 * Allow architectures to preserve additional metadata associated with 693 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 694 * prototypes must be defined in the arch-specific asm/pgtable.h file. 695 */ 696#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 697static inline int arch_prepare_to_swap(struct page *page) 698{ 699 return 0; 700} 701#endif 702 703#ifndef __HAVE_ARCH_SWAP_INVALIDATE 704static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 705{ 706} 707 708static inline void arch_swap_invalidate_area(int type) 709{ 710} 711#endif 712 713#ifndef __HAVE_ARCH_SWAP_RESTORE 714static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 715{ 716} 717#endif 718 719#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 720#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 721#endif 722 723#ifndef __HAVE_ARCH_MOVE_PTE 724#define move_pte(pte, prot, old_addr, new_addr) (pte) 725#endif 726 727#ifndef pte_accessible 728# define pte_accessible(mm, pte) ((void)(pte), 1) 729#endif 730 731#ifndef flush_tlb_fix_spurious_fault 732#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 733#endif 734 735/* 736 * When walking page tables, get the address of the next boundary, 737 * or the end address of the range if that comes earlier. Although no 738 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 739 */ 740 741#define pgd_addr_end(addr, end) \ 742({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 743 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 744}) 745 746#ifndef p4d_addr_end 747#define p4d_addr_end(addr, end) \ 748({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 749 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 750}) 751#endif 752 753#ifndef pud_addr_end 754#define pud_addr_end(addr, end) \ 755({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 756 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 757}) 758#endif 759 760#ifndef pmd_addr_end 761#define pmd_addr_end(addr, end) \ 762({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 763 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 764}) 765#endif 766 767/* 768 * When walking page tables, we usually want to skip any p?d_none entries; 769 * and any p?d_bad entries - reporting the error before resetting to none. 770 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 771 */ 772void pgd_clear_bad(pgd_t *); 773 774#ifndef __PAGETABLE_P4D_FOLDED 775void p4d_clear_bad(p4d_t *); 776#else 777#define p4d_clear_bad(p4d) do { } while (0) 778#endif 779 780#ifndef __PAGETABLE_PUD_FOLDED 781void pud_clear_bad(pud_t *); 782#else 783#define pud_clear_bad(p4d) do { } while (0) 784#endif 785 786void pmd_clear_bad(pmd_t *); 787 788static inline int pgd_none_or_clear_bad(pgd_t *pgd) 789{ 790 if (pgd_none(*pgd)) 791 return 1; 792 if (unlikely(pgd_bad(*pgd))) { 793 pgd_clear_bad(pgd); 794 return 1; 795 } 796 return 0; 797} 798 799static inline int p4d_none_or_clear_bad(p4d_t *p4d) 800{ 801 if (p4d_none(*p4d)) 802 return 1; 803 if (unlikely(p4d_bad(*p4d))) { 804 p4d_clear_bad(p4d); 805 return 1; 806 } 807 return 0; 808} 809 810static inline int pud_none_or_clear_bad(pud_t *pud) 811{ 812 if (pud_none(*pud)) 813 return 1; 814 if (unlikely(pud_bad(*pud))) { 815 pud_clear_bad(pud); 816 return 1; 817 } 818 return 0; 819} 820 821static inline int pmd_none_or_clear_bad(pmd_t *pmd) 822{ 823 if (pmd_none(*pmd)) 824 return 1; 825 if (unlikely(pmd_bad(*pmd))) { 826 pmd_clear_bad(pmd); 827 return 1; 828 } 829 return 0; 830} 831 832static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 833 unsigned long addr, 834 pte_t *ptep) 835{ 836 /* 837 * Get the current pte state, but zero it out to make it 838 * non-present, preventing the hardware from asynchronously 839 * updating it. 840 */ 841 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 842} 843 844static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 845 unsigned long addr, 846 pte_t *ptep, pte_t pte) 847{ 848 /* 849 * The pte is non-present, so there's no hardware state to 850 * preserve. 851 */ 852 set_pte_at(vma->vm_mm, addr, ptep, pte); 853} 854 855#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 856/* 857 * Start a pte protection read-modify-write transaction, which 858 * protects against asynchronous hardware modifications to the pte. 859 * The intention is not to prevent the hardware from making pte 860 * updates, but to prevent any updates it may make from being lost. 861 * 862 * This does not protect against other software modifications of the 863 * pte; the appropriate pte lock must be held over the transation. 