Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33 *
34 * The pXx_index() functions return the index of the entry in the page
35 * table page which would control the given virtual address
36 *
37 * As these functions may be used by the same code for different levels of
38 * the page table folding, they are always available, regardless of
39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40 * because in such cases PTRS_PER_PxD equals 1.
41 */
42
43static inline unsigned long pte_index(unsigned long address)
44{
45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46}
47
48#ifndef pmd_index
49static inline unsigned long pmd_index(unsigned long address)
50{
51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
52}
53#define pmd_index pmd_index
54#endif
55
56#ifndef pud_index
57static inline unsigned long pud_index(unsigned long address)
58{
59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
60}
61#define pud_index pud_index
62#endif
63
64#ifndef pgd_index
65/* Must be a compile-time constant, so implement it as a macro */
66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
67#endif
68
69#ifndef pte_offset_kernel
70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
71{
72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
73}
74#define pte_offset_kernel pte_offset_kernel
75#endif
76
77#if defined(CONFIG_HIGHPTE)
78#define pte_offset_map(dir, address) \
79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
80 pte_index((address)))
81#define pte_unmap(pte) kunmap_atomic((pte))
82#else
83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
84#define pte_unmap(pte) ((void)(pte)) /* NOP */
85#endif
86
87/* Find an entry in the second-level page table.. */
88#ifndef pmd_offset
89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
90{
91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
92}
93#define pmd_offset pmd_offset
94#endif
95
96#ifndef pud_offset
97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
98{
99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
100}
101#define pud_offset pud_offset
102#endif
103
104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
105{
106 return (pgd + pgd_index(address));
107};
108
109/*
110 * a shortcut to get a pgd_t in a given mm
111 */
112#ifndef pgd_offset
113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
114#endif
115
116/*
117 * a shortcut which implies the use of the kernel's pgd, instead
118 * of a process's
119 */
120#ifndef pgd_offset_k
121#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
122#endif
123
124/*
125 * In many cases it is known that a virtual address is mapped at PMD or PTE
126 * level, so instead of traversing all the page table levels, we can get a
127 * pointer to the PMD entry in user or kernel page table or translate a virtual
128 * address to the pointer in the PTE in the kernel page tables with simple
129 * helpers.
130 */
131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
132{
133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
134}
135
136static inline pmd_t *pmd_off_k(unsigned long va)
137{
138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
139}
140
141static inline pte_t *virt_to_kpte(unsigned long vaddr)
142{
143 pmd_t *pmd = pmd_off_k(vaddr);
144
145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
146}
147
148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
149extern int ptep_set_access_flags(struct vm_area_struct *vma,
150 unsigned long address, pte_t *ptep,
151 pte_t entry, int dirty);
152#endif
153
154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
156extern int pmdp_set_access_flags(struct vm_area_struct *vma,
157 unsigned long address, pmd_t *pmdp,
158 pmd_t entry, int dirty);
159extern int pudp_set_access_flags(struct vm_area_struct *vma,
160 unsigned long address, pud_t *pudp,
161 pud_t entry, int dirty);
162#else
163static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
164 unsigned long address, pmd_t *pmdp,
165 pmd_t entry, int dirty)
166{
167 BUILD_BUG();
168 return 0;
169}
170static inline int pudp_set_access_flags(struct vm_area_struct *vma,
171 unsigned long address, pud_t *pudp,
172 pud_t entry, int dirty)
173{
174 BUILD_BUG();
175 return 0;
176}
177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178#endif
179
180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
182 unsigned long address,
183 pte_t *ptep)
184{
185 pte_t pte = *ptep;
186 int r = 1;
187 if (!pte_young(pte))
188 r = 0;
189 else
190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
191 return r;
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
198 unsigned long address,
199 pmd_t *pmdp)
200{
201 pmd_t pmd = *pmdp;
202 int r = 1;
203 if (!pmd_young(pmd))
204 r = 0;
205 else
206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
207 return r;
208}
209#else
210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
211 unsigned long address,
212 pmd_t *pmdp)
213{
214 BUILD_BUG();
215 return 0;
216}
217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
218#endif
219
220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
221int ptep_clear_flush_young(struct vm_area_struct *vma,
222 unsigned long address, pte_t *ptep);
223#endif
224
225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
227extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
228 unsigned long address, pmd_t *pmdp);
229#else
230/*
231 * Despite relevant to THP only, this API is called from generic rmap code
232 * under PageTransHuge(), hence needs a dummy implementation for !THP
233 */
234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
235 unsigned long address, pmd_t *pmdp)
236{
237 BUILD_BUG();
238 return 0;
239}
240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
241#endif
242
243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
244static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
245 unsigned long address,
246 pte_t *ptep)
247{
248 pte_t pte = *ptep;
249 pte_clear(mm, address, ptep);
250 return pte;
251}
252#endif
253
254#ifndef __HAVE_ARCH_PTEP_GET
255static inline pte_t ptep_get(pte_t *ptep)
256{
257 return READ_ONCE(*ptep);
258}
259#endif
260
261#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
262/*
263 * WARNING: only to be used in the get_user_pages_fast() implementation.
