Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/mmap_lock.h>
19#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
27#include <linux/page-flags.h>
28#include <linux/page_ref.h>
29#include <linux/memremap.h>
30#include <linux/overflow.h>
31#include <linux/sizes.h>
32#include <linux/sched.h>
33#include <linux/pgtable.h>
34#include <linux/kasan.h>
35
36struct mempolicy;
37struct anon_vma;
38struct anon_vma_chain;
39struct file_ra_state;
40struct user_struct;
41struct writeback_control;
42struct bdi_writeback;
43struct pt_regs;
44
45extern int sysctl_page_lock_unfairness;
46
47void init_mm_internals(void);
48
49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
50extern unsigned long max_mapnr;
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
58#endif
59
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
81extern void * high_memory;
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
101#include <asm/page.h>
102#include <asm/processor.h>
103
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for arcitectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
127/*
128 * To prevent common memory management code establishing
129 * a zero page mapping on a read fault.
130 * This macro should be defined within <asm/pgtable.h>.
131 * s390 does this to prevent multiplexing of hardware bits
132 * related to the physical page in case of virtualization.
133 */
134#ifndef mm_forbids_zeropage
135#define mm_forbids_zeropage(X) (0)
136#endif
137
138/*
139 * On some architectures it is expensive to call memset() for small sizes.
140 * If an architecture decides to implement their own version of
141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142 * define their own version of this macro in <asm/pgtable.h>
143 */
144#if BITS_PER_LONG == 64
145/* This function must be updated when the size of struct page grows above 80
146 * or reduces below 56. The idea that compiler optimizes out switch()
147 * statement, and only leaves move/store instructions. Also the compiler can
148 * combine write statments if they are both assignments and can be reordered,
149 * this can result in several of the writes here being dropped.
150 */
151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152static inline void __mm_zero_struct_page(struct page *page)
153{
154 unsigned long *_pp = (void *)page;
155
156 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 BUILD_BUG_ON(sizeof(struct page) & 7);
158 BUILD_BUG_ON(sizeof(struct page) < 56);
159 BUILD_BUG_ON(sizeof(struct page) > 80);
160
161 switch (sizeof(struct page)) {
162 case 80:
163 _pp[9] = 0;
164 fallthrough;
165 case 72:
166 _pp[8] = 0;
167 fallthrough;
168 case 64:
169 _pp[7] = 0;
170 fallthrough;
171 case 56:
172 _pp[6] = 0;
173 _pp[5] = 0;
174 _pp[4] = 0;
175 _pp[3] = 0;
176 _pp[2] = 0;
177 _pp[1] = 0;
178 _pp[0] = 0;
179 }
180}
181#else
182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
183#endif
184
185/*
186 * Default maximum number of active map areas, this limits the number of vmas
187 * per mm struct. Users can overwrite this number by sysctl but there is a
188 * problem.
189 *
190 * When a program's coredump is generated as ELF format, a section is created
191 * per a vma. In ELF, the number of sections is represented in unsigned short.
192 * This means the number of sections should be smaller than 65535 at coredump.
193 * Because the kernel adds some informative sections to a image of program at
194 * generating coredump, we need some margin. The number of extra sections is
195 * 1-3 now and depends on arch. We use "5" as safe margin, here.
196 *
197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198 * not a hard limit any more. Although some userspace tools can be surprised by
199 * that.
200 */
201#define MAPCOUNT_ELF_CORE_MARGIN (5)
202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203
204extern int sysctl_max_map_count;
205
206extern unsigned long sysctl_user_reserve_kbytes;
207extern unsigned long sysctl_admin_reserve_kbytes;
208
209extern int sysctl_overcommit_memory;
210extern int sysctl_overcommit_ratio;
211extern unsigned long sysctl_overcommit_kbytes;
212
213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 loff_t *);
217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 loff_t *);
219/*
220 * Any attempt to mark this function as static leads to build failure
221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222 * is referred to by BPF code. This must be visible for error injection.
223 */
224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 pgoff_t index, gfp_t gfp, void **shadowp);
226
227#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
232/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234
235#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236
237/*
238 * Linux kernel virtual memory manager primitives.
239 * The idea being to have a "virtual" mm in the same way
240 * we have a virtual fs - giving a cleaner interface to the
241 * mm details, and allowing different kinds of memory mappings
242 * (from shared memory to executable loading to arbitrary
243 * mmap() functions).
244 */
245
246struct vm_area_struct *vm_area_alloc(struct mm_struct *);
247struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248void vm_area_free(struct vm_area_struct *);
249
250#ifndef CONFIG_MMU
251extern struct rb_root nommu_region_tree;
252extern struct rw_semaphore nommu_region_sem;
253
254extern unsigned int kobjsize(const void *objp);
255#endif
256
257/*
258 * vm_flags in vm_area_struct, see mm_types.h.
259 * When changing, update also include/trace/events/mmflags.h
260 */
261#define VM_NONE 0x00000000
262
263#define VM_READ 0x00000001 /* currently active flags */
264#define VM_WRITE 0x00000002
265#define VM_EXEC 0x00000004
266#define VM_SHARED 0x00000008
267
268/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
269#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
270#define VM_MAYWRITE 0x00000020
271#define VM_MAYEXEC 0x00000040
272#define VM_MAYSHARE 0x00000080
273
274#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
275#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
276#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
277#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
278#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
279
280#define VM_LOCKED 0x00002000
281#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
282
283 /* Used by sys_madvise() */
284#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
285#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
286
287#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
288#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
289#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
290#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
291#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
292#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
293#define VM_SYNC 0x00800000 /* Synchronous page faults */
294#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
295#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
296#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
297
298#ifdef CONFIG_MEM_SOFT_DIRTY
299# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
300#else
301# define VM_SOFTDIRTY 0
302#endif
303
304#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
305#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
306#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
307#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
308
309#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
311#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
312#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
313#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
314#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
315#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
316#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
317#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
318#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
319#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
320#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321
322#ifdef CONFIG_ARCH_HAS_PKEYS
323# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
324# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
325# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
326# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
327# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
328#ifdef CONFIG_PPC
329# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330#else
331# define VM_PKEY_BIT4 0
332#endif
333#endif /* CONFIG_ARCH_HAS_PKEYS */
334
335#if defined(CONFIG_X86)
336# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
337#elif defined(CONFIG_PPC)
338# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
339#elif defined(CONFIG_PARISC)
340# define VM_GROWSUP VM_ARCH_1
341#elif defined(CONFIG_IA64)
342# define VM_GROWSUP VM_ARCH_1
343#elif defined(CONFIG_SPARC64)
344# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
345# define VM_ARCH_CLEAR VM_SPARC_ADI
346#elif defined(CONFIG_ARM64)
347# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
348# define VM_ARCH_CLEAR VM_ARM64_BTI
349#elif !defined(CONFIG_MMU)
350# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
351#endif
352
353#if defined(CONFIG_ARM64_MTE)
354# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
355# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
356#else
357# define VM_MTE VM_NONE
358# define VM_MTE_ALLOWED VM_NONE
359#endif
360
361#ifndef VM_GROWSUP
362# define VM_GROWSUP VM_NONE
363#endif
364
365/* Bits set in the VMA until the stack is in its final location */
366#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
367
368#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369
370/* Common data flag combinations */
371#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
374 VM_MAYWRITE | VM_MAYEXEC)
375#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377
378#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
379#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
380#endif
381
382#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
383#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384#endif
385
386#ifdef CONFIG_STACK_GROWSUP
387#define VM_STACK VM_GROWSUP
388#else
389#define VM_STACK VM_GROWSDOWN
390#endif
391
392#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393
394/* VMA basic access permission flags */
395#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396
397
398/*
399 * Special vmas that are non-mergable, non-mlock()able.
400 */
401#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
402
403/* This mask prevents VMA from being scanned with khugepaged */
404#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405
406/* This mask defines which mm->def_flags a process can inherit its parent */
407#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
408
409/* This mask is used to clear all the VMA flags used by mlock */
410#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
411
412/* Arch-specific flags to clear when updating VM flags on protection change */
413#ifndef VM_ARCH_CLEAR
414# define VM_ARCH_CLEAR VM_NONE
415#endif
416#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417
418/*
419 * mapping from the currently active vm_flags protection bits (the
420 * low four bits) to a page protection mask..
421 */
422extern pgprot_t protection_map[16];
423
424/**
425 * Fault flag definitions.
426 *
427 * @FAULT_FLAG_WRITE: Fault was a write fault.
428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432 * @FAULT_FLAG_TRIED: The fault has been tried once.
433 * @FAULT_FLAG_USER: The fault originated in userspace.
434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
437 *
438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439 * whether we would allow page faults to retry by specifying these two
440 * fault flags correctly. Currently there can be three legal combinations:
441 *
442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
443 * this is the first try
444 *
445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
446 * we've already tried at least once
447 *
448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449 *
450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451 * be used. Note that page faults can be allowed to retry for multiple times,
452 * in which case we'll have an initial fault with flags (a) then later on
453 * continuous faults with flags (b). We should always try to detect pending
454 * signals before a retry to make sure the continuous page faults can still be
455 * interrupted if necessary.
456 */
457#define FAULT_FLAG_WRITE 0x01
458#define FAULT_FLAG_MKWRITE 0x02
459#define FAULT_FLAG_ALLOW_RETRY 0x04
460#define FAULT_FLAG_RETRY_NOWAIT 0x08
461#define FAULT_FLAG_KILLABLE 0x10
462#define FAULT_FLAG_TRIED 0x20
463#define FAULT_FLAG_USER 0x40
464#define FAULT_FLAG_REMOTE 0x80
465#define FAULT_FLAG_INSTRUCTION 0x100
466#define FAULT_FLAG_INTERRUPTIBLE 0x200
467
468/*
469 * The default fault flags that should be used by most of the
470 * arch-specific page fault handlers.
471 */
472#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
473 FAULT_FLAG_KILLABLE | \
474 FAULT_FLAG_INTERRUPTIBLE)
475
476/**
477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478 *
479 * This is mostly used for places where we want to try to avoid taking
480 * the mmap_lock for too long a time when waiting for another condition
481 * to change, in which case we can try to be polite to release the
482 * mmap_lock in the first round to avoid potential starvation of other
483 * processes that would also want the mmap_lock.
484 *
485 * Return: true if the page fault allows retry and this is the first
486 * attempt of the fault handling; false otherwise.
