Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <net/net_namespace.h>
38#ifdef CONFIG_DCB
39#include <net/dcbnl.h>
40#endif
41#include <net/netprio_cgroup.h>
42#include <net/xdp.h>
43
44#include <linux/netdev_features.h>
45#include <linux/neighbour.h>
46#include <uapi/linux/netdevice.h>
47#include <uapi/linux/if_bonding.h>
48#include <uapi/linux/pkt_cls.h>
49#include <linux/hashtable.h>
50
51struct netpoll_info;
52struct device;
53struct ethtool_ops;
54struct phy_device;
55struct dsa_port;
56struct ip_tunnel_parm;
57struct macsec_context;
58struct macsec_ops;
59
60struct sfp_bus;
61/* 802.11 specific */
62struct wireless_dev;
63/* 802.15.4 specific */
64struct wpan_dev;
65struct mpls_dev;
66/* UDP Tunnel offloads */
67struct udp_tunnel_info;
68struct udp_tunnel_nic_info;
69struct udp_tunnel_nic;
70struct bpf_prog;
71struct xdp_buff;
72
73void synchronize_net(void);
74void netdev_set_default_ethtool_ops(struct net_device *dev,
75 const struct ethtool_ops *ops);
76
77/* Backlog congestion levels */
78#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
79#define NET_RX_DROP 1 /* packet dropped */
80
81#define MAX_NEST_DEV 8
82
83/*
84 * Transmit return codes: transmit return codes originate from three different
85 * namespaces:
86 *
87 * - qdisc return codes
88 * - driver transmit return codes
89 * - errno values
90 *
91 * Drivers are allowed to return any one of those in their hard_start_xmit()
92 * function. Real network devices commonly used with qdiscs should only return
93 * the driver transmit return codes though - when qdiscs are used, the actual
94 * transmission happens asynchronously, so the value is not propagated to
95 * higher layers. Virtual network devices transmit synchronously; in this case
96 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
97 * others are propagated to higher layers.
98 */
99
100/* qdisc ->enqueue() return codes. */
101#define NET_XMIT_SUCCESS 0x00
102#define NET_XMIT_DROP 0x01 /* skb dropped */
103#define NET_XMIT_CN 0x02 /* congestion notification */
104#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
105
106/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
107 * indicates that the device will soon be dropping packets, or already drops
108 * some packets of the same priority; prompting us to send less aggressively. */
109#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
110#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
111
112/* Driver transmit return codes */
113#define NETDEV_TX_MASK 0xf0
114
115enum netdev_tx {
116 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
117 NETDEV_TX_OK = 0x00, /* driver took care of packet */
118 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
119};
120typedef enum netdev_tx netdev_tx_t;
121
122/*
123 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
124 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
125 */
126static inline bool dev_xmit_complete(int rc)
127{
128 /*
129 * Positive cases with an skb consumed by a driver:
130 * - successful transmission (rc == NETDEV_TX_OK)
131 * - error while transmitting (rc < 0)
132 * - error while queueing to a different device (rc & NET_XMIT_MASK)
133 */
134 if (likely(rc < NET_XMIT_MASK))
135 return true;
136
137 return false;
138}
139
140/*
141 * Compute the worst-case header length according to the protocols
142 * used.
143 */
144
145#if defined(CONFIG_HYPERV_NET)
146# define LL_MAX_HEADER 128
147#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148# if defined(CONFIG_MAC80211_MESH)
149# define LL_MAX_HEADER 128
150# else
151# define LL_MAX_HEADER 96
152# endif
153#else
154# define LL_MAX_HEADER 32
155#endif
156
157#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
158 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
159#define MAX_HEADER LL_MAX_HEADER
160#else
161#define MAX_HEADER (LL_MAX_HEADER + 48)
162#endif
163
164/*
165 * Old network device statistics. Fields are native words
166 * (unsigned long) so they can be read and written atomically.
167 */
168
169struct net_device_stats {
170 unsigned long rx_packets;
171 unsigned long tx_packets;
172 unsigned long rx_bytes;
173 unsigned long tx_bytes;
174 unsigned long rx_errors;
175 unsigned long tx_errors;
176 unsigned long rx_dropped;
177 unsigned long tx_dropped;
178 unsigned long multicast;
179 unsigned long collisions;
180 unsigned long rx_length_errors;
181 unsigned long rx_over_errors;
182 unsigned long rx_crc_errors;
183 unsigned long rx_frame_errors;
184 unsigned long rx_fifo_errors;
185 unsigned long rx_missed_errors;
186 unsigned long tx_aborted_errors;
187 unsigned long tx_carrier_errors;
188 unsigned long tx_fifo_errors;
189 unsigned long tx_heartbeat_errors;
190 unsigned long tx_window_errors;
191 unsigned long rx_compressed;
192 unsigned long tx_compressed;
193};
194
195
196#include <linux/cache.h>
197#include <linux/skbuff.h>
198
199#ifdef CONFIG_RPS
200#include <linux/static_key.h>
201extern struct static_key_false rps_needed;
202extern struct static_key_false rfs_needed;
203#endif
204
205struct neighbour;
206struct neigh_parms;
207struct sk_buff;
208
209struct netdev_hw_addr {
210 struct list_head list;
211 unsigned char addr[MAX_ADDR_LEN];
212 unsigned char type;
213#define NETDEV_HW_ADDR_T_LAN 1
214#define NETDEV_HW_ADDR_T_SAN 2
215#define NETDEV_HW_ADDR_T_UNICAST 3
216#define NETDEV_HW_ADDR_T_MULTICAST 4
217 bool global_use;
218 int sync_cnt;
219 int refcount;
220 int synced;
221 struct rcu_head rcu_head;
222};
223
224struct netdev_hw_addr_list {
225 struct list_head list;
226 int count;
227};
228
229#define netdev_hw_addr_list_count(l) ((l)->count)
230#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
231#define netdev_hw_addr_list_for_each(ha, l) \
232 list_for_each_entry(ha, &(l)->list, list)
233
234#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
235#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
236#define netdev_for_each_uc_addr(ha, dev) \
237 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
238
239#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
240#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
241#define netdev_for_each_mc_addr(ha, dev) \
242 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
243
244struct hh_cache {
245 unsigned int hh_len;
246 seqlock_t hh_lock;
247
248 /* cached hardware header; allow for machine alignment needs. */
249#define HH_DATA_MOD 16
250#define HH_DATA_OFF(__len) \
251 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
252#define HH_DATA_ALIGN(__len) \
253 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
254 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
255};
256
257/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
258 * Alternative is:
259 * dev->hard_header_len ? (dev->hard_header_len +
260 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
261 *
262 * We could use other alignment values, but we must maintain the
263 * relationship HH alignment <= LL alignment.
264 */
265#define LL_RESERVED_SPACE(dev) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
268 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
269
270struct header_ops {
271 int (*create) (struct sk_buff *skb, struct net_device *dev,
272 unsigned short type, const void *daddr,
273 const void *saddr, unsigned int len);
274 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
275 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
276 void (*cache_update)(struct hh_cache *hh,
277 const struct net_device *dev,
278 const unsigned char *haddr);
279 bool (*validate)(const char *ll_header, unsigned int len);
280 __be16 (*parse_protocol)(const struct sk_buff *skb);
281};
282
283/* These flag bits are private to the generic network queueing
284 * layer; they may not be explicitly referenced by any other
285 * code.
286 */
287
288enum netdev_state_t {
289 __LINK_STATE_START,
290 __LINK_STATE_PRESENT,
291 __LINK_STATE_NOCARRIER,
292 __LINK_STATE_LINKWATCH_PENDING,
293 __LINK_STATE_DORMANT,
294 __LINK_STATE_TESTING,
295};
296
297
298/*
299 * This structure holds boot-time configured netdevice settings. They
300 * are then used in the device probing.
301 */
302struct netdev_boot_setup {
303 char name[IFNAMSIZ];
304 struct ifmap map;
305};
306#define NETDEV_BOOT_SETUP_MAX 8
307
308int __init netdev_boot_setup(char *str);
309
310struct gro_list {
311 struct list_head list;
312 int count;
313};
314
315/*
316 * size of gro hash buckets, must less than bit number of
317 * napi_struct::gro_bitmask
318 */
319#define GRO_HASH_BUCKETS 8
320
321/*
322 * Structure for NAPI scheduling similar to tasklet but with weighting
323 */
324struct napi_struct {
325 /* The poll_list must only be managed by the entity which
326 * changes the state of the NAPI_STATE_SCHED bit. This means
327 * whoever atomically sets that bit can add this napi_struct
328 * to the per-CPU poll_list, and whoever clears that bit
329 * can remove from the list right before clearing the bit.
330 */
331 struct list_head poll_list;
332
333 unsigned long state;
334 int weight;
335 int defer_hard_irqs_count;
336 unsigned long gro_bitmask;
337 int (*poll)(struct napi_struct *, int);
338#ifdef CONFIG_NETPOLL
339 int poll_owner;
340#endif
341 struct net_device *dev;
342 struct gro_list gro_hash[GRO_HASH_BUCKETS];
343 struct sk_buff *skb;
344 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
345 int rx_count; /* length of rx_list */
346 struct hrtimer timer;
347 struct list_head dev_list;
348 struct hlist_node napi_hash_node;
349 unsigned int napi_id;
350};
351
352enum {
353 NAPI_STATE_SCHED, /* Poll is scheduled */
354 NAPI_STATE_MISSED, /* reschedule a napi */
355 NAPI_STATE_DISABLE, /* Disable pending */
356 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
357 NAPI_STATE_LISTED, /* NAPI added to system lists */
358 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
359 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
360 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
361};
362
363enum {
364 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
365 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
366 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
367 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
368 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
369 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
370 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
371 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
372};
373
374enum gro_result {
375 GRO_MERGED,
376 GRO_MERGED_FREE,
377 GRO_HELD,
378 GRO_NORMAL,
379 GRO_DROP,
380 GRO_CONSUMED,
381};
382typedef enum gro_result gro_result_t;
383
384/*
385 * enum rx_handler_result - Possible return values for rx_handlers.
386 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
387 * further.
388 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
389 * case skb->dev was changed by rx_handler.
390 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
391 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
392 *
393 * rx_handlers are functions called from inside __netif_receive_skb(), to do
394 * special processing of the skb, prior to delivery to protocol handlers.
395 *
396 * Currently, a net_device can only have a single rx_handler registered. Trying
397 * to register a second rx_handler will return -EBUSY.
398 *
399 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
400 * To unregister a rx_handler on a net_device, use
401 * netdev_rx_handler_unregister().
402 *
403 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
404 * do with the skb.
405 *
406 * If the rx_handler consumed the skb in some way, it should return
407 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
408 * the skb to be delivered in some other way.
409 *
410 * If the rx_handler changed skb->dev, to divert the skb to another
411 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
412 * new device will be called if it exists.
413 *
414 * If the rx_handler decides the skb should be ignored, it should return
415 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
416 * are registered on exact device (ptype->dev == skb->dev).
417 *
418 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
419 * delivered, it should return RX_HANDLER_PASS.
420 *
421 * A device without a registered rx_handler will behave as if rx_handler
422 * returned RX_HANDLER_PASS.
423 */
424
425enum rx_handler_result {
426 RX_HANDLER_CONSUMED,
427 RX_HANDLER_ANOTHER,
428 RX_HANDLER_EXACT,
429 RX_HANDLER_PASS,
430};
431typedef enum rx_handler_result rx_handler_result_t;
432typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
433
434void __napi_schedule(struct napi_struct *n);
435void __napi_schedule_irqoff(struct napi_struct *n);
436
437static inline bool napi_disable_pending(struct napi_struct *n)
438{
439 return test_bit(NAPI_STATE_DISABLE, &n->state);
440}
441
442static inline bool napi_prefer_busy_poll(struct napi_struct *n)
443{
444 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
445}
446
447bool napi_schedule_prep(struct napi_struct *n);
448
449/**
450 * napi_schedule - schedule NAPI poll
451 * @n: NAPI context
452 *
453 * Schedule NAPI poll routine to be called if it is not already
454 * running.
455 */
456static inline void napi_schedule(struct napi_struct *n)
457{
458 if (napi_schedule_prep(n))
459 __napi_schedule(n);
460}
461
462/**
463 * napi_schedule_irqoff - schedule NAPI poll
464 * @n: NAPI context
465 *
466 * Variant of napi_schedule(), assuming hard irqs are masked.
467 */
468static inline void napi_schedule_irqoff(struct napi_struct *n)
469{
470 if (napi_schedule_prep(n))
471 __napi_schedule_irqoff(n);
472}
473
474/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
475static inline bool napi_reschedule(struct napi_struct *napi)
476{
477 if (napi_schedule_prep(napi)) {
478 __napi_schedule(napi);
479 return true;
480 }
481 return false;
482}
483
484bool napi_complete_done(struct napi_struct *n, int work_done);
485/**
486 * napi_complete - NAPI processing complete
487 * @n: NAPI context
488 *
489 * Mark NAPI processing as complete.
490 * Consider using napi_complete_done() instead.
491 * Return false if device should avoid rearming interrupts.
492 */
493static inline bool napi_complete(struct napi_struct *n)
494{
495 return napi_complete_done(n, 0);
496}
497
498/**
499 * napi_disable - prevent NAPI from scheduling
500 * @n: NAPI context
501 *
502 * Stop NAPI from being scheduled on this context.
503 * Waits till any outstanding processing completes.
504 */
505void napi_disable(struct napi_struct *n);
506
507/**
508 * napi_enable - enable NAPI scheduling
509 * @n: NAPI context
510 *
511 * Resume NAPI from being scheduled on this context.
512 * Must be paired with napi_disable.
513 */
514static inline void napi_enable(struct napi_struct *n)
515{
516 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
517 smp_mb__before_atomic();
518 clear_bit(NAPI_STATE_SCHED, &n->state);
519 clear_bit(NAPI_STATE_NPSVC, &n->state);
520}
521
522/**
523 * napi_synchronize - wait until NAPI is not running
524 * @n: NAPI context
525 *
526 * Wait until NAPI is done being scheduled on this context.
527 * Waits till any outstanding processing completes but
528 * does not disable future activations.
529 */
530static inline void napi_synchronize(const struct napi_struct *n)
531{
532 if (IS_ENABLED(CONFIG_SMP))
533 while (test_bit(NAPI_STATE_SCHED, &n->state))
534 msleep(1);
535 else
536 barrier();
537}
538
539/**
540 * napi_if_scheduled_mark_missed - if napi is running, set the
541 * NAPIF_STATE_MISSED
542 * @n: NAPI context
543 *
544 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
545 * NAPI is scheduled.
546 **/
547static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
548{
549 unsigned long val, new;
550
551 do {
552 val = READ_ONCE(n->state);
553 if (val & NAPIF_STATE_DISABLE)
554 return true;
555
556 if (!(val & NAPIF_STATE_SCHED))
557 return false;
558
559 new = val | NAPIF_STATE_MISSED;
560 } while (cmpxchg(&n->state, val, new) != val);
561
562 return true;
563}
564
565enum netdev_queue_state_t {
566 __QUEUE_STATE_DRV_XOFF,
567 __QUEUE_STATE_STACK_XOFF,
568 __QUEUE_STATE_FROZEN,
569};
570
571#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
572#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
573#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
574
575#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
576#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
577 QUEUE_STATE_FROZEN)
578#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
579 QUEUE_STATE_FROZEN)
580
581/*
582 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
583 * netif_tx_* functions below are used to manipulate this flag. The
584 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
585 * queue independently. The netif_xmit_*stopped functions below are called
586 * to check if the queue has been stopped by the driver or stack (either
587 * of the XOFF bits are set in the state). Drivers should not need to call
588 * netif_xmit*stopped functions, they should only be using netif_tx_*.
589 */
590
591struct netdev_queue {
592/*
593 * read-mostly part
594 */
595 struct net_device *dev;
596 struct Qdisc __rcu *qdisc;
597 struct Qdisc *qdisc_sleeping;
598#ifdef CONFIG_SYSFS
599 struct kobject kobj;
600#endif
601#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 int numa_node;
603#endif
604 unsigned long tx_maxrate;
605 /*
606 * Number of TX timeouts for this queue
607 * (/sys/class/net/DEV/Q/trans_timeout)
608 */
609 unsigned long trans_timeout;
610
611 /* Subordinate device that the queue has been assigned to */
612 struct net_device *sb_dev;
613#ifdef CONFIG_XDP_SOCKETS
614 struct xsk_buff_pool *pool;
615#endif
616/*
617 * write-mostly part
618 */
619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
620 int xmit_lock_owner;
621 /*
622 * Time (in jiffies) of last Tx
623 */
624 unsigned long trans_start;
625
626 unsigned long state;
627
628#ifdef CONFIG_BQL
629 struct dql dql;
630#endif
631} ____cacheline_aligned_in_smp;
632
633extern int sysctl_fb_tunnels_only_for_init_net;
634extern int sysctl_devconf_inherit_init_net;
635
636/*
637 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638 * == 1 : For initns only
639 * == 2 : For none.
640 */
641static inline bool net_has_fallback_tunnels(const struct net *net)
642{
643 return !IS_ENABLED(CONFIG_SYSCTL) ||
644 !sysctl_fb_tunnels_only_for_init_net ||
645 (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
646}
647
648static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649{
650#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 return q->numa_node;
652#else
653 return NUMA_NO_NODE;
654#endif
655}
656
657static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658{
659#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 q->numa_node = node;
661#endif
662}
663
664#ifdef CONFIG_RPS
665/*
666 * This structure holds an RPS map which can be of variable length. The
667 * map is an array of CPUs.
668 */
669struct rps_map {
670 unsigned int len;
671 struct rcu_head rcu;
672 u16 cpus[];
673};
674#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675
676/*
677 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678 * tail pointer for that CPU's input queue at the time of last enqueue, and
679 * a hardware filter index.
680 */
681struct rps_dev_flow {
682 u16 cpu;
683 u16 filter;
684 unsigned int last_qtail;
685};
686#define RPS_NO_FILTER 0xffff
687
688/*
689 * The rps_dev_flow_table structure contains a table of flow mappings.
690 */
691struct rps_dev_flow_table {
692 unsigned int mask;
693 struct rcu_head rcu;
694 struct rps_dev_flow flows[];
695};
696#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697 ((_num) * sizeof(struct rps_dev_flow)))
698
699/*
700 * The rps_sock_flow_table contains mappings of flows to the last CPU
701 * on which they were processed by the application (set in recvmsg).
702 * Each entry is a 32bit value. Upper part is the high-order bits
703 * of flow hash, lower part is CPU number.
704 * rps_cpu_mask is used to partition the space, depending on number of
705 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707 * meaning we use 32-6=26 bits for the hash.
708 */
709struct rps_sock_flow_table {
710 u32 mask;
711
712 u32 ents[] ____cacheline_aligned_in_smp;
713};
714#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715
716#define RPS_NO_CPU 0xffff
717
718extern u32 rps_cpu_mask;
719extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720
721static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 u32 hash)
723{
724 if (table && hash) {
725 unsigned int index = hash & table->mask;
726 u32 val = hash & ~rps_cpu_mask;
727
728 /* We only give a hint, preemption can change CPU under us */
729 val |= raw_smp_processor_id();
730
731 if (table->ents[index] != val)
732 table->ents[index] = val;
733 }
734}
735
736#ifdef CONFIG_RFS_ACCEL
737bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 u16 filter_id);
739#endif
740#endif /* CONFIG_RPS */
741
742/* This structure contains an instance of an RX queue. */
743struct netdev_rx_queue {
744#ifdef CONFIG_RPS
745 struct rps_map __rcu *rps_map;
746 struct rps_dev_flow_table __rcu *rps_flow_table;
747#endif
748 struct kobject kobj;
749 struct net_device *dev;
750 struct xdp_rxq_info xdp_rxq;
751#ifdef CONFIG_XDP_SOCKETS
752 struct xsk_buff_pool *pool;
753#endif
754} ____cacheline_aligned_in_smp;
755
756/*
757 * RX queue sysfs structures and functions.
