at v5.11 46 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34}; 35 36#ifdef CONFIG_HAVE_HW_BREAKPOINT 37#include <asm/hw_breakpoint.h> 38#endif 39 40#include <linux/list.h> 41#include <linux/mutex.h> 42#include <linux/rculist.h> 43#include <linux/rcupdate.h> 44#include <linux/spinlock.h> 45#include <linux/hrtimer.h> 46#include <linux/fs.h> 47#include <linux/pid_namespace.h> 48#include <linux/workqueue.h> 49#include <linux/ftrace.h> 50#include <linux/cpu.h> 51#include <linux/irq_work.h> 52#include <linux/static_key.h> 53#include <linux/jump_label_ratelimit.h> 54#include <linux/atomic.h> 55#include <linux/sysfs.h> 56#include <linux/perf_regs.h> 57#include <linux/cgroup.h> 58#include <linux/refcount.h> 59#include <linux/security.h> 60#include <asm/local.h> 61 62struct perf_callchain_entry { 63 __u64 nr; 64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 65}; 66 67struct perf_callchain_entry_ctx { 68 struct perf_callchain_entry *entry; 69 u32 max_stack; 70 u32 nr; 71 short contexts; 72 bool contexts_maxed; 73}; 74 75typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 76 unsigned long off, unsigned long len); 77 78struct perf_raw_frag { 79 union { 80 struct perf_raw_frag *next; 81 unsigned long pad; 82 }; 83 perf_copy_f copy; 84 void *data; 85 u32 size; 86} __packed; 87 88struct perf_raw_record { 89 struct perf_raw_frag frag; 90 u32 size; 91}; 92 93/* 94 * branch stack layout: 95 * nr: number of taken branches stored in entries[] 96 * hw_idx: The low level index of raw branch records 97 * for the most recent branch. 98 * -1ULL means invalid/unknown. 99 * 100 * Note that nr can vary from sample to sample 101 * branches (to, from) are stored from most recent 102 * to least recent, i.e., entries[0] contains the most 103 * recent branch. 104 * The entries[] is an abstraction of raw branch records, 105 * which may not be stored in age order in HW, e.g. Intel LBR. 106 * The hw_idx is to expose the low level index of raw 107 * branch record for the most recent branch aka entries[0]. 108 * The hw_idx index is between -1 (unknown) and max depth, 109 * which can be retrieved in /sys/devices/cpu/caps/branches. 110 * For the architectures whose raw branch records are 111 * already stored in age order, the hw_idx should be 0. 112 */ 113struct perf_branch_stack { 114 __u64 nr; 115 __u64 hw_idx; 116 struct perf_branch_entry entries[]; 117}; 118 119struct task_struct; 120 121/* 122 * extra PMU register associated with an event 123 */ 124struct hw_perf_event_extra { 125 u64 config; /* register value */ 126 unsigned int reg; /* register address or index */ 127 int alloc; /* extra register already allocated */ 128 int idx; /* index in shared_regs->regs[] */ 129}; 130 131/** 132 * struct hw_perf_event - performance event hardware details: 133 */ 134struct hw_perf_event { 135#ifdef CONFIG_PERF_EVENTS 136 union { 137 struct { /* hardware */ 138 u64 config; 139 u64 last_tag; 140 unsigned long config_base; 141 unsigned long event_base; 142 int event_base_rdpmc; 143 int idx; 144 int last_cpu; 145 int flags; 146 147 struct hw_perf_event_extra extra_reg; 148 struct hw_perf_event_extra branch_reg; 149 }; 150 struct { /* software */ 151 struct hrtimer hrtimer; 152 }; 153 struct { /* tracepoint */ 154 /* for tp_event->class */ 155 struct list_head tp_list; 156 }; 157 struct { /* amd_power */ 158 u64 pwr_acc; 159 u64 ptsc; 160 }; 161#ifdef CONFIG_HAVE_HW_BREAKPOINT 162 struct { /* breakpoint */ 163 /* 164 * Crufty hack to avoid the chicken and egg 165 * problem hw_breakpoint has with context 166 * creation and event initalization. 167 */ 168 struct arch_hw_breakpoint info; 169 struct list_head bp_list; 170 }; 171#endif 172 struct { /* amd_iommu */ 173 u8 iommu_bank; 174 u8 iommu_cntr; 175 u16 padding; 176 u64 conf; 177 u64 conf1; 178 }; 179 }; 180 /* 181 * If the event is a per task event, this will point to the task in 182 * question. See the comment in perf_event_alloc(). 183 */ 184 struct task_struct *target; 185 186 /* 187 * PMU would store hardware filter configuration 188 * here. 189 */ 190 void *addr_filters; 191 192 /* Last sync'ed generation of filters */ 193 unsigned long addr_filters_gen; 194 195/* 196 * hw_perf_event::state flags; used to track the PERF_EF_* state. 197 */ 198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 200#define PERF_HES_ARCH 0x04 201 202 int state; 203 204 /* 205 * The last observed hardware counter value, updated with a 206 * local64_cmpxchg() such that pmu::read() can be called nested. 207 */ 208 local64_t prev_count; 209 210 /* 211 * The period to start the next sample with. 212 */ 213 u64 sample_period; 214 215 union { 216 struct { /* Sampling */ 217 /* 218 * The period we started this sample with. 219 */ 220 u64 last_period; 221 222 /* 223 * However much is left of the current period; 224 * note that this is a full 64bit value and 225 * allows for generation of periods longer 226 * than hardware might allow. 227 */ 228 local64_t period_left; 229 }; 230 struct { /* Topdown events counting for context switch */ 231 u64 saved_metric; 232 u64 saved_slots; 233 }; 234 }; 235 236 /* 237 * State for throttling the event, see __perf_event_overflow() and 238 * perf_adjust_freq_unthr_context(). 239 */ 240 u64 interrupts_seq; 241 u64 interrupts; 242 243 /* 244 * State for freq target events, see __perf_event_overflow() and 245 * perf_adjust_freq_unthr_context(). 