864 * 865 * Note that this interface is intended to be batchable, meaning that 866 * ptep_modify_prot_commit may not actually update the pte, but merely 867 * queue the update to be done at some later time. The update must be 868 * actually committed before the pte lock is released, however. 869 */ 870static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 871 unsigned long addr, 872 pte_t *ptep) 873{ 874 return __ptep_modify_prot_start(vma, addr, ptep); 875} 876 877/* 878 * Commit an update to a pte, leaving any hardware-controlled bits in 879 * the PTE unmodified. 880 */ 881static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 882 unsigned long addr, 883 pte_t *ptep, pte_t old_pte, pte_t pte) 884{ 885 __ptep_modify_prot_commit(vma, addr, ptep, pte); 886} 887#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 888#endif /* CONFIG_MMU */ 889 890/* 891 * No-op macros that just return the current protection value. Defined here 892 * because these macros can be used even if CONFIG_MMU is not defined. 893 */ 894 895#ifndef pgprot_nx 896#define pgprot_nx(prot) (prot) 897#endif 898 899#ifndef pgprot_noncached 900#define pgprot_noncached(prot) (prot) 901#endif 902 903#ifndef pgprot_writecombine 904#define pgprot_writecombine pgprot_noncached 905#endif 906 907#ifndef pgprot_writethrough 908#define pgprot_writethrough pgprot_noncached 909#endif 910 911#ifndef pgprot_device 912#define pgprot_device pgprot_noncached 913#endif 914 915#ifdef CONFIG_MMU 916#ifndef pgprot_modify 917#define pgprot_modify pgprot_modify 918static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 919{ 920 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 921 newprot = pgprot_noncached(newprot); 922 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 923 newprot = pgprot_writecombine(newprot); 924 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 925 newprot = pgprot_device(newprot); 926 return newprot; 927} 928#endif 929#endif /* CONFIG_MMU */ 930 931#ifndef pgprot_encrypted 932#define pgprot_encrypted(prot) (prot) 933#endif 934 935#ifndef pgprot_decrypted 936#define pgprot_decrypted(prot) (prot) 937#endif 938 939/* 940 * A facility to provide lazy MMU batching. This allows PTE updates and 941 * page invalidations to be delayed until a call to leave lazy MMU mode 942 * is issued. Some architectures may benefit from doing this, and it is 943 * beneficial for both shadow and direct mode hypervisors, which may batch 944 * the PTE updates which happen during this window. Note that using this 945 * interface requires that read hazards be removed from the code. A read 946 * hazard could result in the direct mode hypervisor case, since the actual 947 * write to the page tables may not yet have taken place, so reads though 948 * a raw PTE pointer after it has been modified are not guaranteed to be 949 * up to date. This mode can only be entered and left under the protection of 950 * the page table locks for all page tables which may be modified. In the UP 951 * case, this is required so that preemption is disabled, and in the SMP case, 952 * it must synchronize the delayed page table writes properly on other CPUs. 953 */ 954#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 955#define arch_enter_lazy_mmu_mode() do {} while (0) 956#define arch_leave_lazy_mmu_mode() do {} while (0) 957#define arch_flush_lazy_mmu_mode() do {} while (0) 958#endif 959 960/* 961 * A facility to provide batching of the reload of page tables and 962 * other process state with the actual context switch code for 963 * paravirtualized guests. By convention, only one of the batched 964 * update (lazy) modes (CPU, MMU) should be active at any given time, 965 * entry should never be nested, and entry and exits should always be 966 * paired. This is for sanity of maintaining and reasoning about the 967 * kernel code. In this case, the exit (end of the context switch) is 968 * in architecture-specific code, and so doesn't need a generic 969 * definition. 