264 *
265 * With get_user_pages_fast(), we walk down the pagetables without taking any
266 * locks. For this we would like to load the pointers atomically, but sometimes
267 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
268 * we do have is the guarantee that a PTE will only either go from not present
269 * to present, or present to not present or both -- it will not switch to a
270 * completely different present page without a TLB flush in between; something
271 * that we are blocking by holding interrupts off.
272 *
273 * Setting ptes from not present to present goes:
274 *
275 * ptep->pte_high = h;
276 * smp_wmb();
277 * ptep->pte_low = l;
278 *
279 * And present to not present goes:
280 *
281 * ptep->pte_low = 0;
282 * smp_wmb();
283 * ptep->pte_high = 0;
284 *
285 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
286 * We load pte_high *after* loading pte_low, which ensures we don't see an older
287 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
288 * picked up a changed pte high. We might have gotten rubbish values from
289 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
290 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
291 * operates on present ptes we're safe.
292 */
293static inline pte_t ptep_get_lockless(pte_t *ptep)
294{
295 pte_t pte;
296
297 do {
298 pte.pte_low = ptep->pte_low;
299 smp_rmb();
300 pte.pte_high = ptep->pte_high;
301 smp_rmb();
302 } while (unlikely(pte.pte_low != ptep->pte_low));
303
304 return pte;
305}
306#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
307/*
308 * We require that the PTE can be read atomically.
309 */
310static inline pte_t ptep_get_lockless(pte_t *ptep)
311{
312 return ptep_get(ptep);
313}
314#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
315
316#ifdef CONFIG_TRANSPARENT_HUGEPAGE
317#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
318static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
319 unsigned long address,
320 pmd_t *pmdp)
321{
322 pmd_t pmd = *pmdp;
323 pmd_clear(pmdp);
324 return pmd;
325}
326#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
327#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
328static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
329 unsigned long address,
330 pud_t *pudp)
331{
332 pud_t pud = *pudp;
333
334 pud_clear(pudp);
335 return pud;
336}
337#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
338#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
339
340#ifdef CONFIG_TRANSPARENT_HUGEPAGE
341#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
342static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
343 unsigned long address, pmd_t *pmdp,
344 int full)
345{
346 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
347}
348#endif
349
350#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
351static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
352 unsigned long address, pud_t *pudp,
353 int full)
354{
355 return pudp_huge_get_and_clear(mm, address, pudp);
356}
357#endif
358#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
359
360#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
361static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
362 unsigned long address, pte_t *ptep,
363 int full)
364{
365 pte_t pte;
366 pte = ptep_get_and_clear(mm, address, ptep);
367 return pte;
368}
369#endif
370
371
372/*
373 * If two threads concurrently fault at the same page, the thread that
374 * won the race updates the PTE and its local TLB/Cache. The other thread
375 * gives up, simply does nothing, and continues; on architectures where
376 * software can update TLB, local TLB can be updated here to avoid next page
377 * fault. This function updates TLB only, do nothing with cache or others.
378 * It is the difference with function update_mmu_cache.
379 */
380#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
381static inline void update_mmu_tlb(struct vm_area_struct *vma,
382 unsigned long address, pte_t *ptep)
383{
384}
385#define __HAVE_ARCH_UPDATE_MMU_TLB
386#endif
387
388/*
389 * Some architectures may be able to avoid expensive synchronization
390 * primitives when modifications are made to PTE's which are already
391 * not present, or in the process of an address space destruction.
392 */
393#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
394static inline void pte_clear_not_present_full(struct mm_struct *mm,
395 unsigned long address,
396 pte_t *ptep,
397 int full)
398{
399 pte_clear(mm, address, ptep);
400}
401#endif
402
403#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
404extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
405 unsigned long address,
406 pte_t *ptep);
407#endif
408
409#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
410extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
411 unsigned long address,
412 pmd_t *pmdp);
413extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
414 unsigned long address,
415 pud_t *pudp);
416#endif
417
418#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
419struct mm_struct;
420static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
421{
422 pte_t old_pte = *ptep;
423 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
424}
425#endif
426
427/*
428 * On some architectures hardware does not set page access bit when accessing
429 * memory page, it is responsibilty of software setting this bit. It brings
430 * out extra page fault penalty to track page access bit. For optimization page
431 * access bit can be set during all page fault flow on these arches.
432 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
433 * where software maintains page access bit.