487 */
488static inline bool fault_flag_allow_retry_first(unsigned int flags)
489{
490 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 (!(flags & FAULT_FLAG_TRIED));
492}
493
494#define FAULT_FLAG_TRACE \
495 { FAULT_FLAG_WRITE, "WRITE" }, \
496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
500 { FAULT_FLAG_TRIED, "TRIED" }, \
501 { FAULT_FLAG_USER, "USER" }, \
502 { FAULT_FLAG_REMOTE, "REMOTE" }, \
503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
505
506/*
507 * vm_fault is filled by the pagefault handler and passed to the vma's
508 * ->fault function. The vma's ->fault is responsible for returning a bitmask
509 * of VM_FAULT_xxx flags that give details about how the fault was handled.
510 *
511 * MM layer fills up gfp_mask for page allocations but fault handler might
512 * alter it if its implementation requires a different allocation context.
513 *
514 * pgoff should be used in favour of virtual_address, if possible.
515 */
516struct vm_fault {
517 struct vm_area_struct *vma; /* Target VMA */
518 unsigned int flags; /* FAULT_FLAG_xxx flags */
519 gfp_t gfp_mask; /* gfp mask to be used for allocations */
520 pgoff_t pgoff; /* Logical page offset based on vma */
521 unsigned long address; /* Faulting virtual address */
522 pmd_t *pmd; /* Pointer to pmd entry matching
523 * the 'address' */
524 pud_t *pud; /* Pointer to pud entry matching
525 * the 'address'
526 */
527 pte_t orig_pte; /* Value of PTE at the time of fault */
528
529 struct page *cow_page; /* Page handler may use for COW fault */
530 struct page *page; /* ->fault handlers should return a
531 * page here, unless VM_FAULT_NOPAGE
532 * is set (which is also implied by
533 * VM_FAULT_ERROR).
534 */
535 /* These three entries are valid only while holding ptl lock */
536 pte_t *pte; /* Pointer to pte entry matching
537 * the 'address'. NULL if the page
538 * table hasn't been allocated.
539 */
540 spinlock_t *ptl; /* Page table lock.
541 * Protects pte page table if 'pte'
542 * is not NULL, otherwise pmd.
543 */
544 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
545 * vm_ops->map_pages() calls
546 * alloc_set_pte() from atomic context.
547 * do_fault_around() pre-allocates
548 * page table to avoid allocation from
549 * atomic context.
550 */
551};
552
553/* page entry size for vm->huge_fault() */
554enum page_entry_size {
555 PE_SIZE_PTE = 0,
556 PE_SIZE_PMD,
557 PE_SIZE_PUD,
558};
559
560/*
561 * These are the virtual MM functions - opening of an area, closing and
562 * unmapping it (needed to keep files on disk up-to-date etc), pointer
563 * to the functions called when a no-page or a wp-page exception occurs.
564 */
565struct vm_operations_struct {
566 void (*open)(struct vm_area_struct * area);
567 void (*close)(struct vm_area_struct * area);
568 /* Called any time before splitting to check if it's allowed */
569 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
570 int (*mremap)(struct vm_area_struct *area, unsigned long flags);
571 /*
572 * Called by mprotect() to make driver-specific permission
573 * checks before mprotect() is finalised. The VMA must not
574 * be modified. Returns 0 if eprotect() can proceed.
575 */
576 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
577 unsigned long end, unsigned long newflags);
578 vm_fault_t (*fault)(struct vm_fault *vmf);
579 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
580 enum page_entry_size pe_size);
581 void (*map_pages)(struct vm_fault *vmf,
582 pgoff_t start_pgoff, pgoff_t end_pgoff);
583 unsigned long (*pagesize)(struct vm_area_struct * area);
584
585 /* notification that a previously read-only page is about to become
586 * writable, if an error is returned it will cause a SIGBUS */
587 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
588
589 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
590 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
591
592 /* called by access_process_vm when get_user_pages() fails, typically
593 * for use by special VMAs that can switch between memory and hardware
594 */
595 int (*access)(struct vm_area_struct *vma, unsigned long addr,
596 void *buf, int len, int write);
597
598 /* Called by the /proc/PID/maps code to ask the vma whether it
599 * has a special name. Returning non-NULL will also cause this
600 * vma to be dumped unconditionally. */
601 const char *(*name)(struct vm_area_struct *vma);
602
603#ifdef CONFIG_NUMA
604 /*
605 * set_policy() op must add a reference to any non-NULL @new mempolicy
606 * to hold the policy upon return. Caller should pass NULL @new to
607 * remove a policy and fall back to surrounding context--i.e. do not
608 * install a MPOL_DEFAULT policy, nor the task or system default
609 * mempolicy.
610 */
611 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
612
613 /*
614 * get_policy() op must add reference [mpol_get()] to any policy at
615 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
616 * in mm/mempolicy.c will do this automatically.
617 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
618 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
619 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
620 * must return NULL--i.e., do not "fallback" to task or system default
621 * policy.
622 */
623 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
624 unsigned long addr);
625#endif
626 /*
627 * Called by vm_normal_page() for special PTEs to find the
628 * page for @addr. This is useful if the default behavior
629 * (using pte_page()) would not find the correct page.
630 */
631 struct page *(*find_special_page)(struct vm_area_struct *vma,
632 unsigned long addr);
633};
634
635static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
636{
637 static const struct vm_operations_struct dummy_vm_ops = {};
638
639 memset(vma, 0, sizeof(*vma));
640 vma->vm_mm = mm;
641 vma->vm_ops = &dummy_vm_ops;
642 INIT_LIST_HEAD(&vma->anon_vma_chain);
643}
644
645static inline void vma_set_anonymous(struct vm_area_struct *vma)
646{
647 vma->vm_ops = NULL;
648}
649
650static inline bool vma_is_anonymous(struct vm_area_struct *vma)
651{
652 return !vma->vm_ops;
653}
654
655static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
656{
657 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
658
659 if (!maybe_stack)
660 return false;
661
662 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
663 VM_STACK_INCOMPLETE_SETUP)
664 return true;
665
666 return false;
667}
668
669static inline bool vma_is_foreign(struct vm_area_struct *vma)
670{
671 if (!current->mm)
672 return true;
673
674 if (current->mm != vma->vm_mm)
675 return true;
676
677 return false;
678}
679
680static inline bool vma_is_accessible(struct vm_area_struct *vma)
681{
682 return vma->vm_flags & VM_ACCESS_FLAGS;
683}
684
685#ifdef CONFIG_SHMEM
686/*
687 * The vma_is_shmem is not inline because it is used only by slow
688 * paths in userfault.
689 */
690bool vma_is_shmem(struct vm_area_struct *vma);
691#else
692static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
693#endif
694
695int vma_is_stack_for_current(struct vm_area_struct *vma);
696
697/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
698#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
699
700struct mmu_gather;
701struct inode;
702
703#include <linux/huge_mm.h>
704
705/*
706 * Methods to modify the page usage count.
707 *
708 * What counts for a page usage:
709 * - cache mapping (page->mapping)
710 * - private data (page->private)
711 * - page mapped in a task's page tables, each mapping
712 * is counted separately
713 *
714 * Also, many kernel routines increase the page count before a critical
715 * routine so they can be sure the page doesn't go away from under them.
716 */
717
718/*
719 * Drop a ref, return true if the refcount fell to zero (the page has no users)
720 */
721static inline int put_page_testzero(struct page *page)
722{
723 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
724 return page_ref_dec_and_test(page);
725}
726
727/*
728 * Try to grab a ref unless the page has a refcount of zero, return false if
729 * that is the case.
730 * This can be called when MMU is off so it must not access
731 * any of the virtual mappings.
732 */
733static inline int get_page_unless_zero(struct page *page)
734{
735 return page_ref_add_unless(page, 1, 0);
736}
737
738extern int page_is_ram(unsigned long pfn);
739
740enum {
741 REGION_INTERSECTS,
742 REGION_DISJOINT,
743 REGION_MIXED,
744};
745
746int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
747 unsigned long desc);
748
749/* Support for virtually mapped pages */
750struct page *vmalloc_to_page(const void *addr);
751unsigned long vmalloc_to_pfn(const void *addr);
752
753/*
754 * Determine if an address is within the vmalloc range
755 *
756 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
757 * is no special casing required.
758 */
759
760#ifndef is_ioremap_addr
761#define is_ioremap_addr(x) is_vmalloc_addr(x)
762#endif
763
764#ifdef CONFIG_MMU
765extern bool is_vmalloc_addr(const void *x);
766extern int is_vmalloc_or_module_addr(const void *x);
767#else
768static inline bool is_vmalloc_addr(const void *x)
769{
770 return false;
771}
772static inline int is_vmalloc_or_module_addr(const void *x)
773{
774 return 0;
775}
776#endif
777
778extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
779static inline void *kvmalloc(size_t size, gfp_t flags)
780{
781 return kvmalloc_node(size, flags, NUMA_NO_NODE);
782}
783static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
784{
785 return kvmalloc_node(size, flags | __GFP_ZERO, node);
786}
787static inline void *kvzalloc(size_t size, gfp_t flags)
788{
789 return kvmalloc(size, flags | __GFP_ZERO);
790}
791
792static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
793{
794 size_t bytes;
795
796 if (unlikely(check_mul_overflow(n, size, &bytes)))
797 return NULL;
798
799 return kvmalloc(bytes, flags);
800}
801
802static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
803{
804 return kvmalloc_array(n, size, flags | __GFP_ZERO);
805}
806
807extern void kvfree(const void *addr);
808extern void kvfree_sensitive(const void *addr, size_t len);
809
810static inline int head_compound_mapcount(struct page *head)
811{
812 return atomic_read(compound_mapcount_ptr(head)) + 1;
813}
814
815/*
816 * Mapcount of compound page as a whole, does not include mapped sub-pages.
817 *
818 * Must be called only for compound pages or any their tail sub-pages.
819 */
820static inline int compound_mapcount(struct page *page)
821{
822 VM_BUG_ON_PAGE(!PageCompound(page), page);
823 page = compound_head(page);
824 return head_compound_mapcount(page);
825}
826
827/*
828 * The atomic page->_mapcount, starts from -1: so that transitions
829 * both from it and to it can be tracked, using atomic_inc_and_test
830 * and atomic_add_negative(-1).
831 */
832static inline void page_mapcount_reset(struct page *page)
833{
834 atomic_set(&(page)->_mapcount, -1);
835}
836
837int __page_mapcount(struct page *page);
838
839/*
840 * Mapcount of 0-order page; when compound sub-page, includes
841 * compound_mapcount().
