at v5.11 103 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34#include <linux/kasan.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct file_ra_state; 40struct user_struct; 41struct writeback_control; 42struct bdi_writeback; 43struct pt_regs; 44 45extern int sysctl_page_lock_unfairness; 46 47void init_mm_internals(void); 48 49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50extern unsigned long max_mapnr; 51 52static inline void set_max_mapnr(unsigned long limit) 53{ 54 max_mapnr = limit; 55} 56#else 57static inline void set_max_mapnr(unsigned long limit) { } 58#endif 59 60extern atomic_long_t _totalram_pages; 61static inline unsigned long totalram_pages(void) 62{ 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64} 65 66static inline void totalram_pages_inc(void) 67{ 68 atomic_long_inc(&_totalram_pages); 69} 70 71static inline void totalram_pages_dec(void) 72{ 73 atomic_long_dec(&_totalram_pages); 74} 75 76static inline void totalram_pages_add(long count) 77{ 78 atomic_long_add(count, &_totalram_pages); 79} 80 81extern void * high_memory; 82extern int page_cluster; 83 84#ifdef CONFIG_SYSCTL 85extern int sysctl_legacy_va_layout; 86#else 87#define sysctl_legacy_va_layout 0 88#endif 89 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91extern const int mmap_rnd_bits_min; 92extern const int mmap_rnd_bits_max; 93extern int mmap_rnd_bits __read_mostly; 94#endif 95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96extern const int mmap_rnd_compat_bits_min; 97extern const int mmap_rnd_compat_bits_max; 98extern int mmap_rnd_compat_bits __read_mostly; 99#endif 100 101#include <asm/page.h> 102#include <asm/processor.h> 103 104/* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111#ifndef untagged_addr 112#define untagged_addr(addr) (addr) 113#endif 114 115#ifndef __pa_symbol 116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117#endif 118 119#ifndef page_to_virt 120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121#endif 122 123#ifndef lm_alias 124#define lm_alias(x) __va(__pa_symbol(x)) 125#endif 126 127/* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134#ifndef mm_forbids_zeropage 135#define mm_forbids_zeropage(X) (0) 136#endif 137 138/* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144#if BITS_PER_LONG == 64 145/* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statments if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152static inline void __mm_zero_struct_page(struct page *page) 153{ 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180} 181#else 182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183#endif 184 185/* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201#define MAPCOUNT_ELF_CORE_MARGIN (5) 202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204extern int sysctl_max_map_count; 205 206extern unsigned long sysctl_user_reserve_kbytes; 207extern unsigned long sysctl_admin_reserve_kbytes; 208 209extern int sysctl_overcommit_memory; 210extern int sysctl_overcommit_ratio; 211extern unsigned long sysctl_overcommit_kbytes; 212 213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219/* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 228 229/* to align the pointer to the (next) page boundary */ 230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 231 232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 234 235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 236 237/* 238 * Linux kernel virtual memory manager primitives. 239 * The idea being to have a "virtual" mm in the same way 240 * we have a virtual fs - giving a cleaner interface to the 241 * mm details, and allowing different kinds of memory mappings 242 * (from shared memory to executable loading to arbitrary 243 * mmap() functions). 244 */ 245 246struct vm_area_struct *vm_area_alloc(struct mm_struct *); 247struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 248void vm_area_free(struct vm_area_struct *); 249 250#ifndef CONFIG_MMU 251extern struct rb_root nommu_region_tree; 252extern struct rw_semaphore nommu_region_sem; 253 254extern unsigned int kobjsize(const void *objp); 255#endif 256 257/* 258 * vm_flags in vm_area_struct, see mm_types.h. 259 * When changing, update also include/trace/events/mmflags.h 260 */ 261#define VM_NONE 0x00000000 262 263#define VM_READ 0x00000001 /* currently active flags */ 264#define VM_WRITE 0x00000002 265#define VM_EXEC 0x00000004 266#define VM_SHARED 0x00000008 267 268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 270#define VM_MAYWRITE 0x00000020 271#define VM_MAYEXEC 0x00000040 272#define VM_MAYSHARE 0x00000080 273 274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 279 280#define VM_LOCKED 0x00002000 281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 282 283 /* Used by sys_madvise() */ 284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 286 287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 293#define VM_SYNC 0x00800000 /* Synchronous page faults */ 294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 297 298#ifdef CONFIG_MEM_SOFT_DIRTY 299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 300#else 301# define VM_SOFTDIRTY 0 302#endif 303 304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 308 309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 321 322#ifdef CONFIG_ARCH_HAS_PKEYS 323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 328#ifdef CONFIG_PPC 329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330#else 331# define VM_PKEY_BIT4 0 332#endif 333#endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335#if defined(CONFIG_X86) 336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 337#elif defined(CONFIG_PPC) 338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 339#elif defined(CONFIG_PARISC) 340# define VM_GROWSUP VM_ARCH_1 341#elif defined(CONFIG_IA64) 342# define VM_GROWSUP VM_ARCH_1 343#elif defined(CONFIG_SPARC64) 344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 345# define VM_ARCH_CLEAR VM_SPARC_ADI 346#elif defined(CONFIG_ARM64) 347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 348# define VM_ARCH_CLEAR VM_ARM64_BTI 349#elif !defined(CONFIG_MMU) 350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 351#endif 352 353#if defined(CONFIG_ARM64_MTE) 354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 356#else 357# define VM_MTE VM_NONE 358# define VM_MTE_ALLOWED VM_NONE 359#endif 360 361#ifndef VM_GROWSUP 362# define VM_GROWSUP VM_NONE 363#endif 364 365/* Bits set in the VMA until the stack is in its final location */ 366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 367 368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 369 370/* Common data flag combinations */ 371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 374 VM_MAYWRITE | VM_MAYEXEC) 375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 377 378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 380#endif 381 382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 384#endif 385 386#ifdef CONFIG_STACK_GROWSUP 387#define VM_STACK VM_GROWSUP 388#else 389#define VM_STACK VM_GROWSDOWN 390#endif 391 392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 393 394/* VMA basic access permission flags */ 395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 396 397 398/* 399 * Special vmas that are non-mergable, non-mlock()able. 400 */ 401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 402 403/* This mask prevents VMA from being scanned with khugepaged */ 404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 405 406/* This mask defines which mm->def_flags a process can inherit its parent */ 407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 408 409/* This mask is used to clear all the VMA flags used by mlock */ 410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 411 412/* Arch-specific flags to clear when updating VM flags on protection change */ 413#ifndef VM_ARCH_CLEAR 414# define VM_ARCH_CLEAR VM_NONE 415#endif 416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 417 418/* 419 * mapping from the currently active vm_flags protection bits (the 420 * low four bits) to a page protection mask.. 421 */ 422extern pgprot_t protection_map[16]; 423 424/** 425 * Fault flag definitions. 426 * 427 * @FAULT_FLAG_WRITE: Fault was a write fault. 428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 432 * @FAULT_FLAG_TRIED: The fault has been tried once. 433 * @FAULT_FLAG_USER: The fault originated in userspace. 434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 437 * 438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 439 * whether we would allow page faults to retry by specifying these two 440 * fault flags correctly. Currently there can be three legal combinations: 441 * 442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 443 * this is the first try 444 * 445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 446 * we've already tried at least once 447 * 448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 449 * 450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 451 * be used. Note that page faults can be allowed to retry for multiple times, 452 * in which case we'll have an initial fault with flags (a) then later on 453 * continuous faults with flags (b). We should always try to detect pending 454 * signals before a retry to make sure the continuous page faults can still be 455 * interrupted if necessary. 456 */ 457#define FAULT_FLAG_WRITE 0x01 458#define FAULT_FLAG_MKWRITE 0x02 459#define FAULT_FLAG_ALLOW_RETRY 0x04 460#define FAULT_FLAG_RETRY_NOWAIT 0x08 461#define FAULT_FLAG_KILLABLE 0x10 462#define FAULT_FLAG_TRIED 0x20 463#define FAULT_FLAG_USER 0x40 464#define FAULT_FLAG_REMOTE 0x80 465#define FAULT_FLAG_INSTRUCTION 0x100 466#define FAULT_FLAG_INTERRUPTIBLE 0x200 467 468/* 469 * The default fault flags that should be used by most of the 470 * arch-specific page fault handlers. 471 */ 472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 473 FAULT_FLAG_KILLABLE | \ 474 FAULT_FLAG_INTERRUPTIBLE) 475 476/** 477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 478 * 479 * This is mostly used for places where we want to try to avoid taking 480 * the mmap_lock for too long a time when waiting for another condition 481 * to change, in which case we can try to be polite to release the 482 * mmap_lock in the first round to avoid potential starvation of other 483 * processes that would also want the mmap_lock. 484 * 485 * Return: true if the page fault allows retry and this is the first 486 * attempt of the fault handling; false otherwise. 487 */ 488static inline bool fault_flag_allow_retry_first(unsigned int flags) 489{ 490 return (flags & FAULT_FLAG_ALLOW_RETRY) && 491 (!(flags & FAULT_FLAG_TRIED)); 492} 493 494#define FAULT_FLAG_TRACE \ 495 { FAULT_FLAG_WRITE, "WRITE" }, \ 496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 500 { FAULT_FLAG_TRIED, "TRIED" }, \ 501 { FAULT_FLAG_USER, "USER" }, \ 502 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 505 506/* 507 * vm_fault is filled by the pagefault handler and passed to the vma's 508 * ->fault function. The vma's ->fault is responsible for returning a bitmask 509 * of VM_FAULT_xxx flags that give details about how the fault was handled. 510 * 511 * MM layer fills up gfp_mask for page allocations but fault handler might 512 * alter it if its implementation requires a different allocation context. 513 * 514 * pgoff should be used in favour of virtual_address, if possible. 515 */ 516struct vm_fault { 517 struct vm_area_struct *vma; /* Target VMA */ 518 unsigned int flags; /* FAULT_FLAG_xxx flags */ 519 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 520 pgoff_t pgoff; /* Logical page offset based on vma */ 521 unsigned long address; /* Faulting virtual address */ 522 pmd_t *pmd; /* Pointer to pmd entry matching 523 * the 'address' */ 524 pud_t *pud; /* Pointer to pud entry matching 525 * the 'address' 526 */ 527 pte_t orig_pte; /* Value of PTE at the time of fault */ 528 529 struct page *cow_page; /* Page handler may use for COW fault */ 530 struct page *page; /* ->fault handlers should return a 531 * page here, unless VM_FAULT_NOPAGE 532 * is set (which is also implied by 533 * VM_FAULT_ERROR). 534 */ 535 /* These three entries are valid only while holding ptl lock */ 536 pte_t *pte; /* Pointer to pte entry matching 537 * the 'address'. NULL if the page 538 * table hasn't been allocated. 539 */ 540 spinlock_t *ptl; /* Page table lock. 541 * Protects pte page table if 'pte' 542 * is not NULL, otherwise pmd. 543 */ 544 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 545 * vm_ops->map_pages() calls 546 * alloc_set_pte() from atomic context. 