970 */ 971#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 972#define arch_start_context_switch(prev) do {} while (0) 973#endif 974 975#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 976#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 977static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 978{ 979 return pmd; 980} 981 982static inline int pmd_swp_soft_dirty(pmd_t pmd) 983{ 984 return 0; 985} 986 987static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 988{ 989 return pmd; 990} 991#endif 992#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 993static inline int pte_soft_dirty(pte_t pte) 994{ 995 return 0; 996} 997 998static inline int pmd_soft_dirty(pmd_t pmd) 999{ 1000 return 0; 1001} 1002 1003static inline pte_t pte_mksoft_dirty(pte_t pte) 1004{ 1005 return pte; 1006} 1007 1008static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1009{ 1010 return pmd; 1011} 1012 1013static inline pte_t pte_clear_soft_dirty(pte_t pte) 1014{ 1015 return pte; 1016} 1017 1018static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1019{ 1020 return pmd; 1021} 1022 1023static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1024{ 1025 return pte; 1026} 1027 1028static inline int pte_swp_soft_dirty(pte_t pte) 1029{ 1030 return 0; 1031} 1032 1033static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1034{ 1035 return pte; 1036} 1037 1038static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1039{ 1040 return pmd; 1041} 1042 1043static inline int pmd_swp_soft_dirty(pmd_t pmd) 1044{ 1045 return 0; 1046} 1047 1048static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1049{ 1050 return pmd; 1051} 1052#endif 1053 1054#ifndef __HAVE_PFNMAP_TRACKING 1055/* 1056 * Interfaces that can be used by architecture code to keep track of 1057 * memory type of pfn mappings specified by the remap_pfn_range, 1058 * vmf_insert_pfn. 1059 */ 1060 1061/* 1062 * track_pfn_remap is called when a _new_ pfn mapping is being established 1063 * by remap_pfn_range() for physical range indicated by pfn and size. 1064 */ 1065static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1066 unsigned long pfn, unsigned long addr, 1067 unsigned long size) 1068{ 1069 return 0; 1070} 1071 1072/* 1073 * track_pfn_insert is called when a _new_ single pfn is established 1074 * by vmf_insert_pfn(). 1075 */ 1076static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1077 pfn_t pfn) 1078{ 1079} 1080 1081/* 1082 * track_pfn_copy is called when vma that is covering the pfnmap gets 1083 * copied through copy_page_range(). 1084 */ 1085static inline int track_pfn_copy(struct vm_area_struct *vma) 1086{ 1087 return 0; 1088} 1089 1090/* 1091 * untrack_pfn is called while unmapping a pfnmap for a region. 1092 * untrack can be called for a specific region indicated by pfn and size or 1093 * can be for the entire vma (in which case pfn, size are zero). 1094 */ 1095static inline void untrack_pfn(struct vm_area_struct *vma, 1096 unsigned long pfn, unsigned long size) 1097{ 1098} 1099 1100/* 1101 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1102 */ 1103static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1104{ 1105} 1106#else 1107extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1108 unsigned long pfn, unsigned long addr, 1109 unsigned long size); 1110extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1111 pfn_t pfn); 1112extern int track_pfn_copy(struct vm_area_struct *vma); 1113extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1114 unsigned long size); 1115extern void untrack_pfn_moved(struct vm_area_struct *vma); 1116#endif 1117 1118#ifdef __HAVE_COLOR_ZERO_PAGE 1119static inline int is_zero_pfn(unsigned long pfn) 1120{ 1121 extern unsigned long zero_pfn; 1122 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1123 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1124} 1125 1126#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1127 1128#else 1129static inline int is_zero_pfn(unsigned long pfn) 1130{ 1131 extern unsigned long zero_pfn; 1132 return pfn == zero_pfn; 1133} 1134 1135static inline unsigned long my_zero_pfn(unsigned long addr) 1136{ 1137 extern unsigned long zero_pfn; 1138 return zero_pfn; 1139} 1140#endif 1141 1142#ifdef CONFIG_MMU 1143 1144#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1145static inline int pmd_trans_huge(pmd_t pmd) 1146{ 1147 return 0; 1148} 1149#ifndef pmd_write 1150static inline int pmd_write(pmd_t pmd) 1151{ 1152 BUG(); 1153 return 0; 1154} 1155#endif /* pmd_write */ 1156#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1157 1158#ifndef pud_write 1159static inline int pud_write(pud_t pud) 1160{ 1161 BUG(); 1162 return 0; 1163} 1164#endif /* pud_write */ 1165 