842 *
843 * Result is undefined for pages which cannot be mapped into userspace.
844 * For example SLAB or special types of pages. See function page_has_type().
845 * They use this place in struct page differently.
846 */
847static inline int page_mapcount(struct page *page)
848{
849 if (unlikely(PageCompound(page)))
850 return __page_mapcount(page);
851 return atomic_read(&page->_mapcount) + 1;
852}
853
854#ifdef CONFIG_TRANSPARENT_HUGEPAGE
855int total_mapcount(struct page *page);
856int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
857#else
858static inline int total_mapcount(struct page *page)
859{
860 return page_mapcount(page);
861}
862static inline int page_trans_huge_mapcount(struct page *page,
863 int *total_mapcount)
864{
865 int mapcount = page_mapcount(page);
866 if (total_mapcount)
867 *total_mapcount = mapcount;
868 return mapcount;
869}
870#endif
871
872static inline struct page *virt_to_head_page(const void *x)
873{
874 struct page *page = virt_to_page(x);
875
876 return compound_head(page);
877}
878
879void __put_page(struct page *page);
880
881void put_pages_list(struct list_head *pages);
882
883void split_page(struct page *page, unsigned int order);
884
885/*
886 * Compound pages have a destructor function. Provide a
887 * prototype for that function and accessor functions.
888 * These are _only_ valid on the head of a compound page.
889 */
890typedef void compound_page_dtor(struct page *);
891
892/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
893enum compound_dtor_id {
894 NULL_COMPOUND_DTOR,
895 COMPOUND_PAGE_DTOR,
896#ifdef CONFIG_HUGETLB_PAGE
897 HUGETLB_PAGE_DTOR,
898#endif
899#ifdef CONFIG_TRANSPARENT_HUGEPAGE
900 TRANSHUGE_PAGE_DTOR,
901#endif
902 NR_COMPOUND_DTORS,
903};
904extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
905
906static inline void set_compound_page_dtor(struct page *page,
907 enum compound_dtor_id compound_dtor)
908{
909 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
910 page[1].compound_dtor = compound_dtor;
911}
912
913static inline void destroy_compound_page(struct page *page)
914{
915 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
916 compound_page_dtors[page[1].compound_dtor](page);
917}
918
919static inline unsigned int compound_order(struct page *page)
920{
921 if (!PageHead(page))
922 return 0;
923 return page[1].compound_order;
924}
925
926static inline bool hpage_pincount_available(struct page *page)
927{
928 /*
929 * Can the page->hpage_pinned_refcount field be used? That field is in
930 * the 3rd page of the compound page, so the smallest (2-page) compound
931 * pages cannot support it.
932 */
933 page = compound_head(page);
934 return PageCompound(page) && compound_order(page) > 1;
935}
936
937static inline int head_compound_pincount(struct page *head)
938{
939 return atomic_read(compound_pincount_ptr(head));
940}
941
942static inline int compound_pincount(struct page *page)
943{
944 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
945 page = compound_head(page);
946 return head_compound_pincount(page);
947}
948
949static inline void set_compound_order(struct page *page, unsigned int order)
950{
951 page[1].compound_order = order;
952 page[1].compound_nr = 1U << order;
953}
954
955/* Returns the number of pages in this potentially compound page. */
956static inline unsigned long compound_nr(struct page *page)
957{
958 if (!PageHead(page))
959 return 1;
960 return page[1].compound_nr;
961}
962
963/* Returns the number of bytes in this potentially compound page. */
964static inline unsigned long page_size(struct page *page)
965{
966 return PAGE_SIZE << compound_order(page);
967}
968
969/* Returns the number of bits needed for the number of bytes in a page */
970static inline unsigned int page_shift(struct page *page)
971{
972 return PAGE_SHIFT + compound_order(page);
973}
974
975void free_compound_page(struct page *page);
976
977#ifdef CONFIG_MMU
978/*
979 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
980 * servicing faults for write access. In the normal case, do always want
981 * pte_mkwrite. But get_user_pages can cause write faults for mappings
982 * that do not have writing enabled, when used by access_process_vm.
983 */
984static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
985{
986 if (likely(vma->vm_flags & VM_WRITE))
987 pte = pte_mkwrite(pte);
988 return pte;
989}
990
991vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
992vm_fault_t finish_fault(struct vm_fault *vmf);
993vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
994#endif
995
996/*
997 * Multiple processes may "see" the same page. E.g. for untouched
998 * mappings of /dev/null, all processes see the same page full of
999 * zeroes, and text pages of executables and shared libraries have
1000 * only one copy in memory, at most, normally.
1001 *
1002 * For the non-reserved pages, page_count(page) denotes a reference count.
1003 * page_count() == 0 means the page is free. page->lru is then used for
1004 * freelist management in the buddy allocator.
1005 * page_count() > 0 means the page has been allocated.
1006 *
1007 * Pages are allocated by the slab allocator in order to provide memory
1008 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1009 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1010 * unless a particular usage is carefully commented. (the responsibility of
1011 * freeing the kmalloc memory is the caller's, of course).
1012 *
1013 * A page may be used by anyone else who does a __get_free_page().
1014 * In this case, page_count still tracks the references, and should only
1015 * be used through the normal accessor functions. The top bits of page->flags
1016 * and page->virtual store page management information, but all other fields
1017 * are unused and could be used privately, carefully. The management of this
1018 * page is the responsibility of the one who allocated it, and those who have
1019 * subsequently been given references to it.
1020 *
1021 * The other pages (we may call them "pagecache pages") are completely
1022 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1023 * The following discussion applies only to them.
1024 *
1025 * A pagecache page contains an opaque `private' member, which belongs to the
1026 * page's address_space. Usually, this is the address of a circular list of
1027 * the page's disk buffers. PG_private must be set to tell the VM to call
1028 * into the filesystem to release these pages.
1029 *
1030 * A page may belong to an inode's memory mapping. In this case, page->mapping
1031 * is the pointer to the inode, and page->index is the file offset of the page,
1032 * in units of PAGE_SIZE.
1033 *
1034 * If pagecache pages are not associated with an inode, they are said to be
1035 * anonymous pages. These may become associated with the swapcache, and in that
1036 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1037 *
1038 * In either case (swapcache or inode backed), the pagecache itself holds one
1039 * reference to the page. Setting PG_private should also increment the
1040 * refcount. The each user mapping also has a reference to the page.
1041 *
1042 * The pagecache pages are stored in a per-mapping radix tree, which is
1043 * rooted at mapping->i_pages, and indexed by offset.
1044 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1045 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1046 *
1047 * All pagecache pages may be subject to I/O:
1048 * - inode pages may need to be read from disk,
1049 * - inode pages which have been modified and are MAP_SHARED may need
1050 * to be written back to the inode on disk,
1051 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1052 * modified may need to be swapped out to swap space and (later) to be read
1053 * back into memory.
1054 */
1055
1056/*
1057 * The zone field is never updated after free_area_init_core()
1058 * sets it, so none of the operations on it need to be atomic.
1059 */
1060
1061/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1062#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1063#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1064#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1065#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1066#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1067
1068/*
1069 * Define the bit shifts to access each section. For non-existent
1070 * sections we define the shift as 0; that plus a 0 mask ensures
1071 * the compiler will optimise away reference to them.
1072 */
1073#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1074#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1075#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1076#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1077#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1078
1079/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1080#ifdef NODE_NOT_IN_PAGE_FLAGS
1081#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1082#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1083 SECTIONS_PGOFF : ZONES_PGOFF)
1084#else
1085#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1086#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1087 NODES_PGOFF : ZONES_PGOFF)
1088#endif
1089
1090#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1091
1092#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1093#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1094#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1095#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1096#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1097#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1098
1099static inline enum zone_type page_zonenum(const struct page *page)
1100{
1101 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1102 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1103}
1104
1105#ifdef CONFIG_ZONE_DEVICE
1106static inline bool is_zone_device_page(const struct page *page)
1107{
1108 return page_zonenum(page) == ZONE_DEVICE;
1109}
1110extern void memmap_init_zone_device(struct zone *, unsigned long,
1111 unsigned long, struct dev_pagemap *);
1112#else
1113static inline bool is_zone_device_page(const struct page *page)
1114{
1115 return false;
1116}
1117#endif
1118
1119#ifdef CONFIG_DEV_PAGEMAP_OPS
1120void free_devmap_managed_page(struct page *page);
1121DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1122
1123static inline bool page_is_devmap_managed(struct page *page)
1124{
1125 if (!static_branch_unlikely(&devmap_managed_key))
1126 return false;
1127 if (!is_zone_device_page(page))
1128 return false;
1129 switch (page->pgmap->type) {
1130 case MEMORY_DEVICE_PRIVATE:
1131 case MEMORY_DEVICE_FS_DAX:
1132 return true;
1133 default:
1134 break;
1135 }
1136 return false;
1137}
1138
1139void put_devmap_managed_page(struct page *page);
1140
1141#else /* CONFIG_DEV_PAGEMAP_OPS */
1142static inline bool page_is_devmap_managed(struct page *page)
1143{
1144 return false;
1145}
1146
1147static inline void put_devmap_managed_page(struct page *page)
1148{
1149}
1150#endif /* CONFIG_DEV_PAGEMAP_OPS */
1151
1152static inline bool is_device_private_page(const struct page *page)
1153{
1154 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1155 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1156 is_zone_device_page(page) &&
1157 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1158}
1159
1160static inline bool is_pci_p2pdma_page(const struct page *page)
1161{
1162 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1163 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1164 is_zone_device_page(page) &&
1165 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1166}
1167
1168/* 127: arbitrary random number, small enough to assemble well */
1169#define page_ref_zero_or_close_to_overflow(page) \
1170 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1171
1172static inline void get_page(struct page *page)
1173{
1174 page = compound_head(page);
1175 /*
1176 * Getting a normal page or the head of a compound page
1177 * requires to already have an elevated page->_refcount.
1178 */
1179 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1180 page_ref_inc(page);
1181}
1182
1183bool __must_check try_grab_page(struct page *page, unsigned int flags);
1184
1185static inline __must_check bool try_get_page(struct page *page)
1186{
1187 page = compound_head(page);
1188 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1189 return false;
1190 page_ref_inc(page);
1191 return true;
1192}
1193
1194static inline void put_page(struct page *page)
1195{
1196 page = compound_head(page);
1197
1198 /*
1199 * For devmap managed pages we need to catch refcount transition from
1200 * 2 to 1, when refcount reach one it means the page is free and we
1201 * need to inform the device driver through callback. See
1202 * include/linux/memremap.h and HMM for details.
