Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/list.h>
9#include <linux/spinlock.h>
10#include <linux/rbtree.h>
11#include <linux/rwsem.h>
12#include <linux/completion.h>
13#include <linux/cpumask.h>
14#include <linux/uprobes.h>
15#include <linux/page-flags-layout.h>
16#include <linux/workqueue.h>
17#include <linux/seqlock.h>
18
19#include <asm/mmu.h>
20
21#ifndef AT_VECTOR_SIZE_ARCH
22#define AT_VECTOR_SIZE_ARCH 0
23#endif
24#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
25
26
27struct address_space;
28struct mem_cgroup;
29
30/*
31 * Each physical page in the system has a struct page associated with
32 * it to keep track of whatever it is we are using the page for at the
33 * moment. Note that we have no way to track which tasks are using
34 * a page, though if it is a pagecache page, rmap structures can tell us
35 * who is mapping it.
36 *
37 * If you allocate the page using alloc_pages(), you can use some of the
38 * space in struct page for your own purposes. The five words in the main
39 * union are available, except for bit 0 of the first word which must be
40 * kept clear. Many users use this word to store a pointer to an object
41 * which is guaranteed to be aligned. If you use the same storage as
42 * page->mapping, you must restore it to NULL before freeing the page.
43 *
44 * If your page will not be mapped to userspace, you can also use the four
45 * bytes in the mapcount union, but you must call page_mapcount_reset()
46 * before freeing it.
47 *
48 * If you want to use the refcount field, it must be used in such a way
49 * that other CPUs temporarily incrementing and then decrementing the
50 * refcount does not cause problems. On receiving the page from
51 * alloc_pages(), the refcount will be positive.
52 *
53 * If you allocate pages of order > 0, you can use some of the fields
54 * in each subpage, but you may need to restore some of their values
55 * afterwards.
56 *
57 * SLUB uses cmpxchg_double() to atomically update its freelist and
58 * counters. That requires that freelist & counters be adjacent and
59 * double-word aligned. We align all struct pages to double-word
60 * boundaries, and ensure that 'freelist' is aligned within the
61 * struct.
62 */
63#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
64#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
65#else
66#define _struct_page_alignment
67#endif
68
69struct page {
70 unsigned long flags; /* Atomic flags, some possibly
71 * updated asynchronously */
72 /*
73 * Five words (20/40 bytes) are available in this union.
74 * WARNING: bit 0 of the first word is used for PageTail(). That
75 * means the other users of this union MUST NOT use the bit to
76 * avoid collision and false-positive PageTail().
77 */
78 union {
79 struct { /* Page cache and anonymous pages */
80 /**
81 * @lru: Pageout list, eg. active_list protected by
82 * lruvec->lru_lock. Sometimes used as a generic list
83 * by the page owner.
84 */
85 struct list_head lru;
86 /* See page-flags.h for PAGE_MAPPING_FLAGS */
87 struct address_space *mapping;
88 pgoff_t index; /* Our offset within mapping. */
89 /**
90 * @private: Mapping-private opaque data.
91 * Usually used for buffer_heads if PagePrivate.
92 * Used for swp_entry_t if PageSwapCache.
93 * Indicates order in the buddy system if PageBuddy.
94 */
95 unsigned long private;
96 };
97 struct { /* page_pool used by netstack */
98 /**
99 * @dma_addr: might require a 64-bit value even on
100 * 32-bit architectures.