758 */
759struct rx_queue_attribute {
760 struct attribute attr;
761 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 ssize_t (*store)(struct netdev_rx_queue *queue,
763 const char *buf, size_t len);
764};
765
766#ifdef CONFIG_XPS
767/*
768 * This structure holds an XPS map which can be of variable length. The
769 * map is an array of queues.
770 */
771struct xps_map {
772 unsigned int len;
773 unsigned int alloc_len;
774 struct rcu_head rcu;
775 u16 queues[];
776};
777#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779 - sizeof(struct xps_map)) / sizeof(u16))
780
781/*
782 * This structure holds all XPS maps for device. Maps are indexed by CPU.
783 */
784struct xps_dev_maps {
785 struct rcu_head rcu;
786 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787};
788
789#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
790 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791
792#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
794
795#endif /* CONFIG_XPS */
796
797#define TC_MAX_QUEUE 16
798#define TC_BITMASK 15
799/* HW offloaded queuing disciplines txq count and offset maps */
800struct netdev_tc_txq {
801 u16 count;
802 u16 offset;
803};
804
805#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806/*
807 * This structure is to hold information about the device
808 * configured to run FCoE protocol stack.
809 */
810struct netdev_fcoe_hbainfo {
811 char manufacturer[64];
812 char serial_number[64];
813 char hardware_version[64];
814 char driver_version[64];
815 char optionrom_version[64];
816 char firmware_version[64];
817 char model[256];
818 char model_description[256];
819};
820#endif
821
822#define MAX_PHYS_ITEM_ID_LEN 32
823
824/* This structure holds a unique identifier to identify some
825 * physical item (port for example) used by a netdevice.
826 */
827struct netdev_phys_item_id {
828 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 unsigned char id_len;
830};
831
832static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 struct netdev_phys_item_id *b)
834{
835 return a->id_len == b->id_len &&
836 memcmp(a->id, b->id, a->id_len) == 0;
837}
838
839typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 struct sk_buff *skb,
841 struct net_device *sb_dev);
842
843enum tc_setup_type {
844 TC_SETUP_QDISC_MQPRIO,
845 TC_SETUP_CLSU32,
846 TC_SETUP_CLSFLOWER,
847 TC_SETUP_CLSMATCHALL,
848 TC_SETUP_CLSBPF,
849 TC_SETUP_BLOCK,
850 TC_SETUP_QDISC_CBS,
851 TC_SETUP_QDISC_RED,
852 TC_SETUP_QDISC_PRIO,
853 TC_SETUP_QDISC_MQ,
854 TC_SETUP_QDISC_ETF,
855 TC_SETUP_ROOT_QDISC,
856 TC_SETUP_QDISC_GRED,
857 TC_SETUP_QDISC_TAPRIO,
858 TC_SETUP_FT,
859 TC_SETUP_QDISC_ETS,
860 TC_SETUP_QDISC_TBF,
861 TC_SETUP_QDISC_FIFO,
862};
863
864/* These structures hold the attributes of bpf state that are being passed
865 * to the netdevice through the bpf op.
866 */
867enum bpf_netdev_command {
868 /* Set or clear a bpf program used in the earliest stages of packet
869 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 * is responsible for calling bpf_prog_put on any old progs that are
871 * stored. In case of error, the callee need not release the new prog
872 * reference, but on success it takes ownership and must bpf_prog_put
873 * when it is no longer used.
874 */
875 XDP_SETUP_PROG,
876 XDP_SETUP_PROG_HW,
877 /* BPF program for offload callbacks, invoked at program load time. */
878 BPF_OFFLOAD_MAP_ALLOC,
879 BPF_OFFLOAD_MAP_FREE,
880 XDP_SETUP_XSK_POOL,
881};
882
883struct bpf_prog_offload_ops;
884struct netlink_ext_ack;
885struct xdp_umem;
886struct xdp_dev_bulk_queue;
887struct bpf_xdp_link;
888
889enum bpf_xdp_mode {
890 XDP_MODE_SKB = 0,
891 XDP_MODE_DRV = 1,
892 XDP_MODE_HW = 2,
893 __MAX_XDP_MODE
894};
895
896struct bpf_xdp_entity {
897 struct bpf_prog *prog;
898 struct bpf_xdp_link *link;
899};
900
901struct netdev_bpf {
902 enum bpf_netdev_command command;
903 union {
904 /* XDP_SETUP_PROG */
905 struct {
906 u32 flags;
907 struct bpf_prog *prog;
908 struct netlink_ext_ack *extack;
909 };
910 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
911 struct {
912 struct bpf_offloaded_map *offmap;
913 };
914 /* XDP_SETUP_XSK_POOL */
915 struct {
916 struct xsk_buff_pool *pool;
917 u16 queue_id;
918 } xsk;
919 };
920};
921
922/* Flags for ndo_xsk_wakeup. */
923#define XDP_WAKEUP_RX (1 << 0)
924#define XDP_WAKEUP_TX (1 << 1)
925
926#ifdef CONFIG_XFRM_OFFLOAD
927struct xfrmdev_ops {
928 int (*xdo_dev_state_add) (struct xfrm_state *x);
929 void (*xdo_dev_state_delete) (struct xfrm_state *x);
930 void (*xdo_dev_state_free) (struct xfrm_state *x);
931 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
932 struct xfrm_state *x);
933 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
934};
935#endif
936
937struct dev_ifalias {
938 struct rcu_head rcuhead;
939 char ifalias[];
940};
941
942struct devlink;
943struct tlsdev_ops;
944
945struct netdev_name_node {
946 struct hlist_node hlist;
947 struct list_head list;
948 struct net_device *dev;
949 const char *name;
950};
951
952int netdev_name_node_alt_create(struct net_device *dev, const char *name);
953int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
954
955struct netdev_net_notifier {
956 struct list_head list;
957 struct notifier_block *nb;
958};
959
960/*
961 * This structure defines the management hooks for network devices.
962 * The following hooks can be defined; unless noted otherwise, they are
963 * optional and can be filled with a null pointer.
964 *
965 * int (*ndo_init)(struct net_device *dev);
966 * This function is called once when a network device is registered.
967 * The network device can use this for any late stage initialization
968 * or semantic validation. It can fail with an error code which will
969 * be propagated back to register_netdev.
970 *
971 * void (*ndo_uninit)(struct net_device *dev);
972 * This function is called when device is unregistered or when registration
973 * fails. It is not called if init fails.
974 *
975 * int (*ndo_open)(struct net_device *dev);
976 * This function is called when a network device transitions to the up
977 * state.
978 *
979 * int (*ndo_stop)(struct net_device *dev);
980 * This function is called when a network device transitions to the down
981 * state.
982 *
983 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
984 * struct net_device *dev);
985 * Called when a packet needs to be transmitted.
986 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
987 * the queue before that can happen; it's for obsolete devices and weird
988 * corner cases, but the stack really does a non-trivial amount
989 * of useless work if you return NETDEV_TX_BUSY.
990 * Required; cannot be NULL.
991 *
992 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
993 * struct net_device *dev
994 * netdev_features_t features);
995 * Called by core transmit path to determine if device is capable of
996 * performing offload operations on a given packet. This is to give
997 * the device an opportunity to implement any restrictions that cannot
998 * be otherwise expressed by feature flags. The check is called with
999 * the set of features that the stack has calculated and it returns
1000 * those the driver believes to be appropriate.
1001 *
1002 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1003 * struct net_device *sb_dev);
1004 * Called to decide which queue to use when device supports multiple
1005 * transmit queues.
1006 *
1007 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1008 * This function is called to allow device receiver to make
1009 * changes to configuration when multicast or promiscuous is enabled.
1010 *
1011 * void (*ndo_set_rx_mode)(struct net_device *dev);
1012 * This function is called device changes address list filtering.
1013 * If driver handles unicast address filtering, it should set
1014 * IFF_UNICAST_FLT in its priv_flags.
1015 *
1016 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1017 * This function is called when the Media Access Control address
1018 * needs to be changed. If this interface is not defined, the
1019 * MAC address can not be changed.
1020 *
1021 * int (*ndo_validate_addr)(struct net_device *dev);
1022 * Test if Media Access Control address is valid for the device.
1023 *
1024 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1025 * Called when a user requests an ioctl which can't be handled by
1026 * the generic interface code. If not defined ioctls return
1027 * not supported error code.
1028 *
1029 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1030 * Used to set network devices bus interface parameters. This interface
1031 * is retained for legacy reasons; new devices should use the bus
1032 * interface (PCI) for low level management.
1033 *
1034 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1035 * Called when a user wants to change the Maximum Transfer Unit
1036 * of a device.
1037 *
1038 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1039 * Callback used when the transmitter has not made any progress
1040 * for dev->watchdog ticks.
1041 *
1042 * void (*ndo_get_stats64)(struct net_device *dev,
1043 * struct rtnl_link_stats64 *storage);
1044 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1045 * Called when a user wants to get the network device usage
1046 * statistics. Drivers must do one of the following:
1047 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1048 * rtnl_link_stats64 structure passed by the caller.
1049 * 2. Define @ndo_get_stats to update a net_device_stats structure
1050 * (which should normally be dev->stats) and return a pointer to
1051 * it. The structure may be changed asynchronously only if each
1052 * field is written atomically.
1053 * 3. Update dev->stats asynchronously and atomically, and define
1054 * neither operation.
1055 *
1056 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1057 * Return true if this device supports offload stats of this attr_id.
1058 *
1059 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1060 * void *attr_data)
1061 * Get statistics for offload operations by attr_id. Write it into the
1062 * attr_data pointer.
1063 *
1064 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1065 * If device supports VLAN filtering this function is called when a
1066 * VLAN id is registered.
1067 *
1068 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1069 * If device supports VLAN filtering this function is called when a
1070 * VLAN id is unregistered.
1071 *
1072 * void (*ndo_poll_controller)(struct net_device *dev);
1073 *
1074 * SR-IOV management functions.
1075 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1076 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1077 * u8 qos, __be16 proto);
1078 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1079 * int max_tx_rate);
1080 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1081 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1082 * int (*ndo_get_vf_config)(struct net_device *dev,
1083 * int vf, struct ifla_vf_info *ivf);
1084 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1085 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1086 * struct nlattr *port[]);
1087 *
1088 * Enable or disable the VF ability to query its RSS Redirection Table and
1089 * Hash Key. This is needed since on some devices VF share this information
1090 * with PF and querying it may introduce a theoretical security risk.
1091 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1092 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1093 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1094 * void *type_data);
1095 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1096 * This is always called from the stack with the rtnl lock held and netif
1097 * tx queues stopped. This allows the netdevice to perform queue
1098 * management safely.
1099 *
1100 * Fiber Channel over Ethernet (FCoE) offload functions.
1101 * int (*ndo_fcoe_enable)(struct net_device *dev);
1102 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1103 * so the underlying device can perform whatever needed configuration or
1104 * initialization to support acceleration of FCoE traffic.
1105 *
1106 * int (*ndo_fcoe_disable)(struct net_device *dev);
1107 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1108 * so the underlying device can perform whatever needed clean-ups to
1109 * stop supporting acceleration of FCoE traffic.
1110 *
1111 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1112 * struct scatterlist *sgl, unsigned int sgc);
1113 * Called when the FCoE Initiator wants to initialize an I/O that
1114 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1115 * perform necessary setup and returns 1 to indicate the device is set up
1116 * successfully to perform DDP on this I/O, otherwise this returns 0.
1117 *
1118 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1119 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1120 * indicated by the FC exchange id 'xid', so the underlying device can
1121 * clean up and reuse resources for later DDP requests.
1122 *
1123 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1124 * struct scatterlist *sgl, unsigned int sgc);
1125 * Called when the FCoE Target wants to initialize an I/O that
1126 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1127 * perform necessary setup and returns 1 to indicate the device is set up
1128 * successfully to perform DDP on this I/O, otherwise this returns 0.
1129 *
1130 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1131 * struct netdev_fcoe_hbainfo *hbainfo);
1132 * Called when the FCoE Protocol stack wants information on the underlying
1133 * device. This information is utilized by the FCoE protocol stack to
1134 * register attributes with Fiber Channel management service as per the
1135 * FC-GS Fabric Device Management Information(FDMI) specification.
1136 *
1137 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1138 * Called when the underlying device wants to override default World Wide
1139 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1140 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1141 * protocol stack to use.
1142 *
1143 * RFS acceleration.
1144 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1145 * u16 rxq_index, u32 flow_id);
1146 * Set hardware filter for RFS. rxq_index is the target queue index;
1147 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1148 * Return the filter ID on success, or a negative error code.
1149 *
1150 * Slave management functions (for bridge, bonding, etc).
1151 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1152 * Called to make another netdev an underling.
1153 *
1154 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1155 * Called to release previously enslaved netdev.
1156 *
1157 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1158 * struct sk_buff *skb,
1159 * bool all_slaves);
1160 * Get the xmit slave of master device. If all_slaves is true, function
1161 * assume all the slaves can transmit.
1162 *
1163 * Feature/offload setting functions.
1164 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1165 * netdev_features_t features);
1166 * Adjusts the requested feature flags according to device-specific
1167 * constraints, and returns the resulting flags. Must not modify
1168 * the device state.
1169 *
1170 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1171 * Called to update device configuration to new features. Passed
1172 * feature set might be less than what was returned by ndo_fix_features()).
1173 * Must return >0 or -errno if it changed dev->features itself.
1174 *
1175 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1176 * struct net_device *dev,
1177 * const unsigned char *addr, u16 vid, u16 flags,
1178 * struct netlink_ext_ack *extack);
1179 * Adds an FDB entry to dev for addr.
1180 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1181 * struct net_device *dev,
1182 * const unsigned char *addr, u16 vid)
1183 * Deletes the FDB entry from dev coresponding to addr.
1184 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1185 * struct net_device *dev, struct net_device *filter_dev,
1186 * int *idx)
1187 * Used to add FDB entries to dump requests. Implementers should add
1188 * entries to skb and update idx with the number of entries.
1189 *
1190 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1191 * u16 flags, struct netlink_ext_ack *extack)
1192 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1193 * struct net_device *dev, u32 filter_mask,
1194 * int nlflags)
1195 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1196 * u16 flags);
1197 *
1198 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1199 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1200 * which do not represent real hardware may define this to allow their
1201 * userspace components to manage their virtual carrier state. Devices
1202 * that determine carrier state from physical hardware properties (eg
1203 * network cables) or protocol-dependent mechanisms (eg
1204 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1205 *
1206 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1207 * struct netdev_phys_item_id *ppid);
1208 * Called to get ID of physical port of this device. If driver does
1209 * not implement this, it is assumed that the hw is not able to have
1210 * multiple net devices on single physical port.
1211 *
1212 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1213 * struct netdev_phys_item_id *ppid)
1214 * Called to get the parent ID of the physical port of this device.
1215 *
1216 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1217 * struct udp_tunnel_info *ti);
1218 * Called by UDP tunnel to notify a driver about the UDP port and socket
1219 * address family that a UDP tunnel is listnening to. It is called only
1220 * when a new port starts listening. The operation is protected by the
1221 * RTNL.
1222 *
1223 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1224 * struct udp_tunnel_info *ti);
1225 * Called by UDP tunnel to notify the driver about a UDP port and socket
1226 * address family that the UDP tunnel is not listening to anymore. The
1227 * operation is protected by the RTNL.
1228 *
1229 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1230 * struct net_device *dev)
1231 * Called by upper layer devices to accelerate switching or other
1232 * station functionality into hardware. 'pdev is the lowerdev
1233 * to use for the offload and 'dev' is the net device that will
1234 * back the offload. Returns a pointer to the private structure
1235 * the upper layer will maintain.
1236 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1237 * Called by upper layer device to delete the station created
1238 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1239 * the station and priv is the structure returned by the add
1240 * operation.
1241 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1242 * int queue_index, u32 maxrate);
1243 * Called when a user wants to set a max-rate limitation of specific
1244 * TX queue.
1245 * int (*ndo_get_iflink)(const struct net_device *dev);
1246 * Called to get the iflink value of this device.
1247 * void (*ndo_change_proto_down)(struct net_device *dev,
1248 * bool proto_down);
1249 * This function is used to pass protocol port error state information
1250 * to the switch driver. The switch driver can react to the proto_down
1251 * by doing a phys down on the associated switch port.
1252 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1253 * This function is used to get egress tunnel information for given skb.
1254 * This is useful for retrieving outer tunnel header parameters while
1255 * sampling packet.
1256 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1257 * This function is used to specify the headroom that the skb must
1258 * consider when allocation skb during packet reception. Setting
1259 * appropriate rx headroom value allows avoiding skb head copy on
1260 * forward. Setting a negative value resets the rx headroom to the
1261 * default value.
1262 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1263 * This function is used to set or query state related to XDP on the
1264 * netdevice and manage BPF offload. See definition of
1265 * enum bpf_netdev_command for details.
1266 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1267 * u32 flags);
1268 * This function is used to submit @n XDP packets for transmit on a
1269 * netdevice. Returns number of frames successfully transmitted, frames
1270 * that got dropped are freed/returned via xdp_return_frame().
1271 * Returns negative number, means general error invoking ndo, meaning
1272 * no frames were xmit'ed and core-caller will free all frames.
1273 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1274 * This function is used to wake up the softirq, ksoftirqd or kthread
1275 * responsible for sending and/or receiving packets on a specific
1276 * queue id bound to an AF_XDP socket. The flags field specifies if
1277 * only RX, only Tx, or both should be woken up using the flags
1278 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1279 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1280 * Get devlink port instance associated with a given netdev.
1281 * Called with a reference on the netdevice and devlink locks only,
1282 * rtnl_lock is not held.
1283 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1284 * int cmd);
1285 * Add, change, delete or get information on an IPv4 tunnel.
1286 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1287 * If a device is paired with a peer device, return the peer instance.
1288 * The caller must be under RCU read context.