1203 */
1204 if (page_is_devmap_managed(page)) {
1205 put_devmap_managed_page(page);
1206 return;
1207 }
1208
1209 if (put_page_testzero(page))
1210 __put_page(page);
1211}
1212
1213/*
1214 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1215 * the page's refcount so that two separate items are tracked: the original page
1216 * reference count, and also a new count of how many pin_user_pages() calls were
1217 * made against the page. ("gup-pinned" is another term for the latter).
1218 *
1219 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1220 * distinct from normal pages. As such, the unpin_user_page() call (and its
1221 * variants) must be used in order to release gup-pinned pages.
1222 *
1223 * Choice of value:
1224 *
1225 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1226 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1227 * simpler, due to the fact that adding an even power of two to the page
1228 * refcount has the effect of using only the upper N bits, for the code that
1229 * counts up using the bias value. This means that the lower bits are left for
1230 * the exclusive use of the original code that increments and decrements by one
1231 * (or at least, by much smaller values than the bias value).
1232 *
1233 * Of course, once the lower bits overflow into the upper bits (and this is
1234 * OK, because subtraction recovers the original values), then visual inspection
1235 * no longer suffices to directly view the separate counts. However, for normal
1236 * applications that don't have huge page reference counts, this won't be an
1237 * issue.
1238 *
1239 * Locking: the lockless algorithm described in page_cache_get_speculative()
1240 * and page_cache_gup_pin_speculative() provides safe operation for
1241 * get_user_pages and page_mkclean and other calls that race to set up page
1242 * table entries.
1243 */
1244#define GUP_PIN_COUNTING_BIAS (1U << 10)
1245
1246void unpin_user_page(struct page *page);
1247void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 bool make_dirty);
1249void unpin_user_pages(struct page **pages, unsigned long npages);
1250
1251/**
1252 * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1253 *
1254 * This function checks if a page has been pinned via a call to
1255 * pin_user_pages*().
1256 *
1257 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1258 * because it means "definitely not pinned for DMA", but true means "probably
1259 * pinned for DMA, but possibly a false positive due to having at least
1260 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1261 *
1262 * False positives are OK, because: a) it's unlikely for a page to get that many
1263 * refcounts, and b) all the callers of this routine are expected to be able to
1264 * deal gracefully with a false positive.
1265 *
1266 * For huge pages, the result will be exactly correct. That's because we have
1267 * more tracking data available: the 3rd struct page in the compound page is
1268 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1269 * scheme).
1270 *
1271 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1272 *
1273 * @page: pointer to page to be queried.
1274 * @Return: True, if it is likely that the page has been "dma-pinned".
1275 * False, if the page is definitely not dma-pinned.
1276 */
1277static inline bool page_maybe_dma_pinned(struct page *page)
1278{
1279 if (hpage_pincount_available(page))
1280 return compound_pincount(page) > 0;
1281
1282 /*
1283 * page_ref_count() is signed. If that refcount overflows, then
1284 * page_ref_count() returns a negative value, and callers will avoid
1285 * further incrementing the refcount.
1286 *
1287 * Here, for that overflow case, use the signed bit to count a little
1288 * bit higher via unsigned math, and thus still get an accurate result.
1289 */
1290 return ((unsigned int)page_ref_count(compound_head(page))) >=
1291 GUP_PIN_COUNTING_BIAS;
1292}
1293
1294#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1295#define SECTION_IN_PAGE_FLAGS
1296#endif
1297
1298/*
1299 * The identification function is mainly used by the buddy allocator for
1300 * determining if two pages could be buddies. We are not really identifying
1301 * the zone since we could be using the section number id if we do not have
1302 * node id available in page flags.
1303 * We only guarantee that it will return the same value for two combinable
1304 * pages in a zone.
1305 */
1306static inline int page_zone_id(struct page *page)
1307{
1308 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1309}
1310
1311#ifdef NODE_NOT_IN_PAGE_FLAGS
1312extern int page_to_nid(const struct page *page);
1313#else
1314static inline int page_to_nid(const struct page *page)
1315{
1316 struct page *p = (struct page *)page;
1317
1318 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1319}
1320#endif
1321
1322#ifdef CONFIG_NUMA_BALANCING
1323static inline int cpu_pid_to_cpupid(int cpu, int pid)
1324{
1325 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1326}
1327
1328static inline int cpupid_to_pid(int cpupid)
1329{
1330 return cpupid & LAST__PID_MASK;
1331}
1332
1333static inline int cpupid_to_cpu(int cpupid)
1334{
1335 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1336}
1337
1338static inline int cpupid_to_nid(int cpupid)
1339{
1340 return cpu_to_node(cpupid_to_cpu(cpupid));
1341}
1342
1343static inline bool cpupid_pid_unset(int cpupid)
1344{
1345 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1346}
1347
1348static inline bool cpupid_cpu_unset(int cpupid)
1349{
1350 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1351}
1352
1353static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1354{
1355 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1356}
1357
1358#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1359#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1360static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1361{
1362 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1363}
1364
1365static inline int page_cpupid_last(struct page *page)
1366{
1367 return page->_last_cpupid;
1368}
1369static inline void page_cpupid_reset_last(struct page *page)
1370{
1371 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1372}
1373#else
1374static inline int page_cpupid_last(struct page *page)
1375{
1376 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1377}
1378
1379extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1380
1381static inline void page_cpupid_reset_last(struct page *page)
1382{
1383 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1384}
1385#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1386#else /* !CONFIG_NUMA_BALANCING */
1387static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1388{
1389 return page_to_nid(page); /* XXX */
1390}
1391
1392static inline int page_cpupid_last(struct page *page)
1393{
1394 return page_to_nid(page); /* XXX */
1395}
1396
1397static inline int cpupid_to_nid(int cpupid)
1398{
1399 return -1;
1400}
1401
1402static inline int cpupid_to_pid(int cpupid)
1403{
1404 return -1;
1405}
1406
1407static inline int cpupid_to_cpu(int cpupid)
1408{
1409 return -1;
1410}
1411
1412static inline int cpu_pid_to_cpupid(int nid, int pid)
1413{
1414 return -1;
1415}
1416
1417static inline bool cpupid_pid_unset(int cpupid)
1418{
1419 return true;
1420}
1421
1422static inline void page_cpupid_reset_last(struct page *page)
1423{
1424}
1425
1426static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1427{
1428 return false;
1429}
1430#endif /* CONFIG_NUMA_BALANCING */
1431
1432#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1433
1434static inline u8 page_kasan_tag(const struct page *page)
1435{
1436 if (kasan_enabled())
1437 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1438 return 0xff;
1439}
1440
1441static inline void page_kasan_tag_set(struct page *page, u8 tag)
1442{
1443 if (kasan_enabled()) {
1444 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1445 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1446 }
1447}
1448
1449static inline void page_kasan_tag_reset(struct page *page)
1450{
1451 if (kasan_enabled())
1452 page_kasan_tag_set(page, 0xff);
1453}
1454
1455#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1456
1457static inline u8 page_kasan_tag(const struct page *page)
1458{
1459 return 0xff;
1460}
1461
1462static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1463static inline void page_kasan_tag_reset(struct page *page) { }
1464
1465#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1466
1467static inline struct zone *page_zone(const struct page *page)
1468{
1469 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1470}
1471
1472static inline pg_data_t *page_pgdat(const struct page *page)
1473{
1474 return NODE_DATA(page_to_nid(page));
1475}
1476
1477#ifdef SECTION_IN_PAGE_FLAGS
1478static inline void set_page_section(struct page *page, unsigned long section)
1479{
1480 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1481 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1482}
1483
1484static inline unsigned long page_to_section(const struct page *page)
1485{
1486 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1487}
1488#endif
1489
1490static inline void set_page_zone(struct page *page, enum zone_type zone)
1491{
1492 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1493 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1494}
1495
1496static inline void set_page_node(struct page *page, unsigned long node)
1497{
1498 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1499 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1500}
1501
1502static inline void set_page_links(struct page *page, enum zone_type zone,
1503 unsigned long node, unsigned long pfn)
1504{
1505 set_page_zone(page, zone);
1506 set_page_node(page, node);
1507#ifdef SECTION_IN_PAGE_FLAGS
1508 set_page_section(page, pfn_to_section_nr(pfn));
1509#endif
1510}
1511
1512/*
1513 * Some inline functions in vmstat.h depend on page_zone()
1514 */
1515#include <linux/vmstat.h>
1516
1517static __always_inline void *lowmem_page_address(const struct page *page)
1518{
1519 return page_to_virt(page);
1520}
1521
1522#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1523#define HASHED_PAGE_VIRTUAL
1524#endif
1525
1526#if defined(WANT_PAGE_VIRTUAL)
1527static inline void *page_address(const struct page *page)
1528{
1529 return page->virtual;
1530}
1531static inline void set_page_address(struct page *page, void *address)
1532{
1533 page->virtual = address;
1534}
1535#define page_address_init() do { } while(0)
1536#endif
1537
1538#if defined(HASHED_PAGE_VIRTUAL)
1539void *page_address(const struct page *page);
1540void set_page_address(struct page *page, void *virtual);
1541void page_address_init(void);
1542#endif
1543
1544#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1545#define page_address(page) lowmem_page_address(page)
1546#define set_page_address(page, address) do { } while(0)
1547#define page_address_init() do { } while(0)
1548#endif
1549
1550extern void *page_rmapping(struct page *page);
1551extern struct anon_vma *page_anon_vma(struct page *page);
1552extern struct address_space *page_mapping(struct page *page);
1553
1554extern struct address_space *__page_file_mapping(struct page *);
1555
1556static inline
1557struct address_space *page_file_mapping(struct page *page)
1558{
1559 if (unlikely(PageSwapCache(page)))
1560 return __page_file_mapping(page);
1561
1562 return page->mapping;
1563}
1564
1565extern pgoff_t __page_file_index(struct page *page);
1566
1567/*
1568 * Return the pagecache index of the passed page. Regular pagecache pages
1569 * use ->index whereas swapcache pages use swp_offset(->private)
1570 */
1571static inline pgoff_t page_index(struct page *page)
1572{
1573 if (unlikely(PageSwapCache(page)))
1574 return __page_file_index(page);
1575 return page->index;
1576}
1577
1578bool page_mapped(struct page *page);
1579struct address_space *page_mapping(struct page *page);
1580struct address_space *page_mapping_file(struct page *page);
1581
1582/*
1583 * Return true only if the page has been allocated with
1584 * ALLOC_NO_WATERMARKS and the low watermark was not
1585 * met implying that the system is under some pressure.