101 */
102 dma_addr_t dma_addr;
103 };
104 struct { /* slab, slob and slub */
105 union {
106 struct list_head slab_list;
107 struct { /* Partial pages */
108 struct page *next;
109#ifdef CONFIG_64BIT
110 int pages; /* Nr of pages left */
111 int pobjects; /* Approximate count */
112#else
113 short int pages;
114 short int pobjects;
115#endif
116 };
117 };
118 struct kmem_cache *slab_cache; /* not slob */
119 /* Double-word boundary */
120 void *freelist; /* first free object */
121 union {
122 void *s_mem; /* slab: first object */
123 unsigned long counters; /* SLUB */
124 struct { /* SLUB */
125 unsigned inuse:16;
126 unsigned objects:15;
127 unsigned frozen:1;
128 };
129 };
130 };
131 struct { /* Tail pages of compound page */
132 unsigned long compound_head; /* Bit zero is set */
133
134 /* First tail page only */
135 unsigned char compound_dtor;
136 unsigned char compound_order;
137 atomic_t compound_mapcount;
138 unsigned int compound_nr; /* 1 << compound_order */
139 };
140 struct { /* Second tail page of compound page */
141 unsigned long _compound_pad_1; /* compound_head */
142 atomic_t hpage_pinned_refcount;
143 /* For both global and memcg */
144 struct list_head deferred_list;
145 };
146 struct { /* Page table pages */
147 unsigned long _pt_pad_1; /* compound_head */
148 pgtable_t pmd_huge_pte; /* protected by page->ptl */
149 unsigned long _pt_pad_2; /* mapping */
150 union {
151 struct mm_struct *pt_mm; /* x86 pgds only */
152 atomic_t pt_frag_refcount; /* powerpc */
153 };
154#if ALLOC_SPLIT_PTLOCKS
155 spinlock_t *ptl;
156#else
157 spinlock_t ptl;
158#endif
159 };
160 struct { /* ZONE_DEVICE pages */
161 /** @pgmap: Points to the hosting device page map. */
162 struct dev_pagemap *pgmap;
163 void *zone_device_data;
164 /*
165 * ZONE_DEVICE private pages are counted as being
166 * mapped so the next 3 words hold the mapping, index,
167 * and private fields from the source anonymous or
168 * page cache page while the page is migrated to device
169 * private memory.
170 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
171 * use the mapping, index, and private fields when
172 * pmem backed DAX files are mapped.
173 */
174 };
175
176 /** @rcu_head: You can use this to free a page by RCU. */
177 struct rcu_head rcu_head;
178 };
179
180 union { /* This union is 4 bytes in size. */
181 /*
182 * If the page can be mapped to userspace, encodes the number
183 * of times this page is referenced by a page table.
184 */
185 atomic_t _mapcount;
186
187 /*
188 * If the page is neither PageSlab nor mappable to userspace,
189 * the value stored here may help determine what this page
190 * is used for. See page-flags.h for a list of page types
191 * which are currently stored here.
192 */
193 unsigned int page_type;
194
195 unsigned int active; /* SLAB */
196 int units; /* SLOB */
197 };
198
199 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
200 atomic_t _refcount;
201
202#ifdef CONFIG_MEMCG
203 unsigned long memcg_data;
204#endif
205
206 /*
207 * On machines where all RAM is mapped into kernel address space,
208 * we can simply calculate the virtual address. On machines with
209 * highmem some memory is mapped into kernel virtual memory
210 * dynamically, so we need a place to store that address.
211 * Note that this field could be 16 bits on x86 ... ;)
212 *
213 * Architectures with slow multiplication can define
214 * WANT_PAGE_VIRTUAL in asm/page.h
215 */
216#if defined(WANT_PAGE_VIRTUAL)
217 void *virtual; /* Kernel virtual address (NULL if
218 not kmapped, ie. highmem) */
219#endif /* WANT_PAGE_VIRTUAL */
220
221#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
222 int _last_cpupid;
223#endif
224} _struct_page_alignment;
225
226static inline atomic_t *compound_mapcount_ptr(struct page *page)
227{
228 return &page[1].compound_mapcount;
229}
230
231static inline atomic_t *compound_pincount_ptr(struct page *page)
232{
233 return &page[2].hpage_pinned_refcount;
234}
235
236/*
237 * Used for sizing the vmemmap region on some architectures
238 */
239#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
240
241#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
242#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
243
244#define page_private(page) ((page)->private)
245
246static inline void set_page_private(struct page *page, unsigned long private)
247{
248 page->private = private;
249}
250
251struct page_frag_cache {
252 void * va;
253#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
254 __u16 offset;
255 __u16 size;
256#else
257 __u32 offset;
258#endif
259 /* we maintain a pagecount bias, so that we dont dirty cache line
260 * containing page->_refcount every time we allocate a fragment.
261 */
262 unsigned int pagecnt_bias;
263 bool pfmemalloc;
264};
265
266typedef unsigned long vm_flags_t;
267
268/*
269 * A region containing a mapping of a non-memory backed file under NOMMU
270 * conditions. These are held in a global tree and are pinned by the VMAs that
271 * map parts of them.