246 */ 247 u64 freq_time_stamp; 248 u64 freq_count_stamp; 249#endif 250}; 251 252struct perf_event; 253 254/* 255 * Common implementation detail of pmu::{start,commit,cancel}_txn 256 */ 257#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 258#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 259 260/** 261 * pmu::capabilities flags 262 */ 263#define PERF_PMU_CAP_NO_INTERRUPT 0x01 264#define PERF_PMU_CAP_NO_NMI 0x02 265#define PERF_PMU_CAP_AUX_NO_SG 0x04 266#define PERF_PMU_CAP_EXTENDED_REGS 0x08 267#define PERF_PMU_CAP_EXCLUSIVE 0x10 268#define PERF_PMU_CAP_ITRACE 0x20 269#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 270#define PERF_PMU_CAP_NO_EXCLUDE 0x80 271#define PERF_PMU_CAP_AUX_OUTPUT 0x100 272 273struct perf_output_handle; 274 275/** 276 * struct pmu - generic performance monitoring unit 277 */ 278struct pmu { 279 struct list_head entry; 280 281 struct module *module; 282 struct device *dev; 283 const struct attribute_group **attr_groups; 284 const struct attribute_group **attr_update; 285 const char *name; 286 int type; 287 288 /* 289 * various common per-pmu feature flags 290 */ 291 int capabilities; 292 293 int __percpu *pmu_disable_count; 294 struct perf_cpu_context __percpu *pmu_cpu_context; 295 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 296 int task_ctx_nr; 297 int hrtimer_interval_ms; 298 299 /* number of address filters this PMU can do */ 300 unsigned int nr_addr_filters; 301 302 /* 303 * Fully disable/enable this PMU, can be used to protect from the PMI 304 * as well as for lazy/batch writing of the MSRs. 305 */ 306 void (*pmu_enable) (struct pmu *pmu); /* optional */ 307 void (*pmu_disable) (struct pmu *pmu); /* optional */ 308 309 /* 310 * Try and initialize the event for this PMU. 311 * 312 * Returns: 313 * -ENOENT -- @event is not for this PMU 314 * 315 * -ENODEV -- @event is for this PMU but PMU not present 316 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 317 * -EINVAL -- @event is for this PMU but @event is not valid 318 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 319 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 320 * 321 * 0 -- @event is for this PMU and valid 322 * 323 * Other error return values are allowed. 324 */ 325 int (*event_init) (struct perf_event *event); 326 327 /* 328 * Notification that the event was mapped or unmapped. Called 329 * in the context of the mapping task. 330 */ 331 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 332 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 333 334 /* 335 * Flags for ->add()/->del()/ ->start()/->stop(). There are 336 * matching hw_perf_event::state flags. 337 */ 338#define PERF_EF_START 0x01 /* start the counter when adding */ 339#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 340#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 341 342 /* 343 * Adds/Removes a counter to/from the PMU, can be done inside a 344 * transaction, see the ->*_txn() methods. 345 * 346 * The add/del callbacks will reserve all hardware resources required 347 * to service the event, this includes any counter constraint 348 * scheduling etc. 349 * 350 * Called with IRQs disabled and the PMU disabled on the CPU the event 351 * is on. 352 * 353 * ->add() called without PERF_EF_START should result in the same state 354 * as ->add() followed by ->stop(). 355 * 356 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 357 * ->stop() that must deal with already being stopped without 358 * PERF_EF_UPDATE. 359 */ 360 int (*add) (struct perf_event *event, int flags); 361 void (*del) (struct perf_event *event, int flags); 362 363 /* 364 * Starts/Stops a counter present on the PMU. 365 * 366 * The PMI handler should stop the counter when perf_event_overflow() 367 * returns !0. ->start() will be used to continue. 368 * 369 * Also used to change the sample period. 370 * 371 * Called with IRQs disabled and the PMU disabled on the CPU the event 372 * is on -- will be called from NMI context with the PMU generates 373 * NMIs. 374 * 375 * ->stop() with PERF_EF_UPDATE will read the counter and update 376 * period/count values like ->read() would. 377 * 378 * ->start() with PERF_EF_RELOAD will reprogram the counter 379 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 380 */ 381 void (*start) (struct perf_event *event, int flags); 382 void (*stop) (struct perf_event *event, int flags); 383 384 /* 385 * Updates the counter value of the event. 386 * 387 * For sampling capable PMUs this will also update the software period 388 * hw_perf_event::period_left field. 389 */ 390 void (*read) (struct perf_event *event); 391 392 /* 393 * Group events scheduling is treated as a transaction, add 394 * group events as a whole and perform one schedulability test. 395 * If the test fails, roll back the whole group 396 * 397 * Start the transaction, after this ->add() doesn't need to 398 * do schedulability tests. 399 * 400 * Optional. 401 */ 402 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 403 /* 404 * If ->start_txn() disabled the ->add() schedulability test 405 * then ->commit_txn() is required to perform one. On success 406 * the transaction is closed. On error the transaction is kept 407 * open until ->cancel_txn() is called. 408 * 409 * Optional. 410 */ 411 int (*commit_txn) (struct pmu *pmu); 412 /* 413 * Will cancel the transaction, assumes ->del() is called 414 * for each successful ->add() during the transaction. 415 * 416 * Optional. 417 */ 418 void (*cancel_txn) (struct pmu *pmu); 419 420 /* 421 * Will return the value for perf_event_mmap_page::index for this event, 422 * if no implementation is provided it will default to: event->hw.idx + 1. 423 */ 424 int (*event_idx) (struct perf_event *event); /*optional */ 425 426 /* 427 * context-switches callback 428 */ 429 void (*sched_task) (struct perf_event_context *ctx, 430 bool sched_in); 431 432 /* 433 * Kmem cache of PMU specific data 434 */ 435 struct kmem_cache *task_ctx_cache; 436 437 /* 438 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 439 * can be synchronized using this function. See Intel LBR callstack support 440 * implementation and Perf core context switch handling callbacks for usage 441 * examples. 442 */ 443 void (*swap_task_ctx) (struct perf_event_context *prev, 444 struct perf_event_context *next); 445 /* optional */ 446 447 /* 448 * Set up pmu-private data structures for an AUX area 449 */ 450 void *(*setup_aux) (struct perf_event *event, void **pages, 451 int nr_pages, bool overwrite); 452 /* optional */ 453 454 /* 455 * Free pmu-private AUX data structures 456 */ 457 void (*free_aux) (void *aux); /* optional */ 458 459 /* 460 * Take a snapshot of the AUX buffer without touching the event 461 * state, so that preempting ->start()/->stop() callbacks does 462 * not interfere with their logic. Called in PMI context. 