1166#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1167static inline int pmd_devmap(pmd_t pmd) 1168{ 1169 return 0; 1170} 1171static inline int pud_devmap(pud_t pud) 1172{ 1173 return 0; 1174} 1175static inline int pgd_devmap(pgd_t pgd) 1176{ 1177 return 0; 1178} 1179#endif 1180 1181#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1182 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1183 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1184static inline int pud_trans_huge(pud_t pud) 1185{ 1186 return 0; 1187} 1188#endif 1189 1190/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1191static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1192{ 1193 pud_t pudval = READ_ONCE(*pud); 1194 1195 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1196 return 1; 1197 if (unlikely(pud_bad(pudval))) { 1198 pud_clear_bad(pud); 1199 return 1; 1200 } 1201 return 0; 1202} 1203 1204/* See pmd_trans_unstable for discussion. */ 1205static inline int pud_trans_unstable(pud_t *pud) 1206{ 1207#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1208 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1209 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1210#else 1211 return 0; 1212#endif 1213} 1214 1215#ifndef pmd_read_atomic 1216static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1217{ 1218 /* 1219 * Depend on compiler for an atomic pmd read. NOTE: this is 1220 * only going to work, if the pmdval_t isn't larger than 1221 * an unsigned long. 1222 */ 1223 return *pmdp; 1224} 1225#endif 1226 1227#ifndef arch_needs_pgtable_deposit 1228#define arch_needs_pgtable_deposit() (false) 1229#endif 1230/* 1231 * This function is meant to be used by sites walking pagetables with 1232 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1233 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1234 * into a null pmd and the transhuge page fault can convert a null pmd 1235 * into an hugepmd or into a regular pmd (if the hugepage allocation 1236 * fails). While holding the mmap_lock in read mode the pmd becomes 1237 * stable and stops changing under us only if it's not null and not a 1238 * transhuge pmd. When those races occurs and this function makes a 1239 * difference vs the standard pmd_none_or_clear_bad, the result is 1240 * undefined so behaving like if the pmd was none is safe (because it 1241 * can return none anyway). The compiler level barrier() is critically 1242 * important to compute the two checks atomically on the same pmdval. 1243 * 1244 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1245 * care of reading the pmd atomically to avoid SMP race conditions 1246 * against pmd_populate() when the mmap_lock is hold for reading by the 1247 * caller (a special atomic read not done by "gcc" as in the generic 1248 * version above, is also needed when THP is disabled because the page 1249 * fault can populate the pmd from under us). 1250 */ 1251static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1252{ 1253 pmd_t pmdval = pmd_read_atomic(pmd); 1254 /* 1255 * The barrier will stabilize the pmdval in a register or on 1256 * the stack so that it will stop changing under the code. 1257 * 1258 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1259 * pmd_read_atomic is allowed to return a not atomic pmdval 1260 * (for example pointing to an hugepage that has never been 1261 * mapped in the pmd). The below checks will only care about 1262 * the low part of the pmd with 32bit PAE x86 anyway, with the 1263 * exception of pmd_none(). So the important thing is that if 1264 * the low part of the pmd is found null, the high part will 1265 * be also null or the pmd_none() check below would be 1266 * confused. 1267 */ 1268#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1269 barrier(); 1270#endif 1271 /* 1272 * !pmd_present() checks for pmd migration entries 1273 * 1274 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1275 * But using that requires moving current function and pmd_trans_unstable() 1276 * to linux/swapops.h to resovle dependency, which is too much code move. 1277 * 1278 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1279 * because !pmd_present() pages can only be under migration not swapped 1280 * out. 1281 * 1282 * pmd_none() is preseved for future condition checks on pmd migration 1283 * entries and not confusing with this function name, although it is 1284 * redundant with !pmd_present(). 