547 * do_fault_around() pre-allocates 548 * page table to avoid allocation from 549 * atomic context. 550 */ 551}; 552 553/* page entry size for vm->huge_fault() */ 554enum page_entry_size { 555 PE_SIZE_PTE = 0, 556 PE_SIZE_PMD, 557 PE_SIZE_PUD, 558}; 559 560/* 561 * These are the virtual MM functions - opening of an area, closing and 562 * unmapping it (needed to keep files on disk up-to-date etc), pointer 563 * to the functions called when a no-page or a wp-page exception occurs. 564 */ 565struct vm_operations_struct { 566 void (*open)(struct vm_area_struct * area); 567 void (*close)(struct vm_area_struct * area); 568 /* Called any time before splitting to check if it's allowed */ 569 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 570 int (*mremap)(struct vm_area_struct *area, unsigned long flags); 571 /* 572 * Called by mprotect() to make driver-specific permission 573 * checks before mprotect() is finalised. The VMA must not 574 * be modified. Returns 0 if eprotect() can proceed. 575 */ 576 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 577 unsigned long end, unsigned long newflags); 578 vm_fault_t (*fault)(struct vm_fault *vmf); 579 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 580 enum page_entry_size pe_size); 581 void (*map_pages)(struct vm_fault *vmf, 582 pgoff_t start_pgoff, pgoff_t end_pgoff); 583 unsigned long (*pagesize)(struct vm_area_struct * area); 584 585 /* notification that a previously read-only page is about to become 586 * writable, if an error is returned it will cause a SIGBUS */ 587 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 588 589 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 590 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 591 592 /* called by access_process_vm when get_user_pages() fails, typically 593 * for use by special VMAs that can switch between memory and hardware 594 */ 595 int (*access)(struct vm_area_struct *vma, unsigned long addr, 596 void *buf, int len, int write); 597 598 /* Called by the /proc/PID/maps code to ask the vma whether it 599 * has a special name. Returning non-NULL will also cause this 600 * vma to be dumped unconditionally. */ 601 const char *(*name)(struct vm_area_struct *vma); 602 603#ifdef CONFIG_NUMA 604 /* 605 * set_policy() op must add a reference to any non-NULL @new mempolicy 606 * to hold the policy upon return. Caller should pass NULL @new to 607 * remove a policy and fall back to surrounding context--i.e. do not 608 * install a MPOL_DEFAULT policy, nor the task or system default 609 * mempolicy. 610 */ 611 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 612 613 /* 614 * get_policy() op must add reference [mpol_get()] to any policy at 615 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 616 * in mm/mempolicy.c will do this automatically. 617 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 618 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 619 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 620 * must return NULL--i.e., do not "fallback" to task or system default 621 * policy. 622 */ 623 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 624 unsigned long addr); 625#endif 626 /* 627 * Called by vm_normal_page() for special PTEs to find the 628 * page for @addr. This is useful if the default behavior 629 * (using pte_page()) would not find the correct page. 630 */ 631 struct page *(*find_special_page)(struct vm_area_struct *vma, 632 unsigned long addr); 633}; 634 635static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 636{ 637 static const struct vm_operations_struct dummy_vm_ops = {}; 638 639 memset(vma, 0, sizeof(*vma)); 640 vma->vm_mm = mm; 641 vma->vm_ops = &dummy_vm_ops; 642 INIT_LIST_HEAD(&vma->anon_vma_chain); 643} 644 645static inline void vma_set_anonymous(struct vm_area_struct *vma) 646{ 647 vma->vm_ops = NULL; 648} 649 650static inline bool vma_is_anonymous(struct vm_area_struct *vma) 651{ 652 return !vma->vm_ops; 653} 654 655static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 656{ 657 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 658 659 if (!maybe_stack) 660 return false; 661 662 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 663 VM_STACK_INCOMPLETE_SETUP) 664 return true; 665 666 return false; 667} 668 669static inline bool vma_is_foreign(struct vm_area_struct *vma) 670{ 671 if (!current->mm) 672 return true; 673 674 if (current->mm != vma->vm_mm) 675 return true; 676 677 return false; 678} 679 680static inline bool vma_is_accessible(struct vm_area_struct *vma) 681{ 682 return vma->vm_flags & VM_ACCESS_FLAGS; 683} 684 685#ifdef CONFIG_SHMEM 686/* 687 * The vma_is_shmem is not inline because it is used only by slow 688 * paths in userfault. 689 */ 690bool vma_is_shmem(struct vm_area_struct *vma); 691#else 692static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 693#endif 694 695int vma_is_stack_for_current(struct vm_area_struct *vma); 696 697/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 698#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 699 700struct mmu_gather; 701struct inode; 702 703#include <linux/huge_mm.h> 704 705/* 706 * Methods to modify the page usage count. 707 * 708 * What counts for a page usage: 709 * - cache mapping (page->mapping) 710 * - private data (page->private) 711 * - page mapped in a task's page tables, each mapping 712 * is counted separately 713 * 714 * Also, many kernel routines increase the page count before a critical 715 * routine so they can be sure the page doesn't go away from under them. 716 */ 717 718/* 719 * Drop a ref, return true if the refcount fell to zero (the page has no users) 720 */ 721static inline int put_page_testzero(struct page *page) 722{ 723 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 724 return page_ref_dec_and_test(page); 725} 726 727/* 728 * Try to grab a ref unless the page has a refcount of zero, return false if 729 * that is the case. 730 * This can be called when MMU is off so it must not access 731 * any of the virtual mappings. 732 */ 733static inline int get_page_unless_zero(struct page *page) 734{ 735 return page_ref_add_unless(page, 1, 0); 736} 737 738extern int page_is_ram(unsigned long pfn); 739 740enum { 741 REGION_INTERSECTS, 742 REGION_DISJOINT, 743 REGION_MIXED, 744}; 745 746int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 747 unsigned long desc); 748 749/* Support for virtually mapped pages */ 750struct page *vmalloc_to_page(const void *addr); 751unsigned long vmalloc_to_pfn(const void *addr); 752 753/* 754 * Determine if an address is within the vmalloc range 755 * 756 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 757 * is no special casing required. 758 */ 759 760#ifndef is_ioremap_addr 761#define is_ioremap_addr(x) is_vmalloc_addr(x) 762#endif 763 764#ifdef CONFIG_MMU 765extern bool is_vmalloc_addr(const void *x); 766extern int is_vmalloc_or_module_addr(const void *x); 767#else 768static inline bool is_vmalloc_addr(const void *x) 769{ 770 return false; 771} 772static inline int is_vmalloc_or_module_addr(const void *x) 773{ 774 return 0; 775} 776#endif 777 778extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 779static inline void *kvmalloc(size_t size, gfp_t flags) 780{ 781 return kvmalloc_node(size, flags, NUMA_NO_NODE); 782} 783static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 784{ 785 return kvmalloc_node(size, flags | __GFP_ZERO, node); 786} 787static inline void *kvzalloc(size_t size, gfp_t flags) 788{ 789 return kvmalloc(size, flags | __GFP_ZERO); 790} 791 792static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 793{ 794 size_t bytes; 795 796 if (unlikely(check_mul_overflow(n, size, &bytes))) 797 return NULL; 798 799 return kvmalloc(bytes, flags); 800} 801 802static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 803{ 804 return kvmalloc_array(n, size, flags | __GFP_ZERO); 805} 806 807extern void kvfree(const void *addr); 808extern void kvfree_sensitive(const void *addr, size_t len); 809 810static inline int head_compound_mapcount(struct page *head) 811{ 812 return atomic_read(compound_mapcount_ptr(head)) + 1; 813} 814 815/* 816 * Mapcount of compound page as a whole, does not include mapped sub-pages. 817 * 818 * Must be called only for compound pages or any their tail sub-pages. 819 */ 820static inline int compound_mapcount(struct page *page) 821{ 822 VM_BUG_ON_PAGE(!PageCompound(page), page); 823 page = compound_head(page); 824 return head_compound_mapcount(page); 825} 826 827/* 828 * The atomic page->_mapcount, starts from -1: so that transitions 829 * both from it and to it can be tracked, using atomic_inc_and_test 830 * and atomic_add_negative(-1). 831 */ 832static inline void page_mapcount_reset(struct page *page) 833{ 834 atomic_set(&(page)->_mapcount, -1); 835} 836 837int __page_mapcount(struct page *page); 838 839/* 840 * Mapcount of 0-order page; when compound sub-page, includes 841 * compound_mapcount(). 842 * 843 * Result is undefined for pages which cannot be mapped into userspace. 844 * For example SLAB or special types of pages. See function page_has_type(). 845 * They use this place in struct page differently. 846 */ 847static inline int page_mapcount(struct page *page) 848{ 849 if (unlikely(PageCompound(page))) 850 return __page_mapcount(page); 851 return atomic_read(&page->_mapcount) + 1; 852} 853 854#ifdef CONFIG_TRANSPARENT_HUGEPAGE 855int total_mapcount(struct page *page); 856int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 857#else 858static inline int total_mapcount(struct page *page) 859{ 860 return page_mapcount(page); 861} 862static inline int page_trans_huge_mapcount(struct page *page, 863 int *total_mapcount) 864{ 865 int mapcount = page_mapcount(page); 866 if (total_mapcount) 867 *total_mapcount = mapcount; 868 return mapcount; 869} 870#endif 871 872static inline struct page *virt_to_head_page(const void *x) 873{ 874 struct page *page = virt_to_page(x); 875 876 return compound_head(page); 877} 878 879void __put_page(struct page *page); 880 881void put_pages_list(struct list_head *pages); 882 883void split_page(struct page *page, unsigned int order); 884 885/* 886 * Compound pages have a destructor function. Provide a 887 * prototype for that function and accessor functions. 888 * These are _only_ valid on the head of a compound page. 889 */ 890typedef void compound_page_dtor(struct page *); 891 892/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 893enum compound_dtor_id { 894 NULL_COMPOUND_DTOR, 895 COMPOUND_PAGE_DTOR, 896#ifdef CONFIG_HUGETLB_PAGE 897 HUGETLB_PAGE_DTOR, 898#endif 899#ifdef CONFIG_TRANSPARENT_HUGEPAGE 900 TRANSHUGE_PAGE_DTOR, 901#endif 902 NR_COMPOUND_DTORS, 903}; 904extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 905 906static inline void set_compound_page_dtor(struct page *page, 907 enum compound_dtor_id compound_dtor) 908{ 909 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 910 page[1].compound_dtor = compound_dtor; 911} 912 913static inline void destroy_compound_page(struct page *page) 914{ 915 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 916 compound_page_dtors[page[1].compound_dtor](page); 917} 918 919static inline unsigned int compound_order(struct page *page) 920{ 921 if (!PageHead(page)) 922 return 0; 923 return page[1].compound_order; 924} 925 926static inline bool hpage_pincount_available(struct page *page) 927{ 928 /* 929 * Can the page->hpage_pinned_refcount field be used? That field is in 930 * the 3rd page of the compound page, so the smallest (2-page) compound 931 * pages cannot support it. 932 */ 933 page = compound_head(page); 934 return PageCompound(page) && compound_order(page) > 1; 935} 936 937static inline int head_compound_pincount(struct page *head) 938{ 939 return atomic_read(compound_pincount_ptr(head)); 940} 941 942static inline int compound_pincount(struct page *page) 943{ 944 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 945 page = compound_head(page); 946 return head_compound_pincount(page); 947} 948 949static inline void set_compound_order(struct page *page, unsigned int order) 950{ 951 page[1].compound_order = order; 952 page[1].compound_nr = 1U << order; 953} 954 955/* Returns the number of pages in this potentially compound page. */ 956static inline unsigned long compound_nr(struct page *page) 957{ 958 if (!PageHead(page)) 959 return 1; 960 return page[1].compound_nr; 961} 962 963/* Returns the number of bytes in this potentially compound page. */ 964static inline unsigned long page_size(struct page *page) 965{ 966 return PAGE_SIZE << compound_order(page); 967} 968 969/* Returns the number of bits needed for the number of bytes in a page */ 970static inline unsigned int page_shift(struct page *page) 971{ 972 return PAGE_SHIFT + compound_order(page); 973} 974 975void free_compound_page(struct page *page); 976 977#ifdef CONFIG_MMU 978/* 979 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 980 * servicing faults for write access. In the normal case, do always want 981 * pte_mkwrite. But get_user_pages can cause write faults for mappings 982 * that do not have writing enabled, when used by access_process_vm. 983 */ 984static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 985{ 986 if (likely(vma->vm_flags & VM_WRITE)) 987 pte = pte_mkwrite(pte); 988 return pte; 989} 990 991vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 992vm_fault_t finish_fault(struct vm_fault *vmf); 993vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 994#endif 995 996/* 997 * Multiple processes may "see" the same page. E.g. for untouched 998 * mappings of /dev/null, all processes see the same page full of 999 * zeroes, and text pages of executables and shared libraries have 1000 * only one copy in memory, at most, normally. 