463 * 464 * Returns the size of AUX data copied to the output handle. 465 * 466 * Optional. 467 */ 468 long (*snapshot_aux) (struct perf_event *event, 469 struct perf_output_handle *handle, 470 unsigned long size); 471 472 /* 473 * Validate address range filters: make sure the HW supports the 474 * requested configuration and number of filters; return 0 if the 475 * supplied filters are valid, -errno otherwise. 476 * 477 * Runs in the context of the ioctl()ing process and is not serialized 478 * with the rest of the PMU callbacks. 479 */ 480 int (*addr_filters_validate) (struct list_head *filters); 481 /* optional */ 482 483 /* 484 * Synchronize address range filter configuration: 485 * translate hw-agnostic filters into hardware configuration in 486 * event::hw::addr_filters. 487 * 488 * Runs as a part of filter sync sequence that is done in ->start() 489 * callback by calling perf_event_addr_filters_sync(). 490 * 491 * May (and should) traverse event::addr_filters::list, for which its 492 * caller provides necessary serialization. 493 */ 494 void (*addr_filters_sync) (struct perf_event *event); 495 /* optional */ 496 497 /* 498 * Check if event can be used for aux_output purposes for 499 * events of this PMU. 500 * 501 * Runs from perf_event_open(). Should return 0 for "no match" 502 * or non-zero for "match". 503 */ 504 int (*aux_output_match) (struct perf_event *event); 505 /* optional */ 506 507 /* 508 * Filter events for PMU-specific reasons. 509 */ 510 int (*filter_match) (struct perf_event *event); /* optional */ 511 512 /* 513 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 514 */ 515 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 516}; 517 518enum perf_addr_filter_action_t { 519 PERF_ADDR_FILTER_ACTION_STOP = 0, 520 PERF_ADDR_FILTER_ACTION_START, 521 PERF_ADDR_FILTER_ACTION_FILTER, 522}; 523 524/** 525 * struct perf_addr_filter - address range filter definition 526 * @entry: event's filter list linkage 527 * @path: object file's path for file-based filters 528 * @offset: filter range offset 529 * @size: filter range size (size==0 means single address trigger) 530 * @action: filter/start/stop 531 * 532 * This is a hardware-agnostic filter configuration as specified by the user. 533 */ 534struct perf_addr_filter { 535 struct list_head entry; 536 struct path path; 537 unsigned long offset; 538 unsigned long size; 539 enum perf_addr_filter_action_t action; 540}; 541 542/** 543 * struct perf_addr_filters_head - container for address range filters 544 * @list: list of filters for this event 545 * @lock: spinlock that serializes accesses to the @list and event's 546 * (and its children's) filter generations. 547 * @nr_file_filters: number of file-based filters 548 * 549 * A child event will use parent's @list (and therefore @lock), so they are 550 * bundled together; see perf_event_addr_filters(). 551 */ 552struct perf_addr_filters_head { 553 struct list_head list; 554 raw_spinlock_t lock; 555 unsigned int nr_file_filters; 556}; 557 558struct perf_addr_filter_range { 559 unsigned long start; 560 unsigned long size; 561}; 562 563/** 564 * enum perf_event_state - the states of an event: 565 */ 566enum perf_event_state { 567 PERF_EVENT_STATE_DEAD = -4, 568 PERF_EVENT_STATE_EXIT = -3, 569 PERF_EVENT_STATE_ERROR = -2, 570 PERF_EVENT_STATE_OFF = -1, 571 PERF_EVENT_STATE_INACTIVE = 0, 572 PERF_EVENT_STATE_ACTIVE = 1, 573}; 574 575struct file; 576struct perf_sample_data; 577 578typedef void (*perf_overflow_handler_t)(struct perf_event *, 579 struct perf_sample_data *, 580 struct pt_regs *regs); 581 582/* 583 * Event capabilities. For event_caps and groups caps. 584 * 585 * PERF_EV_CAP_SOFTWARE: Is a software event. 586 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 587 * from any CPU in the package where it is active. 588 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 589 * cannot be a group leader. If an event with this flag is detached from the 590 * group it is scheduled out and moved into an unrecoverable ERROR state. 591 */ 592#define PERF_EV_CAP_SOFTWARE BIT(0) 593#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 594#define PERF_EV_CAP_SIBLING BIT(2) 595 596#define SWEVENT_HLIST_BITS 8 597#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 598 599struct swevent_hlist { 600 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 601 struct rcu_head rcu_head; 602}; 603 604#define PERF_ATTACH_CONTEXT 0x01 605#define PERF_ATTACH_GROUP 0x02 606#define PERF_ATTACH_TASK 0x04 607#define PERF_ATTACH_TASK_DATA 0x08 608#define PERF_ATTACH_ITRACE 0x10 609 610struct perf_cgroup; 611struct perf_buffer; 612 613struct pmu_event_list { 614 raw_spinlock_t lock; 615 struct list_head list; 616}; 617 618#define for_each_sibling_event(sibling, event) \ 619 if ((event)->group_leader == (event)) \ 620 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 621 622/** 623 * struct perf_event - performance event kernel representation: 624 */ 625struct perf_event { 626#ifdef CONFIG_PERF_EVENTS 627 /* 628 * entry onto perf_event_context::event_list; 629 * modifications require ctx->lock 630 * RCU safe iterations. 631 */ 632 struct list_head event_entry; 633 634 /* 635 * Locked for modification by both ctx->mutex and ctx->lock; holding 636 * either sufficies for read. 637 */ 638 struct list_head sibling_list; 639 struct list_head active_list; 640 /* 641 * Node on the pinned or flexible tree located at the event context; 642 */ 643 struct rb_node group_node; 644 u64 group_index; 645 /* 646 * We need storage to track the entries in perf_pmu_migrate_context; we 647 * cannot use the event_entry because of RCU and we want to keep the 648 * group in tact which avoids us using the other two entries. 