1285 */ 1286 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1287 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1288 return 1; 1289 if (unlikely(pmd_bad(pmdval))) { 1290 pmd_clear_bad(pmd); 1291 return 1; 1292 } 1293 return 0; 1294} 1295 1296/* 1297 * This is a noop if Transparent Hugepage Support is not built into 1298 * the kernel. Otherwise it is equivalent to 1299 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1300 * places that already verified the pmd is not none and they want to 1301 * walk ptes while holding the mmap sem in read mode (write mode don't 1302 * need this). If THP is not enabled, the pmd can't go away under the 1303 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1304 * run a pmd_trans_unstable before walking the ptes after 1305 * split_huge_pmd returns (because it may have run when the pmd become 1306 * null, but then a page fault can map in a THP and not a regular page). 1307 */ 1308static inline int pmd_trans_unstable(pmd_t *pmd) 1309{ 1310#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1311 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1312#else 1313 return 0; 1314#endif 1315} 1316 1317#ifndef CONFIG_NUMA_BALANCING 1318/* 1319 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1320 * the only case the kernel cares is for NUMA balancing and is only ever set 1321 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1322 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1323 * is the responsibility of the caller to distinguish between PROT_NONE 1324 * protections and NUMA hinting fault protections. 1325 */ 1326static inline int pte_protnone(pte_t pte) 1327{ 1328 return 0; 1329} 1330 1331static inline int pmd_protnone(pmd_t pmd) 1332{ 1333 return 0; 1334} 1335#endif /* CONFIG_NUMA_BALANCING */ 1336 1337#endif /* CONFIG_MMU */ 1338 1339#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1340 1341#ifndef __PAGETABLE_P4D_FOLDED 1342int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1343int p4d_clear_huge(p4d_t *p4d); 1344#else 1345static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1346{ 1347 return 0; 1348} 1349static inline int p4d_clear_huge(p4d_t *p4d) 1350{ 1351 return 0; 1352} 1353#endif /* !__PAGETABLE_P4D_FOLDED */ 1354 1355int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1356int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1357int pud_clear_huge(pud_t *pud); 1358int pmd_clear_huge(pmd_t *pmd); 1359int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1360int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1361int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1362#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1363static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1364{ 1365 return 0; 1366} 1367static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1368{ 1369 return 0; 1370} 1371static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1372{ 1373 return 0; 1374} 1375static inline int p4d_clear_huge(p4d_t *p4d) 1376{ 1377 return 0; 1378} 1379static inline int pud_clear_huge(pud_t *pud) 1380{ 1381 return 0; 1382} 1383static inline int pmd_clear_huge(pmd_t *pmd) 1384{ 1385 return 0; 1386} 1387static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1388{ 1389 return 0; 1390} 1391static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1392{ 1393 return 0; 1394} 1395static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1396{ 1397 return 0; 1398} 1399#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1400 1401#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1403/* 1404 * ARCHes with special requirements for evicting THP backing TLB entries can 1405 * implement this. Otherwise also, it can help optimize normal TLB flush in 1406 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1407 * entire TLB if flush span is greater than a threshold, which will 1408 * likely be true for a single huge page. Thus a single THP flush will 1409 * invalidate the entire TLB which is not desirable. 