1289 */
1290struct net_device_ops {
1291 int (*ndo_init)(struct net_device *dev);
1292 void (*ndo_uninit)(struct net_device *dev);
1293 int (*ndo_open)(struct net_device *dev);
1294 int (*ndo_stop)(struct net_device *dev);
1295 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1296 struct net_device *dev);
1297 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1298 struct net_device *dev,
1299 netdev_features_t features);
1300 u16 (*ndo_select_queue)(struct net_device *dev,
1301 struct sk_buff *skb,
1302 struct net_device *sb_dev);
1303 void (*ndo_change_rx_flags)(struct net_device *dev,
1304 int flags);
1305 void (*ndo_set_rx_mode)(struct net_device *dev);
1306 int (*ndo_set_mac_address)(struct net_device *dev,
1307 void *addr);
1308 int (*ndo_validate_addr)(struct net_device *dev);
1309 int (*ndo_do_ioctl)(struct net_device *dev,
1310 struct ifreq *ifr, int cmd);
1311 int (*ndo_set_config)(struct net_device *dev,
1312 struct ifmap *map);
1313 int (*ndo_change_mtu)(struct net_device *dev,
1314 int new_mtu);
1315 int (*ndo_neigh_setup)(struct net_device *dev,
1316 struct neigh_parms *);
1317 void (*ndo_tx_timeout) (struct net_device *dev,
1318 unsigned int txqueue);
1319
1320 void (*ndo_get_stats64)(struct net_device *dev,
1321 struct rtnl_link_stats64 *storage);
1322 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1323 int (*ndo_get_offload_stats)(int attr_id,
1324 const struct net_device *dev,
1325 void *attr_data);
1326 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1327
1328 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1329 __be16 proto, u16 vid);
1330 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1331 __be16 proto, u16 vid);
1332#ifdef CONFIG_NET_POLL_CONTROLLER
1333 void (*ndo_poll_controller)(struct net_device *dev);
1334 int (*ndo_netpoll_setup)(struct net_device *dev,
1335 struct netpoll_info *info);
1336 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1337#endif
1338 int (*ndo_set_vf_mac)(struct net_device *dev,
1339 int queue, u8 *mac);
1340 int (*ndo_set_vf_vlan)(struct net_device *dev,
1341 int queue, u16 vlan,
1342 u8 qos, __be16 proto);
1343 int (*ndo_set_vf_rate)(struct net_device *dev,
1344 int vf, int min_tx_rate,
1345 int max_tx_rate);
1346 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1347 int vf, bool setting);
1348 int (*ndo_set_vf_trust)(struct net_device *dev,
1349 int vf, bool setting);
1350 int (*ndo_get_vf_config)(struct net_device *dev,
1351 int vf,
1352 struct ifla_vf_info *ivf);
1353 int (*ndo_set_vf_link_state)(struct net_device *dev,
1354 int vf, int link_state);
1355 int (*ndo_get_vf_stats)(struct net_device *dev,
1356 int vf,
1357 struct ifla_vf_stats
1358 *vf_stats);
1359 int (*ndo_set_vf_port)(struct net_device *dev,
1360 int vf,
1361 struct nlattr *port[]);
1362 int (*ndo_get_vf_port)(struct net_device *dev,
1363 int vf, struct sk_buff *skb);
1364 int (*ndo_get_vf_guid)(struct net_device *dev,
1365 int vf,
1366 struct ifla_vf_guid *node_guid,
1367 struct ifla_vf_guid *port_guid);
1368 int (*ndo_set_vf_guid)(struct net_device *dev,
1369 int vf, u64 guid,
1370 int guid_type);
1371 int (*ndo_set_vf_rss_query_en)(
1372 struct net_device *dev,
1373 int vf, bool setting);
1374 int (*ndo_setup_tc)(struct net_device *dev,
1375 enum tc_setup_type type,
1376 void *type_data);
1377#if IS_ENABLED(CONFIG_FCOE)
1378 int (*ndo_fcoe_enable)(struct net_device *dev);
1379 int (*ndo_fcoe_disable)(struct net_device *dev);
1380 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1381 u16 xid,
1382 struct scatterlist *sgl,
1383 unsigned int sgc);
1384 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1385 u16 xid);
1386 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1387 u16 xid,
1388 struct scatterlist *sgl,
1389 unsigned int sgc);
1390 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1391 struct netdev_fcoe_hbainfo *hbainfo);
1392#endif
1393
1394#if IS_ENABLED(CONFIG_LIBFCOE)
1395#define NETDEV_FCOE_WWNN 0
1396#define NETDEV_FCOE_WWPN 1
1397 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1398 u64 *wwn, int type);
1399#endif
1400
1401#ifdef CONFIG_RFS_ACCEL
1402 int (*ndo_rx_flow_steer)(struct net_device *dev,
1403 const struct sk_buff *skb,
1404 u16 rxq_index,
1405 u32 flow_id);
1406#endif
1407 int (*ndo_add_slave)(struct net_device *dev,
1408 struct net_device *slave_dev,
1409 struct netlink_ext_ack *extack);
1410 int (*ndo_del_slave)(struct net_device *dev,
1411 struct net_device *slave_dev);
1412 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1413 struct sk_buff *skb,
1414 bool all_slaves);
1415 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1416 netdev_features_t features);
1417 int (*ndo_set_features)(struct net_device *dev,
1418 netdev_features_t features);
1419 int (*ndo_neigh_construct)(struct net_device *dev,
1420 struct neighbour *n);
1421 void (*ndo_neigh_destroy)(struct net_device *dev,
1422 struct neighbour *n);
1423
1424 int (*ndo_fdb_add)(struct ndmsg *ndm,
1425 struct nlattr *tb[],
1426 struct net_device *dev,
1427 const unsigned char *addr,
1428 u16 vid,
1429 u16 flags,
1430 struct netlink_ext_ack *extack);
1431 int (*ndo_fdb_del)(struct ndmsg *ndm,
1432 struct nlattr *tb[],
1433 struct net_device *dev,
1434 const unsigned char *addr,
1435 u16 vid);
1436 int (*ndo_fdb_dump)(struct sk_buff *skb,
1437 struct netlink_callback *cb,
1438 struct net_device *dev,
1439 struct net_device *filter_dev,
1440 int *idx);
1441 int (*ndo_fdb_get)(struct sk_buff *skb,
1442 struct nlattr *tb[],
1443 struct net_device *dev,
1444 const unsigned char *addr,
1445 u16 vid, u32 portid, u32 seq,
1446 struct netlink_ext_ack *extack);
1447 int (*ndo_bridge_setlink)(struct net_device *dev,
1448 struct nlmsghdr *nlh,
1449 u16 flags,
1450 struct netlink_ext_ack *extack);
1451 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1452 u32 pid, u32 seq,
1453 struct net_device *dev,
1454 u32 filter_mask,
1455 int nlflags);
1456 int (*ndo_bridge_dellink)(struct net_device *dev,
1457 struct nlmsghdr *nlh,
1458 u16 flags);
1459 int (*ndo_change_carrier)(struct net_device *dev,
1460 bool new_carrier);
1461 int (*ndo_get_phys_port_id)(struct net_device *dev,
1462 struct netdev_phys_item_id *ppid);
1463 int (*ndo_get_port_parent_id)(struct net_device *dev,
1464 struct netdev_phys_item_id *ppid);
1465 int (*ndo_get_phys_port_name)(struct net_device *dev,
1466 char *name, size_t len);
1467 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1468 struct udp_tunnel_info *ti);
1469 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1470 struct udp_tunnel_info *ti);
1471 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1472 struct net_device *dev);
1473 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1474 void *priv);
1475
1476 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1477 int queue_index,
1478 u32 maxrate);
1479 int (*ndo_get_iflink)(const struct net_device *dev);
1480 int (*ndo_change_proto_down)(struct net_device *dev,
1481 bool proto_down);
1482 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1483 struct sk_buff *skb);
1484 void (*ndo_set_rx_headroom)(struct net_device *dev,
1485 int needed_headroom);
1486 int (*ndo_bpf)(struct net_device *dev,
1487 struct netdev_bpf *bpf);
1488 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1489 struct xdp_frame **xdp,
1490 u32 flags);
1491 int (*ndo_xsk_wakeup)(struct net_device *dev,
1492 u32 queue_id, u32 flags);
1493 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1494 int (*ndo_tunnel_ctl)(struct net_device *dev,
1495 struct ip_tunnel_parm *p, int cmd);
1496 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1497};
1498
1499/**
1500 * enum netdev_priv_flags - &struct net_device priv_flags
1501 *
1502 * These are the &struct net_device, they are only set internally
1503 * by drivers and used in the kernel. These flags are invisible to
1504 * userspace; this means that the order of these flags can change
1505 * during any kernel release.
1506 *
1507 * You should have a pretty good reason to be extending these flags.
1508 *
1509 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1510 * @IFF_EBRIDGE: Ethernet bridging device
1511 * @IFF_BONDING: bonding master or slave
1512 * @IFF_ISATAP: ISATAP interface (RFC4214)
1513 * @IFF_WAN_HDLC: WAN HDLC device
1514 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1515 * release skb->dst
1516 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1517 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1518 * @IFF_MACVLAN_PORT: device used as macvlan port
1519 * @IFF_BRIDGE_PORT: device used as bridge port
1520 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1521 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1522 * @IFF_UNICAST_FLT: Supports unicast filtering
1523 * @IFF_TEAM_PORT: device used as team port
1524 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1525 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1526 * change when it's running
1527 * @IFF_MACVLAN: Macvlan device
1528 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1529 * underlying stacked devices
1530 * @IFF_L3MDEV_MASTER: device is an L3 master device
1531 * @IFF_NO_QUEUE: device can run without qdisc attached
1532 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1533 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1534 * @IFF_TEAM: device is a team device
1535 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1536 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1537 * entity (i.e. the master device for bridged veth)
1538 * @IFF_MACSEC: device is a MACsec device
1539 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1540 * @IFF_FAILOVER: device is a failover master device
1541 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1542 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1543 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1544 */
1545enum netdev_priv_flags {
1546 IFF_802_1Q_VLAN = 1<<0,
1547 IFF_EBRIDGE = 1<<1,
1548 IFF_BONDING = 1<<2,
1549 IFF_ISATAP = 1<<3,
1550 IFF_WAN_HDLC = 1<<4,
1551 IFF_XMIT_DST_RELEASE = 1<<5,
1552 IFF_DONT_BRIDGE = 1<<6,
1553 IFF_DISABLE_NETPOLL = 1<<7,
1554 IFF_MACVLAN_PORT = 1<<8,
1555 IFF_BRIDGE_PORT = 1<<9,
1556 IFF_OVS_DATAPATH = 1<<10,
1557 IFF_TX_SKB_SHARING = 1<<11,
1558 IFF_UNICAST_FLT = 1<<12,
1559 IFF_TEAM_PORT = 1<<13,
1560 IFF_SUPP_NOFCS = 1<<14,
1561 IFF_LIVE_ADDR_CHANGE = 1<<15,
1562 IFF_MACVLAN = 1<<16,
1563 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1564 IFF_L3MDEV_MASTER = 1<<18,
1565 IFF_NO_QUEUE = 1<<19,
1566 IFF_OPENVSWITCH = 1<<20,
1567 IFF_L3MDEV_SLAVE = 1<<21,
1568 IFF_TEAM = 1<<22,
1569 IFF_RXFH_CONFIGURED = 1<<23,
1570 IFF_PHONY_HEADROOM = 1<<24,
1571 IFF_MACSEC = 1<<25,
1572 IFF_NO_RX_HANDLER = 1<<26,
1573 IFF_FAILOVER = 1<<27,
1574 IFF_FAILOVER_SLAVE = 1<<28,
1575 IFF_L3MDEV_RX_HANDLER = 1<<29,
1576 IFF_LIVE_RENAME_OK = 1<<30,
1577};
1578
1579#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1580#define IFF_EBRIDGE IFF_EBRIDGE
1581#define IFF_BONDING IFF_BONDING
1582#define IFF_ISATAP IFF_ISATAP
1583#define IFF_WAN_HDLC IFF_WAN_HDLC
1584#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1585#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1586#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1587#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1588#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1589#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1590#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1591#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1592#define IFF_TEAM_PORT IFF_TEAM_PORT
1593#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1594#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1595#define IFF_MACVLAN IFF_MACVLAN
1596#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1597#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1598#define IFF_NO_QUEUE IFF_NO_QUEUE
1599#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1600#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1601#define IFF_TEAM IFF_TEAM
1602#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1603#define IFF_MACSEC IFF_MACSEC
1604#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1605#define IFF_FAILOVER IFF_FAILOVER
1606#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1607#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1608#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1609
1610/**
1611 * struct net_device - The DEVICE structure.
1612 *
1613 * Actually, this whole structure is a big mistake. It mixes I/O
1614 * data with strictly "high-level" data, and it has to know about
1615 * almost every data structure used in the INET module.
1616 *
1617 * @name: This is the first field of the "visible" part of this structure
1618 * (i.e. as seen by users in the "Space.c" file). It is the name
1619 * of the interface.
1620 *
1621 * @name_node: Name hashlist node
1622 * @ifalias: SNMP alias
1623 * @mem_end: Shared memory end
1624 * @mem_start: Shared memory start
1625 * @base_addr: Device I/O address
1626 * @irq: Device IRQ number
1627 *
1628 * @state: Generic network queuing layer state, see netdev_state_t
1629 * @dev_list: The global list of network devices
1630 * @napi_list: List entry used for polling NAPI devices
1631 * @unreg_list: List entry when we are unregistering the
1632 * device; see the function unregister_netdev
1633 * @close_list: List entry used when we are closing the device
1634 * @ptype_all: Device-specific packet handlers for all protocols
1635 * @ptype_specific: Device-specific, protocol-specific packet handlers
1636 *
1637 * @adj_list: Directly linked devices, like slaves for bonding
1638 * @features: Currently active device features
1639 * @hw_features: User-changeable features
1640 *
1641 * @wanted_features: User-requested features
1642 * @vlan_features: Mask of features inheritable by VLAN devices
1643 *
1644 * @hw_enc_features: Mask of features inherited by encapsulating devices
1645 * This field indicates what encapsulation
1646 * offloads the hardware is capable of doing,
1647 * and drivers will need to set them appropriately.
1648 *
1649 * @mpls_features: Mask of features inheritable by MPLS
1650 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1651 *
1652 * @ifindex: interface index
1653 * @group: The group the device belongs to
1654 *
1655 * @stats: Statistics struct, which was left as a legacy, use
1656 * rtnl_link_stats64 instead
1657 *
1658 * @rx_dropped: Dropped packets by core network,
1659 * do not use this in drivers
1660 * @tx_dropped: Dropped packets by core network,
1661 * do not use this in drivers
1662 * @rx_nohandler: nohandler dropped packets by core network on
1663 * inactive devices, do not use this in drivers
1664 * @carrier_up_count: Number of times the carrier has been up
1665 * @carrier_down_count: Number of times the carrier has been down
1666 *
1667 * @wireless_handlers: List of functions to handle Wireless Extensions,
1668 * instead of ioctl,
1669 * see <net/iw_handler.h> for details.
1670 * @wireless_data: Instance data managed by the core of wireless extensions
1671 *
1672 * @netdev_ops: Includes several pointers to callbacks,
1673 * if one wants to override the ndo_*() functions
1674 * @ethtool_ops: Management operations
1675 * @l3mdev_ops: Layer 3 master device operations
1676 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1677 * discovery handling. Necessary for e.g. 6LoWPAN.
1678 * @xfrmdev_ops: Transformation offload operations
1679 * @tlsdev_ops: Transport Layer Security offload operations
1680 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1681 * of Layer 2 headers.
1682 *
1683 * @flags: Interface flags (a la BSD)
1684 * @priv_flags: Like 'flags' but invisible to userspace,
1685 * see if.h for the definitions
1686 * @gflags: Global flags ( kept as legacy )
1687 * @padded: How much padding added by alloc_netdev()
1688 * @operstate: RFC2863 operstate
1689 * @link_mode: Mapping policy to operstate
1690 * @if_port: Selectable AUI, TP, ...
1691 * @dma: DMA channel
1692 * @mtu: Interface MTU value
1693 * @min_mtu: Interface Minimum MTU value
1694 * @max_mtu: Interface Maximum MTU value
1695 * @type: Interface hardware type
1696 * @hard_header_len: Maximum hardware header length.
1697 * @min_header_len: Minimum hardware header length
1698 *
1699 * @needed_headroom: Extra headroom the hardware may need, but not in all
1700 * cases can this be guaranteed
1701 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1702 * cases can this be guaranteed. Some cases also use
1703 * LL_MAX_HEADER instead to allocate the skb
1704 *
1705 * interface address info:
1706 *
1707 * @perm_addr: Permanent hw address
1708 * @addr_assign_type: Hw address assignment type
1709 * @addr_len: Hardware address length
1710 * @upper_level: Maximum depth level of upper devices.
1711 * @lower_level: Maximum depth level of lower devices.
1712 * @neigh_priv_len: Used in neigh_alloc()
1713 * @dev_id: Used to differentiate devices that share
1714 * the same link layer address
1715 * @dev_port: Used to differentiate devices that share
1716 * the same function
1717 * @addr_list_lock: XXX: need comments on this one
1718 * @name_assign_type: network interface name assignment type
1719 * @uc_promisc: Counter that indicates promiscuous mode
1720 * has been enabled due to the need to listen to
1721 * additional unicast addresses in a device that
1722 * does not implement ndo_set_rx_mode()
1723 * @uc: unicast mac addresses
1724 * @mc: multicast mac addresses
1725 * @dev_addrs: list of device hw addresses
1726 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1727 * @promiscuity: Number of times the NIC is told to work in
1728 * promiscuous mode; if it becomes 0 the NIC will
1729 * exit promiscuous mode
1730 * @allmulti: Counter, enables or disables allmulticast mode
1731 *
1732 * @vlan_info: VLAN info
1733 * @dsa_ptr: dsa specific data
1734 * @tipc_ptr: TIPC specific data
1735 * @atalk_ptr: AppleTalk link
1736 * @ip_ptr: IPv4 specific data
1737 * @dn_ptr: DECnet specific data
1738 * @ip6_ptr: IPv6 specific data
1739 * @ax25_ptr: AX.25 specific data
1740 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1741 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1742 * device struct
1743 * @mpls_ptr: mpls_dev struct pointer
1744 *
1745 * @dev_addr: Hw address (before bcast,
1746 * because most packets are unicast)
1747 *
1748 * @_rx: Array of RX queues
1749 * @num_rx_queues: Number of RX queues
1750 * allocated at register_netdev() time
1751 * @real_num_rx_queues: Number of RX queues currently active in device
1752 * @xdp_prog: XDP sockets filter program pointer
1753 * @gro_flush_timeout: timeout for GRO layer in NAPI
1754 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1755 * allow to avoid NIC hard IRQ, on busy queues.
1756 *
1757 * @rx_handler: handler for received packets
1758 * @rx_handler_data: XXX: need comments on this one
1759 * @miniq_ingress: ingress/clsact qdisc specific data for
1760 * ingress processing
1761 * @ingress_queue: XXX: need comments on this one
1762 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1763 * @broadcast: hw bcast address
1764 *
1765 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1766 * indexed by RX queue number. Assigned by driver.
1767 * This must only be set if the ndo_rx_flow_steer
1768 * operation is defined
1769 * @index_hlist: Device index hash chain
1770 *
1771 * @_tx: Array of TX queues
1772 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1773 * @real_num_tx_queues: Number of TX queues currently active in device
1774 * @qdisc: Root qdisc from userspace point of view
1775 * @tx_queue_len: Max frames per queue allowed
1776 * @tx_global_lock: XXX: need comments on this one
1777 * @xdp_bulkq: XDP device bulk queue
1778 * @xps_cpus_map: all CPUs map for XPS device
1779 * @xps_rxqs_map: all RXQs map for XPS device
1780 *
1781 * @xps_maps: XXX: need comments on this one
1782 * @miniq_egress: clsact qdisc specific data for
1783 * egress processing
1784 * @qdisc_hash: qdisc hash table
1785 * @watchdog_timeo: Represents the timeout that is used by
1786 * the watchdog (see dev_watchdog())
1787 * @watchdog_timer: List of timers
1788 *
1789 * @proto_down_reason: reason a netdev interface is held down
1790 * @pcpu_refcnt: Number of references to this device
1791 * @todo_list: Delayed register/unregister
1792 * @link_watch_list: XXX: need comments on this one
1793 *
1794 * @reg_state: Register/unregister state machine
1795 * @dismantle: Device is going to be freed
1796 * @rtnl_link_state: This enum represents the phases of creating
1797 * a new link
1798 *
1799 * @needs_free_netdev: Should unregister perform free_netdev?
1800 * @priv_destructor: Called from unregister
1801 * @npinfo: XXX: need comments on this one
1802 * @nd_net: Network namespace this network device is inside
1803 *
1804 * @ml_priv: Mid-layer private
1805 * @lstats: Loopback statistics
1806 * @tstats: Tunnel statistics
1807 * @dstats: Dummy statistics
1808 * @vstats: Virtual ethernet statistics
1809 *
1810 * @garp_port: GARP
1811 * @mrp_port: MRP
1812 *
1813 * @dev: Class/net/name entry
1814 * @sysfs_groups: Space for optional device, statistics and wireless
1815 * sysfs groups
1816 *
1817 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1818 * @rtnl_link_ops: Rtnl_link_ops
1819 *
1820 * @gso_max_size: Maximum size of generic segmentation offload
1821 * @gso_max_segs: Maximum number of segments that can be passed to the
1822 * NIC for GSO
1823 *
1824 * @dcbnl_ops: Data Center Bridging netlink ops
1825 * @num_tc: Number of traffic classes in the net device
1826 * @tc_to_txq: XXX: need comments on this one
1827 * @prio_tc_map: XXX: need comments on this one
1828 *
1829 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1830 *
1831 * @priomap: XXX: need comments on this one
1832 * @phydev: Physical device may attach itself
1833 * for hardware timestamping
1834 * @sfp_bus: attached &struct sfp_bus structure.