272 */
273struct vm_region {
274 struct rb_node vm_rb; /* link in global region tree */
275 vm_flags_t vm_flags; /* VMA vm_flags */
276 unsigned long vm_start; /* start address of region */
277 unsigned long vm_end; /* region initialised to here */
278 unsigned long vm_top; /* region allocated to here */
279 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
280 struct file *vm_file; /* the backing file or NULL */
281
282 int vm_usage; /* region usage count (access under nommu_region_sem) */
283 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
284 * this region */
285};
286
287#ifdef CONFIG_USERFAULTFD
288#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
289struct vm_userfaultfd_ctx {
290 struct userfaultfd_ctx *ctx;
291};
292#else /* CONFIG_USERFAULTFD */
293#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
294struct vm_userfaultfd_ctx {};
295#endif /* CONFIG_USERFAULTFD */
296
297/*
298 * This struct describes a virtual memory area. There is one of these
299 * per VM-area/task. A VM area is any part of the process virtual memory
300 * space that has a special rule for the page-fault handlers (ie a shared
301 * library, the executable area etc).
302 */
303struct vm_area_struct {
304 /* The first cache line has the info for VMA tree walking. */
305
306 unsigned long vm_start; /* Our start address within vm_mm. */
307 unsigned long vm_end; /* The first byte after our end address
308 within vm_mm. */
309
310 /* linked list of VM areas per task, sorted by address */
311 struct vm_area_struct *vm_next, *vm_prev;
312
313 struct rb_node vm_rb;
314
315 /*
316 * Largest free memory gap in bytes to the left of this VMA.
317 * Either between this VMA and vma->vm_prev, or between one of the
318 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps
319 * get_unmapped_area find a free area of the right size.
320 */
321 unsigned long rb_subtree_gap;
322
323 /* Second cache line starts here. */
324
325 struct mm_struct *vm_mm; /* The address space we belong to. */
326
327 /*
328 * Access permissions of this VMA.
329 * See vmf_insert_mixed_prot() for discussion.
330 */
331 pgprot_t vm_page_prot;
332 unsigned long vm_flags; /* Flags, see mm.h. */
333
334 /*
335 * For areas with an address space and backing store,
336 * linkage into the address_space->i_mmap interval tree.
337 */
338 struct {
339 struct rb_node rb;
340 unsigned long rb_subtree_last;
341 } shared;
342
343 /*
344 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
345 * list, after a COW of one of the file pages. A MAP_SHARED vma
346 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
347 * or brk vma (with NULL file) can only be in an anon_vma list.
348 */
349 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
350 * page_table_lock */
351 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
352
353 /* Function pointers to deal with this struct. */
354 const struct vm_operations_struct *vm_ops;
355
356 /* Information about our backing store: */
357 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
358 units */
359 struct file * vm_file; /* File we map to (can be NULL). */
360 void * vm_private_data; /* was vm_pte (shared mem) */
361
362#ifdef CONFIG_SWAP
363 atomic_long_t swap_readahead_info;
364#endif
365#ifndef CONFIG_MMU
366 struct vm_region *vm_region; /* NOMMU mapping region */
367#endif
368#ifdef CONFIG_NUMA
369 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
370#endif
371 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
372} __randomize_layout;
373
374struct core_thread {
375 struct task_struct *task;
376 struct core_thread *next;
377};
378
379struct core_state {
380 atomic_t nr_threads;
381 struct core_thread dumper;
382 struct completion startup;
383};
384
385struct kioctx_table;
386struct mm_struct {
387 struct {
388 struct vm_area_struct *mmap; /* list of VMAs */
389 struct rb_root mm_rb;
390 u64 vmacache_seqnum; /* per-thread vmacache */
391#ifdef CONFIG_MMU
392 unsigned long (*get_unmapped_area) (struct file *filp,
393 unsigned long addr, unsigned long len,
394 unsigned long pgoff, unsigned long flags);
395#endif
396 unsigned long mmap_base; /* base of mmap area */
397 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
398#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
399 /* Base adresses for compatible mmap() */
400 unsigned long mmap_compat_base;
401 unsigned long mmap_compat_legacy_base;
402#endif
403 unsigned long task_size; /* size of task vm space */
404 unsigned long highest_vm_end; /* highest vma end address */
405 pgd_t * pgd;
406
407#ifdef CONFIG_MEMBARRIER
408 /**
409 * @membarrier_state: Flags controlling membarrier behavior.