1001 * 1002 * For the non-reserved pages, page_count(page) denotes a reference count. 1003 * page_count() == 0 means the page is free. page->lru is then used for 1004 * freelist management in the buddy allocator. 1005 * page_count() > 0 means the page has been allocated. 1006 * 1007 * Pages are allocated by the slab allocator in order to provide memory 1008 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1009 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1010 * unless a particular usage is carefully commented. (the responsibility of 1011 * freeing the kmalloc memory is the caller's, of course). 1012 * 1013 * A page may be used by anyone else who does a __get_free_page(). 1014 * In this case, page_count still tracks the references, and should only 1015 * be used through the normal accessor functions. The top bits of page->flags 1016 * and page->virtual store page management information, but all other fields 1017 * are unused and could be used privately, carefully. The management of this 1018 * page is the responsibility of the one who allocated it, and those who have 1019 * subsequently been given references to it. 1020 * 1021 * The other pages (we may call them "pagecache pages") are completely 1022 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1023 * The following discussion applies only to them. 1024 * 1025 * A pagecache page contains an opaque `private' member, which belongs to the 1026 * page's address_space. Usually, this is the address of a circular list of 1027 * the page's disk buffers. PG_private must be set to tell the VM to call 1028 * into the filesystem to release these pages. 1029 * 1030 * A page may belong to an inode's memory mapping. In this case, page->mapping 1031 * is the pointer to the inode, and page->index is the file offset of the page, 1032 * in units of PAGE_SIZE. 1033 * 1034 * If pagecache pages are not associated with an inode, they are said to be 1035 * anonymous pages. These may become associated with the swapcache, and in that 1036 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1037 * 1038 * In either case (swapcache or inode backed), the pagecache itself holds one 1039 * reference to the page. Setting PG_private should also increment the 1040 * refcount. The each user mapping also has a reference to the page. 1041 * 1042 * The pagecache pages are stored in a per-mapping radix tree, which is 1043 * rooted at mapping->i_pages, and indexed by offset. 1044 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1045 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1046 * 1047 * All pagecache pages may be subject to I/O: 1048 * - inode pages may need to be read from disk, 1049 * - inode pages which have been modified and are MAP_SHARED may need 1050 * to be written back to the inode on disk, 1051 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1052 * modified may need to be swapped out to swap space and (later) to be read 1053 * back into memory. 1054 */ 1055 1056/* 1057 * The zone field is never updated after free_area_init_core() 1058 * sets it, so none of the operations on it need to be atomic. 1059 */ 1060 1061/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1062#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1063#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1064#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1065#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1066#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1067 1068/* 1069 * Define the bit shifts to access each section. For non-existent 1070 * sections we define the shift as 0; that plus a 0 mask ensures 1071 * the compiler will optimise away reference to them. 1072 */ 1073#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1074#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1075#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1076#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1077#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1078 1079/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1080#ifdef NODE_NOT_IN_PAGE_FLAGS 1081#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1082#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1083 SECTIONS_PGOFF : ZONES_PGOFF) 1084#else 1085#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1086#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1087 NODES_PGOFF : ZONES_PGOFF) 1088#endif 1089 1090#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1091 1092#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1093#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1094#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1095#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1096#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1097#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1098 1099static inline enum zone_type page_zonenum(const struct page *page) 1100{ 1101 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1102 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1103} 1104 1105#ifdef CONFIG_ZONE_DEVICE 1106static inline bool is_zone_device_page(const struct page *page) 1107{ 1108 return page_zonenum(page) == ZONE_DEVICE; 1109} 1110extern void memmap_init_zone_device(struct zone *, unsigned long, 1111 unsigned long, struct dev_pagemap *); 1112#else 1113static inline bool is_zone_device_page(const struct page *page) 1114{ 1115 return false; 1116} 1117#endif 1118 1119#ifdef CONFIG_DEV_PAGEMAP_OPS 1120void free_devmap_managed_page(struct page *page); 1121DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1122 1123static inline bool page_is_devmap_managed(struct page *page) 1124{ 1125 if (!static_branch_unlikely(&devmap_managed_key)) 1126 return false; 1127 if (!is_zone_device_page(page)) 1128 return false; 1129 switch (page->pgmap->type) { 1130 case MEMORY_DEVICE_PRIVATE: 1131 case MEMORY_DEVICE_FS_DAX: 1132 return true; 1133 default: 1134 break; 1135 } 1136 return false; 1137} 1138 1139void put_devmap_managed_page(struct page *page); 1140 1141#else /* CONFIG_DEV_PAGEMAP_OPS */ 1142static inline bool page_is_devmap_managed(struct page *page) 1143{ 1144 return false; 1145} 1146 1147static inline void put_devmap_managed_page(struct page *page) 1148{ 1149} 1150#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1151 1152static inline bool is_device_private_page(const struct page *page) 1153{ 1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1155 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1156 is_zone_device_page(page) && 1157 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1158} 1159 1160static inline bool is_pci_p2pdma_page(const struct page *page) 1161{ 1162 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1163 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1164 is_zone_device_page(page) && 1165 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1166} 1167 1168/* 127: arbitrary random number, small enough to assemble well */ 1169#define page_ref_zero_or_close_to_overflow(page) \ 1170 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1171 1172static inline void get_page(struct page *page) 1173{ 1174 page = compound_head(page); 1175 /* 1176 * Getting a normal page or the head of a compound page 1177 * requires to already have an elevated page->_refcount. 1178 */ 1179 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1180 page_ref_inc(page); 1181} 1182 1183bool __must_check try_grab_page(struct page *page, unsigned int flags); 1184 1185static inline __must_check bool try_get_page(struct page *page) 1186{ 1187 page = compound_head(page); 1188 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1189 return false; 1190 page_ref_inc(page); 1191 return true; 1192} 1193 1194static inline void put_page(struct page *page) 1195{ 1196 page = compound_head(page); 1197 1198 /* 1199 * For devmap managed pages we need to catch refcount transition from 1200 * 2 to 1, when refcount reach one it means the page is free and we 1201 * need to inform the device driver through callback. See 1202 * include/linux/memremap.h and HMM for details. 1203 */ 1204 if (page_is_devmap_managed(page)) { 1205 put_devmap_managed_page(page); 1206 return; 1207 } 1208 1209 if (put_page_testzero(page)) 1210 __put_page(page); 1211} 1212 1213/* 1214 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1215 * the page's refcount so that two separate items are tracked: the original page 1216 * reference count, and also a new count of how many pin_user_pages() calls were 1217 * made against the page. ("gup-pinned" is another term for the latter). 1218 * 1219 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1220 * distinct from normal pages. As such, the unpin_user_page() call (and its 1221 * variants) must be used in order to release gup-pinned pages. 1222 * 1223 * Choice of value: 1224 * 1225 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1226 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1227 * simpler, due to the fact that adding an even power of two to the page 1228 * refcount has the effect of using only the upper N bits, for the code that 1229 * counts up using the bias value. This means that the lower bits are left for 1230 * the exclusive use of the original code that increments and decrements by one 1231 * (or at least, by much smaller values than the bias value). 1232 * 1233 * Of course, once the lower bits overflow into the upper bits (and this is 1234 * OK, because subtraction recovers the original values), then visual inspection 1235 * no longer suffices to directly view the separate counts. However, for normal 1236 * applications that don't have huge page reference counts, this won't be an 1237 * issue. 1238 * 1239 * Locking: the lockless algorithm described in page_cache_get_speculative() 1240 * and page_cache_gup_pin_speculative() provides safe operation for 1241 * get_user_pages and page_mkclean and other calls that race to set up page 1242 * table entries. 1243 */ 1244#define GUP_PIN_COUNTING_BIAS (1U << 10) 1245 1246void unpin_user_page(struct page *page); 1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1248 bool make_dirty); 1249void unpin_user_pages(struct page **pages, unsigned long npages); 1250 1251/** 1252 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1253 * 1254 * This function checks if a page has been pinned via a call to 1255 * pin_user_pages*(). 1256 * 1257 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1258 * because it means "definitely not pinned for DMA", but true means "probably 1259 * pinned for DMA, but possibly a false positive due to having at least 1260 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1261 * 1262 * False positives are OK, because: a) it's unlikely for a page to get that many 1263 * refcounts, and b) all the callers of this routine are expected to be able to 1264 * deal gracefully with a false positive. 1265 * 1266 * For huge pages, the result will be exactly correct. That's because we have 1267 * more tracking data available: the 3rd struct page in the compound page is 1268 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1269 * scheme). 1270 * 1271 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1272 * 1273 * @page: pointer to page to be queried. 1274 * @Return: True, if it is likely that the page has been "dma-pinned". 1275 * False, if the page is definitely not dma-pinned. 