1835 *
1836 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1837 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1838 *
1839 * @proto_down: protocol port state information can be sent to the
1840 * switch driver and used to set the phys state of the
1841 * switch port.
1842 *
1843 * @wol_enabled: Wake-on-LAN is enabled
1844 *
1845 * @net_notifier_list: List of per-net netdev notifier block
1846 * that follow this device when it is moved
1847 * to another network namespace.
1848 *
1849 * @macsec_ops: MACsec offloading ops
1850 *
1851 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1852 * offload capabilities of the device
1853 * @udp_tunnel_nic: UDP tunnel offload state
1854 * @xdp_state: stores info on attached XDP BPF programs
1855 *
1856 * @nested_level: Used as as a parameter of spin_lock_nested() of
1857 * dev->addr_list_lock.
1858 * @unlink_list: As netif_addr_lock() can be called recursively,
1859 * keep a list of interfaces to be deleted.
1860 *
1861 * FIXME: cleanup struct net_device such that network protocol info
1862 * moves out.
1863 */
1864
1865struct net_device {
1866 char name[IFNAMSIZ];
1867 struct netdev_name_node *name_node;
1868 struct dev_ifalias __rcu *ifalias;
1869 /*
1870 * I/O specific fields
1871 * FIXME: Merge these and struct ifmap into one
1872 */
1873 unsigned long mem_end;
1874 unsigned long mem_start;
1875 unsigned long base_addr;
1876 int irq;
1877
1878 /*
1879 * Some hardware also needs these fields (state,dev_list,
1880 * napi_list,unreg_list,close_list) but they are not
1881 * part of the usual set specified in Space.c.
1882 */
1883
1884 unsigned long state;
1885
1886 struct list_head dev_list;
1887 struct list_head napi_list;
1888 struct list_head unreg_list;
1889 struct list_head close_list;
1890 struct list_head ptype_all;
1891 struct list_head ptype_specific;
1892
1893 struct {
1894 struct list_head upper;
1895 struct list_head lower;
1896 } adj_list;
1897
1898 netdev_features_t features;
1899 netdev_features_t hw_features;
1900 netdev_features_t wanted_features;
1901 netdev_features_t vlan_features;
1902 netdev_features_t hw_enc_features;
1903 netdev_features_t mpls_features;
1904 netdev_features_t gso_partial_features;
1905
1906 int ifindex;
1907 int group;
1908
1909 struct net_device_stats stats;
1910
1911 atomic_long_t rx_dropped;
1912 atomic_long_t tx_dropped;
1913 atomic_long_t rx_nohandler;
1914
1915 /* Stats to monitor link on/off, flapping */
1916 atomic_t carrier_up_count;
1917 atomic_t carrier_down_count;
1918
1919#ifdef CONFIG_WIRELESS_EXT
1920 const struct iw_handler_def *wireless_handlers;
1921 struct iw_public_data *wireless_data;
1922#endif
1923 const struct net_device_ops *netdev_ops;
1924 const struct ethtool_ops *ethtool_ops;
1925#ifdef CONFIG_NET_L3_MASTER_DEV
1926 const struct l3mdev_ops *l3mdev_ops;
1927#endif
1928#if IS_ENABLED(CONFIG_IPV6)
1929 const struct ndisc_ops *ndisc_ops;
1930#endif
1931
1932#ifdef CONFIG_XFRM_OFFLOAD
1933 const struct xfrmdev_ops *xfrmdev_ops;
1934#endif
1935
1936#if IS_ENABLED(CONFIG_TLS_DEVICE)
1937 const struct tlsdev_ops *tlsdev_ops;
1938#endif
1939
1940 const struct header_ops *header_ops;
1941
1942 unsigned int flags;
1943 unsigned int priv_flags;
1944
1945 unsigned short gflags;
1946 unsigned short padded;
1947
1948 unsigned char operstate;
1949 unsigned char link_mode;
1950
1951 unsigned char if_port;
1952 unsigned char dma;
1953
1954 /* Note : dev->mtu is often read without holding a lock.
1955 * Writers usually hold RTNL.
1956 * It is recommended to use READ_ONCE() to annotate the reads,
1957 * and to use WRITE_ONCE() to annotate the writes.
1958 */
1959 unsigned int mtu;
1960 unsigned int min_mtu;
1961 unsigned int max_mtu;
1962 unsigned short type;
1963 unsigned short hard_header_len;
1964 unsigned char min_header_len;
1965 unsigned char name_assign_type;
1966
1967 unsigned short needed_headroom;
1968 unsigned short needed_tailroom;
1969
1970 /* Interface address info. */
1971 unsigned char perm_addr[MAX_ADDR_LEN];
1972 unsigned char addr_assign_type;
1973 unsigned char addr_len;
1974 unsigned char upper_level;
1975 unsigned char lower_level;
1976
1977 unsigned short neigh_priv_len;
1978 unsigned short dev_id;
1979 unsigned short dev_port;
1980 spinlock_t addr_list_lock;
1981
1982 struct netdev_hw_addr_list uc;
1983 struct netdev_hw_addr_list mc;
1984 struct netdev_hw_addr_list dev_addrs;
1985
1986#ifdef CONFIG_SYSFS
1987 struct kset *queues_kset;
1988#endif
1989#ifdef CONFIG_LOCKDEP
1990 struct list_head unlink_list;
1991#endif
1992 unsigned int promiscuity;
1993 unsigned int allmulti;
1994 bool uc_promisc;
1995#ifdef CONFIG_LOCKDEP
1996 unsigned char nested_level;
1997#endif
1998
1999
2000 /* Protocol-specific pointers */
2001
2002#if IS_ENABLED(CONFIG_VLAN_8021Q)
2003 struct vlan_info __rcu *vlan_info;
2004#endif
2005#if IS_ENABLED(CONFIG_NET_DSA)
2006 struct dsa_port *dsa_ptr;
2007#endif
2008#if IS_ENABLED(CONFIG_TIPC)
2009 struct tipc_bearer __rcu *tipc_ptr;
2010#endif
2011#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2012 void *atalk_ptr;
2013#endif
2014 struct in_device __rcu *ip_ptr;
2015#if IS_ENABLED(CONFIG_DECNET)
2016 struct dn_dev __rcu *dn_ptr;
2017#endif
2018 struct inet6_dev __rcu *ip6_ptr;
2019#if IS_ENABLED(CONFIG_AX25)
2020 void *ax25_ptr;
2021#endif
2022 struct wireless_dev *ieee80211_ptr;
2023 struct wpan_dev *ieee802154_ptr;
2024#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2025 struct mpls_dev __rcu *mpls_ptr;
2026#endif
2027
2028/*
2029 * Cache lines mostly used on receive path (including eth_type_trans())
2030 */
2031 /* Interface address info used in eth_type_trans() */
2032 unsigned char *dev_addr;
2033
2034 struct netdev_rx_queue *_rx;
2035 unsigned int num_rx_queues;
2036 unsigned int real_num_rx_queues;
2037
2038 struct bpf_prog __rcu *xdp_prog;
2039 unsigned long gro_flush_timeout;
2040 int napi_defer_hard_irqs;
2041 rx_handler_func_t __rcu *rx_handler;
2042 void __rcu *rx_handler_data;
2043
2044#ifdef CONFIG_NET_CLS_ACT
2045 struct mini_Qdisc __rcu *miniq_ingress;
2046#endif
2047 struct netdev_queue __rcu *ingress_queue;
2048#ifdef CONFIG_NETFILTER_INGRESS
2049 struct nf_hook_entries __rcu *nf_hooks_ingress;
2050#endif
2051
2052 unsigned char broadcast[MAX_ADDR_LEN];
2053#ifdef CONFIG_RFS_ACCEL
2054 struct cpu_rmap *rx_cpu_rmap;
2055#endif
2056 struct hlist_node index_hlist;
2057
2058/*
2059 * Cache lines mostly used on transmit path
2060 */
2061 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2062 unsigned int num_tx_queues;
2063 unsigned int real_num_tx_queues;
2064 struct Qdisc *qdisc;
2065 unsigned int tx_queue_len;
2066 spinlock_t tx_global_lock;
2067
2068 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2069
2070#ifdef CONFIG_XPS
2071 struct xps_dev_maps __rcu *xps_cpus_map;
2072 struct xps_dev_maps __rcu *xps_rxqs_map;
2073#endif
2074#ifdef CONFIG_NET_CLS_ACT
2075 struct mini_Qdisc __rcu *miniq_egress;
2076#endif
2077
2078#ifdef CONFIG_NET_SCHED
2079 DECLARE_HASHTABLE (qdisc_hash, 4);
2080#endif
2081 /* These may be needed for future network-power-down code. */
2082 struct timer_list watchdog_timer;
2083 int watchdog_timeo;
2084
2085 u32 proto_down_reason;
2086
2087 struct list_head todo_list;
2088 int __percpu *pcpu_refcnt;
2089
2090 struct list_head link_watch_list;
2091
2092 enum { NETREG_UNINITIALIZED=0,
2093 NETREG_REGISTERED, /* completed register_netdevice */
2094 NETREG_UNREGISTERING, /* called unregister_netdevice */
2095 NETREG_UNREGISTERED, /* completed unregister todo */
2096 NETREG_RELEASED, /* called free_netdev */
2097 NETREG_DUMMY, /* dummy device for NAPI poll */
2098 } reg_state:8;
2099
2100 bool dismantle;
2101
2102 enum {
2103 RTNL_LINK_INITIALIZED,
2104 RTNL_LINK_INITIALIZING,
2105 } rtnl_link_state:16;
2106
2107 bool needs_free_netdev;
2108 void (*priv_destructor)(struct net_device *dev);
2109
2110#ifdef CONFIG_NETPOLL
2111 struct netpoll_info __rcu *npinfo;
2112#endif
2113
2114 possible_net_t nd_net;
2115
2116 /* mid-layer private */
2117 union {
2118 void *ml_priv;
2119 struct pcpu_lstats __percpu *lstats;
2120 struct pcpu_sw_netstats __percpu *tstats;
2121 struct pcpu_dstats __percpu *dstats;
2122 };
2123
2124#if IS_ENABLED(CONFIG_GARP)
2125 struct garp_port __rcu *garp_port;
2126#endif
2127#if IS_ENABLED(CONFIG_MRP)
2128 struct mrp_port __rcu *mrp_port;
2129#endif
2130
2131 struct device dev;
2132 const struct attribute_group *sysfs_groups[4];
2133 const struct attribute_group *sysfs_rx_queue_group;
2134
2135 const struct rtnl_link_ops *rtnl_link_ops;
2136
2137 /* for setting kernel sock attribute on TCP connection setup */
2138#define GSO_MAX_SIZE 65536
2139 unsigned int gso_max_size;
2140#define GSO_MAX_SEGS 65535
2141 u16 gso_max_segs;
2142
2143#ifdef CONFIG_DCB
2144 const struct dcbnl_rtnl_ops *dcbnl_ops;
2145#endif
2146 s16 num_tc;
2147 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2148 u8 prio_tc_map[TC_BITMASK + 1];
2149
2150#if IS_ENABLED(CONFIG_FCOE)
2151 unsigned int fcoe_ddp_xid;
2152#endif
2153#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2154 struct netprio_map __rcu *priomap;
2155#endif
2156 struct phy_device *phydev;
2157 struct sfp_bus *sfp_bus;
2158 struct lock_class_key *qdisc_tx_busylock;
2159 struct lock_class_key *qdisc_running_key;
2160 bool proto_down;
2161 unsigned wol_enabled:1;
2162
2163 struct list_head net_notifier_list;
2164
2165#if IS_ENABLED(CONFIG_MACSEC)
2166 /* MACsec management functions */
2167 const struct macsec_ops *macsec_ops;
2168#endif
2169 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2170 struct udp_tunnel_nic *udp_tunnel_nic;
2171
2172 /* protected by rtnl_lock */
2173 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2174};
2175#define to_net_dev(d) container_of(d, struct net_device, dev)
2176
2177static inline bool netif_elide_gro(const struct net_device *dev)
2178{
2179 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2180 return true;
2181 return false;
2182}
2183
2184#define NETDEV_ALIGN 32
2185
2186static inline
2187int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2188{
2189 return dev->prio_tc_map[prio & TC_BITMASK];
2190}
2191
2192static inline
2193int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2194{
2195 if (tc >= dev->num_tc)
2196 return -EINVAL;
2197
2198 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2199 return 0;
2200}
2201
2202int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2203void netdev_reset_tc(struct net_device *dev);
2204int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2205int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2206
2207static inline
2208int netdev_get_num_tc(struct net_device *dev)
2209{
2210 return dev->num_tc;
2211}
2212
2213static inline void net_prefetch(void *p)
2214{
2215 prefetch(p);
2216#if L1_CACHE_BYTES < 128
2217 prefetch((u8 *)p + L1_CACHE_BYTES);
2218#endif
2219}
2220
2221static inline void net_prefetchw(void *p)
2222{
2223 prefetchw(p);
2224#if L1_CACHE_BYTES < 128
2225 prefetchw((u8 *)p + L1_CACHE_BYTES);
2226#endif
2227}
2228
2229void netdev_unbind_sb_channel(struct net_device *dev,
2230 struct net_device *sb_dev);
2231int netdev_bind_sb_channel_queue(struct net_device *dev,
2232 struct net_device *sb_dev,
2233 u8 tc, u16 count, u16 offset);
2234int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2235static inline int netdev_get_sb_channel(struct net_device *dev)
2236{
2237 return max_t(int, -dev->num_tc, 0);
2238}
2239
2240static inline
2241struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2242 unsigned int index)
2243{
2244 return &dev->_tx[index];
2245}
2246
2247static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2248 const struct sk_buff *skb)
2249{
2250 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2251}
2252
2253static inline void netdev_for_each_tx_queue(struct net_device *dev,
2254 void (*f)(struct net_device *,
2255 struct netdev_queue *,
2256 void *),
2257 void *arg)
2258{
2259 unsigned int i;
2260
2261 for (i = 0; i < dev->num_tx_queues; i++)
2262 f(dev, &dev->_tx[i], arg);
2263}
2264
2265#define netdev_lockdep_set_classes(dev) \
2266{ \
2267 static struct lock_class_key qdisc_tx_busylock_key; \
2268 static struct lock_class_key qdisc_running_key; \
2269 static struct lock_class_key qdisc_xmit_lock_key; \
2270 static struct lock_class_key dev_addr_list_lock_key; \
2271 unsigned int i; \
2272 \
2273 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2274 (dev)->qdisc_running_key = &qdisc_running_key; \
2275 lockdep_set_class(&(dev)->addr_list_lock, \
2276 &dev_addr_list_lock_key); \
2277 for (i = 0; i < (dev)->num_tx_queues; i++) \
2278 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2279 &qdisc_xmit_lock_key); \
2280}
2281
2282u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2283 struct net_device *sb_dev);
2284struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2285 struct sk_buff *skb,
2286 struct net_device *sb_dev);
2287
2288/* returns the headroom that the master device needs to take in account
2289 * when forwarding to this dev
2290 */
2291static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2292{
2293 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2294}
2295
2296static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2297{
2298 if (dev->netdev_ops->ndo_set_rx_headroom)
2299 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2300}
2301
2302/* set the device rx headroom to the dev's default */
2303static inline void netdev_reset_rx_headroom(struct net_device *dev)
2304{
2305 netdev_set_rx_headroom(dev, -1);
2306}
2307
2308/*
2309 * Net namespace inlines
2310 */
2311static inline
2312struct net *dev_net(const struct net_device *dev)
2313{
2314 return read_pnet(&dev->nd_net);
2315}
2316
2317static inline
2318void dev_net_set(struct net_device *dev, struct net *net)
2319{
2320 write_pnet(&dev->nd_net, net);
2321}
2322
2323/**
2324 * netdev_priv - access network device private data
2325 * @dev: network device
2326 *
2327 * Get network device private data
2328 */
2329static inline void *netdev_priv(const struct net_device *dev)
2330{
2331 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2332}
2333
2334/* Set the sysfs physical device reference for the network logical device
2335 * if set prior to registration will cause a symlink during initialization.
2336 */
2337#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2338
2339/* Set the sysfs device type for the network logical device to allow
2340 * fine-grained identification of different network device types. For
2341 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2342 */
2343#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2344
2345/* Default NAPI poll() weight
2346 * Device drivers are strongly advised to not use bigger value
2347 */
2348#define NAPI_POLL_WEIGHT 64
2349
2350/**
2351 * netif_napi_add - initialize a NAPI context
2352 * @dev: network device
2353 * @napi: NAPI context
2354 * @poll: polling function
2355 * @weight: default weight
2356 *
2357 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2358 * *any* of the other NAPI-related functions.
2359 */
2360void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2361 int (*poll)(struct napi_struct *, int), int weight);
2362
2363/**
2364 * netif_tx_napi_add - initialize a NAPI context
2365 * @dev: network device
2366 * @napi: NAPI context
2367 * @poll: polling function
2368 * @weight: default weight
2369 *
2370 * This variant of netif_napi_add() should be used from drivers using NAPI
2371 * to exclusively poll a TX queue.
2372 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2373 */
2374static inline void netif_tx_napi_add(struct net_device *dev,
2375 struct napi_struct *napi,
2376 int (*poll)(struct napi_struct *, int),
2377 int weight)
2378{
2379 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2380 netif_napi_add(dev, napi, poll, weight);
2381}
2382
2383/**
2384 * __netif_napi_del - remove a NAPI context
2385 * @napi: NAPI context
2386 *
2387 * Warning: caller must observe RCU grace period before freeing memory
2388 * containing @napi. Drivers might want to call this helper to combine
2389 * all the needed RCU grace periods into a single one.