410 *
411 * This field is close to @pgd to hopefully fit in the same
412 * cache-line, which needs to be touched by switch_mm().
413 */
414 atomic_t membarrier_state;
415#endif
416
417 /**
418 * @mm_users: The number of users including userspace.
419 *
420 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
421 * drops to 0 (i.e. when the task exits and there are no other
422 * temporary reference holders), we also release a reference on
423 * @mm_count (which may then free the &struct mm_struct if
424 * @mm_count also drops to 0).
425 */
426 atomic_t mm_users;
427
428 /**
429 * @mm_count: The number of references to &struct mm_struct
430 * (@mm_users count as 1).
431 *
432 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
433 * &struct mm_struct is freed.
434 */
435 atomic_t mm_count;
436
437 /**
438 * @has_pinned: Whether this mm has pinned any pages. This can
439 * be either replaced in the future by @pinned_vm when it
440 * becomes stable, or grow into a counter on its own. We're
441 * aggresive on this bit now - even if the pinned pages were
442 * unpinned later on, we'll still keep this bit set for the
443 * lifecycle of this mm just for simplicity.
444 */
445 atomic_t has_pinned;
446
447 /**
448 * @write_protect_seq: Locked when any thread is write
449 * protecting pages mapped by this mm to enforce a later COW,
450 * for instance during page table copying for fork().
451 */
452 seqcount_t write_protect_seq;
453
454#ifdef CONFIG_MMU
455 atomic_long_t pgtables_bytes; /* PTE page table pages */
456#endif
457 int map_count; /* number of VMAs */
458
459 spinlock_t page_table_lock; /* Protects page tables and some
460 * counters
461 */
462 struct rw_semaphore mmap_lock;
463
464 struct list_head mmlist; /* List of maybe swapped mm's. These
465 * are globally strung together off
466 * init_mm.mmlist, and are protected
467 * by mmlist_lock
468 */
469
470
471 unsigned long hiwater_rss; /* High-watermark of RSS usage */
472 unsigned long hiwater_vm; /* High-water virtual memory usage */
473
474 unsigned long total_vm; /* Total pages mapped */
475 unsigned long locked_vm; /* Pages that have PG_mlocked set */
476 atomic64_t pinned_vm; /* Refcount permanently increased */
477 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
478 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
479 unsigned long stack_vm; /* VM_STACK */
480 unsigned long def_flags;
481
482 spinlock_t arg_lock; /* protect the below fields */
483 unsigned long start_code, end_code, start_data, end_data;
484 unsigned long start_brk, brk, start_stack;
485 unsigned long arg_start, arg_end, env_start, env_end;
486
487 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
488
489 /*
490 * Special counters, in some configurations protected by the
491 * page_table_lock, in other configurations by being atomic.
492 */
493 struct mm_rss_stat rss_stat;
494
495 struct linux_binfmt *binfmt;
496
497 /* Architecture-specific MM context */
498 mm_context_t context;
499
500 unsigned long flags; /* Must use atomic bitops to access */
501
502 struct core_state *core_state; /* coredumping support */
503
504#ifdef CONFIG_AIO
505 spinlock_t ioctx_lock;
506 struct kioctx_table __rcu *ioctx_table;
507#endif
508#ifdef CONFIG_MEMCG
509 /*
510 * "owner" points to a task that is regarded as the canonical
511 * user/owner of this mm. All of the following must be true in
512 * order for it to be changed:
513 *
514 * current == mm->owner
515 * current->mm != mm
516 * new_owner->mm == mm
517 * new_owner->alloc_lock is held
518 */
519 struct task_struct __rcu *owner;
520#endif
521 struct user_namespace *user_ns;
522
523 /* store ref to file /proc/<pid>/exe symlink points to */
524 struct file __rcu *exe_file;
525#ifdef CONFIG_MMU_NOTIFIER
526 struct mmu_notifier_subscriptions *notifier_subscriptions;
527#endif
528#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
529 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
530#endif
531#ifdef CONFIG_NUMA_BALANCING
532 /*
533 * numa_next_scan is the next time that the PTEs will be marked
534 * pte_numa. NUMA hinting faults will gather statistics and
535 * migrate pages to new nodes if necessary.