1586 */
1587static inline bool page_is_pfmemalloc(struct page *page)
1588{
1589 /*
1590 * Page index cannot be this large so this must be
1591 * a pfmemalloc page.
1592 */
1593 return page->index == -1UL;
1594}
1595
1596/*
1597 * Only to be called by the page allocator on a freshly allocated
1598 * page.
1599 */
1600static inline void set_page_pfmemalloc(struct page *page)
1601{
1602 page->index = -1UL;
1603}
1604
1605static inline void clear_page_pfmemalloc(struct page *page)
1606{
1607 page->index = 0;
1608}
1609
1610/*
1611 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1612 */
1613extern void pagefault_out_of_memory(void);
1614
1615#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1616#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1617
1618/*
1619 * Flags passed to show_mem() and show_free_areas() to suppress output in
1620 * various contexts.
1621 */
1622#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1623
1624extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1625
1626#ifdef CONFIG_MMU
1627extern bool can_do_mlock(void);
1628#else
1629static inline bool can_do_mlock(void) { return false; }
1630#endif
1631extern int user_shm_lock(size_t, struct user_struct *);
1632extern void user_shm_unlock(size_t, struct user_struct *);
1633
1634/*
1635 * Parameter block passed down to zap_pte_range in exceptional cases.
1636 */
1637struct zap_details {
1638 struct address_space *check_mapping; /* Check page->mapping if set */
1639 pgoff_t first_index; /* Lowest page->index to unmap */
1640 pgoff_t last_index; /* Highest page->index to unmap */
1641};
1642
1643struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1644 pte_t pte);
1645struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1646 pmd_t pmd);
1647
1648void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1649 unsigned long size);
1650void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1651 unsigned long size);
1652void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1653 unsigned long start, unsigned long end);
1654
1655struct mmu_notifier_range;
1656
1657void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1658 unsigned long end, unsigned long floor, unsigned long ceiling);
1659int
1660copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1661int follow_pte(struct mm_struct *mm, unsigned long address,
1662 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1663 spinlock_t **ptlp);
1664int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1665 unsigned long *pfn);
1666int follow_phys(struct vm_area_struct *vma, unsigned long address,
1667 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1668int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1669 void *buf, int len, int write);
1670
1671extern void truncate_pagecache(struct inode *inode, loff_t new);
1672extern void truncate_setsize(struct inode *inode, loff_t newsize);
1673void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1674void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1675int truncate_inode_page(struct address_space *mapping, struct page *page);
1676int generic_error_remove_page(struct address_space *mapping, struct page *page);
1677int invalidate_inode_page(struct page *page);
1678
1679#ifdef CONFIG_MMU
1680extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1681 unsigned long address, unsigned int flags,
1682 struct pt_regs *regs);
1683extern int fixup_user_fault(struct mm_struct *mm,
1684 unsigned long address, unsigned int fault_flags,
1685 bool *unlocked);
1686void unmap_mapping_pages(struct address_space *mapping,
1687 pgoff_t start, pgoff_t nr, bool even_cows);
1688void unmap_mapping_range(struct address_space *mapping,
1689 loff_t const holebegin, loff_t const holelen, int even_cows);
1690#else
1691static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1692 unsigned long address, unsigned int flags,
1693 struct pt_regs *regs)
1694{
1695 /* should never happen if there's no MMU */
1696 BUG();
1697 return VM_FAULT_SIGBUS;
1698}
1699static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1700 unsigned int fault_flags, bool *unlocked)
1701{
1702 /* should never happen if there's no MMU */
1703 BUG();
1704 return -EFAULT;
1705}
1706static inline void unmap_mapping_pages(struct address_space *mapping,
1707 pgoff_t start, pgoff_t nr, bool even_cows) { }
1708static inline void unmap_mapping_range(struct address_space *mapping,
1709 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1710#endif
1711
1712static inline void unmap_shared_mapping_range(struct address_space *mapping,
1713 loff_t const holebegin, loff_t const holelen)
1714{
1715 unmap_mapping_range(mapping, holebegin, holelen, 0);
1716}
1717
1718extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1719 void *buf, int len, unsigned int gup_flags);
1720extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1721 void *buf, int len, unsigned int gup_flags);
1722extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1723 void *buf, int len, unsigned int gup_flags);
1724
1725long get_user_pages_remote(struct mm_struct *mm,
1726 unsigned long start, unsigned long nr_pages,
1727 unsigned int gup_flags, struct page **pages,
1728 struct vm_area_struct **vmas, int *locked);
1729long pin_user_pages_remote(struct mm_struct *mm,
1730 unsigned long start, unsigned long nr_pages,
1731 unsigned int gup_flags, struct page **pages,
1732 struct vm_area_struct **vmas, int *locked);
1733long get_user_pages(unsigned long start, unsigned long nr_pages,
1734 unsigned int gup_flags, struct page **pages,
1735 struct vm_area_struct **vmas);
1736long pin_user_pages(unsigned long start, unsigned long nr_pages,
1737 unsigned int gup_flags, struct page **pages,
1738 struct vm_area_struct **vmas);
1739long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1740 unsigned int gup_flags, struct page **pages, int *locked);
1741long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1742 unsigned int gup_flags, struct page **pages, int *locked);
1743long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1744 struct page **pages, unsigned int gup_flags);
1745long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1746 struct page **pages, unsigned int gup_flags);
1747
1748int get_user_pages_fast(unsigned long start, int nr_pages,
1749 unsigned int gup_flags, struct page **pages);
1750int pin_user_pages_fast(unsigned long start, int nr_pages,
1751 unsigned int gup_flags, struct page **pages);
1752
1753int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1754int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1755 struct task_struct *task, bool bypass_rlim);
1756
1757/* Container for pinned pfns / pages */
1758struct frame_vector {
1759 unsigned int nr_allocated; /* Number of frames we have space for */
1760 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1761 bool got_ref; /* Did we pin pages by getting page ref? */
1762 bool is_pfns; /* Does array contain pages or pfns? */
1763 void *ptrs[]; /* Array of pinned pfns / pages. Use
1764 * pfns_vector_pages() or pfns_vector_pfns()
1765 * for access */
1766};
1767
1768struct frame_vector *frame_vector_create(unsigned int nr_frames);
1769void frame_vector_destroy(struct frame_vector *vec);
1770int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1771 unsigned int gup_flags, struct frame_vector *vec);
1772void put_vaddr_frames(struct frame_vector *vec);
1773int frame_vector_to_pages(struct frame_vector *vec);
1774void frame_vector_to_pfns(struct frame_vector *vec);
1775
1776static inline unsigned int frame_vector_count(struct frame_vector *vec)
1777{
1778 return vec->nr_frames;
1779}
1780
1781static inline struct page **frame_vector_pages(struct frame_vector *vec)
1782{
1783 if (vec->is_pfns) {
1784 int err = frame_vector_to_pages(vec);
1785
1786 if (err)
1787 return ERR_PTR(err);
1788 }
1789 return (struct page **)(vec->ptrs);
1790}
1791
1792static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1793{
1794 if (!vec->is_pfns)
1795 frame_vector_to_pfns(vec);
1796 return (unsigned long *)(vec->ptrs);
1797}
1798
1799struct kvec;
1800int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1801 struct page **pages);
1802int get_kernel_page(unsigned long start, int write, struct page **pages);
1803struct page *get_dump_page(unsigned long addr);
1804
1805extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1806extern void do_invalidatepage(struct page *page, unsigned int offset,
1807 unsigned int length);
1808
1809void __set_page_dirty(struct page *, struct address_space *, int warn);
1810int __set_page_dirty_nobuffers(struct page *page);
1811int __set_page_dirty_no_writeback(struct page *page);
1812int redirty_page_for_writepage(struct writeback_control *wbc,
1813 struct page *page);
1814void account_page_dirtied(struct page *page, struct address_space *mapping);
1815void account_page_cleaned(struct page *page, struct address_space *mapping,
1816 struct bdi_writeback *wb);
1817int set_page_dirty(struct page *page);
1818int set_page_dirty_lock(struct page *page);
1819void __cancel_dirty_page(struct page *page);
1820static inline void cancel_dirty_page(struct page *page)
1821{
1822 /* Avoid atomic ops, locking, etc. when not actually needed. */
1823 if (PageDirty(page))
1824 __cancel_dirty_page(page);
1825}
1826int clear_page_dirty_for_io(struct page *page);
1827
1828int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1829
1830extern unsigned long move_page_tables(struct vm_area_struct *vma,
1831 unsigned long old_addr, struct vm_area_struct *new_vma,
1832 unsigned long new_addr, unsigned long len,
1833 bool need_rmap_locks);
1834
1835/*
1836 * Flags used by change_protection(). For now we make it a bitmap so
1837 * that we can pass in multiple flags just like parameters. However
1838 * for now all the callers are only use one of the flags at the same
1839 * time.
1840 */
1841/* Whether we should allow dirty bit accounting */
1842#define MM_CP_DIRTY_ACCT (1UL << 0)
1843/* Whether this protection change is for NUMA hints */
1844#define MM_CP_PROT_NUMA (1UL << 1)
1845/* Whether this change is for write protecting */
1846#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1847#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1848#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1849 MM_CP_UFFD_WP_RESOLVE)
1850
1851extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1852 unsigned long end, pgprot_t newprot,
1853 unsigned long cp_flags);
1854extern int mprotect_fixup(struct vm_area_struct *vma,
1855 struct vm_area_struct **pprev, unsigned long start,
1856 unsigned long end, unsigned long newflags);
1857
1858/*
1859 * doesn't attempt to fault and will return short.
1860 */
1861int get_user_pages_fast_only(unsigned long start, int nr_pages,
1862 unsigned int gup_flags, struct page **pages);
1863int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1864 unsigned int gup_flags, struct page **pages);
1865
1866static inline bool get_user_page_fast_only(unsigned long addr,
1867 unsigned int gup_flags, struct page **pagep)
1868{
1869 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1870}
1871/*
1872 * per-process(per-mm_struct) statistics.
1873 */
1874static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1875{
1876 long val = atomic_long_read(&mm->rss_stat.count[member]);
1877
1878#ifdef SPLIT_RSS_COUNTING
1879 /*
1880 * counter is updated in asynchronous manner and may go to minus.
1881 * But it's never be expected number for users.