1276 */ 1277static inline bool page_maybe_dma_pinned(struct page *page) 1278{ 1279 if (hpage_pincount_available(page)) 1280 return compound_pincount(page) > 0; 1281 1282 /* 1283 * page_ref_count() is signed. If that refcount overflows, then 1284 * page_ref_count() returns a negative value, and callers will avoid 1285 * further incrementing the refcount. 1286 * 1287 * Here, for that overflow case, use the signed bit to count a little 1288 * bit higher via unsigned math, and thus still get an accurate result. 1289 */ 1290 return ((unsigned int)page_ref_count(compound_head(page))) >= 1291 GUP_PIN_COUNTING_BIAS; 1292} 1293 1294#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1295#define SECTION_IN_PAGE_FLAGS 1296#endif 1297 1298/* 1299 * The identification function is mainly used by the buddy allocator for 1300 * determining if two pages could be buddies. We are not really identifying 1301 * the zone since we could be using the section number id if we do not have 1302 * node id available in page flags. 1303 * We only guarantee that it will return the same value for two combinable 1304 * pages in a zone. 1305 */ 1306static inline int page_zone_id(struct page *page) 1307{ 1308 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1309} 1310 1311#ifdef NODE_NOT_IN_PAGE_FLAGS 1312extern int page_to_nid(const struct page *page); 1313#else 1314static inline int page_to_nid(const struct page *page) 1315{ 1316 struct page *p = (struct page *)page; 1317 1318 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1319} 1320#endif 1321 1322#ifdef CONFIG_NUMA_BALANCING 1323static inline int cpu_pid_to_cpupid(int cpu, int pid) 1324{ 1325 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1326} 1327 1328static inline int cpupid_to_pid(int cpupid) 1329{ 1330 return cpupid & LAST__PID_MASK; 1331} 1332 1333static inline int cpupid_to_cpu(int cpupid) 1334{ 1335 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1336} 1337 1338static inline int cpupid_to_nid(int cpupid) 1339{ 1340 return cpu_to_node(cpupid_to_cpu(cpupid)); 1341} 1342 1343static inline bool cpupid_pid_unset(int cpupid) 1344{ 1345 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1346} 1347 1348static inline bool cpupid_cpu_unset(int cpupid) 1349{ 1350 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1351} 1352 1353static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1354{ 1355 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1356} 1357 1358#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1359#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1360static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1361{ 1362 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1363} 1364 1365static inline int page_cpupid_last(struct page *page) 1366{ 1367 return page->_last_cpupid; 1368} 1369static inline void page_cpupid_reset_last(struct page *page) 1370{ 1371 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1372} 1373#else 1374static inline int page_cpupid_last(struct page *page) 1375{ 1376 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1377} 1378 1379extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1380 1381static inline void page_cpupid_reset_last(struct page *page) 1382{ 1383 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1384} 1385#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1386#else /* !CONFIG_NUMA_BALANCING */ 1387static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1388{ 1389 return page_to_nid(page); /* XXX */ 1390} 1391 1392static inline int page_cpupid_last(struct page *page) 1393{ 1394 return page_to_nid(page); /* XXX */ 1395} 1396 1397static inline int cpupid_to_nid(int cpupid) 1398{ 1399 return -1; 1400} 1401 1402static inline int cpupid_to_pid(int cpupid) 1403{ 1404 return -1; 1405} 1406 1407static inline int cpupid_to_cpu(int cpupid) 1408{ 1409 return -1; 1410} 1411 1412static inline int cpu_pid_to_cpupid(int nid, int pid) 1413{ 1414 return -1; 1415} 1416 1417static inline bool cpupid_pid_unset(int cpupid) 1418{ 1419 return true; 1420} 1421 1422static inline void page_cpupid_reset_last(struct page *page) 1423{ 1424} 1425 1426static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1427{ 1428 return false; 1429} 1430#endif /* CONFIG_NUMA_BALANCING */ 1431 1432#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1433 1434static inline u8 page_kasan_tag(const struct page *page) 1435{ 1436 if (kasan_enabled()) 1437 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1438 return 0xff; 1439} 1440 1441static inline void page_kasan_tag_set(struct page *page, u8 tag) 1442{ 1443 if (kasan_enabled()) { 1444 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1445 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1446 } 1447} 1448 1449static inline void page_kasan_tag_reset(struct page *page) 1450{ 1451 if (kasan_enabled()) 1452 page_kasan_tag_set(page, 0xff); 1453} 1454 1455#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1456 1457static inline u8 page_kasan_tag(const struct page *page) 1458{ 1459 return 0xff; 1460} 1461 1462static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1463static inline void page_kasan_tag_reset(struct page *page) { } 1464 1465#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1466 1467static inline struct zone *page_zone(const struct page *page) 1468{ 1469 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1470} 1471 1472static inline pg_data_t *page_pgdat(const struct page *page) 1473{ 1474 return NODE_DATA(page_to_nid(page)); 1475} 1476 1477#ifdef SECTION_IN_PAGE_FLAGS 1478static inline void set_page_section(struct page *page, unsigned long section) 1479{ 1480 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1481 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1482} 1483 1484static inline unsigned long page_to_section(const struct page *page) 1485{ 1486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1487} 1488#endif 1489 1490static inline void set_page_zone(struct page *page, enum zone_type zone) 1491{ 1492 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1493 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1494} 1495 1496static inline void set_page_node(struct page *page, unsigned long node) 1497{ 1498 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1499 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1500} 1501 1502static inline void set_page_links(struct page *page, enum zone_type zone, 1503 unsigned long node, unsigned long pfn) 1504{ 1505 set_page_zone(page, zone); 1506 set_page_node(page, node); 1507#ifdef SECTION_IN_PAGE_FLAGS 1508 set_page_section(page, pfn_to_section_nr(pfn)); 1509#endif 1510} 1511 1512/* 1513 * Some inline functions in vmstat.h depend on page_zone() 1514 */ 1515#include <linux/vmstat.h> 1516 1517static __always_inline void *lowmem_page_address(const struct page *page) 1518{ 1519 return page_to_virt(page); 1520} 1521 1522#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1523#define HASHED_PAGE_VIRTUAL 1524#endif 1525 1526#if defined(WANT_PAGE_VIRTUAL) 1527static inline void *page_address(const struct page *page) 1528{ 1529 return page->virtual; 1530} 1531static inline void set_page_address(struct page *page, void *address) 1532{ 1533 page->virtual = address; 1534} 1535#define page_address_init() do { } while(0) 1536#endif 1537 1538#if defined(HASHED_PAGE_VIRTUAL) 1539void *page_address(const struct page *page); 1540void set_page_address(struct page *page, void *virtual); 1541void page_address_init(void); 1542#endif 1543 1544#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1545#define page_address(page) lowmem_page_address(page) 1546#define set_page_address(page, address) do { } while(0) 1547#define page_address_init() do { } while(0) 1548#endif 1549 1550extern void *page_rmapping(struct page *page); 1551extern struct anon_vma *page_anon_vma(struct page *page); 1552extern struct address_space *page_mapping(struct page *page); 1553 1554extern struct address_space *__page_file_mapping(struct page *); 1555 1556static inline 1557struct address_space *page_file_mapping(struct page *page) 1558{ 1559 if (unlikely(PageSwapCache(page))) 1560 return __page_file_mapping(page); 1561 1562 return page->mapping; 1563} 1564 1565extern pgoff_t __page_file_index(struct page *page); 1566 1567/* 1568 * Return the pagecache index of the passed page. Regular pagecache pages 1569 * use ->index whereas swapcache pages use swp_offset(->private) 1570 */ 1571static inline pgoff_t page_index(struct page *page) 1572{ 1573 if (unlikely(PageSwapCache(page))) 1574 return __page_file_index(page); 1575 return page->index; 1576} 1577 1578bool page_mapped(struct page *page); 1579struct address_space *page_mapping(struct page *page); 1580struct address_space *page_mapping_file(struct page *page); 1581 1582/* 1583 * Return true only if the page has been allocated with 1584 * ALLOC_NO_WATERMARKS and the low watermark was not 1585 * met implying that the system is under some pressure. 1586 */ 1587static inline bool page_is_pfmemalloc(struct page *page) 1588{ 1589 /* 1590 * Page index cannot be this large so this must be 1591 * a pfmemalloc page. 1592 */ 1593 return page->index == -1UL; 1594} 1595 1596/* 1597 * Only to be called by the page allocator on a freshly allocated 1598 * page. 1599 */ 1600static inline void set_page_pfmemalloc(struct page *page) 1601{ 1602 page->index = -1UL; 1603} 1604 1605static inline void clear_page_pfmemalloc(struct page *page) 1606{ 1607 page->index = 0; 1608} 1609 1610/* 1611 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1612 */ 1613extern void pagefault_out_of_memory(void); 1614 1615#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1616#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1617 1618/* 1619 * Flags passed to show_mem() and show_free_areas() to suppress output in 1620 * various contexts. 1621 */ 1622#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1623 1624extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1625 1626#ifdef CONFIG_MMU 1627extern bool can_do_mlock(void); 1628#else 1629static inline bool can_do_mlock(void) { return false; } 1630#endif 1631extern int user_shm_lock(size_t, struct user_struct *); 1632extern void user_shm_unlock(size_t, struct user_struct *); 1633 1634/* 1635 * Parameter block passed down to zap_pte_range in exceptional cases. 1636 */ 1637struct zap_details { 1638 struct address_space *check_mapping; /* Check page->mapping if set */ 1639 pgoff_t first_index; /* Lowest page->index to unmap */ 1640 pgoff_t last_index; /* Highest page->index to unmap */ 1641}; 1642 1643struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1644 pte_t pte); 1645struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1646 pmd_t pmd); 1647 1648void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1649 unsigned long size); 1650void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1651 unsigned long size); 1652void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1653 unsigned long start, unsigned long end); 1654 1655struct mmu_notifier_range; 1656 1657void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1658 unsigned long end, unsigned long floor, unsigned long ceiling); 1659int 1660copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1661int follow_pte(struct mm_struct *mm, unsigned long address, 1662 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp, 1663 spinlock_t **ptlp); 1664int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1665 unsigned long *pfn); 1666int follow_phys(struct vm_area_struct *vma, unsigned long address, 1667 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1668int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1669 void *buf, int len, int write); 1670 1671extern void truncate_pagecache(struct inode *inode, loff_t new); 1672extern void truncate_setsize(struct inode *inode, loff_t newsize); 1673void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1674void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1675int truncate_inode_page(struct address_space *mapping, struct page *page); 1676int generic_error_remove_page(struct address_space *mapping, struct page *page); 1677int invalidate_inode_page(struct page *page); 1678 1679#ifdef CONFIG_MMU 1680extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1681 unsigned long address, unsigned int flags, 1682 struct pt_regs *regs); 1683extern int fixup_user_fault(struct mm_struct *mm, 1684 unsigned long address, unsigned int fault_flags, 1685 bool *unlocked); 1686void unmap_mapping_pages(struct address_space *mapping, 1687 pgoff_t start, pgoff_t nr, bool even_cows); 1688void unmap_mapping_range(struct address_space *mapping, 1689 loff_t const holebegin, loff_t const holelen, int even_cows); 1690#else 1691static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1692 