536 */
537 unsigned long numa_next_scan;
538
539 /* Restart point for scanning and setting pte_numa */
540 unsigned long numa_scan_offset;
541
542 /* numa_scan_seq prevents two threads setting pte_numa */
543 int numa_scan_seq;
544#endif
545 /*
546 * An operation with batched TLB flushing is going on. Anything
547 * that can move process memory needs to flush the TLB when
548 * moving a PROT_NONE or PROT_NUMA mapped page.
549 */
550 atomic_t tlb_flush_pending;
551#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
552 /* See flush_tlb_batched_pending() */
553 bool tlb_flush_batched;
554#endif
555 struct uprobes_state uprobes_state;
556#ifdef CONFIG_HUGETLB_PAGE
557 atomic_long_t hugetlb_usage;
558#endif
559 struct work_struct async_put_work;
560
561#ifdef CONFIG_IOMMU_SUPPORT
562 u32 pasid;
563#endif
564 } __randomize_layout;
565
566 /*
567 * The mm_cpumask needs to be at the end of mm_struct, because it
568 * is dynamically sized based on nr_cpu_ids.
569 */
570 unsigned long cpu_bitmap[];
571};
572
573extern struct mm_struct init_mm;
574
575/* Pointer magic because the dynamic array size confuses some compilers. */
576static inline void mm_init_cpumask(struct mm_struct *mm)
577{
578 unsigned long cpu_bitmap = (unsigned long)mm;
579
580 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
581 cpumask_clear((struct cpumask *)cpu_bitmap);
582}
583
584/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
585static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
586{
587 return (struct cpumask *)&mm->cpu_bitmap;
588}
589
590struct mmu_gather;
591extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
592 unsigned long start, unsigned long end);
593extern void tlb_finish_mmu(struct mmu_gather *tlb,
594 unsigned long start, unsigned long end);
595
596static inline void init_tlb_flush_pending(struct mm_struct *mm)
597{
598 atomic_set(&mm->tlb_flush_pending, 0);
599}
600
601static inline void inc_tlb_flush_pending(struct mm_struct *mm)
602{
603 atomic_inc(&mm->tlb_flush_pending);
604 /*
605 * The only time this value is relevant is when there are indeed pages
606 * to flush. And we'll only flush pages after changing them, which
607 * requires the PTL.
608 *
609 * So the ordering here is:
610 *
611 * atomic_inc(&mm->tlb_flush_pending);
612 * spin_lock(&ptl);
613 * ...
614 * set_pte_at();
615 * spin_unlock(&ptl);
616 *
617 * spin_lock(&ptl)
618 * mm_tlb_flush_pending();
619 * ....
620 * spin_unlock(&ptl);
621 *
622 * flush_tlb_range();
623 * atomic_dec(&mm->tlb_flush_pending);
624 *
625 * Where the increment if constrained by the PTL unlock, it thus
626 * ensures that the increment is visible if the PTE modification is
627 * visible. After all, if there is no PTE modification, nobody cares
628 * about TLB flushes either.
629 *
630 * This very much relies on users (mm_tlb_flush_pending() and
631 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and
632 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc
633 * locks (PPC) the unlock of one doesn't order against the lock of
634 * another PTL.
635 *
636 * The decrement is ordered by the flush_tlb_range(), such that
637 * mm_tlb_flush_pending() will not return false unless all flushes have
638 * completed.
639 */
640}
641
642static inline void dec_tlb_flush_pending(struct mm_struct *mm)
643{
644 /*
645 * See inc_tlb_flush_pending().
646 *
647 * This cannot be smp_mb__before_atomic() because smp_mb() simply does
648 * not order against TLB invalidate completion, which is what we need.
649 *
650 * Therefore we must rely on tlb_flush_*() to guarantee order.
651 */
652 atomic_dec(&mm->tlb_flush_pending);
653}
654
655static inline bool mm_tlb_flush_pending(struct mm_struct *mm)
656{
657 /*
658 * Must be called after having acquired the PTL; orders against that
659 * PTLs release and therefore ensures that if we observe the modified
660 * PTE we must also observe the increment from inc_tlb_flush_pending().
661 *
662 * That is, it only guarantees to return true if there is a flush
663 * pending for _this_ PTL.