434 */
435#ifndef pte_sw_mkyoung
436static inline pte_t pte_sw_mkyoung(pte_t pte)
437{
438 return pte;
439}
440#define pte_sw_mkyoung pte_sw_mkyoung
441#endif
442
443#ifndef pte_savedwrite
444#define pte_savedwrite pte_write
445#endif
446
447#ifndef pte_mk_savedwrite
448#define pte_mk_savedwrite pte_mkwrite
449#endif
450
451#ifndef pte_clear_savedwrite
452#define pte_clear_savedwrite pte_wrprotect
453#endif
454
455#ifndef pmd_savedwrite
456#define pmd_savedwrite pmd_write
457#endif
458
459#ifndef pmd_mk_savedwrite
460#define pmd_mk_savedwrite pmd_mkwrite
461#endif
462
463#ifndef pmd_clear_savedwrite
464#define pmd_clear_savedwrite pmd_wrprotect
465#endif
466
467#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
468#ifdef CONFIG_TRANSPARENT_HUGEPAGE
469static inline void pmdp_set_wrprotect(struct mm_struct *mm,
470 unsigned long address, pmd_t *pmdp)
471{
472 pmd_t old_pmd = *pmdp;
473 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
474}
475#else
476static inline void pmdp_set_wrprotect(struct mm_struct *mm,
477 unsigned long address, pmd_t *pmdp)
478{
479 BUILD_BUG();
480}
481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
482#endif
483#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
484#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
485static inline void pudp_set_wrprotect(struct mm_struct *mm,
486 unsigned long address, pud_t *pudp)
487{
488 pud_t old_pud = *pudp;
489
490 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
491}
492#else
493static inline void pudp_set_wrprotect(struct mm_struct *mm,
494 unsigned long address, pud_t *pudp)
495{
496 BUILD_BUG();
497}
498#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
499#endif
500
501#ifndef pmdp_collapse_flush
502#ifdef CONFIG_TRANSPARENT_HUGEPAGE
503extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
504 unsigned long address, pmd_t *pmdp);
505#else
506static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
507 unsigned long address,
508 pmd_t *pmdp)
509{
510 BUILD_BUG();
511 return *pmdp;
512}
513#define pmdp_collapse_flush pmdp_collapse_flush
514#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
515#endif
516
517#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
518extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
519 pgtable_t pgtable);
520#endif
521
522#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
523extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
524#endif
525
526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
527/*
528 * This is an implementation of pmdp_establish() that is only suitable for an
529 * architecture that doesn't have hardware dirty/accessed bits. In this case we
530 * can't race with CPU which sets these bits and non-atomic aproach is fine.
531 */
532static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
533 unsigned long address, pmd_t *pmdp, pmd_t pmd)
534{
535 pmd_t old_pmd = *pmdp;
536 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
537 return old_pmd;
538}
539#endif
540
541#ifndef __HAVE_ARCH_PMDP_INVALIDATE
542extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
543 pmd_t *pmdp);
544#endif
545
546#ifndef __HAVE_ARCH_PTE_SAME
547static inline int pte_same(pte_t pte_a, pte_t pte_b)
548{
549 return pte_val(pte_a) == pte_val(pte_b);
550}
551#endif
552
553#ifndef __HAVE_ARCH_PTE_UNUSED
554/*
555 * Some architectures provide facilities to virtualization guests
556 * so that they can flag allocated pages as unused. This allows the
557 * host to transparently reclaim unused pages. This function returns
558 * whether the pte's page is unused.
559 */
560static inline int pte_unused(pte_t pte)
561{
562 return 0;
563}
564#endif
565
566#ifndef pte_access_permitted
567#define pte_access_permitted(pte, write) \
568 (pte_present(pte) && (!(write) || pte_write(pte)))
569#endif
570
571#ifndef pmd_access_permitted
572#define pmd_access_permitted(pmd, write) \
573 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
574#endif
575
576#ifndef pud_access_permitted
577#define pud_access_permitted(pud, write) \
578 (pud_present(pud) && (!(write) || pud_write(pud)))
579#endif
580
581#ifndef p4d_access_permitted
582#define p4d_access_permitted(p4d, write) \
583 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
584#endif
585
586#ifndef pgd_access_permitted
587#define pgd_access_permitted(pgd, write) \
588 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
589#endif
590
591#ifndef __HAVE_ARCH_PMD_SAME
592static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
593{
594 return pmd_val(pmd_a) == pmd_val(pmd_b);
595}
596
597static inline int pud_same(pud_t pud_a, pud_t pud_b)
598{
599 return pud_val(pud_a) == pud_val(pud_b);
600}
601#endif
602
603#ifndef __HAVE_ARCH_P4D_SAME
604static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
605{
606 return p4d_val(p4d_a) == p4d_val(p4d_b);
607}
608#endif
609
610#ifndef __HAVE_ARCH_PGD_SAME
611static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
612{
613 return pgd_val(pgd_a) == pgd_val(pgd_b);
614}
615#endif
616
617/*
618 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
619 * TLB flush will be required as a result of the "set". For example, use
620 * in scenarios where it is known ahead of time that the routine is
621 * setting non-present entries, or re-setting an existing entry to the
622 * same value. Otherwise, use the typical "set" helpers and flush the
623 * TLB.
624 */
625#define set_pte_safe(ptep, pte) \
626({ \
627 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
628 set_pte(ptep, pte); \
629})
630
631#define set_pmd_safe(pmdp, pmd) \
632({ \
633 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
634 set_pmd(pmdp, pmd); \
635})
636
637#define set_pud_safe(pudp, pud) \
638({ \
639 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
640 set_pud(pudp, pud); \
641})
642
643#define set_p4d_safe(p4dp, p4d) \
644({ \
645 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
646 set_p4d(p4dp, p4d); \
647})
648
649#define set_pgd_safe(pgdp, pgd) \
650({ \
651 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
652 set_pgd(pgdp, pgd); \
653})
654
655#ifndef __HAVE_ARCH_DO_SWAP_PAGE
656/*
657 * Some architectures support metadata associated with a page. When a
658 * page is being swapped out, this metadata must be saved so it can be
659 * restored when the page is swapped back in. SPARC M7 and newer
660 * processors support an ADI (Application Data Integrity) tag for the
661 * page as metadata for the page. arch_do_swap_page() can restore this
662 * metadata when a page is swapped back in.