unsigned long address, unsigned int flags, 1693 struct pt_regs *regs) 1694{ 1695 /* should never happen if there's no MMU */ 1696 BUG(); 1697 return VM_FAULT_SIGBUS; 1698} 1699static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1700 unsigned int fault_flags, bool *unlocked) 1701{ 1702 /* should never happen if there's no MMU */ 1703 BUG(); 1704 return -EFAULT; 1705} 1706static inline void unmap_mapping_pages(struct address_space *mapping, 1707 pgoff_t start, pgoff_t nr, bool even_cows) { } 1708static inline void unmap_mapping_range(struct address_space *mapping, 1709 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1710#endif 1711 1712static inline void unmap_shared_mapping_range(struct address_space *mapping, 1713 loff_t const holebegin, loff_t const holelen) 1714{ 1715 unmap_mapping_range(mapping, holebegin, holelen, 0); 1716} 1717 1718extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1719 void *buf, int len, unsigned int gup_flags); 1720extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1721 void *buf, int len, unsigned int gup_flags); 1722extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1723 void *buf, int len, unsigned int gup_flags); 1724 1725long get_user_pages_remote(struct mm_struct *mm, 1726 unsigned long start, unsigned long nr_pages, 1727 unsigned int gup_flags, struct page **pages, 1728 struct vm_area_struct **vmas, int *locked); 1729long pin_user_pages_remote(struct mm_struct *mm, 1730 unsigned long start, unsigned long nr_pages, 1731 unsigned int gup_flags, struct page **pages, 1732 struct vm_area_struct **vmas, int *locked); 1733long get_user_pages(unsigned long start, unsigned long nr_pages, 1734 unsigned int gup_flags, struct page **pages, 1735 struct vm_area_struct **vmas); 1736long pin_user_pages(unsigned long start, unsigned long nr_pages, 1737 unsigned int gup_flags, struct page **pages, 1738 struct vm_area_struct **vmas); 1739long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1740 unsigned int gup_flags, struct page **pages, int *locked); 1741long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1742 unsigned int gup_flags, struct page **pages, int *locked); 1743long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1744 struct page **pages, unsigned int gup_flags); 1745long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1746 struct page **pages, unsigned int gup_flags); 1747 1748int get_user_pages_fast(unsigned long start, int nr_pages, 1749 unsigned int gup_flags, struct page **pages); 1750int pin_user_pages_fast(unsigned long start, int nr_pages, 1751 unsigned int gup_flags, struct page **pages); 1752 1753int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1754int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1755 struct task_struct *task, bool bypass_rlim); 1756 1757/* Container for pinned pfns / pages */ 1758struct frame_vector { 1759 unsigned int nr_allocated; /* Number of frames we have space for */ 1760 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1761 bool got_ref; /* Did we pin pages by getting page ref? */ 1762 bool is_pfns; /* Does array contain pages or pfns? */ 1763 void *ptrs[]; /* Array of pinned pfns / pages. Use 1764 * pfns_vector_pages() or pfns_vector_pfns() 1765 * for access */ 1766}; 1767 1768struct frame_vector *frame_vector_create(unsigned int nr_frames); 1769void frame_vector_destroy(struct frame_vector *vec); 1770int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1771 unsigned int gup_flags, struct frame_vector *vec); 1772void put_vaddr_frames(struct frame_vector *vec); 1773int frame_vector_to_pages(struct frame_vector *vec); 1774void frame_vector_to_pfns(struct frame_vector *vec); 1775 1776static inline unsigned int frame_vector_count(struct frame_vector *vec) 1777{ 1778 return vec->nr_frames; 1779} 1780 1781static inline struct page **frame_vector_pages(struct frame_vector *vec) 1782{ 1783 if (vec->is_pfns) { 1784 int err = frame_vector_to_pages(vec); 1785 1786 if (err) 1787 return ERR_PTR(err); 1788 } 1789 return (struct page **)(vec->ptrs); 1790} 1791 1792static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1793{ 1794 if (!vec->is_pfns) 1795 frame_vector_to_pfns(vec); 1796 return (unsigned long *)(vec->ptrs); 1797} 1798 1799struct kvec; 1800int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1801 struct page **pages); 1802int get_kernel_page(unsigned long start, int write, struct page **pages); 1803struct page *get_dump_page(unsigned long addr); 1804 1805extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1806extern void do_invalidatepage(struct page *page, unsigned int offset, 1807 unsigned int length); 1808 1809void __set_page_dirty(struct page *, struct address_space *, int warn); 1810int __set_page_dirty_nobuffers(struct page *page); 1811int __set_page_dirty_no_writeback(struct page *page); 1812int redirty_page_for_writepage(struct writeback_control *wbc, 1813 struct page *page); 1814void account_page_dirtied(struct page *page, struct address_space *mapping); 1815void account_page_cleaned(struct page *page, struct address_space *mapping, 1816 struct bdi_writeback *wb); 1817int set_page_dirty(struct page *page); 1818int set_page_dirty_lock(struct page *page); 1819void __cancel_dirty_page(struct page *page); 1820static inline void cancel_dirty_page(struct page *page) 1821{ 1822 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1823 if (PageDirty(page)) 1824 __cancel_dirty_page(page); 1825} 1826int clear_page_dirty_for_io(struct page *page); 1827 1828int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1829 1830extern unsigned long move_page_tables(struct vm_area_struct *vma, 1831 unsigned long old_addr, struct vm_area_struct *new_vma, 1832 unsigned long new_addr, unsigned long len, 1833 bool need_rmap_locks); 1834 1835/* 1836 * Flags used by change_protection(). For now we make it a bitmap so 1837 * that we can pass in multiple flags just like parameters. However 1838 * for now all the callers are only use one of the flags at the same 1839 * time. 1840 */ 1841/* Whether we should allow dirty bit accounting */ 1842#define MM_CP_DIRTY_ACCT (1UL << 0) 1843/* Whether this protection change is for NUMA hints */ 1844#define MM_CP_PROT_NUMA (1UL << 1) 1845/* Whether this change is for write protecting */ 1846#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1847#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1848#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1849 MM_CP_UFFD_WP_RESOLVE) 1850 1851extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1852 unsigned long end, pgprot_t newprot, 1853 unsigned long cp_flags); 1854extern int mprotect_fixup(struct vm_area_struct *vma, 1855 struct vm_area_struct **pprev, unsigned long start, 1856 unsigned long end, unsigned long newflags); 1857 1858/* 1859 * doesn't attempt to fault and will return short. 1860 */ 1861int get_user_pages_fast_only(unsigned long start, int nr_pages, 1862 unsigned int gup_flags, struct page **pages); 1863int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1864 unsigned int gup_flags, struct page **pages); 1865 1866static inline bool get_user_page_fast_only(unsigned long addr, 1867 unsigned int gup_flags, struct page **pagep) 1868{ 1869 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1870} 1871/* 1872 * per-process(per-mm_struct) statistics. 1873 */ 1874static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1875{ 1876 long val = atomic_long_read(&mm->rss_stat.count[member]); 1877 1878#ifdef SPLIT_RSS_COUNTING 1879 /* 1880 * counter is updated in asynchronous manner and may go to minus. 1881 * But it's never be expected number for users. 1882 */ 1883 if (val < 0) 1884 val = 0; 1885#endif 1886 return (unsigned long)val; 1887} 1888 1889void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1890 1891static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1892{ 1893 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1894 1895 mm_trace_rss_stat(mm, member, count); 1896} 1897 1898static inline void inc_mm_counter(struct mm_struct *mm, int member) 1899{ 1900 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1901 1902 mm_trace_rss_stat(mm, member, count); 1903} 1904 1905static inline void dec_mm_counter(struct mm_struct *mm, int member) 1906{ 1907 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1908 1909 mm_trace_rss_stat(mm, member, count); 1910} 1911 1912/* Optimized variant when page is already known not to be PageAnon */ 1913static inline int mm_counter_file(struct page *page) 1914{ 1915 if (PageSwapBacked(page)) 1916 return MM_SHMEMPAGES; 1917 return MM_FILEPAGES; 1918} 1919 1920static inline int mm_counter(struct page *page) 1921{ 1922 if (PageAnon(page)) 1923 return MM_ANONPAGES; 1924 return mm_counter_file(page); 1925} 1926 1927static inline unsigned long get_mm_rss(struct mm_struct *mm) 1928{ 1929 return get_mm_counter(mm, MM_FILEPAGES) + 1930 get_mm_counter(mm, MM_ANONPAGES) + 1931 get_mm_counter(mm, MM_SHMEMPAGES); 1932} 1933 1934static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1935{ 1936 return max(mm->hiwater_rss, get_mm_rss(mm)); 1937} 1938 1939static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1940{ 1941 return max(mm->hiwater_vm, mm->total_vm); 1942} 1943 1944static inline void update_hiwater_rss(struct mm_struct *mm) 1945{ 1946 unsigned long _rss = get_mm_rss(mm); 1947 1948 if ((mm)->hiwater_rss < _rss) 1949 (mm)->hiwater_rss = _rss; 1950} 1951 1952static inline void update_hiwater_vm(struct mm_struct *mm) 1953{ 1954 if (mm->hiwater_vm < mm->total_vm) 1955 mm->hiwater_vm = mm->total_vm; 1956} 1957 1958static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1959{ 1960 mm->hiwater_rss = get_mm_rss(mm); 1961} 1962 1963static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1964 struct mm_struct *mm) 1965{ 1966 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1967 1968 if (*maxrss < hiwater_rss) 1969 *maxrss = hiwater_rss; 1970} 1971 1972#if defined(SPLIT_RSS_COUNTING) 1973void sync_mm_rss(struct mm_struct *mm); 1974#else 1975static inline void sync_mm_rss(struct mm_struct *mm) 1976{ 1977} 1978#endif 1979 1980#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1981static inline int pte_special(pte_t pte) 1982{ 1983 return 0; 1984} 1985 1986static inline pte_t pte_mkspecial(pte_t pte) 1987{ 1988 return pte; 1989} 1990#endif 1991 1992#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1993static inline int pte_devmap(pte_t pte) 1994{ 1995 return 0; 1996} 1997#endif 1998 1999int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2000 2001extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2002 spinlock_t **ptl); 2003static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2004 spinlock_t **ptl) 2005{ 2006 pte_t *ptep; 2007 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2008 return ptep; 2009} 2010 2011#ifdef __PAGETABLE_P4D_FOLDED 2012static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2013 unsigned long address) 2014{ 2015 return 0; 2016} 2017#else 2018int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2019#endif 2020 2021#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2022static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2023 unsigned long address) 2024{ 2025 return 0; 2026} 2027static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2028static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2029 2030#else 2031int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2032 2033static inline void mm_inc_nr_puds(struct mm_struct *mm) 2034{ 2035 if (mm_pud_folded(mm)) 2036 return; 2037 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2038} 2039 2040static inline void mm_dec_nr_puds(struct mm_struct *mm) 2041{ 2042 if (mm_pud_folded(mm)) 2043 return; 2044 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2045} 2046#endif 2047 2048#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2049static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2050 unsigned long address) 2051{ 2052 return 0; 2053} 2054 2055static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2056static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2057 2058#else 2059int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2060 2061static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2062{ 2063 if (mm_pmd_folded(mm)) 2064 return; 2065 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2066} 2067 2068static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2069{ 2070 if (mm_pmd_folded(mm)) 2071 return; 2072 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2073} 2074#endif 2075 2076#ifdef CONFIG_MMU 2077static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2078{ 