649 */ 650 struct list_head migrate_entry; 651 652 struct hlist_node hlist_entry; 653 struct list_head active_entry; 654 int nr_siblings; 655 656 /* Not serialized. Only written during event initialization. */ 657 int event_caps; 658 /* The cumulative AND of all event_caps for events in this group. */ 659 int group_caps; 660 661 struct perf_event *group_leader; 662 struct pmu *pmu; 663 void *pmu_private; 664 665 enum perf_event_state state; 666 unsigned int attach_state; 667 local64_t count; 668 atomic64_t child_count; 669 670 /* 671 * These are the total time in nanoseconds that the event 672 * has been enabled (i.e. eligible to run, and the task has 673 * been scheduled in, if this is a per-task event) 674 * and running (scheduled onto the CPU), respectively. 675 */ 676 u64 total_time_enabled; 677 u64 total_time_running; 678 u64 tstamp; 679 680 /* 681 * timestamp shadows the actual context timing but it can 682 * be safely used in NMI interrupt context. It reflects the 683 * context time as it was when the event was last scheduled in. 684 * 685 * ctx_time already accounts for ctx->timestamp. Therefore to 686 * compute ctx_time for a sample, simply add perf_clock(). 687 */ 688 u64 shadow_ctx_time; 689 690 struct perf_event_attr attr; 691 u16 header_size; 692 u16 id_header_size; 693 u16 read_size; 694 struct hw_perf_event hw; 695 696 struct perf_event_context *ctx; 697 atomic_long_t refcount; 698 699 /* 700 * These accumulate total time (in nanoseconds) that children 701 * events have been enabled and running, respectively. 702 */ 703 atomic64_t child_total_time_enabled; 704 atomic64_t child_total_time_running; 705 706 /* 707 * Protect attach/detach and child_list: 708 */ 709 struct mutex child_mutex; 710 struct list_head child_list; 711 struct perf_event *parent; 712 713 int oncpu; 714 int cpu; 715 716 struct list_head owner_entry; 717 struct task_struct *owner; 718 719 /* mmap bits */ 720 struct mutex mmap_mutex; 721 atomic_t mmap_count; 722 723 struct perf_buffer *rb; 724 struct list_head rb_entry; 725 unsigned long rcu_batches; 726 int rcu_pending; 727 728 /* poll related */ 729 wait_queue_head_t waitq; 730 struct fasync_struct *fasync; 731 732 /* delayed work for NMIs and such */ 733 int pending_wakeup; 734 int pending_kill; 735 int pending_disable; 736 struct irq_work pending; 737 738 atomic_t event_limit; 739 740 /* address range filters */ 741 struct perf_addr_filters_head addr_filters; 742 /* vma address array for file-based filders */ 743 struct perf_addr_filter_range *addr_filter_ranges; 744 unsigned long addr_filters_gen; 745 746 /* for aux_output events */ 747 struct perf_event *aux_event; 748 749 void (*destroy)(struct perf_event *); 750 struct rcu_head rcu_head; 751 752 struct pid_namespace *ns; 753 u64 id; 754 755 u64 (*clock)(void); 756 perf_overflow_handler_t overflow_handler; 757 void *overflow_handler_context; 758#ifdef CONFIG_BPF_SYSCALL 759 perf_overflow_handler_t orig_overflow_handler; 760 struct bpf_prog *prog; 761#endif 762 763#ifdef CONFIG_EVENT_TRACING 764 struct trace_event_call *tp_event; 765 struct event_filter *filter; 766#ifdef CONFIG_FUNCTION_TRACER 767 struct ftrace_ops ftrace_ops; 768#endif 769#endif 770 771#ifdef CONFIG_CGROUP_PERF 772 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 773#endif 774 775#ifdef CONFIG_SECURITY 776 void *security; 777#endif 778 struct list_head sb_list; 779#endif /* CONFIG_PERF_EVENTS */ 780}; 781 782 783struct perf_event_groups { 784 struct rb_root tree; 785 u64 index; 786}; 787 788/** 789 * struct perf_event_context - event context structure 790 * 791 * Used as a container for task events and CPU events as well: 792 */ 793struct perf_event_context { 794 struct pmu *pmu; 795 /* 796 * Protect the states of the events in the list, 797 * nr_active, and the list: 798 */ 799 raw_spinlock_t lock; 800 /* 801 * Protect the list of events. Locking either mutex or lock 802 * is sufficient to ensure the list doesn't change; to change 803 * the list you need to lock both the mutex and the spinlock. 804 */ 805 struct mutex mutex; 806 807 struct list_head active_ctx_list; 808 struct perf_event_groups pinned_groups; 809 struct perf_event_groups flexible_groups; 810 struct list_head event_list; 811 812 struct list_head pinned_active; 813 struct list_head flexible_active; 814 815 int nr_events; 816 int nr_active; 817 int is_active; 818 int nr_stat; 819 int nr_freq; 820 int rotate_disable; 821 /* 822 * Set when nr_events != nr_active, except tolerant to events not 823 * necessary to be active due to scheduling constraints, such as cgroups. 824 */ 825 int rotate_necessary; 826 refcount_t refcount; 827 struct task_struct *task; 828 829 /* 830 * Context clock, runs when context enabled. 831 */ 832 u64 time; 833 u64 timestamp; 834 835 /* 836 * These fields let us detect when two contexts have both 837 * been cloned (inherited) from a common ancestor. 838 */ 839 struct perf_event_context *parent_ctx; 840 u64 parent_gen; 841 u64 generation; 842 int pin_count; 843#ifdef CONFIG_CGROUP_PERF 844 int nr_cgroups; /* cgroup evts */ 845#endif 846 void *task_ctx_data; /* pmu specific data */ 847 struct rcu_head rcu_head; 848}; 849 850/* 851 * Number of contexts where an event can trigger: 852 * task, softirq, hardirq, nmi. 853 */ 854#define PERF_NR_CONTEXTS 4 855 856/** 857 * struct perf_event_cpu_context - per cpu event context structure 858 */ 859struct perf_cpu_context { 860 struct perf_event_context ctx; 861 struct perf_event_context *task_ctx; 862 int active_oncpu; 863 int exclusive; 864 865 raw_spinlock_t hrtimer_lock; 866 struct hrtimer hrtimer; 867 ktime_t hrtimer_interval; 868 unsigned int hrtimer_active; 869 870#ifdef CONFIG_CGROUP_PERF 871 struct perf_cgroup *cgrp; 872 struct list_head cgrp_cpuctx_entry; 873#endif 874 875 int sched_cb_usage; 876 877 int online; 878 /* 879 * Per-CPU storage for iterators used in visit_groups_merge. The default 880 * storage is of size 2 to hold the CPU and any CPU event iterators. 