663 */
664static inline void arch_do_swap_page(struct mm_struct *mm,
665 struct vm_area_struct *vma,
666 unsigned long addr,
667 pte_t pte, pte_t oldpte)
668{
669
670}
671#endif
672
673#ifndef __HAVE_ARCH_UNMAP_ONE
674/*
675 * Some architectures support metadata associated with a page. When a
676 * page is being swapped out, this metadata must be saved so it can be
677 * restored when the page is swapped back in. SPARC M7 and newer
678 * processors support an ADI (Application Data Integrity) tag for the
679 * page as metadata for the page. arch_unmap_one() can save this
680 * metadata on a swap-out of a page.
681 */
682static inline int arch_unmap_one(struct mm_struct *mm,
683 struct vm_area_struct *vma,
684 unsigned long addr,
685 pte_t orig_pte)
686{
687 return 0;
688}
689#endif
690
691/*
692 * Allow architectures to preserve additional metadata associated with
693 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
694 * prototypes must be defined in the arch-specific asm/pgtable.h file.
695 */
696#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
697static inline int arch_prepare_to_swap(struct page *page)
698{
699 return 0;
700}
701#endif
702
703#ifndef __HAVE_ARCH_SWAP_INVALIDATE
704static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
705{
706}
707
708static inline void arch_swap_invalidate_area(int type)
709{
710}
711#endif
712
713#ifndef __HAVE_ARCH_SWAP_RESTORE
714static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
715{
716}
717#endif
718
719#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
720#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
721#endif
722
723#ifndef __HAVE_ARCH_MOVE_PTE
724#define move_pte(pte, prot, old_addr, new_addr) (pte)
725#endif
726
727#ifndef pte_accessible
728# define pte_accessible(mm, pte) ((void)(pte), 1)
729#endif
730
731#ifndef flush_tlb_fix_spurious_fault
732#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
733#endif
734
735/*
736 * When walking page tables, get the address of the next boundary,
737 * or the end address of the range if that comes earlier. Although no
738 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
739 */
740
741#define pgd_addr_end(addr, end) \
742({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
743 (__boundary - 1 < (end) - 1)? __boundary: (end); \
744})
745
746#ifndef p4d_addr_end
747#define p4d_addr_end(addr, end) \
748({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
749 (__boundary - 1 < (end) - 1)? __boundary: (end); \
750})
751#endif
752
753#ifndef pud_addr_end
754#define pud_addr_end(addr, end) \
755({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
756 (__boundary - 1 < (end) - 1)? __boundary: (end); \
757})
758#endif
759
760#ifndef pmd_addr_end
761#define pmd_addr_end(addr, end) \
762({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
763 (__boundary - 1 < (end) - 1)? __boundary: (end); \
764})
765#endif
766
767/*
768 * When walking page tables, we usually want to skip any p?d_none entries;
769 * and any p?d_bad entries - reporting the error before resetting to none.
770 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
771 */
772void pgd_clear_bad(pgd_t *);
773
774#ifndef __PAGETABLE_P4D_FOLDED
775void p4d_clear_bad(p4d_t *);
776#else
777#define p4d_clear_bad(p4d) do { } while (0)
778#endif
779
780#ifndef __PAGETABLE_PUD_FOLDED
781void pud_clear_bad(pud_t *);
782#else
783#define pud_clear_bad(p4d) do { } while (0)
784#endif
785
786void pmd_clear_bad(pmd_t *);
787
788static inline int pgd_none_or_clear_bad(pgd_t *pgd)
789{
790 if (pgd_none(*pgd))
791 return 1;
792 if (unlikely(pgd_bad(*pgd))) {
793 pgd_clear_bad(pgd);
794 return 1;
795 }
796 return 0;
797}
798
799static inline int p4d_none_or_clear_bad(p4d_t *p4d)
800{
801 if (p4d_none(*p4d))
802 return 1;
803 if (unlikely(p4d_bad(*p4d))) {
804 p4d_clear_bad(p4d);
805 return 1;
806 }
807 return 0;
808}
809
810static inline int pud_none_or_clear_bad(pud_t *pud)
811{
812 if (pud_none(*pud))
813 return 1;
814 if (unlikely(pud_bad(*pud))) {
815 pud_clear_bad(pud);
816 return 1;
817 }
818 return 0;
819}
820
821static inline int pmd_none_or_clear_bad(pmd_t *pmd)
822{
823 if (pmd_none(*pmd))
824 return 1;
825 if (unlikely(pmd_bad(*pmd))) {
826 pmd_clear_bad(pmd);
827 return 1;
828 }
829 return 0;
830}
831
832static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
833 unsigned long addr,
834 pte_t *ptep)
835{
836 /*
837 * Get the current pte state, but zero it out to make it
838 * non-present, preventing the hardware from asynchronously
839 * updating it.