1882 */
1883 if (val < 0)
1884 val = 0;
1885#endif
1886 return (unsigned long)val;
1887}
1888
1889void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1890
1891static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1892{
1893 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1894
1895 mm_trace_rss_stat(mm, member, count);
1896}
1897
1898static inline void inc_mm_counter(struct mm_struct *mm, int member)
1899{
1900 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1901
1902 mm_trace_rss_stat(mm, member, count);
1903}
1904
1905static inline void dec_mm_counter(struct mm_struct *mm, int member)
1906{
1907 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1908
1909 mm_trace_rss_stat(mm, member, count);
1910}
1911
1912/* Optimized variant when page is already known not to be PageAnon */
1913static inline int mm_counter_file(struct page *page)
1914{
1915 if (PageSwapBacked(page))
1916 return MM_SHMEMPAGES;
1917 return MM_FILEPAGES;
1918}
1919
1920static inline int mm_counter(struct page *page)
1921{
1922 if (PageAnon(page))
1923 return MM_ANONPAGES;
1924 return mm_counter_file(page);
1925}
1926
1927static inline unsigned long get_mm_rss(struct mm_struct *mm)
1928{
1929 return get_mm_counter(mm, MM_FILEPAGES) +
1930 get_mm_counter(mm, MM_ANONPAGES) +
1931 get_mm_counter(mm, MM_SHMEMPAGES);
1932}
1933
1934static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1935{
1936 return max(mm->hiwater_rss, get_mm_rss(mm));
1937}
1938
1939static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1940{
1941 return max(mm->hiwater_vm, mm->total_vm);
1942}
1943
1944static inline void update_hiwater_rss(struct mm_struct *mm)
1945{
1946 unsigned long _rss = get_mm_rss(mm);
1947
1948 if ((mm)->hiwater_rss < _rss)
1949 (mm)->hiwater_rss = _rss;
1950}
1951
1952static inline void update_hiwater_vm(struct mm_struct *mm)
1953{
1954 if (mm->hiwater_vm < mm->total_vm)
1955 mm->hiwater_vm = mm->total_vm;
1956}
1957
1958static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1959{
1960 mm->hiwater_rss = get_mm_rss(mm);
1961}
1962
1963static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1964 struct mm_struct *mm)
1965{
1966 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1967
1968 if (*maxrss < hiwater_rss)
1969 *maxrss = hiwater_rss;
1970}
1971
1972#if defined(SPLIT_RSS_COUNTING)
1973void sync_mm_rss(struct mm_struct *mm);
1974#else
1975static inline void sync_mm_rss(struct mm_struct *mm)
1976{
1977}
1978#endif
1979
1980#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1981static inline int pte_special(pte_t pte)
1982{
1983 return 0;
1984}
1985
1986static inline pte_t pte_mkspecial(pte_t pte)
1987{
1988 return pte;
1989}
1990#endif
1991
1992#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1993static inline int pte_devmap(pte_t pte)
1994{
1995 return 0;
1996}
1997#endif
1998
1999int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2000
2001extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2002 spinlock_t **ptl);
2003static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 spinlock_t **ptl)
2005{
2006 pte_t *ptep;
2007 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2008 return ptep;
2009}
2010
2011#ifdef __PAGETABLE_P4D_FOLDED
2012static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2013 unsigned long address)
2014{
2015 return 0;
2016}
2017#else
2018int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2019#endif
2020
2021#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2022static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2023 unsigned long address)
2024{
2025 return 0;
2026}
2027static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2028static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2029
2030#else
2031int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2032
2033static inline void mm_inc_nr_puds(struct mm_struct *mm)
2034{
2035 if (mm_pud_folded(mm))
2036 return;
2037 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2038}
2039
2040static inline void mm_dec_nr_puds(struct mm_struct *mm)
2041{
2042 if (mm_pud_folded(mm))
2043 return;
2044 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2045}
2046#endif
2047
2048#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2049static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2050 unsigned long address)
2051{
2052 return 0;
2053}
2054
2055static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2056static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2057
2058#else
2059int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2060
2061static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2062{
2063 if (mm_pmd_folded(mm))
2064 return;
2065 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2066}
2067
2068static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2069{
2070 if (mm_pmd_folded(mm))
2071 return;
2072 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2073}
2074#endif
2075
2076#ifdef CONFIG_MMU
2077static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2078{
2079 atomic_long_set(&mm->pgtables_bytes, 0);
2080}
2081
2082static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2083{
2084 return atomic_long_read(&mm->pgtables_bytes);
2085}
2086
2087static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2088{
2089 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2090}
2091
2092static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2093{
2094 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2095}
2096#else
2097
2098static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2099static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2100{
2101 return 0;
2102}
2103
2104static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2105static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2106#endif
2107
2108int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2109int __pte_alloc_kernel(pmd_t *pmd);
2110
2111#if defined(CONFIG_MMU)
2112
2113static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2114 unsigned long address)
2115{
2116 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2117 NULL : p4d_offset(pgd, address);
2118}
2119
2120static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2121 unsigned long address)
2122{
2123 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2124 NULL : pud_offset(p4d, address);
2125}
2126
2127static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2128{
2129 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2130 NULL: pmd_offset(pud, address);
2131}
2132#endif /* CONFIG_MMU */
2133
2134#if USE_SPLIT_PTE_PTLOCKS
2135#if ALLOC_SPLIT_PTLOCKS
2136void __init ptlock_cache_init(void);
2137extern bool ptlock_alloc(struct page *page);
2138extern void ptlock_free(struct page *page);
2139
2140static inline spinlock_t *ptlock_ptr(struct page *page)
2141{
2142 return page->ptl;
2143}
2144#else /* ALLOC_SPLIT_PTLOCKS */
2145static inline void ptlock_cache_init(void)
2146{
2147}
2148
2149static inline bool ptlock_alloc(struct page *page)
2150{
2151 return true;
2152}
2153
2154static inline void ptlock_free(struct page *page)
2155{
2156}
2157
2158static inline spinlock_t *ptlock_ptr(struct page *page)
2159{
2160 return &page->ptl;
2161}
2162#endif /* ALLOC_SPLIT_PTLOCKS */
2163
2164static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2165{
2166 return ptlock_ptr(pmd_page(*pmd));
2167}
2168
2169static inline bool ptlock_init(struct page *page)
2170{
2171 /*
2172 * prep_new_page() initialize page->private (and therefore page->ptl)
2173 * with 0. Make sure nobody took it in use in between.
2174 *
2175 * It can happen if arch try to use slab for page table allocation:
2176 * slab code uses page->slab_cache, which share storage with page->ptl.
2177 */
2178 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2179 if (!ptlock_alloc(page))
2180 return false;
2181 spin_lock_init(ptlock_ptr(page));
2182 return true;
2183}
2184
2185#else /* !USE_SPLIT_PTE_PTLOCKS */
2186/*
2187 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2188 */
2189static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2190{
2191 return &mm->page_table_lock;
2192}
2193static inline void ptlock_cache_init(void) {}
2194static inline bool ptlock_init(struct page *page) { return true; }
2195static inline void ptlock_free(struct page *page) {}
2196#endif /* USE_SPLIT_PTE_PTLOCKS */
2197
2198static inline void pgtable_init(void)
2199{
2200 ptlock_cache_init();
2201 pgtable_cache_init();
2202}
2203
2204static inline bool pgtable_pte_page_ctor(struct page *page)
2205{
2206 if (!ptlock_init(page))
2207 return false;
2208 __SetPageTable(page);
2209 inc_lruvec_page_state(page, NR_PAGETABLE);
2210 return true;
2211}
2212
2213static inline void pgtable_pte_page_dtor(struct page *page)
2214{
2215 ptlock_free(page);
2216 __ClearPageTable(page);
2217 dec_lruvec_page_state(page, NR_PAGETABLE);
2218}
2219
2220#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2221({ \
2222 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2223 pte_t *__pte = pte_offset_map(pmd, address); \
2224 *(ptlp) = __ptl; \
2225 spin_lock(__ptl); \
2226 __pte; \
2227})
2228
2229#define pte_unmap_unlock(pte, ptl) do { \
2230 spin_unlock(ptl); \
2231 pte_unmap(pte); \
2232} while (0)
2233
2234#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2235
2236#define pte_alloc_map(mm, pmd, address) \
2237 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2238
2239#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2240 (pte_alloc(mm, pmd) ? \
2241 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2242
2243#define pte_alloc_kernel(pmd, address) \
2244 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2245 NULL: pte_offset_kernel(pmd, address))
2246
2247#if USE_SPLIT_PMD_PTLOCKS
2248
2249static struct page *pmd_to_page(pmd_t *pmd)
2250{
2251 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2252 return virt_to_page((void *)((unsigned long) pmd & mask));
2253}
2254
2255static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2256{
2257 return ptlock_ptr(pmd_to_page(pmd));
2258}
2259
2260static inline bool pmd_ptlock_init(struct page *page)
2261{
2262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2263 page->pmd_huge_pte = NULL;
2264#endif
2265 return ptlock_init(page);
2266}
2267
2268static inline void pmd_ptlock_free(struct page *page)
2269{
2270#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2271 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2272#endif
2273 ptlock_free(page);
2274}
2275
2276#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2277
2278#else
2279
2280static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2281{
2282 return &mm->page_table_lock;
2283}
2284
2285static inline bool pmd_ptlock_init(struct page *page) { return true; }
2286static inline void pmd_ptlock_free(struct page *page) {}
2287
2288#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2289
2290#endif
2291
2292static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2293{
2294 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2295 spin_lock(ptl);
2296 return ptl;
2297}
2298
2299static inline bool pgtable_pmd_page_ctor(struct page *page)
2300{
2301 if (!pmd_ptlock_init(page))
2302 return false;
2303 __SetPageTable(page);
2304 inc_lruvec_page_state(page, NR_PAGETABLE);
2305 return true;
2306}
2307
2308static inline void pgtable_pmd_page_dtor(struct page *page)
2309{
2310 pmd_ptlock_free(page);
2311 __ClearPageTable(page);
2312 dec_lruvec_page_state(page, NR_PAGETABLE);
2313}
2314
2315/*
2316 * No scalability reason to split PUD locks yet, but follow the same pattern
2317 * as the PMD locks to make it easier if we decide to. The VM should not be
2318 * considered ready to switch to split PUD locks yet; there may be places
2319 * which need to be converted from page_table_lock.