2079 atomic_long_set(&mm->pgtables_bytes, 0); 2080} 2081 2082static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2083{ 2084 return atomic_long_read(&mm->pgtables_bytes); 2085} 2086 2087static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2088{ 2089 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2090} 2091 2092static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2093{ 2094 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2095} 2096#else 2097 2098static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2099static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2100{ 2101 return 0; 2102} 2103 2104static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2105static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2106#endif 2107 2108int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2109int __pte_alloc_kernel(pmd_t *pmd); 2110 2111#if defined(CONFIG_MMU) 2112 2113static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2114 unsigned long address) 2115{ 2116 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2117 NULL : p4d_offset(pgd, address); 2118} 2119 2120static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2121 unsigned long address) 2122{ 2123 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2124 NULL : pud_offset(p4d, address); 2125} 2126 2127static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2128{ 2129 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2130 NULL: pmd_offset(pud, address); 2131} 2132#endif /* CONFIG_MMU */ 2133 2134#if USE_SPLIT_PTE_PTLOCKS 2135#if ALLOC_SPLIT_PTLOCKS 2136void __init ptlock_cache_init(void); 2137extern bool ptlock_alloc(struct page *page); 2138extern void ptlock_free(struct page *page); 2139 2140static inline spinlock_t *ptlock_ptr(struct page *page) 2141{ 2142 return page->ptl; 2143} 2144#else /* ALLOC_SPLIT_PTLOCKS */ 2145static inline void ptlock_cache_init(void) 2146{ 2147} 2148 2149static inline bool ptlock_alloc(struct page *page) 2150{ 2151 return true; 2152} 2153 2154static inline void ptlock_free(struct page *page) 2155{ 2156} 2157 2158static inline spinlock_t *ptlock_ptr(struct page *page) 2159{ 2160 return &page->ptl; 2161} 2162#endif /* ALLOC_SPLIT_PTLOCKS */ 2163 2164static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2165{ 2166 return ptlock_ptr(pmd_page(*pmd)); 2167} 2168 2169static inline bool ptlock_init(struct page *page) 2170{ 2171 /* 2172 * prep_new_page() initialize page->private (and therefore page->ptl) 2173 * with 0. Make sure nobody took it in use in between. 2174 * 2175 * It can happen if arch try to use slab for page table allocation: 2176 * slab code uses page->slab_cache, which share storage with page->ptl. 2177 */ 2178 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2179 if (!ptlock_alloc(page)) 2180 return false; 2181 spin_lock_init(ptlock_ptr(page)); 2182 return true; 2183} 2184 2185#else /* !USE_SPLIT_PTE_PTLOCKS */ 2186/* 2187 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2188 */ 2189static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2190{ 2191 return &mm->page_table_lock; 2192} 2193static inline void ptlock_cache_init(void) {} 2194static inline bool ptlock_init(struct page *page) { return true; } 2195static inline void ptlock_free(struct page *page) {} 2196#endif /* USE_SPLIT_PTE_PTLOCKS */ 2197 2198static inline void pgtable_init(void) 2199{ 2200 ptlock_cache_init(); 2201 pgtable_cache_init(); 2202} 2203 2204static inline bool pgtable_pte_page_ctor(struct page *page) 2205{ 2206 if (!ptlock_init(page)) 2207 return false; 2208 __SetPageTable(page); 2209 inc_lruvec_page_state(page, NR_PAGETABLE); 2210 return true; 2211} 2212 2213static inline void pgtable_pte_page_dtor(struct page *page) 2214{ 2215 ptlock_free(page); 2216 __ClearPageTable(page); 2217 dec_lruvec_page_state(page, NR_PAGETABLE); 2218} 2219 2220#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2221({ \ 2222 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2223 pte_t *__pte = pte_offset_map(pmd, address); \ 2224 *(ptlp) = __ptl; \ 2225 spin_lock(__ptl); \ 2226 __pte; \ 2227}) 2228 2229#define pte_unmap_unlock(pte, ptl) do { \ 2230 spin_unlock(ptl); \ 2231 pte_unmap(pte); \ 2232} while (0) 2233 2234#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2235 2236#define pte_alloc_map(mm, pmd, address) \ 2237 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2238 2239#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2240 (pte_alloc(mm, pmd) ? \ 2241 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2242 2243#define pte_alloc_kernel(pmd, address) \ 2244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2245 NULL: pte_offset_kernel(pmd, address)) 2246 2247#if USE_SPLIT_PMD_PTLOCKS 2248 2249static struct page *pmd_to_page(pmd_t *pmd) 2250{ 2251 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2252 return virt_to_page((void *)((unsigned long) pmd & mask)); 2253} 2254 2255static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2256{ 2257 return ptlock_ptr(pmd_to_page(pmd)); 2258} 2259 2260static inline bool pmd_ptlock_init(struct page *page) 2261{ 2262#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2263 page->pmd_huge_pte = NULL; 2264#endif 2265 return ptlock_init(page); 2266} 2267 2268static inline void pmd_ptlock_free(struct page *page) 2269{ 2270#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2271 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2272#endif 2273 ptlock_free(page); 2274} 2275 2276#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2277 2278#else 2279 2280static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2281{ 2282 return &mm->page_table_lock; 2283} 2284 2285static inline bool pmd_ptlock_init(struct page *page) { return true; } 2286static inline void pmd_ptlock_free(struct page *page) {} 2287 2288#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2289 2290#endif 2291 2292static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2293{ 2294 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2295 spin_lock(ptl); 2296 return ptl; 2297} 2298 2299static inline bool pgtable_pmd_page_ctor(struct page *page) 2300{ 2301 if (!pmd_ptlock_init(page)) 2302 return false; 2303 __SetPageTable(page); 2304 inc_lruvec_page_state(page, NR_PAGETABLE); 2305 return true; 2306} 2307 2308static inline void pgtable_pmd_page_dtor(struct page *page) 2309{ 2310 pmd_ptlock_free(page); 2311 __ClearPageTable(page); 2312 dec_lruvec_page_state(page, NR_PAGETABLE); 2313} 2314 2315/* 2316 * No scalability reason to split PUD locks yet, but follow the same pattern 2317 * as the PMD locks to make it easier if we decide to. The VM should not be 2318 * considered ready to switch to split PUD locks yet; there may be places 2319 * which need to be converted from page_table_lock. 2320 */ 2321static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2322{ 2323 return &mm->page_table_lock; 2324} 2325 2326static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2327{ 2328 spinlock_t *ptl = pud_lockptr(mm, pud); 2329 2330 spin_lock(ptl); 2331 return ptl; 2332} 2333 2334extern void __init pagecache_init(void); 2335extern void __init free_area_init_memoryless_node(int nid); 2336extern void free_initmem(void); 2337 2338/* 2339 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2340 * into the buddy system. The freed pages will be poisoned with pattern 2341 * "poison" if it's within range [0, UCHAR_MAX]. 2342 * Return pages freed into the buddy system. 2343 */ 2344extern unsigned long free_reserved_area(void *start, void *end, 2345 int poison, const char *s); 2346 2347#ifdef CONFIG_HIGHMEM 2348/* 2349 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2350 * and totalram_pages. 2351 */ 2352extern void free_highmem_page(struct page *page); 2353#endif 2354 2355extern void adjust_managed_page_count(struct page *page, long count); 2356extern void mem_init_print_info(const char *str); 2357 2358extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2359 2360/* Free the reserved page into the buddy system, so it gets managed. */ 2361static inline void __free_reserved_page(struct page *page) 2362{ 2363 ClearPageReserved(page); 2364 init_page_count(page); 2365 __free_page(page); 2366} 2367 2368static inline void free_reserved_page(struct page *page) 2369{ 2370 __free_reserved_page(page); 2371 adjust_managed_page_count(page, 1); 2372} 2373 2374static inline void mark_page_reserved(struct page *page) 2375{ 2376 SetPageReserved(page); 2377 adjust_managed_page_count(page, -1); 2378} 2379 2380/* 2381 * Default method to free all the __init memory into the buddy system. 2382 * The freed pages will be poisoned with pattern "poison" if it's within 2383 * range [0, UCHAR_MAX]. 2384 * Return pages freed into the buddy system. 2385 */ 2386static inline unsigned long free_initmem_default(int poison) 2387{ 2388 extern char __init_begin[], __init_end[]; 2389 2390 return free_reserved_area(&__init_begin, &__init_end, 2391 poison, "unused kernel"); 2392} 2393 2394static inline unsigned long get_num_physpages(void) 2395{ 2396 int nid; 2397 unsigned long phys_pages = 0; 2398 2399 for_each_online_node(nid) 2400 phys_pages += node_present_pages(nid); 2401 2402 return phys_pages; 2403} 2404 2405/* 2406 * Using memblock node mappings, an architecture may initialise its 2407 * zones, allocate the backing mem_map and account for memory holes in an 2408 * architecture independent manner. 2409 * 2410 * An architecture is expected to register range of page frames backed by 2411 * physical memory with memblock_add[_node]() before calling 2412 * free_area_init() passing in the PFN each zone ends at. At a basic 2413 * usage, an architecture is expected to do something like 2414 * 2415 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2416 * max_highmem_pfn}; 2417 * for_each_valid_physical_page_range() 2418 * memblock_add_node(base, size, nid) 2419 * free_area_init(max_zone_pfns); 2420 */ 2421void free_area_init(unsigned long *max_zone_pfn); 2422unsigned long node_map_pfn_alignment(void); 2423unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2424 unsigned long end_pfn); 2425extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2426 unsigned long end_pfn); 2427extern void get_pfn_range_for_nid(unsigned int nid, 2428 unsigned long *start_pfn, unsigned long *end_pfn); 2429extern unsigned long find_min_pfn_with_active_regions(void); 2430 2431#ifndef CONFIG_NEED_MULTIPLE_NODES 2432static inline int early_pfn_to_nid(unsigned long pfn) 2433{ 2434 return 0; 2435} 2436#else 2437/* please see mm/page_alloc.c */ 2438extern int __meminit early_pfn_to_nid(unsigned long pfn); 2439#endif 2440 2441extern void set_dma_reserve(unsigned long new_dma_reserve); 2442extern void memmap_init_zone(unsigned long, int, unsigned long, 2443 unsigned long, unsigned long, enum meminit_context, 2444 struct vmem_altmap *, int migratetype); 2445extern void setup_per_zone_wmarks(void); 2446extern int __meminit init_per_zone_wmark_min(void); 2447extern void mem_init(void); 2448extern void __init mmap_init(void); 2449extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2450extern long si_mem_available(void); 2451extern void si_meminfo(struct sysinfo * val); 2452extern void si_meminfo_node(struct sysinfo *val, int nid); 2453#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2454extern unsigned long arch_reserved_kernel_pages(void); 2455#endif 2456 2457extern __printf(3, 4) 2458void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2459 2460extern void setup_per_cpu_pageset(void); 2461 2462/* page_alloc.c */ 2463extern int min_free_kbytes; 2464extern int watermark_boost_factor; 2465extern int watermark_scale_factor; 2466extern bool arch_has_descending_max_zone_pfns(void); 2467 2468/* nommu.c */ 2469extern atomic_long_t mmap_pages_allocated; 2470extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2471 2472/* interval_tree.c */ 2473void vma_interval_tree_insert(struct vm_area_struct *node, 2474 struct rb_root_cached *root); 2475void vma_interval_tree_insert_after(struct vm_area_struct *node, 2476 struct vm_area_struct *prev, 2477 struct rb_root_cached *root); 2478void vma_interval_tree_remove(struct vm_area_struct *node, 2479 struct rb_root_cached *root); 2480struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2481 unsigned long start, unsigned long last); 2482struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2483 unsigned long start, unsigned long last); 2484 2485#define vma_interval_tree_foreach(vma, root, start, last) \ 2486 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2487 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2488 2489void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2490 