881 */ 882 int heap_size; 883 struct perf_event **heap; 884 struct perf_event *heap_default[2]; 885}; 886 887struct perf_output_handle { 888 struct perf_event *event; 889 struct perf_buffer *rb; 890 unsigned long wakeup; 891 unsigned long size; 892 u64 aux_flags; 893 union { 894 void *addr; 895 unsigned long head; 896 }; 897 int page; 898}; 899 900struct bpf_perf_event_data_kern { 901 bpf_user_pt_regs_t *regs; 902 struct perf_sample_data *data; 903 struct perf_event *event; 904}; 905 906#ifdef CONFIG_CGROUP_PERF 907 908/* 909 * perf_cgroup_info keeps track of time_enabled for a cgroup. 910 * This is a per-cpu dynamically allocated data structure. 911 */ 912struct perf_cgroup_info { 913 u64 time; 914 u64 timestamp; 915}; 916 917struct perf_cgroup { 918 struct cgroup_subsys_state css; 919 struct perf_cgroup_info __percpu *info; 920}; 921 922/* 923 * Must ensure cgroup is pinned (css_get) before calling 924 * this function. In other words, we cannot call this function 925 * if there is no cgroup event for the current CPU context. 926 */ 927static inline struct perf_cgroup * 928perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 929{ 930 return container_of(task_css_check(task, perf_event_cgrp_id, 931 ctx ? lockdep_is_held(&ctx->lock) 932 : true), 933 struct perf_cgroup, css); 934} 935#endif /* CONFIG_CGROUP_PERF */ 936 937#ifdef CONFIG_PERF_EVENTS 938 939extern void *perf_aux_output_begin(struct perf_output_handle *handle, 940 struct perf_event *event); 941extern void perf_aux_output_end(struct perf_output_handle *handle, 942 unsigned long size); 943extern int perf_aux_output_skip(struct perf_output_handle *handle, 944 unsigned long size); 945extern void *perf_get_aux(struct perf_output_handle *handle); 946extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 947extern void perf_event_itrace_started(struct perf_event *event); 948 949extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 950extern void perf_pmu_unregister(struct pmu *pmu); 951 952extern int perf_num_counters(void); 953extern const char *perf_pmu_name(void); 954extern void __perf_event_task_sched_in(struct task_struct *prev, 955 struct task_struct *task); 956extern void __perf_event_task_sched_out(struct task_struct *prev, 957 struct task_struct *next); 958extern int perf_event_init_task(struct task_struct *child); 959extern void perf_event_exit_task(struct task_struct *child); 960extern void perf_event_free_task(struct task_struct *task); 961extern void perf_event_delayed_put(struct task_struct *task); 962extern struct file *perf_event_get(unsigned int fd); 963extern const struct perf_event *perf_get_event(struct file *file); 964extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 965extern void perf_event_print_debug(void); 966extern void perf_pmu_disable(struct pmu *pmu); 967extern void perf_pmu_enable(struct pmu *pmu); 968extern void perf_sched_cb_dec(struct pmu *pmu); 969extern void perf_sched_cb_inc(struct pmu *pmu); 970extern int perf_event_task_disable(void); 971extern int perf_event_task_enable(void); 972 973extern void perf_pmu_resched(struct pmu *pmu); 974 975extern int perf_event_refresh(struct perf_event *event, int refresh); 976extern void perf_event_update_userpage(struct perf_event *event); 977extern int perf_event_release_kernel(struct perf_event *event); 978extern struct perf_event * 979perf_event_create_kernel_counter(struct perf_event_attr *attr, 980 int cpu, 981 struct task_struct *task, 982 perf_overflow_handler_t callback, 983 void *context); 984extern void perf_pmu_migrate_context(struct pmu *pmu, 985 int src_cpu, int dst_cpu); 986int perf_event_read_local(struct perf_event *event, u64 *value, 987 u64 *enabled, u64 *running); 988extern u64 perf_event_read_value(struct perf_event *event, 989 u64 *enabled, u64 *running); 990 991 992struct perf_sample_data { 993 /* 994 * Fields set by perf_sample_data_init(), group so as to 995 * minimize the cachelines touched. 996 */ 997 u64 addr; 998 struct perf_raw_record *raw; 999 struct perf_branch_stack *br_stack; 1000 u64 period; 1001 u64 weight; 1002 u64 txn; 1003 union perf_mem_data_src data_src; 1004 1005 /* 1006 * The other fields, optionally {set,used} by 1007 * perf_{prepare,output}_sample(). 1008 */ 1009 u64 type; 1010 u64 ip; 1011 struct { 1012 u32 pid; 1013 u32 tid; 1014 } tid_entry; 1015 u64 time; 1016 u64 id; 1017 u64 stream_id; 1018 struct { 1019 u32 cpu; 1020 u32 reserved; 1021 } cpu_entry; 1022 struct perf_callchain_entry *callchain; 1023 u64 aux_size; 1024 1025 struct perf_regs regs_user; 1026 struct perf_regs regs_intr; 1027 u64 stack_user_size; 1028 1029 u64 phys_addr; 1030 u64 cgroup; 1031 u64 data_page_size; 1032 u64 code_page_size; 1033} ____cacheline_aligned; 1034 1035/* default value for data source */ 1036#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1037 PERF_MEM_S(LVL, NA) |\ 1038 PERF_MEM_S(SNOOP, NA) |\ 1039 PERF_MEM_S(LOCK, NA) |\ 1040 PERF_MEM_S(TLB, NA)) 1041 1042static inline void perf_sample_data_init(struct perf_sample_data *data, 1043 u64 addr, u64 period) 1044{ 1045 /* remaining struct members initialized in perf_prepare_sample() */ 1046 data->addr = addr; 1047 data->raw = NULL; 1048 data->br_stack = NULL; 1049 data->period = period; 1050 data->weight = 0; 1051 data->data_src.val = PERF_MEM_NA; 1052 data->txn = 0; 1053} 1054 1055extern void perf_output_sample(struct perf_output_handle *handle, 1056 struct perf_event_header *header, 1057 struct perf_sample_data *data, 1058 struct perf_event *event); 1059extern void perf_prepare_sample(struct perf_event_header *header, 1060 struct perf_sample_data *data, 1061 struct perf_event *event, 1062 struct pt_regs *regs); 1063 1064extern int perf_event_overflow(struct perf_event *event, 1065 struct perf_sample_data *data, 1066 struct pt_regs *regs); 1067 1068extern void perf_event_output_forward(struct perf_event *event, 1069 struct perf_sample_data *data, 1070 struct pt_regs *regs); 1071extern void perf_event_output_backward(struct perf_event *event, 1072 struct perf_sample_data *data, 