840 */
841 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
842}
843
844static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
845 unsigned long addr,
846 pte_t *ptep, pte_t pte)
847{
848 /*
849 * The pte is non-present, so there's no hardware state to
850 * preserve.
851 */
852 set_pte_at(vma->vm_mm, addr, ptep, pte);
853}
854
855#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
856/*
857 * Start a pte protection read-modify-write transaction, which
858 * protects against asynchronous hardware modifications to the pte.
859 * The intention is not to prevent the hardware from making pte
860 * updates, but to prevent any updates it may make from being lost.
861 *
862 * This does not protect against other software modifications of the
863 * pte; the appropriate pte lock must be held over the transation.
864 *
865 * Note that this interface is intended to be batchable, meaning that
866 * ptep_modify_prot_commit may not actually update the pte, but merely
867 * queue the update to be done at some later time. The update must be
868 * actually committed before the pte lock is released, however.
869 */
870static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
871 unsigned long addr,
872 pte_t *ptep)
873{
874 return __ptep_modify_prot_start(vma, addr, ptep);
875}
876
877/*
878 * Commit an update to a pte, leaving any hardware-controlled bits in
879 * the PTE unmodified.
880 */
881static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
882 unsigned long addr,
883 pte_t *ptep, pte_t old_pte, pte_t pte)
884{
885 __ptep_modify_prot_commit(vma, addr, ptep, pte);
886}
887#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
888#endif /* CONFIG_MMU */
889
890/*
891 * No-op macros that just return the current protection value. Defined here
892 * because these macros can be used even if CONFIG_MMU is not defined.
893 */
894
895#ifndef pgprot_nx
896#define pgprot_nx(prot) (prot)
897#endif
898
899#ifndef pgprot_noncached
900#define pgprot_noncached(prot) (prot)
901#endif
902
903#ifndef pgprot_writecombine
904#define pgprot_writecombine pgprot_noncached
905#endif
906
907#ifndef pgprot_writethrough
908#define pgprot_writethrough pgprot_noncached
909#endif
910
911#ifndef pgprot_device
912#define pgprot_device pgprot_noncached
913#endif
914
915#ifdef CONFIG_MMU
916#ifndef pgprot_modify
917#define pgprot_modify pgprot_modify
918static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
919{
920 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
921 newprot = pgprot_noncached(newprot);
922 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
923 newprot = pgprot_writecombine(newprot);
924 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
925 newprot = pgprot_device(newprot);
926 return newprot;
927}
928#endif
929#endif /* CONFIG_MMU */
930
931#ifndef pgprot_encrypted
932#define pgprot_encrypted(prot) (prot)
933#endif
934
935#ifndef pgprot_decrypted
936#define pgprot_decrypted(prot) (prot)
937#endif
938
939/*
940 * A facility to provide lazy MMU batching. This allows PTE updates and
941 * page invalidations to be delayed until a call to leave lazy MMU mode
942 * is issued. Some architectures may benefit from doing this, and it is
943 * beneficial for both shadow and direct mode hypervisors, which may batch
944 * the PTE updates which happen during this window. Note that using this
945 * interface requires that read hazards be removed from the code. A read
946 * hazard could result in the direct mode hypervisor case, since the actual
947 * write to the page tables may not yet have taken place, so reads though
948 * a raw PTE pointer after it has been modified are not guaranteed to be
949 * up to date. This mode can only be entered and left under the protection of
950 * the page table locks for all page tables which may be modified. In the UP
951 * case, this is required so that preemption is disabled, and in the SMP case,
952 * it must synchronize the delayed page table writes properly on other CPUs.
953 */
954#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
955#define arch_enter_lazy_mmu_mode() do {} while (0)
956#define arch_leave_lazy_mmu_mode() do {} while (0)
957#define arch_flush_lazy_mmu_mode() do {} while (0)
958#endif
959
960/*
961 * A facility to provide batching of the reload of page tables and
962 * other process state with the actual context switch code for
963 * paravirtualized guests. By convention, only one of the batched
964 * update (lazy) modes (CPU, MMU) should be active at any given time,
965 * entry should never be nested, and entry and exits should always be
966 * paired. This is for sanity of maintaining and reasoning about the
967 * kernel code. In this case, the exit (end of the context switch) is
968 * in architecture-specific code, and so doesn't need a generic
969 * definition.