struct rb_root_cached *root); 2491void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2492 struct rb_root_cached *root); 2493struct anon_vma_chain * 2494anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2495 unsigned long start, unsigned long last); 2496struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2497 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2498#ifdef CONFIG_DEBUG_VM_RB 2499void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2500#endif 2501 2502#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2503 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2504 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2505 2506/* mmap.c */ 2507extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2508extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2509 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2510 struct vm_area_struct *expand); 2511static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2512 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2513{ 2514 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2515} 2516extern struct vm_area_struct *vma_merge(struct mm_struct *, 2517 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2518 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2519 struct mempolicy *, struct vm_userfaultfd_ctx); 2520extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2521extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2522 unsigned long addr, int new_below); 2523extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2524 unsigned long addr, int new_below); 2525extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2526extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2527 struct rb_node **, struct rb_node *); 2528extern void unlink_file_vma(struct vm_area_struct *); 2529extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2530 unsigned long addr, unsigned long len, pgoff_t pgoff, 2531 bool *need_rmap_locks); 2532extern void exit_mmap(struct mm_struct *); 2533 2534static inline int check_data_rlimit(unsigned long rlim, 2535 unsigned long new, 2536 unsigned long start, 2537 unsigned long end_data, 2538 unsigned long start_data) 2539{ 2540 if (rlim < RLIM_INFINITY) { 2541 if (((new - start) + (end_data - start_data)) > rlim) 2542 return -ENOSPC; 2543 } 2544 2545 return 0; 2546} 2547 2548extern int mm_take_all_locks(struct mm_struct *mm); 2549extern void mm_drop_all_locks(struct mm_struct *mm); 2550 2551extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2552extern struct file *get_mm_exe_file(struct mm_struct *mm); 2553extern struct file *get_task_exe_file(struct task_struct *task); 2554 2555extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2556extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2557 2558extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2559 const struct vm_special_mapping *sm); 2560extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2561 unsigned long addr, unsigned long len, 2562 unsigned long flags, 2563 const struct vm_special_mapping *spec); 2564/* This is an obsolete alternative to _install_special_mapping. */ 2565extern int install_special_mapping(struct mm_struct *mm, 2566 unsigned long addr, unsigned long len, 2567 unsigned long flags, struct page **pages); 2568 2569unsigned long randomize_stack_top(unsigned long stack_top); 2570 2571extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2572 2573extern unsigned long mmap_region(struct file *file, unsigned long addr, 2574 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2575 struct list_head *uf); 2576extern unsigned long do_mmap(struct file *file, unsigned long addr, 2577 unsigned long len, unsigned long prot, unsigned long flags, 2578 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2579extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2580 struct list_head *uf, bool downgrade); 2581extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2582 struct list_head *uf); 2583extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2584 2585#ifdef CONFIG_MMU 2586extern int __mm_populate(unsigned long addr, unsigned long len, 2587 int ignore_errors); 2588static inline void mm_populate(unsigned long addr, unsigned long len) 2589{ 2590 /* Ignore errors */ 2591 (void) __mm_populate(addr, len, 1); 2592} 2593#else 2594static inline void mm_populate(unsigned long addr, unsigned long len) {} 2595#endif 2596 2597/* These take the mm semaphore themselves */ 2598extern int __must_check vm_brk(unsigned long, unsigned long); 2599extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2600extern int vm_munmap(unsigned long, size_t); 2601extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2602 unsigned long, unsigned long, 2603 unsigned long, unsigned long); 2604 2605struct vm_unmapped_area_info { 2606#define VM_UNMAPPED_AREA_TOPDOWN 1 2607 unsigned long flags; 2608 unsigned long length; 2609 unsigned long low_limit; 2610 unsigned long high_limit; 2611 unsigned long align_mask; 2612 unsigned long align_offset; 2613}; 2614 2615extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2616 2617/* truncate.c */ 2618extern void truncate_inode_pages(struct address_space *, loff_t); 2619extern void truncate_inode_pages_range(struct address_space *, 2620 loff_t lstart, loff_t lend); 2621extern void truncate_inode_pages_final(struct address_space *); 2622 2623/* generic vm_area_ops exported for stackable file systems */ 2624extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2625extern void filemap_map_pages(struct vm_fault *vmf, 2626 pgoff_t start_pgoff, pgoff_t end_pgoff); 2627extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2628 2629/* mm/page-writeback.c */ 2630int __must_check write_one_page(struct page *page); 2631void task_dirty_inc(struct task_struct *tsk); 2632 2633extern unsigned long stack_guard_gap; 2634/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2635extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2636 2637/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2638extern int expand_downwards(struct vm_area_struct *vma, 2639 unsigned long address); 2640#if VM_GROWSUP 2641extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2642#else 2643 #define expand_upwards(vma, address) (0) 2644#endif 2645 2646/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2647extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2648extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2649 struct vm_area_struct **pprev); 2650 2651/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2652 NULL if none. Assume start_addr < end_addr. */ 2653static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2654{ 2655 struct vm_area_struct * vma = find_vma(mm,start_addr); 2656 2657 if (vma && end_addr <= vma->vm_start) 2658 vma = NULL; 2659 return vma; 2660} 2661 2662static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2663{ 2664 unsigned long vm_start = vma->vm_start; 2665 2666 if (vma->vm_flags & VM_GROWSDOWN) { 2667 vm_start -= stack_guard_gap; 2668 if (vm_start > vma->vm_start) 2669 vm_start = 0; 2670 } 2671 return vm_start; 2672} 2673 2674static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2675{ 2676 unsigned long vm_end = vma->vm_end; 2677 2678 if (vma->vm_flags & VM_GROWSUP) { 2679 vm_end += stack_guard_gap; 2680 if (vm_end < vma->vm_end) 2681 vm_end = -PAGE_SIZE; 2682 } 2683 return vm_end; 2684} 2685 2686static inline unsigned long vma_pages(struct vm_area_struct *vma) 2687{ 2688 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2689} 2690 2691/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2692static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2693 unsigned long vm_start, unsigned long vm_end) 2694{ 2695 struct vm_area_struct *vma = find_vma(mm, vm_start); 2696 2697 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2698 vma = NULL; 2699 2700 return vma; 2701} 2702 2703static inline bool range_in_vma(struct vm_area_struct *vma, 2704 unsigned long start, unsigned long end) 2705{ 2706 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2707} 2708 2709#ifdef CONFIG_MMU 2710pgprot_t vm_get_page_prot(unsigned long vm_flags); 2711void vma_set_page_prot(struct vm_area_struct *vma); 2712#else 2713static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2714{ 2715 return __pgprot(0); 2716} 2717static inline void vma_set_page_prot(struct vm_area_struct *vma) 2718{ 2719 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2720} 2721#endif 2722 2723void vma_set_file(struct vm_area_struct *vma, struct file *file); 2724 2725#ifdef CONFIG_NUMA_BALANCING 2726unsigned long change_prot_numa(struct vm_area_struct *vma, 2727 unsigned long start, unsigned long end); 2728#endif 2729 2730struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2731int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2732 unsigned long pfn, unsigned long size, pgprot_t); 2733int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2734int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2735 struct page **pages, unsigned long *num); 2736int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2737 unsigned long num); 2738int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2739 unsigned long num); 2740vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2741 unsigned long pfn); 2742vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2743 unsigned long pfn, pgprot_t pgprot); 2744vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2745 pfn_t pfn); 2746vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2747 pfn_t pfn, pgprot_t pgprot); 2748vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2749 unsigned long addr, pfn_t pfn); 2750int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2751 2752static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2753 unsigned long addr, struct page *page) 2754{ 2755 int err = vm_insert_page(vma, addr, page); 2756 2757 if (err == -ENOMEM) 2758 return VM_FAULT_OOM; 2759 if (err < 0 && err != -EBUSY) 2760 return VM_FAULT_SIGBUS; 2761 2762 return VM_FAULT_NOPAGE; 2763} 2764 2765#ifndef io_remap_pfn_range 2766static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2767 unsigned long addr, unsigned long pfn, 2768 unsigned long size, pgprot_t prot) 2769{ 2770 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2771} 2772#endif 2773 2774static inline vm_fault_t vmf_error(int err) 2775{ 2776 if (err == -ENOMEM) 2777 return VM_FAULT_OOM; 2778 return VM_FAULT_SIGBUS; 2779} 2780 2781struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2782 unsigned int foll_flags); 2783 2784#define FOLL_WRITE 0x01 /* check pte is writable */ 2785#define FOLL_TOUCH 0x02 /* mark page accessed */ 2786#define FOLL_GET 0x04 /* do get_page on page */ 2787#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2788#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2789#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2790 * and return without waiting upon it */ 2791#define FOLL_POPULATE 0x40 /* fault in page */ 2792#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2793#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2794#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2795#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2796#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2797#define FOLL_MLOCK 0x1000 /* lock present pages */ 2798#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2799#define FOLL_COW 0x4000 /* internal GUP flag */ 2800#define FOLL_ANON 0x8000 /* don't do file mappings */ 2801#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2802#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2803#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2804#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2805 2806/* 2807 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2808 * other. Here is what they mean, and how to use them: 2809 * 2810 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2811 * period _often_ under userspace control. This is in contrast to 2812 * iov_iter_get_pages(), whose usages are transient. 2813 * 2814 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2815 * lifetime enforced by the filesystem and we need guarantees that longterm 2816 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2817 * the filesystem. Ideas for this coordination include revoking the longterm 2818 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2819 * added after the problem with filesystems was found FS DAX VMAs are 2820 * specifically failed. Filesystem pages are still subject to bugs and use of 2821 * FOLL_LONGTERM should be avoided on those pages. 