2390 */
2391void __netif_napi_del(struct napi_struct *napi);
2392
2393/**
2394 * netif_napi_del - remove a NAPI context
2395 * @napi: NAPI context
2396 *
2397 * netif_napi_del() removes a NAPI context from the network device NAPI list
2398 */
2399static inline void netif_napi_del(struct napi_struct *napi)
2400{
2401 __netif_napi_del(napi);
2402 synchronize_net();
2403}
2404
2405struct napi_gro_cb {
2406 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2407 void *frag0;
2408
2409 /* Length of frag0. */
2410 unsigned int frag0_len;
2411
2412 /* This indicates where we are processing relative to skb->data. */
2413 int data_offset;
2414
2415 /* This is non-zero if the packet cannot be merged with the new skb. */
2416 u16 flush;
2417
2418 /* Save the IP ID here and check when we get to the transport layer */
2419 u16 flush_id;
2420
2421 /* Number of segments aggregated. */
2422 u16 count;
2423
2424 /* Start offset for remote checksum offload */
2425 u16 gro_remcsum_start;
2426
2427 /* jiffies when first packet was created/queued */
2428 unsigned long age;
2429
2430 /* Used in ipv6_gro_receive() and foo-over-udp */
2431 u16 proto;
2432
2433 /* This is non-zero if the packet may be of the same flow. */
2434 u8 same_flow:1;
2435
2436 /* Used in tunnel GRO receive */
2437 u8 encap_mark:1;
2438
2439 /* GRO checksum is valid */
2440 u8 csum_valid:1;
2441
2442 /* Number of checksums via CHECKSUM_UNNECESSARY */
2443 u8 csum_cnt:3;
2444
2445 /* Free the skb? */
2446 u8 free:2;
2447#define NAPI_GRO_FREE 1
2448#define NAPI_GRO_FREE_STOLEN_HEAD 2
2449
2450 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2451 u8 is_ipv6:1;
2452
2453 /* Used in GRE, set in fou/gue_gro_receive */
2454 u8 is_fou:1;
2455
2456 /* Used to determine if flush_id can be ignored */
2457 u8 is_atomic:1;
2458
2459 /* Number of gro_receive callbacks this packet already went through */
2460 u8 recursion_counter:4;
2461
2462 /* GRO is done by frag_list pointer chaining. */
2463 u8 is_flist:1;
2464
2465 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2466 __wsum csum;
2467
2468 /* used in skb_gro_receive() slow path */
2469 struct sk_buff *last;
2470};
2471
2472#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2473
2474#define GRO_RECURSION_LIMIT 15
2475static inline int gro_recursion_inc_test(struct sk_buff *skb)
2476{
2477 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2478}
2479
2480typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2481static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2482 struct list_head *head,
2483 struct sk_buff *skb)
2484{
2485 if (unlikely(gro_recursion_inc_test(skb))) {
2486 NAPI_GRO_CB(skb)->flush |= 1;
2487 return NULL;
2488 }
2489
2490 return cb(head, skb);
2491}
2492
2493typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2494 struct sk_buff *);
2495static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2496 struct sock *sk,
2497 struct list_head *head,
2498 struct sk_buff *skb)
2499{
2500 if (unlikely(gro_recursion_inc_test(skb))) {
2501 NAPI_GRO_CB(skb)->flush |= 1;
2502 return NULL;
2503 }
2504
2505 return cb(sk, head, skb);
2506}
2507
2508struct packet_type {
2509 __be16 type; /* This is really htons(ether_type). */
2510 bool ignore_outgoing;
2511 struct net_device *dev; /* NULL is wildcarded here */
2512 int (*func) (struct sk_buff *,
2513 struct net_device *,
2514 struct packet_type *,
2515 struct net_device *);
2516 void (*list_func) (struct list_head *,
2517 struct packet_type *,
2518 struct net_device *);
2519 bool (*id_match)(struct packet_type *ptype,
2520 struct sock *sk);
2521 void *af_packet_priv;
2522 struct list_head list;
2523};
2524
2525struct offload_callbacks {
2526 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2527 netdev_features_t features);
2528 struct sk_buff *(*gro_receive)(struct list_head *head,
2529 struct sk_buff *skb);
2530 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2531};
2532
2533struct packet_offload {
2534 __be16 type; /* This is really htons(ether_type). */
2535 u16 priority;
2536 struct offload_callbacks callbacks;
2537 struct list_head list;
2538};
2539
2540/* often modified stats are per-CPU, other are shared (netdev->stats) */
2541struct pcpu_sw_netstats {
2542 u64 rx_packets;
2543 u64 rx_bytes;
2544 u64 tx_packets;
2545 u64 tx_bytes;
2546 struct u64_stats_sync syncp;
2547} __aligned(4 * sizeof(u64));
2548
2549struct pcpu_lstats {
2550 u64_stats_t packets;
2551 u64_stats_t bytes;
2552 struct u64_stats_sync syncp;
2553} __aligned(2 * sizeof(u64));
2554
2555void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2556
2557static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2558{
2559 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2560
2561 u64_stats_update_begin(&tstats->syncp);
2562 tstats->rx_bytes += len;
2563 tstats->rx_packets++;
2564 u64_stats_update_end(&tstats->syncp);
2565}
2566
2567static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2568 unsigned int packets,
2569 unsigned int len)
2570{
2571 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2572
2573 u64_stats_update_begin(&tstats->syncp);
2574 tstats->tx_bytes += len;
2575 tstats->tx_packets += packets;
2576 u64_stats_update_end(&tstats->syncp);
2577}
2578
2579static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2580{
2581 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2582
2583 u64_stats_update_begin(&lstats->syncp);
2584 u64_stats_add(&lstats->bytes, len);
2585 u64_stats_inc(&lstats->packets);
2586 u64_stats_update_end(&lstats->syncp);
2587}
2588
2589#define __netdev_alloc_pcpu_stats(type, gfp) \
2590({ \
2591 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2592 if (pcpu_stats) { \
2593 int __cpu; \
2594 for_each_possible_cpu(__cpu) { \
2595 typeof(type) *stat; \
2596 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2597 u64_stats_init(&stat->syncp); \
2598 } \
2599 } \
2600 pcpu_stats; \
2601})
2602
2603#define netdev_alloc_pcpu_stats(type) \
2604 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2605
2606#define devm_netdev_alloc_pcpu_stats(dev, type) \
2607({ \
2608 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2609 if (pcpu_stats) { \
2610 int __cpu; \
2611 for_each_possible_cpu(__cpu) { \
2612 typeof(type) *stat; \
2613 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2614 u64_stats_init(&stat->syncp); \
2615 } \
2616 } \
2617 pcpu_stats; \
2618})
2619
2620enum netdev_lag_tx_type {
2621 NETDEV_LAG_TX_TYPE_UNKNOWN,
2622 NETDEV_LAG_TX_TYPE_RANDOM,
2623 NETDEV_LAG_TX_TYPE_BROADCAST,
2624 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2625 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2626 NETDEV_LAG_TX_TYPE_HASH,
2627};
2628
2629enum netdev_lag_hash {
2630 NETDEV_LAG_HASH_NONE,
2631 NETDEV_LAG_HASH_L2,
2632 NETDEV_LAG_HASH_L34,
2633 NETDEV_LAG_HASH_L23,
2634 NETDEV_LAG_HASH_E23,
2635 NETDEV_LAG_HASH_E34,
2636 NETDEV_LAG_HASH_UNKNOWN,
2637};
2638
2639struct netdev_lag_upper_info {
2640 enum netdev_lag_tx_type tx_type;
2641 enum netdev_lag_hash hash_type;
2642};
2643
2644struct netdev_lag_lower_state_info {
2645 u8 link_up : 1,
2646 tx_enabled : 1;
2647};
2648
2649#include <linux/notifier.h>
2650
2651/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2652 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2653 * adding new types.
2654 */
2655enum netdev_cmd {
2656 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2657 NETDEV_DOWN,
2658 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2659 detected a hardware crash and restarted
2660 - we can use this eg to kick tcp sessions
2661 once done */
2662 NETDEV_CHANGE, /* Notify device state change */
2663 NETDEV_REGISTER,
2664 NETDEV_UNREGISTER,
2665 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2666 NETDEV_CHANGEADDR, /* notify after the address change */
2667 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2668 NETDEV_GOING_DOWN,
2669 NETDEV_CHANGENAME,
2670 NETDEV_FEAT_CHANGE,
2671 NETDEV_BONDING_FAILOVER,
2672 NETDEV_PRE_UP,
2673 NETDEV_PRE_TYPE_CHANGE,
2674 NETDEV_POST_TYPE_CHANGE,
2675 NETDEV_POST_INIT,
2676 NETDEV_RELEASE,
2677 NETDEV_NOTIFY_PEERS,
2678 NETDEV_JOIN,
2679 NETDEV_CHANGEUPPER,
2680 NETDEV_RESEND_IGMP,
2681 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2682 NETDEV_CHANGEINFODATA,
2683 NETDEV_BONDING_INFO,
2684 NETDEV_PRECHANGEUPPER,
2685 NETDEV_CHANGELOWERSTATE,
2686 NETDEV_UDP_TUNNEL_PUSH_INFO,
2687 NETDEV_UDP_TUNNEL_DROP_INFO,
2688 NETDEV_CHANGE_TX_QUEUE_LEN,
2689 NETDEV_CVLAN_FILTER_PUSH_INFO,
2690 NETDEV_CVLAN_FILTER_DROP_INFO,
2691 NETDEV_SVLAN_FILTER_PUSH_INFO,
2692 NETDEV_SVLAN_FILTER_DROP_INFO,
2693};
2694const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2695
2696int register_netdevice_notifier(struct notifier_block *nb);
2697int unregister_netdevice_notifier(struct notifier_block *nb);
2698int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2699int unregister_netdevice_notifier_net(struct net *net,
2700 struct notifier_block *nb);
2701int register_netdevice_notifier_dev_net(struct net_device *dev,
2702 struct notifier_block *nb,
2703 struct netdev_net_notifier *nn);
2704int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2705 struct notifier_block *nb,
2706 struct netdev_net_notifier *nn);
2707
2708struct netdev_notifier_info {
2709 struct net_device *dev;
2710 struct netlink_ext_ack *extack;
2711};
2712
2713struct netdev_notifier_info_ext {
2714 struct netdev_notifier_info info; /* must be first */
2715 union {
2716 u32 mtu;
2717 } ext;
2718};
2719
2720struct netdev_notifier_change_info {
2721 struct netdev_notifier_info info; /* must be first */
2722 unsigned int flags_changed;
2723};
2724
2725struct netdev_notifier_changeupper_info {
2726 struct netdev_notifier_info info; /* must be first */
2727 struct net_device *upper_dev; /* new upper dev */
2728 bool master; /* is upper dev master */
2729 bool linking; /* is the notification for link or unlink */
2730 void *upper_info; /* upper dev info */
2731};
2732
2733struct netdev_notifier_changelowerstate_info {
2734 struct netdev_notifier_info info; /* must be first */
2735 void *lower_state_info; /* is lower dev state */
2736};
2737
2738struct netdev_notifier_pre_changeaddr_info {
2739 struct netdev_notifier_info info; /* must be first */
2740 const unsigned char *dev_addr;
2741};
2742
2743static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2744 struct net_device *dev)
2745{
2746 info->dev = dev;
2747 info->extack = NULL;
2748}
2749
2750static inline struct net_device *
2751netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2752{
2753 return info->dev;
2754}
2755
2756static inline struct netlink_ext_ack *
2757netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2758{
2759 return info->extack;
2760}
2761
2762int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2763
2764
2765extern rwlock_t dev_base_lock; /* Device list lock */
2766
2767#define for_each_netdev(net, d) \
2768 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2769#define for_each_netdev_reverse(net, d) \
2770 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2771#define for_each_netdev_rcu(net, d) \
2772 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2773#define for_each_netdev_safe(net, d, n) \
2774 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2775#define for_each_netdev_continue(net, d) \
2776 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2777#define for_each_netdev_continue_reverse(net, d) \
2778 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2779 dev_list)
2780#define for_each_netdev_continue_rcu(net, d) \
2781 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2782#define for_each_netdev_in_bond_rcu(bond, slave) \
2783 for_each_netdev_rcu(&init_net, slave) \
2784 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2785#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2786
2787static inline struct net_device *next_net_device(struct net_device *dev)
2788{
2789 struct list_head *lh;
2790 struct net *net;
2791
2792 net = dev_net(dev);
2793 lh = dev->dev_list.next;
2794 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2795}
2796
2797static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2798{
2799 struct list_head *lh;
2800 struct net *net;
2801
2802 net = dev_net(dev);
2803 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2804 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2805}
2806
2807static inline struct net_device *first_net_device(struct net *net)
2808{
2809 return list_empty(&net->dev_base_head) ? NULL :
2810 net_device_entry(net->dev_base_head.next);
2811}
2812
2813static inline struct net_device *first_net_device_rcu(struct net *net)
2814{
2815 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2816
2817 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2818}
2819
2820int netdev_boot_setup_check(struct net_device *dev);
2821unsigned long netdev_boot_base(const char *prefix, int unit);
2822struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2823 const char *hwaddr);
2824struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2825void dev_add_pack(struct packet_type *pt);
2826void dev_remove_pack(struct packet_type *pt);
2827void __dev_remove_pack(struct packet_type *pt);
2828void dev_add_offload(struct packet_offload *po);
2829void dev_remove_offload(struct packet_offload *po);
2830
2831int dev_get_iflink(const struct net_device *dev);
2832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2833struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2834 unsigned short mask);
2835struct net_device *dev_get_by_name(struct net *net, const char *name);
2836struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2837struct net_device *__dev_get_by_name(struct net *net, const char *name);
2838int dev_alloc_name(struct net_device *dev, const char *name);
2839int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2840void dev_close(struct net_device *dev);
2841void dev_close_many(struct list_head *head, bool unlink);
2842void dev_disable_lro(struct net_device *dev);
2843int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2844u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2845 struct net_device *sb_dev);
2846u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2847 struct net_device *sb_dev);
2848
2849int dev_queue_xmit(struct sk_buff *skb);
2850int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2851int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2852
2853static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2854{
2855 int ret;
2856
2857 ret = __dev_direct_xmit(skb, queue_id);
2858 if (!dev_xmit_complete(ret))
2859 kfree_skb(skb);
2860 return ret;
2861}
2862
2863int register_netdevice(struct net_device *dev);
2864void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2865void unregister_netdevice_many(struct list_head *head);
2866static inline void unregister_netdevice(struct net_device *dev)
2867{
2868 unregister_netdevice_queue(dev, NULL);
2869}
2870
2871int netdev_refcnt_read(const struct net_device *dev);
2872void free_netdev(struct net_device *dev);
2873void netdev_freemem(struct net_device *dev);
2874int init_dummy_netdev(struct net_device *dev);
2875
2876struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2877 struct sk_buff *skb,
2878 bool all_slaves);
2879struct net_device *dev_get_by_index(struct net *net, int ifindex);
2880struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2881struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2882struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2883int netdev_get_name(struct net *net, char *name, int ifindex);
2884int dev_restart(struct net_device *dev);
2885int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2886int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2887
2888static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2889{
2890 return NAPI_GRO_CB(skb)->data_offset;
2891}
2892
2893static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2894{
2895 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2896}
2897
2898static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2899{
2900 NAPI_GRO_CB(skb)->data_offset += len;
2901}
2902
2903static inline void *skb_gro_header_fast(struct sk_buff *skb,
2904 unsigned int offset)
2905{
2906 return NAPI_GRO_CB(skb)->frag0 + offset;
2907}
2908
2909static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2910{
2911 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2912}
2913
2914static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2915{
2916 NAPI_GRO_CB(skb)->frag0 = NULL;
2917 NAPI_GRO_CB(skb)->frag0_len = 0;
2918}
2919
2920static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2921 unsigned int offset)
2922{
2923 if (!pskb_may_pull(skb, hlen))
2924 return NULL;
2925
2926 skb_gro_frag0_invalidate(skb);
2927 return skb->data + offset;
2928}
2929
2930static inline void *skb_gro_network_header(struct sk_buff *skb)
2931{
2932 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2933 skb_network_offset(skb);
2934}
2935
2936static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2937 const void *start, unsigned int len)
2938{
2939 if (NAPI_GRO_CB(skb)->csum_valid)
2940 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2941 csum_partial(start, len, 0));
2942}
2943
2944/* GRO checksum functions. These are logical equivalents of the normal
2945 * checksum functions (in skbuff.h) except that they operate on the GRO
2946 * offsets and fields in sk_buff.
2947 */
2948
2949__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2950
2951static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2952{
2953 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2954}
2955
2956static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2957 bool zero_okay,
2958 __sum16 check)
2959{
2960 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2961 skb_checksum_start_offset(skb) <
2962 skb_gro_offset(skb)) &&
2963 !skb_at_gro_remcsum_start(skb) &&
2964 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2965 (!zero_okay || check));
2966}
2967
2968static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2969 __wsum psum)
2970{
2971 if (NAPI_GRO_CB(skb)->csum_valid &&
2972 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2973 return 0;
2974
2975 NAPI_GRO_CB(skb)->csum = psum;
2976
2977 return __skb_gro_checksum_complete(skb);
2978}
2979
2980static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2981{
2982 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2983 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2984 NAPI_GRO_CB(skb)->csum_cnt--;
2985 } else {
2986 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2987 * verified a new top level checksum or an encapsulated one
2988 * during GRO. This saves work if we fallback to normal path.
2989 */
2990 __skb_incr_checksum_unnecessary(skb);
2991 }
2992}
2993
2994#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2995 compute_pseudo) \
2996({ \
2997 __sum16 __ret = 0; \
2998 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2999 __ret = __skb_gro_checksum_validate_complete(skb, \
3000 compute_pseudo(skb, proto)); \
3001 if (!__ret) \
3002 skb_gro_incr_csum_unnecessary(skb); \
3003 __ret; \
3004})
3005
3006#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
3007 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3008
3009#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
3010 compute_pseudo) \
3011 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3012
3013#define skb_gro_checksum_simple_validate(skb) \
3014 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3015
3016static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3017{
3018 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3019 !NAPI_GRO_CB(skb)->csum_valid);
3020}
3021
3022static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3023 __wsum pseudo)
3024{
3025 NAPI_GRO_CB(skb)->csum = ~pseudo;
3026 NAPI_GRO_CB(skb)->csum_valid = 1;
3027}
3028
3029#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
3030do { \
3031 if (__skb_gro_checksum_convert_check(skb)) \
3032 __skb_gro_checksum_convert(skb, \
3033 compute_pseudo(skb, proto)); \
3034} while (0)
3035
3036struct gro_remcsum {
3037 int offset;
3038 __wsum delta;
3039};
3040
3041static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3042{
3043 grc->offset = 0;
3044 grc->delta = 0;
3045}
3046
3047static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3048 unsigned int off, size_t hdrlen,
3049 int start, int offset,
3050 struct gro_remcsum *grc,
3051 bool nopartial)
3052{
3053 __wsum delta;
3054 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3055
3056 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3057
3058 if (!nopartial) {
3059 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3060 return ptr;
3061 }
3062
3063 ptr = skb_gro_header_fast(skb, off);
3064 if (skb_gro_header_hard(skb, off + plen)) {
3065 ptr = skb_gro_header_slow(skb, off + plen, off);
3066 if (!ptr)
3067 return NULL;
3068 }
3069
3070 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3071 start, offset);
3072
3073 /* Adjust skb->csum since we changed the packet */
3074 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3075
3076 grc->offset = off + hdrlen + offset;
3077 grc->delta = delta;
3078
3079 return ptr;
3080}
3081
3082static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3083 struct gro_remcsum *grc)
3084{
3085 void *ptr;
3086 size_t plen = grc->offset + sizeof(u16);
3087
3088 if (!grc->delta)
3089 return;
3090
3091 ptr = skb_gro_header_fast(skb, grc->offset);
3092 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3093 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3094 if (!ptr)
3095 return;
3096 }
3097
3098 remcsum_unadjust((__sum16 *)ptr, grc->delta);
3099}
3100
3101#ifdef CONFIG_XFRM_OFFLOAD
3102static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3103{
3104 if (PTR_ERR(pp) != -EINPROGRESS)
3105 NAPI_GRO_CB(skb)->flush |= flush;
3106}
3107static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3108 struct sk_buff *pp,
3109 int flush,
3110 struct gro_remcsum *grc)
3111{
3112 if (PTR_ERR(pp) != -EINPROGRESS) {
3113 NAPI_GRO_CB(skb)->flush |= flush;
3114 skb_gro_remcsum_cleanup(skb, grc);
3115 skb->remcsum_offload = 0;
3116 }
3117}
3118#else
3119static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3120{
3121 NAPI_GRO_CB(skb)->flush |= flush;
3122}
3123static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3124 struct sk_buff *pp,
3125 int flush,
3126 struct gro_remcsum *grc)
3127{
3128 NAPI_GRO_CB(skb)->flush |= flush;
3129 skb_gro_remcsum_cleanup(skb, grc);
3130 skb->remcsum_offload = 0;
3131}
3132#endif
3133
3134static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3135 unsigned short type,
3136 const void *daddr, const void *saddr,
3137 unsigned int len)
3138{
3139 if (!dev->header_ops || !dev->header_ops->create)
3140 return 0;
3141
3142 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3143}
3144
3145static inline int dev_parse_header(const struct sk_buff *skb,
3146 unsigned char *haddr)
3147{
3148 const struct net_device *dev = skb->dev;
3149
3150 if (!dev->header_ops || !dev->header_ops->parse)
3151 return 0;
3152 return dev->header_ops->parse(skb, haddr);
3153}
3154
3155static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3156{
3157 const struct net_device *dev = skb->dev;
3158
3159 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3160 return 0;
3161 return dev->header_ops->parse_protocol(skb);
3162}
3163
3164/* ll_header must have at least hard_header_len allocated */
3165static inline bool dev_validate_header(const struct net_device *dev,
3166 char *ll_header, int len)
3167{
3168 if (likely(len >= dev->hard_header_len))
3169 return true;
3170 if (len < dev->min_header_len)
3171 return false;
3172
3173 if (capable(CAP_SYS_RAWIO)) {
3174 memset(ll_header + len, 0, dev->hard_header_len - len);
3175 return true;
3176 }
3177
3178 if (dev->header_ops && dev->header_ops->validate)
3179 return dev->header_ops->validate(ll_header, len);
3180
3181 return false;
3182}
3183
3184static inline bool dev_has_header(const struct net_device *dev)
3185{
3186 return dev->header_ops && dev->header_ops->create;
3187}
3188
3189typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3190 int len, int size);
3191int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3192static inline int unregister_gifconf(unsigned int family)
3193{
3194 return register_gifconf(family, NULL);
3195}
3196
3197#ifdef CONFIG_NET_FLOW_LIMIT
3198#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3199struct sd_flow_limit {
3200 u64 count;
3201 unsigned int num_buckets;
3202 unsigned int history_head;
3203 u16 history[FLOW_LIMIT_HISTORY];
3204 u8 buckets[];
3205};
3206
3207extern int netdev_flow_limit_table_len;
3208#endif /* CONFIG_NET_FLOW_LIMIT */
3209
3210/*
3211 * Incoming packets are placed on per-CPU queues
3212 */
3213struct softnet_data {
3214 struct list_head poll_list;
3215 struct sk_buff_head process_queue;
3216
3217 /* stats */
3218 unsigned int processed;
3219 unsigned int time_squeeze;
3220 unsigned int received_rps;
3221#ifdef CONFIG_RPS
3222 struct softnet_data *rps_ipi_list;
3223#endif
3224#ifdef CONFIG_NET_FLOW_LIMIT
3225 struct sd_flow_limit __rcu *flow_limit;
3226#endif
3227 struct Qdisc *output_queue;
3228 struct Qdisc **output_queue_tailp;
3229 struct sk_buff *completion_queue;
3230#ifdef CONFIG_XFRM_OFFLOAD
3231 struct sk_buff_head xfrm_backlog;
3232#endif
3233 /* written and read only by owning cpu: */
3234 struct {
3235 u16 recursion;
3236 u8 more;
3237 } xmit;
3238#ifdef CONFIG_RPS
3239 /* input_queue_head should be written by cpu owning this struct,
3240 * and only read by other cpus. Worth using a cache line.