2320 */
2321static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2322{
2323 return &mm->page_table_lock;
2324}
2325
2326static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2327{
2328 spinlock_t *ptl = pud_lockptr(mm, pud);
2329
2330 spin_lock(ptl);
2331 return ptl;
2332}
2333
2334extern void __init pagecache_init(void);
2335extern void __init free_area_init_memoryless_node(int nid);
2336extern void free_initmem(void);
2337
2338/*
2339 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2340 * into the buddy system. The freed pages will be poisoned with pattern
2341 * "poison" if it's within range [0, UCHAR_MAX].
2342 * Return pages freed into the buddy system.
2343 */
2344extern unsigned long free_reserved_area(void *start, void *end,
2345 int poison, const char *s);
2346
2347#ifdef CONFIG_HIGHMEM
2348/*
2349 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2350 * and totalram_pages.
2351 */
2352extern void free_highmem_page(struct page *page);
2353#endif
2354
2355extern void adjust_managed_page_count(struct page *page, long count);
2356extern void mem_init_print_info(const char *str);
2357
2358extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2359
2360/* Free the reserved page into the buddy system, so it gets managed. */
2361static inline void __free_reserved_page(struct page *page)
2362{
2363 ClearPageReserved(page);
2364 init_page_count(page);
2365 __free_page(page);
2366}
2367
2368static inline void free_reserved_page(struct page *page)
2369{
2370 __free_reserved_page(page);
2371 adjust_managed_page_count(page, 1);
2372}
2373
2374static inline void mark_page_reserved(struct page *page)
2375{
2376 SetPageReserved(page);
2377 adjust_managed_page_count(page, -1);
2378}
2379
2380/*
2381 * Default method to free all the __init memory into the buddy system.
2382 * The freed pages will be poisoned with pattern "poison" if it's within
2383 * range [0, UCHAR_MAX].
2384 * Return pages freed into the buddy system.
2385 */
2386static inline unsigned long free_initmem_default(int poison)
2387{
2388 extern char __init_begin[], __init_end[];
2389
2390 return free_reserved_area(&__init_begin, &__init_end,
2391 poison, "unused kernel");
2392}
2393
2394static inline unsigned long get_num_physpages(void)
2395{
2396 int nid;
2397 unsigned long phys_pages = 0;
2398
2399 for_each_online_node(nid)
2400 phys_pages += node_present_pages(nid);
2401
2402 return phys_pages;
2403}
2404
2405/*
2406 * Using memblock node mappings, an architecture may initialise its
2407 * zones, allocate the backing mem_map and account for memory holes in an
2408 * architecture independent manner.
2409 *
2410 * An architecture is expected to register range of page frames backed by
2411 * physical memory with memblock_add[_node]() before calling
2412 * free_area_init() passing in the PFN each zone ends at. At a basic
2413 * usage, an architecture is expected to do something like
2414 *
2415 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2416 * max_highmem_pfn};
2417 * for_each_valid_physical_page_range()
2418 * memblock_add_node(base, size, nid)
2419 * free_area_init(max_zone_pfns);
2420 */
2421void free_area_init(unsigned long *max_zone_pfn);
2422unsigned long node_map_pfn_alignment(void);
2423unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2424 unsigned long end_pfn);
2425extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2426 unsigned long end_pfn);
2427extern void get_pfn_range_for_nid(unsigned int nid,
2428 unsigned long *start_pfn, unsigned long *end_pfn);
2429extern unsigned long find_min_pfn_with_active_regions(void);
2430
2431#ifndef CONFIG_NEED_MULTIPLE_NODES
2432static inline int early_pfn_to_nid(unsigned long pfn)
2433{
2434 return 0;
2435}
2436#else
2437/* please see mm/page_alloc.c */
2438extern int __meminit early_pfn_to_nid(unsigned long pfn);
2439#endif
2440
2441extern void set_dma_reserve(unsigned long new_dma_reserve);
2442extern void memmap_init_zone(unsigned long, int, unsigned long,
2443 unsigned long, unsigned long, enum meminit_context,
2444 struct vmem_altmap *, int migratetype);
2445extern void setup_per_zone_wmarks(void);
2446extern int __meminit init_per_zone_wmark_min(void);
2447extern void mem_init(void);
2448extern void __init mmap_init(void);
2449extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2450extern long si_mem_available(void);
2451extern void si_meminfo(struct sysinfo * val);
2452extern void si_meminfo_node(struct sysinfo *val, int nid);
2453#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2454extern unsigned long arch_reserved_kernel_pages(void);
2455#endif
2456
2457extern __printf(3, 4)
2458void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2459
2460extern void setup_per_cpu_pageset(void);
2461
2462/* page_alloc.c */
2463extern int min_free_kbytes;
2464extern int watermark_boost_factor;
2465extern int watermark_scale_factor;
2466extern bool arch_has_descending_max_zone_pfns(void);
2467
2468/* nommu.c */
2469extern atomic_long_t mmap_pages_allocated;
2470extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2471
2472/* interval_tree.c */
2473void vma_interval_tree_insert(struct vm_area_struct *node,
2474 struct rb_root_cached *root);
2475void vma_interval_tree_insert_after(struct vm_area_struct *node,
2476 struct vm_area_struct *prev,
2477 struct rb_root_cached *root);
2478void vma_interval_tree_remove(struct vm_area_struct *node,
2479 struct rb_root_cached *root);
2480struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2481 unsigned long start, unsigned long last);
2482struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2483 unsigned long start, unsigned long last);
2484
2485#define vma_interval_tree_foreach(vma, root, start, last) \
2486 for (vma = vma_interval_tree_iter_first(root, start, last); \
2487 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2488
2489void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2490 struct rb_root_cached *root);
2491void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2492 struct rb_root_cached *root);
2493struct anon_vma_chain *
2494anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2495 unsigned long start, unsigned long last);
2496struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2497 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2498#ifdef CONFIG_DEBUG_VM_RB
2499void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2500#endif
2501
2502#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2503 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2504 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2505
2506/* mmap.c */
2507extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2508extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2509 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2510 struct vm_area_struct *expand);
2511static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2512 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2513{
2514 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2515}
2516extern struct vm_area_struct *vma_merge(struct mm_struct *,
2517 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2518 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2519 struct mempolicy *, struct vm_userfaultfd_ctx);
2520extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2521extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2522 unsigned long addr, int new_below);
2523extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2524 unsigned long addr, int new_below);
2525extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2526extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2527 struct rb_node **, struct rb_node *);
2528extern void unlink_file_vma(struct vm_area_struct *);
2529extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2530 unsigned long addr, unsigned long len, pgoff_t pgoff,
2531 bool *need_rmap_locks);
2532extern void exit_mmap(struct mm_struct *);
2533
2534static inline int check_data_rlimit(unsigned long rlim,
2535 unsigned long new,
2536 unsigned long start,
2537 unsigned long end_data,
2538 unsigned long start_data)
2539{
2540 if (rlim < RLIM_INFINITY) {
2541 if (((new - start) + (end_data - start_data)) > rlim)
2542 return -ENOSPC;
2543 }
2544
2545 return 0;
2546}
2547
2548extern int mm_take_all_locks(struct mm_struct *mm);
2549extern void mm_drop_all_locks(struct mm_struct *mm);
2550
2551extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2552extern struct file *get_mm_exe_file(struct mm_struct *mm);
2553extern struct file *get_task_exe_file(struct task_struct *task);
2554
2555extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2556extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2557
2558extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2559 const struct vm_special_mapping *sm);
2560extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2561 unsigned long addr, unsigned long len,
2562 unsigned long flags,
2563 const struct vm_special_mapping *spec);
2564/* This is an obsolete alternative to _install_special_mapping. */
2565extern int install_special_mapping(struct mm_struct *mm,
2566 unsigned long addr, unsigned long len,
2567 unsigned long flags, struct page **pages);
2568
2569unsigned long randomize_stack_top(unsigned long stack_top);
2570
2571extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2572
2573extern unsigned long mmap_region(struct file *file, unsigned long addr,
2574 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2575 struct list_head *uf);
2576extern unsigned long do_mmap(struct file *file, unsigned long addr,
2577 unsigned long len, unsigned long prot, unsigned long flags,
2578 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2579extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2580 struct list_head *uf, bool downgrade);
2581extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2582 struct list_head *uf);
2583extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2584
2585#ifdef CONFIG_MMU
2586extern int __mm_populate(unsigned long addr, unsigned long len,
2587 int ignore_errors);
2588static inline void mm_populate(unsigned long addr, unsigned long len)
2589{
2590 /* Ignore errors */
2591 (void) __mm_populate(addr, len, 1);
2592}
2593#else
2594static inline void mm_populate(unsigned long addr, unsigned long len) {}
2595#endif
2596
2597/* These take the mm semaphore themselves */
2598extern int __must_check vm_brk(unsigned long, unsigned long);
2599extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2600extern int vm_munmap(unsigned long, size_t);
2601extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2602 unsigned long, unsigned long,
2603 unsigned long, unsigned long);
2604
2605struct vm_unmapped_area_info {
2606#define VM_UNMAPPED_AREA_TOPDOWN 1
2607 unsigned long flags;
2608 unsigned long length;
2609 unsigned long low_limit;
2610 unsigned long high_limit;
2611 unsigned long align_mask;
2612 unsigned long align_offset;
2613};
2614
2615extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2616
2617/* truncate.c */
2618extern void truncate_inode_pages(struct address_space *, loff_t);
2619extern void truncate_inode_pages_range(struct address_space *,
2620 loff_t lstart, loff_t lend);
2621extern void truncate_inode_pages_final(struct address_space *);
2622
2623/* generic vm_area_ops exported for stackable file systems */
2624extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2625extern void filemap_map_pages(struct vm_fault *vmf,
2626 pgoff_t start_pgoff, pgoff_t end_pgoff);
2627extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2628
2629/* mm/page-writeback.c */
2630int __must_check write_one_page(struct page *page);
2631void task_dirty_inc(struct task_struct *tsk);
2632
2633extern unsigned long stack_guard_gap;
2634/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2635extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2636
2637/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2638extern int expand_downwards(struct vm_area_struct *vma,
2639 unsigned long address);
2640#if VM_GROWSUP
2641extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2642#else
2643 #define expand_upwards(vma, address) (0)
2644#endif
2645
2646/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2647extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2648extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2649 struct vm_area_struct **pprev);
2650
2651/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2652 NULL if none. Assume start_addr < end_addr. */
2653static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2654{
2655 struct vm_area_struct * vma = find_vma(mm,start_addr);
2656
2657 if (vma && end_addr <= vma->vm_start)
2658 vma = NULL;
2659 return vma;
2660}
2661
2662static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2663{
2664 unsigned long vm_start = vma->vm_start;
2665
2666 if (vma->vm_flags & VM_GROWSDOWN) {
2667 vm_start -= stack_guard_gap;
2668 if (vm_start > vma->vm_start)
2669 vm_start = 0;
2670 }
2671 return vm_start;