2822 * 2823 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2824 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2825 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2826 * is due to an incompatibility with the FS DAX check and 2827 * FAULT_FLAG_ALLOW_RETRY. 2828 * 2829 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2830 * that region. And so, CMA attempts to migrate the page before pinning, when 2831 * FOLL_LONGTERM is specified. 2832 * 2833 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2834 * but an additional pin counting system) will be invoked. This is intended for 2835 * anything that gets a page reference and then touches page data (for example, 2836 * Direct IO). This lets the filesystem know that some non-file-system entity is 2837 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2838 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2839 * a call to unpin_user_page(). 2840 * 2841 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2842 * and separate refcounting mechanisms, however, and that means that each has 2843 * its own acquire and release mechanisms: 2844 * 2845 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2846 * 2847 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2848 * 2849 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2850 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2851 * calls applied to them, and that's perfectly OK. This is a constraint on the 2852 * callers, not on the pages.) 2853 * 2854 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2855 * directly by the caller. That's in order to help avoid mismatches when 2856 * releasing pages: get_user_pages*() pages must be released via put_page(), 2857 * while pin_user_pages*() pages must be released via unpin_user_page(). 2858 * 2859 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2860 */ 2861 2862static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2863{ 2864 if (vm_fault & VM_FAULT_OOM) 2865 return -ENOMEM; 2866 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2867 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2868 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2869 return -EFAULT; 2870 return 0; 2871} 2872 2873typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2874extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2875 unsigned long size, pte_fn_t fn, void *data); 2876extern int apply_to_existing_page_range(struct mm_struct *mm, 2877 unsigned long address, unsigned long size, 2878 pte_fn_t fn, void *data); 2879 2880extern void init_mem_debugging_and_hardening(void); 2881#ifdef CONFIG_PAGE_POISONING 2882extern void __kernel_poison_pages(struct page *page, int numpages); 2883extern void __kernel_unpoison_pages(struct page *page, int numpages); 2884extern bool _page_poisoning_enabled_early; 2885DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2886static inline bool page_poisoning_enabled(void) 2887{ 2888 return _page_poisoning_enabled_early; 2889} 2890/* 2891 * For use in fast paths after init_mem_debugging() has run, or when a 2892 * false negative result is not harmful when called too early. 2893 */ 2894static inline bool page_poisoning_enabled_static(void) 2895{ 2896 return static_branch_unlikely(&_page_poisoning_enabled); 2897} 2898static inline void kernel_poison_pages(struct page *page, int numpages) 2899{ 2900 if (page_poisoning_enabled_static()) 2901 __kernel_poison_pages(page, numpages); 2902} 2903static inline void kernel_unpoison_pages(struct page *page, int numpages) 2904{ 2905 if (page_poisoning_enabled_static()) 2906 __kernel_unpoison_pages(page, numpages); 2907} 2908#else 2909static inline bool page_poisoning_enabled(void) { return false; } 2910static inline bool page_poisoning_enabled_static(void) { return false; } 2911static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2912static inline void kernel_poison_pages(struct page *page, int numpages) { } 2913static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2914#endif 2915 2916DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2917static inline bool want_init_on_alloc(gfp_t flags) 2918{ 2919 if (static_branch_unlikely(&init_on_alloc)) 2920 return true; 2921 return flags & __GFP_ZERO; 2922} 2923 2924DECLARE_STATIC_KEY_FALSE(init_on_free); 2925static inline bool want_init_on_free(void) 2926{ 2927 return static_branch_unlikely(&init_on_free); 2928} 2929 2930extern bool _debug_pagealloc_enabled_early; 2931DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2932 2933static inline bool debug_pagealloc_enabled(void) 2934{ 2935 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2936 _debug_pagealloc_enabled_early; 2937} 2938 2939/* 2940 * For use in fast paths after init_debug_pagealloc() has run, or when a 2941 * false negative result is not harmful when called too early. 2942 */ 2943static inline bool debug_pagealloc_enabled_static(void) 2944{ 2945 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2946 return false; 2947 2948 return static_branch_unlikely(&_debug_pagealloc_enabled); 2949} 2950 2951#ifdef CONFIG_DEBUG_PAGEALLOC 2952/* 2953 * To support DEBUG_PAGEALLOC architecture must ensure that 2954 * __kernel_map_pages() never fails 2955 */ 2956extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2957 2958static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2959{ 2960 if (debug_pagealloc_enabled_static()) 2961 __kernel_map_pages(page, numpages, 1); 2962} 2963 2964static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2965{ 2966 if (debug_pagealloc_enabled_static()) 2967 __kernel_map_pages(page, numpages, 0); 2968} 2969#else /* CONFIG_DEBUG_PAGEALLOC */ 2970static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2971static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2972#endif /* CONFIG_DEBUG_PAGEALLOC */ 2973 2974#ifdef __HAVE_ARCH_GATE_AREA 2975extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2976extern int in_gate_area_no_mm(unsigned long addr); 2977extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2978#else 2979static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2980{ 2981 return NULL; 2982} 2983static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2984static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2985{ 2986 return 0; 2987} 2988#endif /* __HAVE_ARCH_GATE_AREA */ 2989 2990extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2991 2992#ifdef CONFIG_SYSCTL 2993extern int sysctl_drop_caches; 2994int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2995 loff_t *); 2996#endif 2997 2998void drop_slab(void); 2999void drop_slab_node(int nid); 3000 3001#ifndef CONFIG_MMU 3002#define randomize_va_space 0 3003#else 3004extern int randomize_va_space; 3005#endif 3006 3007const char * arch_vma_name(struct vm_area_struct *vma); 3008#ifdef CONFIG_MMU 3009void print_vma_addr(char *prefix, unsigned long rip); 3010#else 3011static inline void print_vma_addr(char *prefix, unsigned long rip) 3012{ 3013} 3014#endif 3015 3016void *sparse_buffer_alloc(unsigned long size); 3017struct page * __populate_section_memmap(unsigned long pfn, 3018 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3019pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3020p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3021pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3022pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3023pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3024 struct vmem_altmap *altmap); 3025void *vmemmap_alloc_block(unsigned long size, int node); 3026struct vmem_altmap; 3027void *vmemmap_alloc_block_buf(unsigned long size, int node, 3028 struct vmem_altmap *altmap); 3029void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3030int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3031 int node, struct vmem_altmap *altmap); 3032int vmemmap_populate(unsigned long start, unsigned long end, int node, 3033 struct vmem_altmap *altmap); 3034void vmemmap_populate_print_last(void); 3035#ifdef CONFIG_MEMORY_HOTPLUG 3036void vmemmap_free(unsigned long start, unsigned long end, 3037 struct vmem_altmap *altmap); 3038#endif 3039void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3040 unsigned long nr_pages); 3041 3042enum mf_flags { 3043 MF_COUNT_INCREASED = 1 << 0, 3044 MF_ACTION_REQUIRED = 1 << 1, 3045 MF_MUST_KILL = 1 << 2, 3046 MF_SOFT_OFFLINE = 1 << 3, 3047}; 3048extern int memory_failure(unsigned long pfn, int flags); 3049extern void memory_failure_queue(unsigned long pfn, int flags); 3050extern void memory_failure_queue_kick(int cpu); 3051extern int unpoison_memory(unsigned long pfn); 3052extern int sysctl_memory_failure_early_kill; 3053extern int sysctl_memory_failure_recovery; 3054extern void shake_page(struct page *p, int access); 3055extern atomic_long_t num_poisoned_pages __read_mostly; 3056extern int soft_offline_page(unsigned long pfn, int flags); 3057 3058 3059/* 3060 * Error handlers for various types of pages. 3061 */ 3062enum mf_result { 3063 MF_IGNORED, /* Error: cannot be handled */ 3064 MF_FAILED, /* Error: handling failed */ 3065 MF_DELAYED, /* Will be handled later */ 3066 MF_RECOVERED, /* Successfully recovered */ 3067}; 3068 3069enum mf_action_page_type { 3070 MF_MSG_KERNEL, 3071 MF_MSG_KERNEL_HIGH_ORDER, 3072 MF_MSG_SLAB, 3073 MF_MSG_DIFFERENT_COMPOUND, 3074 MF_MSG_POISONED_HUGE, 3075 MF_MSG_HUGE, 3076 MF_MSG_FREE_HUGE, 3077 MF_MSG_NON_PMD_HUGE, 3078 MF_MSG_UNMAP_FAILED, 3079 MF_MSG_DIRTY_SWAPCACHE, 3080 MF_MSG_CLEAN_SWAPCACHE, 3081 MF_MSG_DIRTY_MLOCKED_LRU, 3082 MF_MSG_CLEAN_MLOCKED_LRU, 3083 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3084 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3085 MF_MSG_DIRTY_LRU, 3086 MF_MSG_CLEAN_LRU, 3087 MF_MSG_TRUNCATED_LRU, 3088 MF_MSG_BUDDY, 3089 MF_MSG_BUDDY_2ND, 3090 MF_MSG_DAX, 3091 MF_MSG_UNSPLIT_THP, 3092 MF_MSG_UNKNOWN, 3093}; 3094 3095#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3096extern void clear_huge_page(struct page *page, 3097 unsigned long addr_hint, 3098 unsigned int pages_per_huge_page); 3099extern void copy_user_huge_page(struct page *dst, struct page *src, 3100 unsigned long addr_hint, 3101 struct vm_area_struct *vma, 3102 unsigned int pages_per_huge_page); 3103extern long copy_huge_page_from_user(struct page *dst_page, 3104 const void __user *usr_src, 3105 unsigned int pages_per_huge_page, 3106 bool allow_pagefault); 3107 3108/** 3109 * vma_is_special_huge - Are transhuge page-table entries considered special? 3110 * @vma: Pointer to the struct vm_area_struct to consider 3111 * 3112 * Whether transhuge page-table entries are considered "special" following 3113 * the definition in vm_normal_page(). 3114 * 3115 * Return: true if transhuge page-table entries should be considered special, 3116 * false otherwise. 3117 */ 3118static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3119{ 3120 return vma_is_dax(vma) || (vma->vm_file && 3121 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3122} 3123 3124#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3125 3126#ifdef CONFIG_DEBUG_PAGEALLOC 3127extern unsigned int _debug_guardpage_minorder; 3128DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3129 3130static inline unsigned int debug_guardpage_minorder(void) 3131{ 3132 return _debug_guardpage_minorder; 3133} 3134 3135static inline bool debug_guardpage_enabled(void) 3136{ 3137 return static_branch_unlikely(&_debug_guardpage_enabled); 3138} 3139 3140static inline bool page_is_guard(struct page *page) 3141{ 3142 if (!debug_guardpage_enabled()) 3143 return false; 3144 3145 return PageGuard(page); 3146} 3147#else 3148static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3149static inline bool debug_guardpage_enabled(void) { return false; } 3150static inline bool page_is_guard(struct page *page) { return false; } 3151#endif /* CONFIG_DEBUG_PAGEALLOC */ 3152 3153#if MAX_NUMNODES > 1 3154void __init setup_nr_node_ids(void); 3155#else 3156static inline void setup_nr_node_ids(void) {} 3157#endif 3158 3159extern int memcmp_pages(struct page *page1, struct page *page2); 3160 3161static inline int pages_identical(struct page *page1, struct page *page2) 3162{ 3163 return !memcmp_pages(page1, page2); 3164} 3165 3166#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3167unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3168 pgoff_t first_index, pgoff_t nr, 3169 pgoff_t bitmap_pgoff, 3170 unsigned long *bitmap, 3171 pgoff_t *start, 3172 pgoff_t *end); 3173 3174unsigned long wp_shared_mapping_range(struct address_space *mapping, 3175 pgoff_t first_index, pgoff_t nr); 3176#endif 3177 3178extern int sysctl_nr_trim_pages; 3179 3180#endif /* __KERNEL__ */ 3181#endif /* _LINUX_MM_H */