1410 * e.g. see arch/arc: flush_pmd_tlb_range 1411 */ 1412#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1413#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1414#else 1415#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1416#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1417#endif 1418#endif 1419 1420struct file; 1421int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1422 unsigned long size, pgprot_t *vma_prot); 1423 1424#ifndef CONFIG_X86_ESPFIX64 1425static inline void init_espfix_bsp(void) { } 1426#endif 1427 1428extern void __init pgtable_cache_init(void); 1429 1430#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1431static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1432{ 1433 return true; 1434} 1435 1436static inline bool arch_has_pfn_modify_check(void) 1437{ 1438 return false; 1439} 1440#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1441 1442/* 1443 * Architecture PAGE_KERNEL_* fallbacks 1444 * 1445 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1446 * because they really don't support them, or the port needs to be updated to 1447 * reflect the required functionality. Below are a set of relatively safe 1448 * fallbacks, as best effort, which we can count on in lieu of the architectures 1449 * not defining them on their own yet. 1450 */ 1451 1452#ifndef PAGE_KERNEL_RO 1453# define PAGE_KERNEL_RO PAGE_KERNEL 1454#endif 1455 1456#ifndef PAGE_KERNEL_EXEC 1457# define PAGE_KERNEL_EXEC PAGE_KERNEL 1458#endif 1459 1460/* 1461 * Page Table Modification bits for pgtbl_mod_mask. 1462 * 1463 * These are used by the p?d_alloc_track*() set of functions an in the generic 1464 * vmalloc/ioremap code to track at which page-table levels entries have been 1465 * modified. Based on that the code can better decide when vmalloc and ioremap 1466 * mapping changes need to be synchronized to other page-tables in the system. 1467 */ 1468#define __PGTBL_PGD_MODIFIED 0 1469#define __PGTBL_P4D_MODIFIED 1 1470#define __PGTBL_PUD_MODIFIED 2 1471#define __PGTBL_PMD_MODIFIED 3 1472#define __PGTBL_PTE_MODIFIED 4 1473 1474#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1475#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1476#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1477#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1478#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1479 1480/* Page-Table Modification Mask */ 1481typedef unsigned int pgtbl_mod_mask; 1482 1483#endif /* !__ASSEMBLY__ */ 1484 1485#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1486#ifdef CONFIG_PHYS_ADDR_T_64BIT 1487/* 1488 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1489 * with physical address space extension, but falls back to 1490 * BITS_PER_LONG otherwise. 1491 */ 1492#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1493#else 1494#define MAX_POSSIBLE_PHYSMEM_BITS 32 1495#endif 1496#endif 1497 1498#ifndef has_transparent_hugepage 1499#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1500#define has_transparent_hugepage() 1 1501#else 1502#define has_transparent_hugepage() 0 1503#endif 1504#endif 1505 1506/* 1507 * On some architectures it depends on the mm if the p4d/pud or pmd 1508 * layer of the page table hierarchy is folded or not. 1509 */ 1510#ifndef mm_p4d_folded 1511#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1512#endif 1513 1514#ifndef mm_pud_folded 1515#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1516#endif 1517 1518#ifndef mm_pmd_folded 1519#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1520#endif 1521 1522#ifndef p4d_offset_lockless 1523#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1524#endif 1525#ifndef pud_offset_lockless 1526#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1527#endif 1528#ifndef pmd_offset_lockless 1529#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1530#endif 1531 1532/* 1533 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1534 * This differs from p?d_huge() by the fact that they are always available (if 1535 * the architecture supports large pages at the appropriate level) even 1536 * if CONFIG_HUGETLB_PAGE is not defined. 1537 * Only meaningful when called on a valid entry. 1538 */ 1539#ifndef pgd_leaf 1540#define pgd_leaf(x) 0 1541#endif 1542#ifndef p4d_leaf 1543#define p4d_leaf(x) 0 1544#endif 1545#ifndef pud_leaf 1546#define pud_leaf(x) 0 1547#endif 1548#ifndef pmd_leaf 1549#define pmd_leaf(x) 0 1550#endif 1551 1552#ifndef pgd_leaf_size 1553#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1554#endif 1555#ifndef p4d_leaf_size 1556#define p4d_leaf_size(x) P4D_SIZE 1557#endif 1558#ifndef pud_leaf_size 1559#define pud_leaf_size(x) PUD_SIZE 1560#endif 1561#ifndef pmd_leaf_size 1562#define pmd_leaf_size(x) PMD_SIZE 1563#endif 1564#ifndef pte_leaf_size 1565#define pte_leaf_size(x) PAGE_SIZE 1566#endif 1567 1568#endif /* _LINUX_PGTABLE_H */