970 */
971#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
972#define arch_start_context_switch(prev) do {} while (0)
973#endif
974
975#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
976#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
977static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
978{
979 return pmd;
980}
981
982static inline int pmd_swp_soft_dirty(pmd_t pmd)
983{
984 return 0;
985}
986
987static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
988{
989 return pmd;
990}
991#endif
992#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
993static inline int pte_soft_dirty(pte_t pte)
994{
995 return 0;
996}
997
998static inline int pmd_soft_dirty(pmd_t pmd)
999{
1000 return 0;
1001}
1002
1003static inline pte_t pte_mksoft_dirty(pte_t pte)
1004{
1005 return pte;
1006}
1007
1008static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1009{
1010 return pmd;
1011}
1012
1013static inline pte_t pte_clear_soft_dirty(pte_t pte)
1014{
1015 return pte;
1016}
1017
1018static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1019{
1020 return pmd;
1021}
1022
1023static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1024{
1025 return pte;
1026}
1027
1028static inline int pte_swp_soft_dirty(pte_t pte)
1029{
1030 return 0;
1031}
1032
1033static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1034{
1035 return pte;
1036}
1037
1038static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1039{
1040 return pmd;
1041}
1042
1043static inline int pmd_swp_soft_dirty(pmd_t pmd)
1044{
1045 return 0;
1046}
1047
1048static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1049{
1050 return pmd;
1051}
1052#endif
1053
1054#ifndef __HAVE_PFNMAP_TRACKING
1055/*
1056 * Interfaces that can be used by architecture code to keep track of
1057 * memory type of pfn mappings specified by the remap_pfn_range,
1058 * vmf_insert_pfn.
1059 */
1060
1061/*
1062 * track_pfn_remap is called when a _new_ pfn mapping is being established
1063 * by remap_pfn_range() for physical range indicated by pfn and size.
1064 */
1065static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1066 unsigned long pfn, unsigned long addr,
1067 unsigned long size)
1068{
1069 return 0;
1070}
1071
1072/*
1073 * track_pfn_insert is called when a _new_ single pfn is established
1074 * by vmf_insert_pfn().
1075 */
1076static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1077 pfn_t pfn)
1078{
1079}
1080
1081/*
1082 * track_pfn_copy is called when vma that is covering the pfnmap gets
1083 * copied through copy_page_range().
1084 */
1085static inline int track_pfn_copy(struct vm_area_struct *vma)
1086{
1087 return 0;
1088}
1089
1090/*
1091 * untrack_pfn is called while unmapping a pfnmap for a region.
1092 * untrack can be called for a specific region indicated by pfn and size or
1093 * can be for the entire vma (in which case pfn, size are zero).
1094 */
1095static inline void untrack_pfn(struct vm_area_struct *vma,
1096 unsigned long pfn, unsigned long size)
1097{
1098}
1099
1100/*
1101 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1102 */
1103static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1104{
1105}
1106#else
1107extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1108 unsigned long pfn, unsigned long addr,
1109 unsigned long size);
1110extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1111 pfn_t pfn);
1112extern int track_pfn_copy(struct vm_area_struct *vma);
1113extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1114 unsigned long size);
1115extern void untrack_pfn_moved(struct vm_area_struct *vma);
1116#endif
1117
1118#ifdef __HAVE_COLOR_ZERO_PAGE
1119static inline int is_zero_pfn(unsigned long pfn)
1120{
1121 extern unsigned long zero_pfn;
1122 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1123 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1124}
1125
1126#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1127
1128#else
1129static inline int is_zero_pfn(unsigned long pfn)
1130{
1131 extern unsigned long zero_pfn;
1132 return pfn == zero_pfn;
1133}
1134
1135static inline unsigned long my_zero_pfn(unsigned long addr)
1136{
1137 extern unsigned long zero_pfn;
1138 return zero_pfn;
1139}
1140#endif
1141
1142#ifdef CONFIG_MMU
1143
1144#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1145static inline int pmd_trans_huge(pmd_t pmd)
1146{
1147 return 0;
1148}
1149#ifndef pmd_write
1150static inline int pmd_write(pmd_t pmd)
1151{
1152 BUG();
1153 return 0;
1154}
1155#endif /* pmd_write */
1156#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1157
1158#ifndef pud_write
1159static inline int pud_write(pud_t pud)
1160{
1161 BUG();
1162 return 0;
1163}
1164#endif /* pud_write */
1165
1166#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1167static inline int pmd_devmap(pmd_t pmd)
1168{
1169 return 0;
1170}
1171static inline int pud_devmap(pud_t pud)
1172{
1173 return 0;
1174}
1175static inline int pgd_devmap(pgd_t pgd)
1176{
1177 return 0;
1178}
1179#endif
1180
1181#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1182 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1183 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1184static inline int pud_trans_huge(pud_t pud)
1185{
1186 return 0;
1187}
1188#endif
1189
1190/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1191static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1192{
1193 pud_t pudval = READ_ONCE(*pud);
1194
1195 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1196 return 1;
1197 if (unlikely(pud_bad(pudval))) {
1198 pud_clear_bad(pud);
1199 return 1;
1200 }
1201 return 0;
1202}
1203
1204/* See pmd_trans_unstable for discussion. */
1205static inline int pud_trans_unstable(pud_t *pud)
1206{
1207#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1208 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1209 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1210#else
1211 return 0;
1212#endif
1213}
1214
1215#ifndef pmd_read_atomic
1216static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1217{
1218 /*
1219 * Depend on compiler for an atomic pmd read. NOTE: this is
1220 * only going to work, if the pmdval_t isn't larger than
1221 * an unsigned long.