3241 */
3242 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3243
3244 /* Elements below can be accessed between CPUs for RPS/RFS */
3245 call_single_data_t csd ____cacheline_aligned_in_smp;
3246 struct softnet_data *rps_ipi_next;
3247 unsigned int cpu;
3248 unsigned int input_queue_tail;
3249#endif
3250 unsigned int dropped;
3251 struct sk_buff_head input_pkt_queue;
3252 struct napi_struct backlog;
3253
3254};
3255
3256static inline void input_queue_head_incr(struct softnet_data *sd)
3257{
3258#ifdef CONFIG_RPS
3259 sd->input_queue_head++;
3260#endif
3261}
3262
3263static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3264 unsigned int *qtail)
3265{
3266#ifdef CONFIG_RPS
3267 *qtail = ++sd->input_queue_tail;
3268#endif
3269}
3270
3271DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3272
3273static inline int dev_recursion_level(void)
3274{
3275 return this_cpu_read(softnet_data.xmit.recursion);
3276}
3277
3278#define XMIT_RECURSION_LIMIT 8
3279static inline bool dev_xmit_recursion(void)
3280{
3281 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3282 XMIT_RECURSION_LIMIT);
3283}
3284
3285static inline void dev_xmit_recursion_inc(void)
3286{
3287 __this_cpu_inc(softnet_data.xmit.recursion);
3288}
3289
3290static inline void dev_xmit_recursion_dec(void)
3291{
3292 __this_cpu_dec(softnet_data.xmit.recursion);
3293}
3294
3295void __netif_schedule(struct Qdisc *q);
3296void netif_schedule_queue(struct netdev_queue *txq);
3297
3298static inline void netif_tx_schedule_all(struct net_device *dev)
3299{
3300 unsigned int i;
3301
3302 for (i = 0; i < dev->num_tx_queues; i++)
3303 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3304}
3305
3306static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3307{
3308 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3309}
3310
3311/**
3312 * netif_start_queue - allow transmit
3313 * @dev: network device
3314 *
3315 * Allow upper layers to call the device hard_start_xmit routine.
3316 */
3317static inline void netif_start_queue(struct net_device *dev)
3318{
3319 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3320}
3321
3322static inline void netif_tx_start_all_queues(struct net_device *dev)
3323{
3324 unsigned int i;
3325
3326 for (i = 0; i < dev->num_tx_queues; i++) {
3327 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3328 netif_tx_start_queue(txq);
3329 }
3330}
3331
3332void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3333
3334/**
3335 * netif_wake_queue - restart transmit
3336 * @dev: network device
3337 *
3338 * Allow upper layers to call the device hard_start_xmit routine.
3339 * Used for flow control when transmit resources are available.
3340 */
3341static inline void netif_wake_queue(struct net_device *dev)
3342{
3343 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3344}
3345
3346static inline void netif_tx_wake_all_queues(struct net_device *dev)
3347{
3348 unsigned int i;
3349
3350 for (i = 0; i < dev->num_tx_queues; i++) {
3351 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3352 netif_tx_wake_queue(txq);
3353 }
3354}
3355
3356static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3357{
3358 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3359}
3360
3361/**
3362 * netif_stop_queue - stop transmitted packets
3363 * @dev: network device
3364 *
3365 * Stop upper layers calling the device hard_start_xmit routine.
3366 * Used for flow control when transmit resources are unavailable.
3367 */
3368static inline void netif_stop_queue(struct net_device *dev)
3369{
3370 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3371}
3372
3373void netif_tx_stop_all_queues(struct net_device *dev);
3374
3375static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3376{
3377 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3378}
3379
3380/**
3381 * netif_queue_stopped - test if transmit queue is flowblocked
3382 * @dev: network device
3383 *
3384 * Test if transmit queue on device is currently unable to send.
3385 */
3386static inline bool netif_queue_stopped(const struct net_device *dev)
3387{
3388 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3389}
3390
3391static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3392{
3393 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3394}
3395
3396static inline bool
3397netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3398{
3399 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3400}
3401
3402static inline bool
3403netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3404{
3405 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3406}
3407
3408/**
3409 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3410 * @dev_queue: pointer to transmit queue
3411 *
3412 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3413 * to give appropriate hint to the CPU.
3414 */
3415static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3416{
3417#ifdef CONFIG_BQL
3418 prefetchw(&dev_queue->dql.num_queued);
3419#endif
3420}
3421
3422/**
3423 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3424 * @dev_queue: pointer to transmit queue
3425 *
3426 * BQL enabled drivers might use this helper in their TX completion path,
3427 * to give appropriate hint to the CPU.
3428 */
3429static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3430{
3431#ifdef CONFIG_BQL
3432 prefetchw(&dev_queue->dql.limit);
3433#endif
3434}
3435
3436static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3437 unsigned int bytes)
3438{
3439#ifdef CONFIG_BQL
3440 dql_queued(&dev_queue->dql, bytes);
3441
3442 if (likely(dql_avail(&dev_queue->dql) >= 0))
3443 return;
3444
3445 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3446
3447 /*
3448 * The XOFF flag must be set before checking the dql_avail below,
3449 * because in netdev_tx_completed_queue we update the dql_completed
3450 * before checking the XOFF flag.
3451 */
3452 smp_mb();
3453
3454 /* check again in case another CPU has just made room avail */
3455 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3456 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3457#endif
3458}
3459
3460/* Variant of netdev_tx_sent_queue() for drivers that are aware
3461 * that they should not test BQL status themselves.
3462 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3463 * skb of a batch.
3464 * Returns true if the doorbell must be used to kick the NIC.
3465 */
3466static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3467 unsigned int bytes,
3468 bool xmit_more)
3469{
3470 if (xmit_more) {
3471#ifdef CONFIG_BQL
3472 dql_queued(&dev_queue->dql, bytes);
3473#endif
3474 return netif_tx_queue_stopped(dev_queue);
3475 }
3476 netdev_tx_sent_queue(dev_queue, bytes);
3477 return true;
3478}
3479
3480/**
3481 * netdev_sent_queue - report the number of bytes queued to hardware
3482 * @dev: network device
3483 * @bytes: number of bytes queued to the hardware device queue
3484 *
3485 * Report the number of bytes queued for sending/completion to the network
3486 * device hardware queue. @bytes should be a good approximation and should
3487 * exactly match netdev_completed_queue() @bytes
3488 */
3489static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3490{
3491 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3492}
3493
3494static inline bool __netdev_sent_queue(struct net_device *dev,
3495 unsigned int bytes,
3496 bool xmit_more)
3497{
3498 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3499 xmit_more);
3500}
3501
3502static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3503 unsigned int pkts, unsigned int bytes)
3504{
3505#ifdef CONFIG_BQL
3506 if (unlikely(!bytes))
3507 return;
3508
3509 dql_completed(&dev_queue->dql, bytes);
3510
3511 /*
3512 * Without the memory barrier there is a small possiblity that
3513 * netdev_tx_sent_queue will miss the update and cause the queue to
3514 * be stopped forever
3515 */
3516 smp_mb();
3517
3518 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3519 return;
3520
3521 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3522 netif_schedule_queue(dev_queue);
3523#endif
3524}
3525
3526/**
3527 * netdev_completed_queue - report bytes and packets completed by device
3528 * @dev: network device
3529 * @pkts: actual number of packets sent over the medium
3530 * @bytes: actual number of bytes sent over the medium
3531 *
3532 * Report the number of bytes and packets transmitted by the network device
3533 * hardware queue over the physical medium, @bytes must exactly match the
3534 * @bytes amount passed to netdev_sent_queue()
3535 */
3536static inline void netdev_completed_queue(struct net_device *dev,
3537 unsigned int pkts, unsigned int bytes)
3538{
3539 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3540}
3541
3542static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3543{
3544#ifdef CONFIG_BQL
3545 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3546 dql_reset(&q->dql);
3547#endif
3548}
3549
3550/**
3551 * netdev_reset_queue - reset the packets and bytes count of a network device
3552 * @dev_queue: network device
3553 *
3554 * Reset the bytes and packet count of a network device and clear the
3555 * software flow control OFF bit for this network device
3556 */
3557static inline void netdev_reset_queue(struct net_device *dev_queue)
3558{
3559 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3560}
3561
3562/**
3563 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3564 * @dev: network device
3565 * @queue_index: given tx queue index
3566 *
3567 * Returns 0 if given tx queue index >= number of device tx queues,
3568 * otherwise returns the originally passed tx queue index.
3569 */
3570static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3571{
3572 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3573 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3574 dev->name, queue_index,
3575 dev->real_num_tx_queues);
3576 return 0;
3577 }
3578
3579 return queue_index;
3580}
3581
3582/**
3583 * netif_running - test if up
3584 * @dev: network device
3585 *
3586 * Test if the device has been brought up.
3587 */
3588static inline bool netif_running(const struct net_device *dev)
3589{
3590 return test_bit(__LINK_STATE_START, &dev->state);
3591}
3592
3593/*
3594 * Routines to manage the subqueues on a device. We only need start,
3595 * stop, and a check if it's stopped. All other device management is
3596 * done at the overall netdevice level.
3597 * Also test the device if we're multiqueue.
3598 */
3599
3600/**
3601 * netif_start_subqueue - allow sending packets on subqueue
3602 * @dev: network device
3603 * @queue_index: sub queue index
3604 *
3605 * Start individual transmit queue of a device with multiple transmit queues.
3606 */
3607static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3608{
3609 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3610
3611 netif_tx_start_queue(txq);
3612}
3613
3614/**
3615 * netif_stop_subqueue - stop sending packets on subqueue
3616 * @dev: network device
3617 * @queue_index: sub queue index
3618 *
3619 * Stop individual transmit queue of a device with multiple transmit queues.
3620 */
3621static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3622{
3623 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3624 netif_tx_stop_queue(txq);
3625}
3626
3627/**
3628 * __netif_subqueue_stopped - test status of subqueue
3629 * @dev: network device
3630 * @queue_index: sub queue index
3631 *
3632 * Check individual transmit queue of a device with multiple transmit queues.
3633 */
3634static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3635 u16 queue_index)
3636{
3637 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3638
3639 return netif_tx_queue_stopped(txq);
3640}
3641
3642/**
3643 * netif_subqueue_stopped - test status of subqueue
3644 * @dev: network device
3645 * @skb: sub queue buffer pointer
3646 *
3647 * Check individual transmit queue of a device with multiple transmit queues.
3648 */
3649static inline bool netif_subqueue_stopped(const struct net_device *dev,
3650 struct sk_buff *skb)
3651{
3652 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3653}
3654
3655/**
3656 * netif_wake_subqueue - allow sending packets on subqueue
3657 * @dev: network device
3658 * @queue_index: sub queue index
3659 *
3660 * Resume individual transmit queue of a device with multiple transmit queues.
3661 */
3662static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3663{
3664 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3665
3666 netif_tx_wake_queue(txq);
3667}
3668
3669#ifdef CONFIG_XPS
3670int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3671 u16 index);
3672int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3673 u16 index, bool is_rxqs_map);
3674
3675/**
3676 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3677 * @j: CPU/Rx queue index
3678 * @mask: bitmask of all cpus/rx queues
3679 * @nr_bits: number of bits in the bitmask
3680 *
3681 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3682 */
3683static inline bool netif_attr_test_mask(unsigned long j,
3684 const unsigned long *mask,
3685 unsigned int nr_bits)
3686{
3687 cpu_max_bits_warn(j, nr_bits);
3688 return test_bit(j, mask);
3689}
3690
3691/**
3692 * netif_attr_test_online - Test for online CPU/Rx queue
3693 * @j: CPU/Rx queue index
3694 * @online_mask: bitmask for CPUs/Rx queues that are online
3695 * @nr_bits: number of bits in the bitmask
3696 *
3697 * Returns true if a CPU/Rx queue is online.
3698 */
3699static inline bool netif_attr_test_online(unsigned long j,
3700 const unsigned long *online_mask,
3701 unsigned int nr_bits)
3702{
3703 cpu_max_bits_warn(j, nr_bits);
3704
3705 if (online_mask)
3706 return test_bit(j, online_mask);
3707
3708 return (j < nr_bits);
3709}
3710
3711/**
3712 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3713 * @n: CPU/Rx queue index
3714 * @srcp: the cpumask/Rx queue mask pointer
3715 * @nr_bits: number of bits in the bitmask
3716 *
3717 * Returns >= nr_bits if no further CPUs/Rx queues set.
3718 */
3719static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3720 unsigned int nr_bits)
3721{
3722 /* -1 is a legal arg here. */
3723 if (n != -1)
3724 cpu_max_bits_warn(n, nr_bits);
3725
3726 if (srcp)
3727 return find_next_bit(srcp, nr_bits, n + 1);
3728
3729 return n + 1;
3730}
3731
3732/**
3733 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3734 * @n: CPU/Rx queue index
3735 * @src1p: the first CPUs/Rx queues mask pointer
3736 * @src2p: the second CPUs/Rx queues mask pointer
3737 * @nr_bits: number of bits in the bitmask
3738 *
3739 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3740 */
3741static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3742 const unsigned long *src2p,
3743 unsigned int nr_bits)
3744{
3745 /* -1 is a legal arg here. */
3746 if (n != -1)
3747 cpu_max_bits_warn(n, nr_bits);
3748
3749 if (src1p && src2p)
3750 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3751 else if (src1p)
3752 return find_next_bit(src1p, nr_bits, n + 1);
3753 else if (src2p)
3754 return find_next_bit(src2p, nr_bits, n + 1);
3755
3756 return n + 1;
3757}
3758#else
3759static inline int netif_set_xps_queue(struct net_device *dev,
3760 const struct cpumask *mask,
3761 u16 index)
3762{
3763 return 0;
3764}
3765
3766static inline int __netif_set_xps_queue(struct net_device *dev,
3767 const unsigned long *mask,
3768 u16 index, bool is_rxqs_map)
3769{
3770 return 0;
3771}
3772#endif
3773
3774/**
3775 * netif_is_multiqueue - test if device has multiple transmit queues
3776 * @dev: network device
3777 *
3778 * Check if device has multiple transmit queues
3779 */
3780static inline bool netif_is_multiqueue(const struct net_device *dev)
3781{
3782 return dev->num_tx_queues > 1;
3783}
3784
3785int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3786
3787#ifdef CONFIG_SYSFS
3788int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3789#else
3790static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3791 unsigned int rxqs)
3792{
3793 dev->real_num_rx_queues = rxqs;
3794 return 0;
3795}
3796#endif
3797
3798static inline struct netdev_rx_queue *
3799__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3800{
3801 return dev->_rx + rxq;
3802}
3803
3804#ifdef CONFIG_SYSFS
3805static inline unsigned int get_netdev_rx_queue_index(
3806 struct netdev_rx_queue *queue)
3807{
3808 struct net_device *dev = queue->dev;
3809 int index = queue - dev->_rx;
3810
3811 BUG_ON(index >= dev->num_rx_queues);
3812 return index;
3813}
3814#endif
3815
3816#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3817int netif_get_num_default_rss_queues(void);
3818
3819enum skb_free_reason {
3820 SKB_REASON_CONSUMED,
3821 SKB_REASON_DROPPED,
3822};
3823
3824void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3825void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3826
3827/*
3828 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3829 * interrupt context or with hardware interrupts being disabled.
3830 * (in_irq() || irqs_disabled())
3831 *
3832 * We provide four helpers that can be used in following contexts :
3833 *
3834 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3835 * replacing kfree_skb(skb)
3836 *
3837 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3838 * Typically used in place of consume_skb(skb) in TX completion path
3839 *
3840 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3841 * replacing kfree_skb(skb)
3842 *
3843 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3844 * and consumed a packet. Used in place of consume_skb(skb)
3845 */
3846static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3847{
3848 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3849}
3850
3851static inline void dev_consume_skb_irq(struct sk_buff *skb)
3852{
3853 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3854}
3855
3856static inline void dev_kfree_skb_any(struct sk_buff *skb)
3857{
3858 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3859}
3860
3861static inline void dev_consume_skb_any(struct sk_buff *skb)
3862{
3863 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3864}
3865
3866void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3867int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3868int netif_rx(struct sk_buff *skb);
3869int netif_rx_ni(struct sk_buff *skb);
3870int netif_rx_any_context(struct sk_buff *skb);
3871int netif_receive_skb(struct sk_buff *skb);
3872int netif_receive_skb_core(struct sk_buff *skb);
3873void netif_receive_skb_list(struct list_head *head);
3874gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3875void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3876struct sk_buff *napi_get_frags(struct napi_struct *napi);
3877gro_result_t napi_gro_frags(struct napi_struct *napi);
3878struct packet_offload *gro_find_receive_by_type(__be16 type);
3879struct packet_offload *gro_find_complete_by_type(__be16 type);
3880
3881static inline void napi_free_frags(struct napi_struct *napi)
3882{
3883 kfree_skb(napi->skb);
3884 napi->skb = NULL;
3885}
3886
3887bool netdev_is_rx_handler_busy(struct net_device *dev);
3888int netdev_rx_handler_register(struct net_device *dev,
3889 rx_handler_func_t *rx_handler,
3890 void *rx_handler_data);
3891void netdev_rx_handler_unregister(struct net_device *dev);
3892
3893bool dev_valid_name(const char *name);
3894int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3895 bool *need_copyout);
3896int dev_ifconf(struct net *net, struct ifconf *, int);
3897int dev_ethtool(struct net *net, struct ifreq *);
3898unsigned int dev_get_flags(const struct net_device *);
3899int __dev_change_flags(struct net_device *dev, unsigned int flags,
3900 struct netlink_ext_ack *extack);
3901int dev_change_flags(struct net_device *dev, unsigned int flags,
3902 struct netlink_ext_ack *extack);
3903void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3904 unsigned int gchanges);
3905int dev_change_name(struct net_device *, const char *);
3906int dev_set_alias(struct net_device *, const char *, size_t);
3907int dev_get_alias(const struct net_device *, char *, size_t);
3908int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3909int __dev_set_mtu(struct net_device *, int);
3910int dev_validate_mtu(struct net_device *dev, int mtu,
3911 struct netlink_ext_ack *extack);
3912int dev_set_mtu_ext(struct net_device *dev, int mtu,
3913 struct netlink_ext_ack *extack);
3914int dev_set_mtu(struct net_device *, int);
3915int dev_change_tx_queue_len(struct net_device *, unsigned long);
3916void dev_set_group(struct net_device *, int);
3917int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3918 struct netlink_ext_ack *extack);
3919int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3920 struct netlink_ext_ack *extack);
3921int dev_change_carrier(struct net_device *, bool new_carrier);
3922int dev_get_phys_port_id(struct net_device *dev,
3923 struct netdev_phys_item_id *ppid);
3924int dev_get_phys_port_name(struct net_device *dev,
3925 char *name, size_t len);
3926int dev_get_port_parent_id(struct net_device *dev,
3927 struct netdev_phys_item_id *ppid, bool recurse);
3928bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3929int dev_change_proto_down(struct net_device *dev, bool proto_down);
3930int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3931void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
3932 u32 value);
3933struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3934struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3935 struct netdev_queue *txq, int *ret);
3936
3937typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3938int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3939 int fd, int expected_fd, u32 flags);
3940int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3941u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3942
3943int xdp_umem_query(struct net_device *dev, u16 queue_id);
3944
3945int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3946int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3947bool is_skb_forwardable(const struct net_device *dev,
3948 const struct sk_buff *skb);
3949
3950static __always_inline int ____dev_forward_skb(struct net_device *dev,
3951 struct sk_buff *skb)
3952{
3953 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3954 unlikely(!is_skb_forwardable(dev, skb))) {
3955 atomic_long_inc(&dev->rx_dropped);
3956 kfree_skb(skb);
3957 return NET_RX_DROP;
3958 }
3959
3960 skb_scrub_packet(skb, true);
3961 skb->priority = 0;
3962 return 0;
3963}
3964
3965bool dev_nit_active(struct net_device *dev);
3966void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3967
3968extern int netdev_budget;
3969extern unsigned int netdev_budget_usecs;
3970
3971/* Called by rtnetlink.c:rtnl_unlock() */
3972void netdev_run_todo(void);
3973
3974/**
3975 * dev_put - release reference to device
3976 * @dev: network device
3977 *
3978 * Release reference to device to allow it to be freed.