1073 struct pt_regs *regs); 1074extern int perf_event_output(struct perf_event *event, 1075 struct perf_sample_data *data, 1076 struct pt_regs *regs); 1077 1078static inline bool 1079is_default_overflow_handler(struct perf_event *event) 1080{ 1081 if (likely(event->overflow_handler == perf_event_output_forward)) 1082 return true; 1083 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1084 return true; 1085 return false; 1086} 1087 1088extern void 1089perf_event_header__init_id(struct perf_event_header *header, 1090 struct perf_sample_data *data, 1091 struct perf_event *event); 1092extern void 1093perf_event__output_id_sample(struct perf_event *event, 1094 struct perf_output_handle *handle, 1095 struct perf_sample_data *sample); 1096 1097extern void 1098perf_log_lost_samples(struct perf_event *event, u64 lost); 1099 1100static inline bool event_has_any_exclude_flag(struct perf_event *event) 1101{ 1102 struct perf_event_attr *attr = &event->attr; 1103 1104 return attr->exclude_idle || attr->exclude_user || 1105 attr->exclude_kernel || attr->exclude_hv || 1106 attr->exclude_guest || attr->exclude_host; 1107} 1108 1109static inline bool is_sampling_event(struct perf_event *event) 1110{ 1111 return event->attr.sample_period != 0; 1112} 1113 1114/* 1115 * Return 1 for a software event, 0 for a hardware event 1116 */ 1117static inline int is_software_event(struct perf_event *event) 1118{ 1119 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1120} 1121 1122/* 1123 * Return 1 for event in sw context, 0 for event in hw context 1124 */ 1125static inline int in_software_context(struct perf_event *event) 1126{ 1127 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1128} 1129 1130static inline int is_exclusive_pmu(struct pmu *pmu) 1131{ 1132 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1133} 1134 1135extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1136 1137extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1138extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1139 1140#ifndef perf_arch_fetch_caller_regs 1141static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1142#endif 1143 1144/* 1145 * When generating a perf sample in-line, instead of from an interrupt / 1146 * exception, we lack a pt_regs. This is typically used from software events 1147 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1148 * 1149 * We typically don't need a full set, but (for x86) do require: 1150 * - ip for PERF_SAMPLE_IP 1151 * - cs for user_mode() tests 1152 * - sp for PERF_SAMPLE_CALLCHAIN 1153 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1154 * 1155 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1156 * things like PERF_SAMPLE_REGS_INTR. 1157 */ 1158static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1159{ 1160 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1161} 1162 1163static __always_inline void 1164perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1165{ 1166 if (static_key_false(&perf_swevent_enabled[event_id])) 1167 __perf_sw_event(event_id, nr, regs, addr); 1168} 1169 1170DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1171 1172/* 1173 * 'Special' version for the scheduler, it hard assumes no recursion, 1174 * which is guaranteed by us not actually scheduling inside other swevents 1175 * because those disable preemption. 1176 */ 1177static __always_inline void 1178perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1179{ 1180 if (static_key_false(&perf_swevent_enabled[event_id])) { 1181 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1182 1183 perf_fetch_caller_regs(regs); 1184 ___perf_sw_event(event_id, nr, regs, addr); 1185 } 1186} 1187 1188extern struct static_key_false perf_sched_events; 1189 1190static __always_inline bool 1191perf_sw_migrate_enabled(void) 1192{ 1193 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1194 return true; 1195 return false; 1196} 1197 1198static inline void perf_event_task_migrate(struct task_struct *task) 1199{ 1200 if (perf_sw_migrate_enabled()) 1201 task->sched_migrated = 1; 1202} 1203 1204static inline void perf_event_task_sched_in(struct task_struct *prev, 1205 struct task_struct *task) 1206{ 1207 if (static_branch_unlikely(&perf_sched_events)) 1208 __perf_event_task_sched_in(prev, task); 1209 1210 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1211 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1212 1213 perf_fetch_caller_regs(regs); 1214 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1215 task->sched_migrated = 0; 1216 } 1217} 1218 1219static inline void perf_event_task_sched_out(struct task_struct *prev, 1220 struct task_struct *next) 1221{ 1222 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1223 1224 if (static_branch_unlikely(&perf_sched_events)) 1225 __perf_event_task_sched_out(prev, next); 1226} 1227 1228extern void perf_event_mmap(struct vm_area_struct *vma); 1229 1230extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1231 bool unregister, const char *sym); 1232extern void perf_event_bpf_event(struct bpf_prog *prog, 1233 enum perf_bpf_event_type type, 1234 u16 flags); 1235 1236extern struct perf_guest_info_callbacks *perf_guest_cbs; 1237extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1238extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1239 1240extern void perf_event_exec(void); 1241extern void perf_event_comm(struct task_struct *tsk, bool exec); 1242extern void perf_event_namespaces(struct task_struct *tsk); 1243extern void perf_event_fork(struct task_struct *tsk); 1244extern void perf_event_text_poke(const void *addr, 1245 const void *old_bytes, size_t old_len, 1246 const void *new_bytes, size_t new_len); 1247 1248/* Callchains */ 1249DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1250 1251extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1252extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1253extern struct perf_callchain_entry * 1254get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1255 