1222 */
1223 return *pmdp;
1224}
1225#endif
1226
1227#ifndef arch_needs_pgtable_deposit
1228#define arch_needs_pgtable_deposit() (false)
1229#endif
1230/*
1231 * This function is meant to be used by sites walking pagetables with
1232 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1233 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1234 * into a null pmd and the transhuge page fault can convert a null pmd
1235 * into an hugepmd or into a regular pmd (if the hugepage allocation
1236 * fails). While holding the mmap_lock in read mode the pmd becomes
1237 * stable and stops changing under us only if it's not null and not a
1238 * transhuge pmd. When those races occurs and this function makes a
1239 * difference vs the standard pmd_none_or_clear_bad, the result is
1240 * undefined so behaving like if the pmd was none is safe (because it
1241 * can return none anyway). The compiler level barrier() is critically
1242 * important to compute the two checks atomically on the same pmdval.
1243 *
1244 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1245 * care of reading the pmd atomically to avoid SMP race conditions
1246 * against pmd_populate() when the mmap_lock is hold for reading by the
1247 * caller (a special atomic read not done by "gcc" as in the generic
1248 * version above, is also needed when THP is disabled because the page
1249 * fault can populate the pmd from under us).
1250 */
1251static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1252{
1253 pmd_t pmdval = pmd_read_atomic(pmd);
1254 /*
1255 * The barrier will stabilize the pmdval in a register or on
1256 * the stack so that it will stop changing under the code.
1257 *
1258 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1259 * pmd_read_atomic is allowed to return a not atomic pmdval
1260 * (for example pointing to an hugepage that has never been
1261 * mapped in the pmd). The below checks will only care about
1262 * the low part of the pmd with 32bit PAE x86 anyway, with the
1263 * exception of pmd_none(). So the important thing is that if
1264 * the low part of the pmd is found null, the high part will
1265 * be also null or the pmd_none() check below would be
1266 * confused.
1267 */
1268#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1269 barrier();
1270#endif
1271 /*
1272 * !pmd_present() checks for pmd migration entries
1273 *
1274 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1275 * But using that requires moving current function and pmd_trans_unstable()
1276 * to linux/swapops.h to resovle dependency, which is too much code move.
1277 *
1278 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1279 * because !pmd_present() pages can only be under migration not swapped
1280 * out.
1281 *
1282 * pmd_none() is preseved for future condition checks on pmd migration
1283 * entries and not confusing with this function name, although it is
1284 * redundant with !pmd_present().
1285 */
1286 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1287 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1288 return 1;
1289 if (unlikely(pmd_bad(pmdval))) {
1290 pmd_clear_bad(pmd);
1291 return 1;
1292 }
1293 return 0;
1294}
1295
1296/*
1297 * This is a noop if Transparent Hugepage Support is not built into
1298 * the kernel. Otherwise it is equivalent to
1299 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1300 * places that already verified the pmd is not none and they want to
1301 * walk ptes while holding the mmap sem in read mode (write mode don't
1302 * need this). If THP is not enabled, the pmd can't go away under the
1303 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1304 * run a pmd_trans_unstable before walking the ptes after
1305 * split_huge_pmd returns (because it may have run when the pmd become
1306 * null, but then a page fault can map in a THP and not a regular page).
1307 */
1308static inline int pmd_trans_unstable(pmd_t *pmd)
1309{
1310#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1311 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1312#else
1313 return 0;
1314#endif
1315}
1316
1317#ifndef CONFIG_NUMA_BALANCING
1318/*
1319 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1320 * the only case the kernel cares is for NUMA balancing and is only ever set
1321 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1322 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1323 * is the responsibility of the caller to distinguish between PROT_NONE
1324 * protections and NUMA hinting fault protections.
1325 */
1326static inline int pte_protnone(pte_t pte)
1327{
1328 return 0;
1329}
1330
1331static inline int pmd_protnone(pmd_t pmd)
1332{
1333 return 0;
1334}
1335#endif /* CONFIG_NUMA_BALANCING */
1336
1337#endif /* CONFIG_MMU */
1338
1339#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1340
1341#ifndef __PAGETABLE_P4D_FOLDED
1342int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1343int p4d_clear_huge(p4d_t *p4d);
1344#else
1345static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1346{
1347 return 0;
1348}
1349static inline int p4d_clear_huge(p4d_t *p4d)
1350{
1351 return 0;
1352}
1353#endif /* !__PAGETABLE_P4D_FOLDED */
1354
1355int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1356int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1357int pud_clear_huge(pud_t *pud);
1358int pmd_clear_huge(pmd_t *pmd);
1359int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1360int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1361int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1362#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1363static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1364{
1365 return 0;
1366}
1367static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1368{
1369 return 0;
1370}
1371static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1372{
1373 return 0;
1374}
1375static inline int p4d_clear_huge(p4d_t *p4d)
1376{
1377 return 0;
1378}
1379static inline int pud_clear_huge(pud_t *pud)
1380{
1381 return 0;
1382}
1383static inline int pmd_clear_huge(pmd_t *pmd)
1384{
1385 return 0;
1386}
1387static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1388{
1389 return 0;
1390}
1391static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1392{
1393 return 0;
1394}
1395static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1396{
1397 return 0;
1398}
1399#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1400
1401#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1403/*
1404 * ARCHes with special requirements for evicting THP backing TLB entries can
1405 * implement this. Otherwise also, it can help optimize normal TLB flush in
1406 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1407 * entire TLB if flush span is greater than a threshold, which will
1408 * likely be true for a single huge page. Thus a single THP flush will
1409 * invalidate the entire TLB which is not desirable.