3979 */
3980static inline void dev_put(struct net_device *dev)
3981{
3982 this_cpu_dec(*dev->pcpu_refcnt);
3983}
3984
3985/**
3986 * dev_hold - get reference to device
3987 * @dev: network device
3988 *
3989 * Hold reference to device to keep it from being freed.
3990 */
3991static inline void dev_hold(struct net_device *dev)
3992{
3993 this_cpu_inc(*dev->pcpu_refcnt);
3994}
3995
3996/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3997 * and _off may be called from IRQ context, but it is caller
3998 * who is responsible for serialization of these calls.
3999 *
4000 * The name carrier is inappropriate, these functions should really be
4001 * called netif_lowerlayer_*() because they represent the state of any
4002 * kind of lower layer not just hardware media.
4003 */
4004
4005void linkwatch_init_dev(struct net_device *dev);
4006void linkwatch_fire_event(struct net_device *dev);
4007void linkwatch_forget_dev(struct net_device *dev);
4008
4009/**
4010 * netif_carrier_ok - test if carrier present
4011 * @dev: network device
4012 *
4013 * Check if carrier is present on device
4014 */
4015static inline bool netif_carrier_ok(const struct net_device *dev)
4016{
4017 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4018}
4019
4020unsigned long dev_trans_start(struct net_device *dev);
4021
4022void __netdev_watchdog_up(struct net_device *dev);
4023
4024void netif_carrier_on(struct net_device *dev);
4025
4026void netif_carrier_off(struct net_device *dev);
4027
4028/**
4029 * netif_dormant_on - mark device as dormant.
4030 * @dev: network device
4031 *
4032 * Mark device as dormant (as per RFC2863).
4033 *
4034 * The dormant state indicates that the relevant interface is not
4035 * actually in a condition to pass packets (i.e., it is not 'up') but is
4036 * in a "pending" state, waiting for some external event. For "on-
4037 * demand" interfaces, this new state identifies the situation where the
4038 * interface is waiting for events to place it in the up state.
4039 */
4040static inline void netif_dormant_on(struct net_device *dev)
4041{
4042 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4043 linkwatch_fire_event(dev);
4044}
4045
4046/**
4047 * netif_dormant_off - set device as not dormant.
4048 * @dev: network device
4049 *
4050 * Device is not in dormant state.
4051 */
4052static inline void netif_dormant_off(struct net_device *dev)
4053{
4054 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4055 linkwatch_fire_event(dev);
4056}
4057
4058/**
4059 * netif_dormant - test if device is dormant
4060 * @dev: network device
4061 *
4062 * Check if device is dormant.
4063 */
4064static inline bool netif_dormant(const struct net_device *dev)
4065{
4066 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4067}
4068
4069
4070/**
4071 * netif_testing_on - mark device as under test.
4072 * @dev: network device
4073 *
4074 * Mark device as under test (as per RFC2863).
4075 *
4076 * The testing state indicates that some test(s) must be performed on
4077 * the interface. After completion, of the test, the interface state
4078 * will change to up, dormant, or down, as appropriate.
4079 */
4080static inline void netif_testing_on(struct net_device *dev)
4081{
4082 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4083 linkwatch_fire_event(dev);
4084}
4085
4086/**
4087 * netif_testing_off - set device as not under test.
4088 * @dev: network device
4089 *
4090 * Device is not in testing state.
4091 */
4092static inline void netif_testing_off(struct net_device *dev)
4093{
4094 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4095 linkwatch_fire_event(dev);
4096}
4097
4098/**
4099 * netif_testing - test if device is under test
4100 * @dev: network device
4101 *
4102 * Check if device is under test
4103 */
4104static inline bool netif_testing(const struct net_device *dev)
4105{
4106 return test_bit(__LINK_STATE_TESTING, &dev->state);
4107}
4108
4109
4110/**
4111 * netif_oper_up - test if device is operational
4112 * @dev: network device
4113 *
4114 * Check if carrier is operational
4115 */
4116static inline bool netif_oper_up(const struct net_device *dev)
4117{
4118 return (dev->operstate == IF_OPER_UP ||
4119 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4120}
4121
4122/**
4123 * netif_device_present - is device available or removed
4124 * @dev: network device
4125 *
4126 * Check if device has not been removed from system.
4127 */
4128static inline bool netif_device_present(struct net_device *dev)
4129{
4130 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4131}
4132
4133void netif_device_detach(struct net_device *dev);
4134
4135void netif_device_attach(struct net_device *dev);
4136
4137/*
4138 * Network interface message level settings
4139 */
4140
4141enum {
4142 NETIF_MSG_DRV_BIT,
4143 NETIF_MSG_PROBE_BIT,
4144 NETIF_MSG_LINK_BIT,
4145 NETIF_MSG_TIMER_BIT,
4146 NETIF_MSG_IFDOWN_BIT,
4147 NETIF_MSG_IFUP_BIT,
4148 NETIF_MSG_RX_ERR_BIT,
4149 NETIF_MSG_TX_ERR_BIT,
4150 NETIF_MSG_TX_QUEUED_BIT,
4151 NETIF_MSG_INTR_BIT,
4152 NETIF_MSG_TX_DONE_BIT,
4153 NETIF_MSG_RX_STATUS_BIT,
4154 NETIF_MSG_PKTDATA_BIT,
4155 NETIF_MSG_HW_BIT,
4156 NETIF_MSG_WOL_BIT,
4157
4158 /* When you add a new bit above, update netif_msg_class_names array
4159 * in net/ethtool/common.c
4160 */
4161 NETIF_MSG_CLASS_COUNT,
4162};
4163/* Both ethtool_ops interface and internal driver implementation use u32 */
4164static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4165
4166#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4167#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4168
4169#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4170#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4171#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4172#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4173#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4174#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4175#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4176#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4177#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4178#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4179#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4180#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4181#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4182#define NETIF_MSG_HW __NETIF_MSG(HW)
4183#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4184
4185#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4186#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4187#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4188#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4189#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4190#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4191#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4192#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4193#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4194#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4195#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4196#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4197#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4198#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4199#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4200
4201static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4202{
4203 /* use default */
4204 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4205 return default_msg_enable_bits;
4206 if (debug_value == 0) /* no output */
4207 return 0;
4208 /* set low N bits */
4209 return (1U << debug_value) - 1;
4210}
4211
4212static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4213{
4214 spin_lock(&txq->_xmit_lock);
4215 txq->xmit_lock_owner = cpu;
4216}
4217
4218static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4219{
4220 __acquire(&txq->_xmit_lock);
4221 return true;
4222}
4223
4224static inline void __netif_tx_release(struct netdev_queue *txq)
4225{
4226 __release(&txq->_xmit_lock);
4227}
4228
4229static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4230{
4231 spin_lock_bh(&txq->_xmit_lock);
4232 txq->xmit_lock_owner = smp_processor_id();
4233}
4234
4235static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4236{
4237 bool ok = spin_trylock(&txq->_xmit_lock);
4238 if (likely(ok))
4239 txq->xmit_lock_owner = smp_processor_id();
4240 return ok;
4241}
4242
4243static inline void __netif_tx_unlock(struct netdev_queue *txq)
4244{
4245 txq->xmit_lock_owner = -1;
4246 spin_unlock(&txq->_xmit_lock);
4247}
4248
4249static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4250{
4251 txq->xmit_lock_owner = -1;
4252 spin_unlock_bh(&txq->_xmit_lock);
4253}
4254
4255static inline void txq_trans_update(struct netdev_queue *txq)
4256{
4257 if (txq->xmit_lock_owner != -1)
4258 txq->trans_start = jiffies;
4259}
4260
4261/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4262static inline void netif_trans_update(struct net_device *dev)
4263{
4264 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4265
4266 if (txq->trans_start != jiffies)
4267 txq->trans_start = jiffies;
4268}
4269
4270/**
4271 * netif_tx_lock - grab network device transmit lock
4272 * @dev: network device
4273 *
4274 * Get network device transmit lock
4275 */
4276static inline void netif_tx_lock(struct net_device *dev)
4277{
4278 unsigned int i;
4279 int cpu;
4280
4281 spin_lock(&dev->tx_global_lock);
4282 cpu = smp_processor_id();
4283 for (i = 0; i < dev->num_tx_queues; i++) {
4284 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4285
4286 /* We are the only thread of execution doing a
4287 * freeze, but we have to grab the _xmit_lock in
4288 * order to synchronize with threads which are in
4289 * the ->hard_start_xmit() handler and already
4290 * checked the frozen bit.
4291 */
4292 __netif_tx_lock(txq, cpu);
4293 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4294 __netif_tx_unlock(txq);
4295 }
4296}
4297
4298static inline void netif_tx_lock_bh(struct net_device *dev)
4299{
4300 local_bh_disable();
4301 netif_tx_lock(dev);
4302}
4303
4304static inline void netif_tx_unlock(struct net_device *dev)
4305{
4306 unsigned int i;
4307
4308 for (i = 0; i < dev->num_tx_queues; i++) {
4309 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4310
4311 /* No need to grab the _xmit_lock here. If the
4312 * queue is not stopped for another reason, we
4313 * force a schedule.
4314 */
4315 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4316 netif_schedule_queue(txq);
4317 }
4318 spin_unlock(&dev->tx_global_lock);
4319}
4320
4321static inline void netif_tx_unlock_bh(struct net_device *dev)
4322{
4323 netif_tx_unlock(dev);
4324 local_bh_enable();
4325}
4326
4327#define HARD_TX_LOCK(dev, txq, cpu) { \
4328 if ((dev->features & NETIF_F_LLTX) == 0) { \
4329 __netif_tx_lock(txq, cpu); \
4330 } else { \
4331 __netif_tx_acquire(txq); \
4332 } \
4333}
4334
4335#define HARD_TX_TRYLOCK(dev, txq) \
4336 (((dev->features & NETIF_F_LLTX) == 0) ? \
4337 __netif_tx_trylock(txq) : \
4338 __netif_tx_acquire(txq))
4339
4340#define HARD_TX_UNLOCK(dev, txq) { \
4341 if ((dev->features & NETIF_F_LLTX) == 0) { \
4342 __netif_tx_unlock(txq); \
4343 } else { \
4344 __netif_tx_release(txq); \
4345 } \
4346}
4347
4348static inline void netif_tx_disable(struct net_device *dev)
4349{
4350 unsigned int i;
4351 int cpu;
4352
4353 local_bh_disable();
4354 cpu = smp_processor_id();
4355 spin_lock(&dev->tx_global_lock);
4356 for (i = 0; i < dev->num_tx_queues; i++) {
4357 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4358
4359 __netif_tx_lock(txq, cpu);
4360 netif_tx_stop_queue(txq);
4361 __netif_tx_unlock(txq);
4362 }
4363 spin_unlock(&dev->tx_global_lock);
4364 local_bh_enable();
4365}
4366
4367static inline void netif_addr_lock(struct net_device *dev)
4368{
4369 unsigned char nest_level = 0;
4370
4371#ifdef CONFIG_LOCKDEP
4372 nest_level = dev->nested_level;
4373#endif
4374 spin_lock_nested(&dev->addr_list_lock, nest_level);
4375}
4376
4377static inline void netif_addr_lock_bh(struct net_device *dev)
4378{
4379 unsigned char nest_level = 0;
4380
4381#ifdef CONFIG_LOCKDEP
4382 nest_level = dev->nested_level;
4383#endif
4384 local_bh_disable();
4385 spin_lock_nested(&dev->addr_list_lock, nest_level);
4386}
4387
4388static inline void netif_addr_unlock(struct net_device *dev)
4389{
4390 spin_unlock(&dev->addr_list_lock);
4391}
4392
4393static inline void netif_addr_unlock_bh(struct net_device *dev)
4394{
4395 spin_unlock_bh(&dev->addr_list_lock);
4396}
4397
4398/*
4399 * dev_addrs walker. Should be used only for read access. Call with
4400 * rcu_read_lock held.
4401 */
4402#define for_each_dev_addr(dev, ha) \
4403 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4404
4405/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4406
4407void ether_setup(struct net_device *dev);
4408
4409/* Support for loadable net-drivers */
4410struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4411 unsigned char name_assign_type,
4412 void (*setup)(struct net_device *),
4413 unsigned int txqs, unsigned int rxqs);
4414#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4415 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4416
4417#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4418 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4419 count)
4420
4421int register_netdev(struct net_device *dev);
4422void unregister_netdev(struct net_device *dev);
4423
4424int devm_register_netdev(struct device *dev, struct net_device *ndev);
4425
4426/* General hardware address lists handling functions */
4427int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4428 struct netdev_hw_addr_list *from_list, int addr_len);
4429void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4430 struct netdev_hw_addr_list *from_list, int addr_len);
4431int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4432 struct net_device *dev,
4433 int (*sync)(struct net_device *, const unsigned char *),
4434 int (*unsync)(struct net_device *,
4435 const unsigned char *));
4436int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4437 struct net_device *dev,
4438 int (*sync)(struct net_device *,
4439 const unsigned char *, int),
4440 int (*unsync)(struct net_device *,
4441 const unsigned char *, int));
4442void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4443 struct net_device *dev,
4444 int (*unsync)(struct net_device *,
4445 const unsigned char *, int));
4446void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4447 struct net_device *dev,
4448 int (*unsync)(struct net_device *,
4449 const unsigned char *));
4450void __hw_addr_init(struct netdev_hw_addr_list *list);
4451
4452/* Functions used for device addresses handling */
4453int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4454 unsigned char addr_type);
4455int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4456 unsigned char addr_type);
4457void dev_addr_flush(struct net_device *dev);
4458int dev_addr_init(struct net_device *dev);
4459
4460/* Functions used for unicast addresses handling */
4461int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4462int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4463int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4464int dev_uc_sync(struct net_device *to, struct net_device *from);
4465int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4466void dev_uc_unsync(struct net_device *to, struct net_device *from);
4467void dev_uc_flush(struct net_device *dev);
4468void dev_uc_init(struct net_device *dev);
4469
4470/**
4471 * __dev_uc_sync - Synchonize device's unicast list
4472 * @dev: device to sync
4473 * @sync: function to call if address should be added
4474 * @unsync: function to call if address should be removed
4475 *
4476 * Add newly added addresses to the interface, and release
4477 * addresses that have been deleted.
4478 */
4479static inline int __dev_uc_sync(struct net_device *dev,
4480 int (*sync)(struct net_device *,
4481 const unsigned char *),
4482 int (*unsync)(struct net_device *,
4483 const unsigned char *))
4484{
4485 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4486}
4487
4488/**
4489 * __dev_uc_unsync - Remove synchronized addresses from device
4490 * @dev: device to sync
4491 * @unsync: function to call if address should be removed
4492 *
4493 * Remove all addresses that were added to the device by dev_uc_sync().
4494 */
4495static inline void __dev_uc_unsync(struct net_device *dev,
4496 int (*unsync)(struct net_device *,
4497 const unsigned char *))
4498{
4499 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4500}
4501
4502/* Functions used for multicast addresses handling */
4503int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4504int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4505int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4506int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4507int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4508int dev_mc_sync(struct net_device *to, struct net_device *from);
4509int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4510void dev_mc_unsync(struct net_device *to, struct net_device *from);
4511void dev_mc_flush(struct net_device *dev);
4512void dev_mc_init(struct net_device *dev);
4513
4514/**
4515 * __dev_mc_sync - Synchonize device's multicast list
4516 * @dev: device to sync
4517 * @sync: function to call if address should be added
4518 * @unsync: function to call if address should be removed
4519 *
4520 * Add newly added addresses to the interface, and release
4521 * addresses that have been deleted.
4522 */
4523static inline int __dev_mc_sync(struct net_device *dev,
4524 int (*sync)(struct net_device *,
4525 const unsigned char *),
4526 int (*unsync)(struct net_device *,
4527 const unsigned char *))
4528{
4529 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4530}
4531
4532/**
4533 * __dev_mc_unsync - Remove synchronized addresses from device
4534 * @dev: device to sync
4535 * @unsync: function to call if address should be removed
4536 *
4537 * Remove all addresses that were added to the device by dev_mc_sync().