u32 max_stack, bool crosstask, bool add_mark); 1256extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1257extern int get_callchain_buffers(int max_stack); 1258extern void put_callchain_buffers(void); 1259extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1260extern void put_callchain_entry(int rctx); 1261 1262extern int sysctl_perf_event_max_stack; 1263extern int sysctl_perf_event_max_contexts_per_stack; 1264 1265static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1266{ 1267 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1268 struct perf_callchain_entry *entry = ctx->entry; 1269 entry->ip[entry->nr++] = ip; 1270 ++ctx->contexts; 1271 return 0; 1272 } else { 1273 ctx->contexts_maxed = true; 1274 return -1; /* no more room, stop walking the stack */ 1275 } 1276} 1277 1278static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1279{ 1280 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1281 struct perf_callchain_entry *entry = ctx->entry; 1282 entry->ip[entry->nr++] = ip; 1283 ++ctx->nr; 1284 return 0; 1285 } else { 1286 return -1; /* no more room, stop walking the stack */ 1287 } 1288} 1289 1290extern int sysctl_perf_event_paranoid; 1291extern int sysctl_perf_event_mlock; 1292extern int sysctl_perf_event_sample_rate; 1293extern int sysctl_perf_cpu_time_max_percent; 1294 1295extern void perf_sample_event_took(u64 sample_len_ns); 1296 1297int perf_proc_update_handler(struct ctl_table *table, int write, 1298 void *buffer, size_t *lenp, loff_t *ppos); 1299int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1300 void *buffer, size_t *lenp, loff_t *ppos); 1301int perf_event_max_stack_handler(struct ctl_table *table, int write, 1302 void *buffer, size_t *lenp, loff_t *ppos); 1303 1304/* Access to perf_event_open(2) syscall. */ 1305#define PERF_SECURITY_OPEN 0 1306 1307/* Finer grained perf_event_open(2) access control. */ 1308#define PERF_SECURITY_CPU 1 1309#define PERF_SECURITY_KERNEL 2 1310#define PERF_SECURITY_TRACEPOINT 3 1311 1312static inline int perf_is_paranoid(void) 1313{ 1314 return sysctl_perf_event_paranoid > -1; 1315} 1316 1317static inline int perf_allow_kernel(struct perf_event_attr *attr) 1318{ 1319 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1320 return -EACCES; 1321 1322 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1323} 1324 1325static inline int perf_allow_cpu(struct perf_event_attr *attr) 1326{ 1327 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1328 return -EACCES; 1329 1330 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1331} 1332 1333static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1334{ 1335 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1336 return -EPERM; 1337 1338 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1339} 1340 1341extern void perf_event_init(void); 1342extern void perf_tp_event(u16 event_type, u64 count, void *record, 1343 int entry_size, struct pt_regs *regs, 1344 struct hlist_head *head, int rctx, 1345 struct task_struct *task); 1346extern void perf_bp_event(struct perf_event *event, void *data); 1347 1348#ifndef perf_misc_flags 1349# define perf_misc_flags(regs) \ 1350 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1351# define perf_instruction_pointer(regs) instruction_pointer(regs) 1352#endif 1353#ifndef perf_arch_bpf_user_pt_regs 1354# define perf_arch_bpf_user_pt_regs(regs) regs 1355#endif 1356 1357static inline bool has_branch_stack(struct perf_event *event) 1358{ 1359 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1360} 1361 1362static inline bool needs_branch_stack(struct perf_event *event) 1363{ 1364 return event->attr.branch_sample_type != 0; 1365} 1366 1367static inline bool has_aux(struct perf_event *event) 1368{ 1369 return event->pmu->setup_aux; 1370} 1371 1372static inline bool is_write_backward(struct perf_event *event) 1373{ 1374 return !!event->attr.write_backward; 1375} 1376 1377static inline bool has_addr_filter(struct perf_event *event) 1378{ 1379 return event->pmu->nr_addr_filters; 1380} 1381 1382/* 1383 * An inherited event uses parent's filters 1384 */ 1385static inline struct perf_addr_filters_head * 1386perf_event_addr_filters(struct perf_event *event) 1387{ 1388 struct perf_addr_filters_head *ifh = &event->addr_filters; 1389 1390 if (event->parent) 1391 ifh = &event->parent->addr_filters; 1392 1393 return ifh; 1394} 1395 1396extern void perf_event_addr_filters_sync(struct perf_event *event); 1397 1398extern int perf_output_begin(struct perf_output_handle *handle, 1399 struct perf_sample_data *data, 1400 struct perf_event *event, unsigned int size); 1401extern int perf_output_begin_forward(struct perf_output_handle *handle, 1402 struct perf_sample_data *data, 1403 struct perf_event *event, 1404 unsigned int size); 1405extern int perf_output_begin_backward(struct perf_output_handle *handle, 1406 struct perf_sample_data *data, 1407 struct perf_event *event, 1408 unsigned int size); 1409 1410extern void perf_output_end(struct perf_output_handle *handle); 1411extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1412 const void *buf, unsigned int len); 1413extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1414 unsigned int len); 1415extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1416 struct perf_output_handle *handle, 1417 unsigned long from, unsigned long to); 1418extern int perf_swevent_get_recursion_context(void); 1419extern void perf_swevent_put_recursion_context(int rctx); 1420extern u64 perf_swevent_set_period(struct perf_event *event); 1421extern void perf_event_enable(struct perf_event *event); 1422extern void perf_event_disable(struct perf_event *event); 1423extern void perf_event_disable_local(struct perf_event *event); 1424extern void perf_event_disable_inatomic(struct perf_event *event); 1425extern void perf_event_task_tick(void); 1426extern int perf_event_account_interrupt(struct perf_event *event); 1427extern int perf_event_period(struct perf_event *event, u64 value); 1428extern u64 