1410 * e.g. see arch/arc: flush_pmd_tlb_range
1411 */
1412#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1413#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1414#else
1415#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1416#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1417#endif
1418#endif
1419
1420struct file;
1421int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1422 unsigned long size, pgprot_t *vma_prot);
1423
1424#ifndef CONFIG_X86_ESPFIX64
1425static inline void init_espfix_bsp(void) { }
1426#endif
1427
1428extern void __init pgtable_cache_init(void);
1429
1430#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1431static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1432{
1433 return true;
1434}
1435
1436static inline bool arch_has_pfn_modify_check(void)
1437{
1438 return false;
1439}
1440#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1441
1442/*
1443 * Architecture PAGE_KERNEL_* fallbacks
1444 *
1445 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1446 * because they really don't support them, or the port needs to be updated to
1447 * reflect the required functionality. Below are a set of relatively safe
1448 * fallbacks, as best effort, which we can count on in lieu of the architectures
1449 * not defining them on their own yet.
1450 */
1451
1452#ifndef PAGE_KERNEL_RO
1453# define PAGE_KERNEL_RO PAGE_KERNEL
1454#endif
1455
1456#ifndef PAGE_KERNEL_EXEC
1457# define PAGE_KERNEL_EXEC PAGE_KERNEL
1458#endif
1459
1460/*
1461 * Page Table Modification bits for pgtbl_mod_mask.
1462 *
1463 * These are used by the p?d_alloc_track*() set of functions an in the generic
1464 * vmalloc/ioremap code to track at which page-table levels entries have been
1465 * modified. Based on that the code can better decide when vmalloc and ioremap
1466 * mapping changes need to be synchronized to other page-tables in the system.
1467 */
1468#define __PGTBL_PGD_MODIFIED 0
1469#define __PGTBL_P4D_MODIFIED 1
1470#define __PGTBL_PUD_MODIFIED 2
1471#define __PGTBL_PMD_MODIFIED 3
1472#define __PGTBL_PTE_MODIFIED 4
1473
1474#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1475#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1476#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1477#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1478#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1479
1480/* Page-Table Modification Mask */
1481typedef unsigned int pgtbl_mod_mask;
1482
1483#endif /* !__ASSEMBLY__ */
1484
1485#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1486#ifdef CONFIG_PHYS_ADDR_T_64BIT
1487/*
1488 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1489 * with physical address space extension, but falls back to
1490 * BITS_PER_LONG otherwise.
1491 */
1492#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1493#else
1494#define MAX_POSSIBLE_PHYSMEM_BITS 32
1495#endif
1496#endif
1497
1498#ifndef has_transparent_hugepage
1499#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1500#define has_transparent_hugepage() 1
1501#else
1502#define has_transparent_hugepage() 0
1503#endif
1504#endif
1505
1506/*
1507 * On some architectures it depends on the mm if the p4d/pud or pmd
1508 * layer of the page table hierarchy is folded or not.
1509 */
1510#ifndef mm_p4d_folded
1511#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1512#endif
1513
1514#ifndef mm_pud_folded
1515#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1516#endif
1517
1518#ifndef mm_pmd_folded
1519#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1520#endif
1521
1522#ifndef p4d_offset_lockless
1523#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1524#endif
1525#ifndef pud_offset_lockless
1526#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1527#endif
1528#ifndef pmd_offset_lockless
1529#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1530#endif
1531
1532/*
1533 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1534 * This differs from p?d_huge() by the fact that they are always available (if
1535 * the architecture supports large pages at the appropriate level) even
1536 * if CONFIG_HUGETLB_PAGE is not defined.
1537 * Only meaningful when called on a valid entry.
1538 */
1539#ifndef pgd_leaf
1540#define pgd_leaf(x) 0
1541#endif
1542#ifndef p4d_leaf
1543#define p4d_leaf(x) 0
1544#endif
1545#ifndef pud_leaf
1546#define pud_leaf(x) 0
1547#endif
1548#ifndef pmd_leaf
1549#define pmd_leaf(x) 0
1550#endif
1551
1552#ifndef pgd_leaf_size
1553#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1554#endif
1555#ifndef p4d_leaf_size
1556#define p4d_leaf_size(x) P4D_SIZE
1557#endif
1558#ifndef pud_leaf_size
1559#define pud_leaf_size(x) PUD_SIZE
1560#endif
1561#ifndef pmd_leaf_size
1562#define pmd_leaf_size(x) PMD_SIZE
1563#endif
1564#ifndef pte_leaf_size
1565#define pte_leaf_size(x) PAGE_SIZE
1566#endif
1567
1568#endif /* _LINUX_PGTABLE_H */