4538 */
4539static inline void __dev_mc_unsync(struct net_device *dev,
4540 int (*unsync)(struct net_device *,
4541 const unsigned char *))
4542{
4543 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4544}
4545
4546/* Functions used for secondary unicast and multicast support */
4547void dev_set_rx_mode(struct net_device *dev);
4548void __dev_set_rx_mode(struct net_device *dev);
4549int dev_set_promiscuity(struct net_device *dev, int inc);
4550int dev_set_allmulti(struct net_device *dev, int inc);
4551void netdev_state_change(struct net_device *dev);
4552void __netdev_notify_peers(struct net_device *dev);
4553void netdev_notify_peers(struct net_device *dev);
4554void netdev_features_change(struct net_device *dev);
4555/* Load a device via the kmod */
4556void dev_load(struct net *net, const char *name);
4557struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4558 struct rtnl_link_stats64 *storage);
4559void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4560 const struct net_device_stats *netdev_stats);
4561void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4562 const struct pcpu_sw_netstats __percpu *netstats);
4563void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4564
4565extern int netdev_max_backlog;
4566extern int netdev_tstamp_prequeue;
4567extern int weight_p;
4568extern int dev_weight_rx_bias;
4569extern int dev_weight_tx_bias;
4570extern int dev_rx_weight;
4571extern int dev_tx_weight;
4572extern int gro_normal_batch;
4573
4574enum {
4575 NESTED_SYNC_IMM_BIT,
4576 NESTED_SYNC_TODO_BIT,
4577};
4578
4579#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4580#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4581
4582#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4583#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4584
4585struct netdev_nested_priv {
4586 unsigned char flags;
4587 void *data;
4588};
4589
4590bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4591struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4592 struct list_head **iter);
4593struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594 struct list_head **iter);
4595
4596#ifdef CONFIG_LOCKDEP
4597static LIST_HEAD(net_unlink_list);
4598
4599static inline void net_unlink_todo(struct net_device *dev)
4600{
4601 if (list_empty(&dev->unlink_list))
4602 list_add_tail(&dev->unlink_list, &net_unlink_list);
4603}
4604#endif
4605
4606/* iterate through upper list, must be called under RCU read lock */
4607#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4608 for (iter = &(dev)->adj_list.upper, \
4609 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4610 updev; \
4611 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4612
4613int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4614 int (*fn)(struct net_device *upper_dev,
4615 struct netdev_nested_priv *priv),
4616 struct netdev_nested_priv *priv);
4617
4618bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4619 struct net_device *upper_dev);
4620
4621bool netdev_has_any_upper_dev(struct net_device *dev);
4622
4623void *netdev_lower_get_next_private(struct net_device *dev,
4624 struct list_head **iter);
4625void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4626 struct list_head **iter);
4627
4628#define netdev_for_each_lower_private(dev, priv, iter) \
4629 for (iter = (dev)->adj_list.lower.next, \
4630 priv = netdev_lower_get_next_private(dev, &(iter)); \
4631 priv; \
4632 priv = netdev_lower_get_next_private(dev, &(iter)))
4633
4634#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4635 for (iter = &(dev)->adj_list.lower, \
4636 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4637 priv; \
4638 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4639
4640void *netdev_lower_get_next(struct net_device *dev,
4641 struct list_head **iter);
4642
4643#define netdev_for_each_lower_dev(dev, ldev, iter) \
4644 for (iter = (dev)->adj_list.lower.next, \
4645 ldev = netdev_lower_get_next(dev, &(iter)); \
4646 ldev; \
4647 ldev = netdev_lower_get_next(dev, &(iter)))
4648
4649struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4650 struct list_head **iter);
4651int netdev_walk_all_lower_dev(struct net_device *dev,
4652 int (*fn)(struct net_device *lower_dev,
4653 struct netdev_nested_priv *priv),
4654 struct netdev_nested_priv *priv);
4655int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4656 int (*fn)(struct net_device *lower_dev,
4657 struct netdev_nested_priv *priv),
4658 struct netdev_nested_priv *priv);
4659
4660void *netdev_adjacent_get_private(struct list_head *adj_list);
4661void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4662struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4663struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4664int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4665 struct netlink_ext_ack *extack);
4666int netdev_master_upper_dev_link(struct net_device *dev,
4667 struct net_device *upper_dev,
4668 void *upper_priv, void *upper_info,
4669 struct netlink_ext_ack *extack);
4670void netdev_upper_dev_unlink(struct net_device *dev,
4671 struct net_device *upper_dev);
4672int netdev_adjacent_change_prepare(struct net_device *old_dev,
4673 struct net_device *new_dev,
4674 struct net_device *dev,
4675 struct netlink_ext_ack *extack);
4676void netdev_adjacent_change_commit(struct net_device *old_dev,
4677 struct net_device *new_dev,
4678 struct net_device *dev);
4679void netdev_adjacent_change_abort(struct net_device *old_dev,
4680 struct net_device *new_dev,
4681 struct net_device *dev);
4682void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4683void *netdev_lower_dev_get_private(struct net_device *dev,
4684 struct net_device *lower_dev);
4685void netdev_lower_state_changed(struct net_device *lower_dev,
4686 void *lower_state_info);
4687
4688/* RSS keys are 40 or 52 bytes long */
4689#define NETDEV_RSS_KEY_LEN 52
4690extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4691void netdev_rss_key_fill(void *buffer, size_t len);
4692
4693int skb_checksum_help(struct sk_buff *skb);
4694int skb_crc32c_csum_help(struct sk_buff *skb);
4695int skb_csum_hwoffload_help(struct sk_buff *skb,
4696 const netdev_features_t features);
4697
4698struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4699 netdev_features_t features, bool tx_path);
4700struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4701 netdev_features_t features);
4702
4703struct netdev_bonding_info {
4704 ifslave slave;
4705 ifbond master;
4706};
4707
4708struct netdev_notifier_bonding_info {
4709 struct netdev_notifier_info info; /* must be first */
4710 struct netdev_bonding_info bonding_info;
4711};
4712
4713void netdev_bonding_info_change(struct net_device *dev,
4714 struct netdev_bonding_info *bonding_info);
4715
4716#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4717void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4718#else
4719static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4720 const void *data)
4721{
4722}
4723#endif
4724
4725static inline
4726struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4727{
4728 return __skb_gso_segment(skb, features, true);
4729}
4730__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4731
4732static inline bool can_checksum_protocol(netdev_features_t features,
4733 __be16 protocol)
4734{
4735 if (protocol == htons(ETH_P_FCOE))
4736 return !!(features & NETIF_F_FCOE_CRC);
4737
4738 /* Assume this is an IP checksum (not SCTP CRC) */
4739
4740 if (features & NETIF_F_HW_CSUM) {
4741 /* Can checksum everything */
4742 return true;
4743 }
4744
4745 switch (protocol) {
4746 case htons(ETH_P_IP):
4747 return !!(features & NETIF_F_IP_CSUM);
4748 case htons(ETH_P_IPV6):
4749 return !!(features & NETIF_F_IPV6_CSUM);
4750 default:
4751 return false;
4752 }
4753}
4754
4755#ifdef CONFIG_BUG
4756void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4757#else
4758static inline void netdev_rx_csum_fault(struct net_device *dev,
4759 struct sk_buff *skb)
4760{
4761}
4762#endif
4763/* rx skb timestamps */
4764void net_enable_timestamp(void);
4765void net_disable_timestamp(void);
4766
4767#ifdef CONFIG_PROC_FS
4768int __init dev_proc_init(void);
4769#else
4770#define dev_proc_init() 0
4771#endif
4772
4773static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4774 struct sk_buff *skb, struct net_device *dev,
4775 bool more)
4776{
4777 __this_cpu_write(softnet_data.xmit.more, more);
4778 return ops->ndo_start_xmit(skb, dev);
4779}
4780
4781static inline bool netdev_xmit_more(void)
4782{
4783 return __this_cpu_read(softnet_data.xmit.more);
4784}
4785
4786static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4787 struct netdev_queue *txq, bool more)
4788{
4789 const struct net_device_ops *ops = dev->netdev_ops;
4790 netdev_tx_t rc;
4791
4792 rc = __netdev_start_xmit(ops, skb, dev, more);
4793 if (rc == NETDEV_TX_OK)
4794 txq_trans_update(txq);
4795
4796 return rc;
4797}
4798
4799int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4800 const void *ns);
4801void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4802 const void *ns);
4803
4804extern const struct kobj_ns_type_operations net_ns_type_operations;
4805
4806const char *netdev_drivername(const struct net_device *dev);
4807
4808void linkwatch_run_queue(void);
4809
4810static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4811 netdev_features_t f2)
4812{
4813 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4814 if (f1 & NETIF_F_HW_CSUM)
4815 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4816 else
4817 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4818 }
4819
4820 return f1 & f2;
4821}
4822
4823static inline netdev_features_t netdev_get_wanted_features(
4824 struct net_device *dev)
4825{
4826 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4827}
4828netdev_features_t netdev_increment_features(netdev_features_t all,
4829 netdev_features_t one, netdev_features_t mask);
4830
4831/* Allow TSO being used on stacked device :
4832 * Performing the GSO segmentation before last device
4833 * is a performance improvement.
4834 */
4835static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4836 netdev_features_t mask)
4837{
4838 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4839}
4840
4841int __netdev_update_features(struct net_device *dev);
4842void netdev_update_features(struct net_device *dev);
4843void netdev_change_features(struct net_device *dev);
4844
4845void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4846 struct net_device *dev);
4847
4848netdev_features_t passthru_features_check(struct sk_buff *skb,
4849 struct net_device *dev,
4850 netdev_features_t features);
4851netdev_features_t netif_skb_features(struct sk_buff *skb);
4852
4853static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4854{
4855 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4856
4857 /* check flags correspondence */
4858 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4859 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4860 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4861 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4862 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4863 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4864 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4865 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4866 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4867 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4868 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4869 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4870 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4871 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4872 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4873 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4874 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4875 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4876 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4877
4878 return (features & feature) == feature;
4879}
4880
4881static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4882{
4883 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4884 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4885}
4886
4887static inline bool netif_needs_gso(struct sk_buff *skb,
4888 netdev_features_t features)
4889{
4890 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4891 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4892 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4893}
4894
4895static inline void netif_set_gso_max_size(struct net_device *dev,
4896 unsigned int size)
4897{
4898 dev->gso_max_size = size;
4899}
4900
4901static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4902 int pulled_hlen, u16 mac_offset,
4903 int mac_len)
4904{
4905 skb->protocol = protocol;
4906 skb->encapsulation = 1;
4907 skb_push(skb, pulled_hlen);
4908 skb_reset_transport_header(skb);
4909 skb->mac_header = mac_offset;
4910 skb->network_header = skb->mac_header + mac_len;
4911 skb->mac_len = mac_len;
4912}
4913
4914static inline bool netif_is_macsec(const struct net_device *dev)
4915{
4916 return dev->priv_flags & IFF_MACSEC;
4917}
4918
4919static inline bool netif_is_macvlan(const struct net_device *dev)
4920{
4921 return dev->priv_flags & IFF_MACVLAN;
4922}
4923
4924static inline bool netif_is_macvlan_port(const struct net_device *dev)
4925{
4926 return dev->priv_flags & IFF_MACVLAN_PORT;
4927}
4928
4929static inline bool netif_is_bond_master(const struct net_device *dev)
4930{
4931 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4932}
4933
4934static inline bool netif_is_bond_slave(const struct net_device *dev)
4935{
4936 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4937}
4938
4939static inline bool netif_supports_nofcs(struct net_device *dev)
4940{
4941 return dev->priv_flags & IFF_SUPP_NOFCS;
4942}
4943
4944static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4945{
4946 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4947}
4948
4949static inline bool netif_is_l3_master(const struct net_device *dev)
4950{
4951 return dev->priv_flags & IFF_L3MDEV_MASTER;
4952}
4953
4954static inline bool netif_is_l3_slave(const struct net_device *dev)
4955{
4956 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4957}
4958
4959static inline bool netif_is_bridge_master(const struct net_device *dev)
4960{
4961 return dev->priv_flags & IFF_EBRIDGE;
4962}
4963
4964static inline bool netif_is_bridge_port(const struct net_device *dev)
4965{
4966 return dev->priv_flags & IFF_BRIDGE_PORT;
4967}
4968
4969static inline bool netif_is_ovs_master(const struct net_device *dev)
4970{
4971 return dev->priv_flags & IFF_OPENVSWITCH;
4972}
4973
4974static inline bool netif_is_ovs_port(const struct net_device *dev)
4975{
4976 return dev->priv_flags & IFF_OVS_DATAPATH;
4977}
4978
4979static inline bool netif_is_any_bridge_port(const struct net_device *dev)
4980{
4981 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
4982}
4983
4984static inline bool netif_is_team_master(const struct net_device *dev)
4985{
4986 return dev->priv_flags & IFF_TEAM;
4987}
4988
4989static inline bool netif_is_team_port(const struct net_device *dev)
4990{
4991 return dev->priv_flags & IFF_TEAM_PORT;
4992}
4993
4994static inline bool netif_is_lag_master(const struct net_device *dev)
4995{
4996 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4997}
4998
4999static inline bool netif_is_lag_port(const struct net_device *dev)
5000{
5001 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5002}
5003
5004static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5005{
5006 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5007}
5008
5009static inline bool netif_is_failover(const struct net_device *dev)
5010{
5011 return dev->priv_flags & IFF_FAILOVER;
5012}
5013
5014static inline bool netif_is_failover_slave(const struct net_device *dev)
5015{
5016 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5017}
5018
5019/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5020static inline void netif_keep_dst(struct net_device *dev)
5021{
5022 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5023}
5024
5025/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5026static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5027{
5028 /* TODO: reserve and use an additional IFF bit, if we get more users */
5029 return dev->priv_flags & IFF_MACSEC;
5030}
5031
5032extern struct pernet_operations __net_initdata loopback_net_ops;
5033
5034/* Logging, debugging and troubleshooting/diagnostic helpers. */
5035
5036/* netdev_printk helpers, similar to dev_printk */
5037
5038static inline const char *netdev_name(const struct net_device *dev)
5039{
5040 if (!dev->name[0] || strchr(dev->name, '%'))
5041 return "(unnamed net_device)";
5042 return dev->name;
5043}
5044
5045static inline bool netdev_unregistering(const struct net_device *dev)
5046{
5047 return dev->reg_state == NETREG_UNREGISTERING;
5048}
5049
5050static inline const char *netdev_reg_state(const struct net_device *dev)
5051{
5052 switch (dev->reg_state) {
5053 case NETREG_UNINITIALIZED: return " (uninitialized)";
5054 case NETREG_REGISTERED: return "";
5055 case NETREG_UNREGISTERING: return " (unregistering)";
5056 case NETREG_UNREGISTERED: return " (unregistered)";
5057 case NETREG_RELEASED: return " (released)";
5058 case NETREG_DUMMY: return " (dummy)";
5059 }
5060
5061 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5062 return " (unknown)";
5063}
5064
5065__printf(3, 4) __cold
5066void netdev_printk(const char *level, const struct net_device *dev,
5067 const char *format, ...);
5068__printf(2, 3) __cold
5069void netdev_emerg(const struct net_device *dev, const char *format, ...);
5070__printf(2, 3) __cold
5071void netdev_alert(const struct net_device *dev, const char *format, ...);
5072__printf(2, 3) __cold
5073void netdev_crit(const struct net_device *dev, const char *format, ...);
5074__printf(2, 3) __cold
5075void netdev_err(const struct net_device *dev, const char *format, ...);
5076__printf(2, 3) __cold
5077void netdev_warn(const struct net_device *dev, const char *format, ...);
5078__printf(2, 3) __cold
5079void netdev_notice(const struct net_device *dev, const char *format, ...);
5080__printf(2, 3) __cold
5081void netdev_info(const struct net_device *dev, const char *format, ...);
5082
5083#define netdev_level_once(level, dev, fmt, ...) \
5084do { \
5085 static bool __print_once __read_mostly; \
5086 \
5087 if (!__print_once) { \
5088 __print_once = true; \
5089 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
5090 } \
5091} while (0)
5092
5093#define netdev_emerg_once(dev, fmt, ...) \
5094 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5095#define netdev_alert_once(dev, fmt, ...) \
5096 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5097#define netdev_crit_once(dev, fmt, ...) \
5098 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5099#define netdev_err_once(dev, fmt, ...) \
5100 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5101#define netdev_warn_once(dev, fmt, ...) \
5102 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5103#define netdev_notice_once(dev, fmt, ...) \
5104 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5105#define netdev_info_once(dev, fmt, ...) \
5106 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5107
5108#define MODULE_ALIAS_NETDEV(device) \
5109 MODULE_ALIAS("netdev-" device)
5110
5111#if defined(CONFIG_DYNAMIC_DEBUG) || \
5112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5113#define netdev_dbg(__dev, format, args...) \
5114do { \
5115 dynamic_netdev_dbg(__dev, format, ##args); \
5116} while (0)
5117#elif defined(DEBUG)
5118#define netdev_dbg(__dev, format, args...) \
5119 netdev_printk(KERN_DEBUG, __dev, format, ##args)
5120#else
5121#define netdev_dbg(__dev, format, args...) \
5122({ \
5123 if (0) \
5124 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5125})
5126#endif
5127
5128#if defined(VERBOSE_DEBUG)
5129#define netdev_vdbg netdev_dbg
5130#else
5131
5132#define netdev_vdbg(dev, format, args...) \
5133({ \
5134 if (0) \
5135 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5136 0; \
5137})
5138#endif
5139
5140/*
5141 * netdev_WARN() acts like dev_printk(), but with the key difference
5142 * of using a WARN/WARN_ON to get the message out, including the
5143 * file/line information and a backtrace.
5144 */
5145#define netdev_WARN(dev, format, args...) \
5146 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5147 netdev_reg_state(dev), ##args)
5148
5149#define netdev_WARN_ONCE(dev, format, args...) \
5150 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5151 netdev_reg_state(dev), ##args)
5152
5153/* netif printk helpers, similar to netdev_printk */
5154
5155#define netif_printk(priv, type, level, dev, fmt, args...) \
5156do { \
5157 if (netif_msg_##type(priv)) \
5158 netdev_printk(level, (dev), fmt, ##args); \
5159} while (0)
5160
5161#define netif_level(level, priv, type, dev, fmt, args...) \
5162do { \
5163 if (netif_msg_##type(priv)) \
5164 netdev_##level(dev, fmt, ##args); \
5165} while (0)
5166
5167#define netif_emerg(priv, type, dev, fmt, args...) \
5168 netif_level(emerg, priv, type, dev, fmt, ##args)
5169#define netif_alert(priv, type, dev, fmt, args...) \
5170 netif_level(alert, priv, type, dev, fmt, ##args)
5171#define netif_crit(priv, type, dev, fmt, args...) \
5172 netif_level(crit, priv, type, dev, fmt, ##args)
5173#define netif_err(priv, type, dev, fmt, args...) \
5174 netif_level(err, priv, type, dev, fmt, ##args)
5175#define netif_warn(priv, type, dev, fmt, args...) \
5176 netif_level(warn, priv, type, dev, fmt, ##args)
5177#define netif_notice(priv, type, dev, fmt, args...) \
5178 netif_level(notice, priv, type, dev, fmt, ##args)
5179#define netif_info(priv, type, dev, fmt, args...) \
5180 netif_level(info, priv, type, dev, fmt, ##args)
5181
5182#if defined(CONFIG_DYNAMIC_DEBUG) || \
5183 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5184#define netif_dbg(priv, type, netdev, format, args...) \
5185do { \
5186 if (netif_msg_##type(priv)) \
5187 dynamic_netdev_dbg(netdev, format, ##args); \
5188} while (0)
5189#elif defined(DEBUG)
5190#define netif_dbg(priv, type, dev, format, args...) \
5191 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5192#else
5193#define netif_dbg(priv, type, dev, format, args...) \
5194({ \
5195 if (0) \
5196 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5197 0; \
5198})
5199#endif
5200
5201/* if @cond then downgrade to debug, else print at @level */
5202#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5203 do { \
5204 if (cond) \
5205 netif_dbg(priv, type, netdev, fmt, ##args); \
5206 else \
5207 netif_ ## level(priv, type, netdev, fmt, ##args); \
5208 } while (0)
5209
5210#if defined(VERBOSE_DEBUG)
5211#define netif_vdbg netif_dbg
5212#else
5213#define netif_vdbg(priv, type, dev, format, args...) \
5214({ \
5215 if (0) \
5216 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5217 0; \
5218})
5219#endif
5220
5221/*
5222 * The list of packet types we will receive (as opposed to discard)
5223 * and the routines to invoke.
5224 *
5225 * Why 16. Because with 16 the only overlap we get on a hash of the
5226 * low nibble of the protocol value is RARP/SNAP/X.25.
5227 *
5228 * 0800 IP
5229 * 0001 802.3
5230 * 0002 AX.25
5231 * 0004 802.2
5232 * 8035 RARP
5233 * 0005 SNAP
5234 * 0805 X.25
5235 * 0806 ARP
5236 * 8137 IPX
5237 * 0009 Localtalk
5238 * 86DD IPv6
5239 */
5240#define PTYPE_HASH_SIZE (16)
5241#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5242
5243extern struct net_device *blackhole_netdev;
5244
5245#endif /* _LINUX_NETDEVICE_H */