664 */
665 return atomic_read(&mm->tlb_flush_pending);
666}
667
668static inline bool mm_tlb_flush_nested(struct mm_struct *mm)
669{
670 /*
671 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL
672 * for which there is a TLB flush pending in order to guarantee
673 * we've seen both that PTE modification and the increment.
674 *
675 * (no requirement on actually still holding the PTL, that is irrelevant)
676 */
677 return atomic_read(&mm->tlb_flush_pending) > 1;
678}
679
680struct vm_fault;
681
682/**
683 * typedef vm_fault_t - Return type for page fault handlers.
684 *
685 * Page fault handlers return a bitmask of %VM_FAULT values.
686 */
687typedef __bitwise unsigned int vm_fault_t;
688
689/**
690 * enum vm_fault_reason - Page fault handlers return a bitmask of
691 * these values to tell the core VM what happened when handling the
692 * fault. Used to decide whether a process gets delivered SIGBUS or
693 * just gets major/minor fault counters bumped up.
694 *
695 * @VM_FAULT_OOM: Out Of Memory
696 * @VM_FAULT_SIGBUS: Bad access
697 * @VM_FAULT_MAJOR: Page read from storage
698 * @VM_FAULT_WRITE: Special case for get_user_pages
699 * @VM_FAULT_HWPOISON: Hit poisoned small page
700 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
701 * in upper bits
702 * @VM_FAULT_SIGSEGV: segmentation fault
703 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
704 * @VM_FAULT_LOCKED: ->fault locked the returned page
705 * @VM_FAULT_RETRY: ->fault blocked, must retry
706 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
707 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
708 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
709 * fsync() to complete (for synchronous page faults
710 * in DAX)
711 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
712 *
713 */
714enum vm_fault_reason {
715 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
716 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
717 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
718 VM_FAULT_WRITE = (__force vm_fault_t)0x000008,
719 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
720 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
721 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
722 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
723 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
724 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
725 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
726 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
727 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
728 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
729};
730
731/* Encode hstate index for a hwpoisoned large page */
732#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
733#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
734
735#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
736 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
737 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
738
739#define VM_FAULT_RESULT_TRACE \
740 { VM_FAULT_OOM, "OOM" }, \
741 { VM_FAULT_SIGBUS, "SIGBUS" }, \
742 { VM_FAULT_MAJOR, "MAJOR" }, \
743 { VM_FAULT_WRITE, "WRITE" }, \
744 { VM_FAULT_HWPOISON, "HWPOISON" }, \
745 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
746 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
747 { VM_FAULT_NOPAGE, "NOPAGE" }, \
748 { VM_FAULT_LOCKED, "LOCKED" }, \
749 { VM_FAULT_RETRY, "RETRY" }, \
750 { VM_FAULT_FALLBACK, "FALLBACK" }, \
751 { VM_FAULT_DONE_COW, "DONE_COW" }, \
752 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
753
754struct vm_special_mapping {
755 const char *name; /* The name, e.g. "[vdso]". */
756
757 /*
758 * If .fault is not provided, this points to a
759 * NULL-terminated array of pages that back the special mapping.
760 *
761 * This must not be NULL unless .fault is provided.
762 */
763 struct page **pages;
764
765 /*
766 * If non-NULL, then this is called to resolve page faults
767 * on the special mapping. If used, .pages is not checked.
768 */
769 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
770 struct vm_area_struct *vma,
771 struct vm_fault *vmf);
772
773 int (*mremap)(const struct vm_special_mapping *sm,
774 struct vm_area_struct *new_vma);
775};
776
777enum tlb_flush_reason {
778 TLB_FLUSH_ON_TASK_SWITCH,
779 TLB_REMOTE_SHOOTDOWN,
780 TLB_LOCAL_SHOOTDOWN,
781 TLB_LOCAL_MM_SHOOTDOWN,
782 TLB_REMOTE_SEND_IPI,
783 NR_TLB_FLUSH_REASONS,
784};
785
786 /*
787 * A swap entry has to fit into a "unsigned long", as the entry is hidden
788 * in the "index" field of the swapper address space.
789 */
790typedef struct {
791 unsigned long val;
792} swp_entry_t;
793
794#endif /* _LINUX_MM_TYPES_H */