perf_event_pause(struct perf_event *event, bool reset); 1429#else /* !CONFIG_PERF_EVENTS: */ 1430static inline void * 1431perf_aux_output_begin(struct perf_output_handle *handle, 1432 struct perf_event *event) { return NULL; } 1433static inline void 1434perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1435 { } 1436static inline int 1437perf_aux_output_skip(struct perf_output_handle *handle, 1438 unsigned long size) { return -EINVAL; } 1439static inline void * 1440perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1441static inline void 1442perf_event_task_migrate(struct task_struct *task) { } 1443static inline void 1444perf_event_task_sched_in(struct task_struct *prev, 1445 struct task_struct *task) { } 1446static inline void 1447perf_event_task_sched_out(struct task_struct *prev, 1448 struct task_struct *next) { } 1449static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1450static inline void perf_event_exit_task(struct task_struct *child) { } 1451static inline void perf_event_free_task(struct task_struct *task) { } 1452static inline void perf_event_delayed_put(struct task_struct *task) { } 1453static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1454static inline const struct perf_event *perf_get_event(struct file *file) 1455{ 1456 return ERR_PTR(-EINVAL); 1457} 1458static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1459{ 1460 return ERR_PTR(-EINVAL); 1461} 1462static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1463 u64 *enabled, u64 *running) 1464{ 1465 return -EINVAL; 1466} 1467static inline void perf_event_print_debug(void) { } 1468static inline int perf_event_task_disable(void) { return -EINVAL; } 1469static inline int perf_event_task_enable(void) { return -EINVAL; } 1470static inline int perf_event_refresh(struct perf_event *event, int refresh) 1471{ 1472 return -EINVAL; 1473} 1474 1475static inline void 1476perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1477static inline void 1478perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1479static inline void 1480perf_bp_event(struct perf_event *event, void *data) { } 1481 1482static inline int perf_register_guest_info_callbacks 1483(struct perf_guest_info_callbacks *callbacks) { return 0; } 1484static inline int perf_unregister_guest_info_callbacks 1485(struct perf_guest_info_callbacks *callbacks) { return 0; } 1486 1487static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1488 1489typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1490static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1491 bool unregister, const char *sym) { } 1492static inline void perf_event_bpf_event(struct bpf_prog *prog, 1493 enum perf_bpf_event_type type, 1494 u16 flags) { } 1495static inline void perf_event_exec(void) { } 1496static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1497static inline void perf_event_namespaces(struct task_struct *tsk) { } 1498static inline void perf_event_fork(struct task_struct *tsk) { } 1499static inline void perf_event_text_poke(const void *addr, 1500 const void *old_bytes, 1501 size_t old_len, 1502 const void *new_bytes, 1503 size_t new_len) { } 1504static inline void perf_event_init(void) { } 1505static inline int perf_swevent_get_recursion_context(void) { return -1; } 1506static inline void perf_swevent_put_recursion_context(int rctx) { } 1507static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1508static inline void perf_event_enable(struct perf_event *event) { } 1509static inline void perf_event_disable(struct perf_event *event) { } 1510static inline int __perf_event_disable(void *info) { return -1; } 1511static inline void perf_event_task_tick(void) { } 1512static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1513static inline int perf_event_period(struct perf_event *event, u64 value) 1514{ 1515 return -EINVAL; 1516} 1517static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1518{ 1519 return 0; 1520} 1521#endif 1522 1523#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1524extern void perf_restore_debug_store(void); 1525#else 1526static inline void perf_restore_debug_store(void) { } 1527#endif 1528 1529static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1530{ 1531 return frag->pad < sizeof(u64); 1532} 1533 1534#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1535 1536struct perf_pmu_events_attr { 1537 struct device_attribute attr; 1538 u64 id; 1539 const char *event_str; 1540}; 1541 1542struct perf_pmu_events_ht_attr { 1543 struct device_attribute attr; 1544 u64 id; 1545 const char *event_str_ht; 1546 const char *event_str_noht; 1547}; 1548 1549ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1550 char *page); 1551 1552#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1553static struct perf_pmu_events_attr _var = { \ 1554 .attr = __ATTR(_name, 0444, _show, NULL), \ 1555 .id = _id, \ 1556}; 1557 1558#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1559static struct perf_pmu_events_attr _var = { \ 1560 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1561 .id = 0, \ 1562 .event_str = _str, \ 1563}; 1564 1565#define PMU_FORMAT_ATTR(_name, _format) \ 1566static ssize_t \ 1567_name##_show(struct device *dev, \ 1568 struct device_attribute *attr, \ 1569 char *page) \ 1570{ \ 1571 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1572 return sprintf(page, _format "\n"); \ 1573} \ 1574 \ 1575static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1576 1577/* Performance counter hotplug functions */ 1578#ifdef CONFIG_PERF_EVENTS 1579int perf_event_init_cpu(unsigned int cpu); 1580int perf_event_exit_cpu(unsigned int cpu); 1581#else 1582#define perf_event_init_cpu NULL 1583#define perf_event_exit_cpu NULL 1584#endif 1585 1586extern void __weak arch_perf_update_userpage(struct perf_event *event, 1587 struct perf_event_mmap_page *userpg, 1588 u64 now); 1589 1590#ifdef CONFIG_MMU 1591extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1592#endif 1593 1594#endif /* _LINUX_PERF_EVENT_H */