2672}
2673
2674static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2675{
2676 unsigned long vm_end = vma->vm_end;
2677
2678 if (vma->vm_flags & VM_GROWSUP) {
2679 vm_end += stack_guard_gap;
2680 if (vm_end < vma->vm_end)
2681 vm_end = -PAGE_SIZE;
2682 }
2683 return vm_end;
2684}
2685
2686static inline unsigned long vma_pages(struct vm_area_struct *vma)
2687{
2688 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2689}
2690
2691/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2692static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2693 unsigned long vm_start, unsigned long vm_end)
2694{
2695 struct vm_area_struct *vma = find_vma(mm, vm_start);
2696
2697 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2698 vma = NULL;
2699
2700 return vma;
2701}
2702
2703static inline bool range_in_vma(struct vm_area_struct *vma,
2704 unsigned long start, unsigned long end)
2705{
2706 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2707}
2708
2709#ifdef CONFIG_MMU
2710pgprot_t vm_get_page_prot(unsigned long vm_flags);
2711void vma_set_page_prot(struct vm_area_struct *vma);
2712#else
2713static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2714{
2715 return __pgprot(0);
2716}
2717static inline void vma_set_page_prot(struct vm_area_struct *vma)
2718{
2719 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2720}
2721#endif
2722
2723void vma_set_file(struct vm_area_struct *vma, struct file *file);
2724
2725#ifdef CONFIG_NUMA_BALANCING
2726unsigned long change_prot_numa(struct vm_area_struct *vma,
2727 unsigned long start, unsigned long end);
2728#endif
2729
2730struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2731int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2732 unsigned long pfn, unsigned long size, pgprot_t);
2733int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2734int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2735 struct page **pages, unsigned long *num);
2736int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2737 unsigned long num);
2738int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2739 unsigned long num);
2740vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2741 unsigned long pfn);
2742vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2743 unsigned long pfn, pgprot_t pgprot);
2744vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2745 pfn_t pfn);
2746vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2747 pfn_t pfn, pgprot_t pgprot);
2748vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2749 unsigned long addr, pfn_t pfn);
2750int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2751
2752static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2753 unsigned long addr, struct page *page)
2754{
2755 int err = vm_insert_page(vma, addr, page);
2756
2757 if (err == -ENOMEM)
2758 return VM_FAULT_OOM;
2759 if (err < 0 && err != -EBUSY)
2760 return VM_FAULT_SIGBUS;
2761
2762 return VM_FAULT_NOPAGE;
2763}
2764
2765#ifndef io_remap_pfn_range
2766static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2767 unsigned long addr, unsigned long pfn,
2768 unsigned long size, pgprot_t prot)
2769{
2770 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2771}
2772#endif
2773
2774static inline vm_fault_t vmf_error(int err)
2775{
2776 if (err == -ENOMEM)
2777 return VM_FAULT_OOM;
2778 return VM_FAULT_SIGBUS;
2779}
2780
2781struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2782 unsigned int foll_flags);
2783
2784#define FOLL_WRITE 0x01 /* check pte is writable */
2785#define FOLL_TOUCH 0x02 /* mark page accessed */
2786#define FOLL_GET 0x04 /* do get_page on page */
2787#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2788#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2789#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2790 * and return without waiting upon it */
2791#define FOLL_POPULATE 0x40 /* fault in page */
2792#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2793#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2794#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2795#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2796#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2797#define FOLL_MLOCK 0x1000 /* lock present pages */
2798#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2799#define FOLL_COW 0x4000 /* internal GUP flag */
2800#define FOLL_ANON 0x8000 /* don't do file mappings */
2801#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2802#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2803#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2804#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2805
2806/*
2807 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2808 * other. Here is what they mean, and how to use them:
2809 *
2810 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2811 * period _often_ under userspace control. This is in contrast to
2812 * iov_iter_get_pages(), whose usages are transient.
2813 *
2814 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2815 * lifetime enforced by the filesystem and we need guarantees that longterm
2816 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2817 * the filesystem. Ideas for this coordination include revoking the longterm
2818 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2819 * added after the problem with filesystems was found FS DAX VMAs are
2820 * specifically failed. Filesystem pages are still subject to bugs and use of
2821 * FOLL_LONGTERM should be avoided on those pages.
2822 *
2823 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2824 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2825 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2826 * is due to an incompatibility with the FS DAX check and
2827 * FAULT_FLAG_ALLOW_RETRY.
2828 *
2829 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2830 * that region. And so, CMA attempts to migrate the page before pinning, when
2831 * FOLL_LONGTERM is specified.
2832 *
2833 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2834 * but an additional pin counting system) will be invoked. This is intended for
2835 * anything that gets a page reference and then touches page data (for example,
2836 * Direct IO). This lets the filesystem know that some non-file-system entity is
2837 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2838 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2839 * a call to unpin_user_page().
2840 *
2841 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2842 * and separate refcounting mechanisms, however, and that means that each has
2843 * its own acquire and release mechanisms:
2844 *
2845 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2846 *
2847 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2848 *
2849 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2850 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2851 * calls applied to them, and that's perfectly OK. This is a constraint on the
2852 * callers, not on the pages.)
2853 *
2854 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2855 * directly by the caller. That's in order to help avoid mismatches when
2856 * releasing pages: get_user_pages*() pages must be released via put_page(),
2857 * while pin_user_pages*() pages must be released via unpin_user_page().
2858 *
2859 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2860 */
2861
2862static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2863{
2864 if (vm_fault & VM_FAULT_OOM)
2865 return -ENOMEM;
2866 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2867 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2868 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2869 return -EFAULT;
2870 return 0;
2871}
2872
2873typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2874extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2875 unsigned long size, pte_fn_t fn, void *data);
2876extern int apply_to_existing_page_range(struct mm_struct *mm,
2877 unsigned long address, unsigned long size,
2878 pte_fn_t fn, void *data);
2879
2880extern void init_mem_debugging_and_hardening(void);
2881#ifdef CONFIG_PAGE_POISONING
2882extern void __kernel_poison_pages(struct page *page, int numpages);
2883extern void __kernel_unpoison_pages(struct page *page, int numpages);
2884extern bool _page_poisoning_enabled_early;
2885DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2886static inline bool page_poisoning_enabled(void)
2887{
2888 return _page_poisoning_enabled_early;
2889}
2890/*
2891 * For use in fast paths after init_mem_debugging() has run, or when a
2892 * false negative result is not harmful when called too early.
2893 */
2894static inline bool page_poisoning_enabled_static(void)
2895{
2896 return static_branch_unlikely(&_page_poisoning_enabled);
2897}
2898static inline void kernel_poison_pages(struct page *page, int numpages)
2899{
2900 if (page_poisoning_enabled_static())
2901 __kernel_poison_pages(page, numpages);
2902}
2903static inline void kernel_unpoison_pages(struct page *page, int numpages)
2904{
2905 if (page_poisoning_enabled_static())
2906 __kernel_unpoison_pages(page, numpages);
2907}
2908#else
2909static inline bool page_poisoning_enabled(void) { return false; }
2910static inline bool page_poisoning_enabled_static(void) { return false; }
2911static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2912static inline void kernel_poison_pages(struct page *page, int numpages) { }
2913static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2914#endif
2915
2916DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2917static inline bool want_init_on_alloc(gfp_t flags)
2918{
2919 if (static_branch_unlikely(&init_on_alloc))
2920 return true;
2921 return flags & __GFP_ZERO;
2922}
2923
2924DECLARE_STATIC_KEY_FALSE(init_on_free);
2925static inline bool want_init_on_free(void)
2926{
2927 return static_branch_unlikely(&init_on_free);
2928}
2929
2930extern bool _debug_pagealloc_enabled_early;
2931DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2932
2933static inline bool debug_pagealloc_enabled(void)
2934{
2935 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2936 _debug_pagealloc_enabled_early;
2937}
2938
2939/*
2940 * For use in fast paths after init_debug_pagealloc() has run, or when a
2941 * false negative result is not harmful when called too early.
2942 */
2943static inline bool debug_pagealloc_enabled_static(void)
2944{
2945 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2946 return false;
2947
2948 return static_branch_unlikely(&_debug_pagealloc_enabled);
2949}
2950
2951#ifdef CONFIG_DEBUG_PAGEALLOC
2952/*
2953 * To support DEBUG_PAGEALLOC architecture must ensure that
2954 * __kernel_map_pages() never fails
2955 */
2956extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2957
2958static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2959{
2960 if (debug_pagealloc_enabled_static())
2961 __kernel_map_pages(page, numpages, 1);
2962}
2963
2964static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2965{
2966 if (debug_pagealloc_enabled_static())
2967 __kernel_map_pages(page, numpages, 0);
2968}
2969#else /* CONFIG_DEBUG_PAGEALLOC */
2970static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2971static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2972#endif /* CONFIG_DEBUG_PAGEALLOC */
2973
2974#ifdef __HAVE_ARCH_GATE_AREA
2975extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2976extern int in_gate_area_no_mm(unsigned long addr);
2977extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2978#else
2979static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2980{
2981 return NULL;
2982}
2983static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2984static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2985{
2986 return 0;
2987}
2988#endif /* __HAVE_ARCH_GATE_AREA */
2989
2990extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2991
2992#ifdef CONFIG_SYSCTL
2993extern int sysctl_drop_caches;
2994int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2995 loff_t *);
2996#endif
2997
2998void drop_slab(void);
2999void drop_slab_node(int nid);
3000
3001#ifndef CONFIG_MMU
3002#define randomize_va_space 0
3003#else
3004extern int randomize_va_space;
3005#endif
3006
3007const char * arch_vma_name(struct vm_area_struct *vma);
3008#ifdef CONFIG_MMU
3009void print_vma_addr(char *prefix, unsigned long rip);
3010#else
3011static inline void print_vma_addr(char *prefix, unsigned long rip)
3012{
3013}
3014#endif
3015
3016void *sparse_buffer_alloc(unsigned long size);
3017struct page * __populate_section_memmap(unsigned long pfn,
3018 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3019pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3020p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3021pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3022pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3023pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3024 struct vmem_altmap *altmap);
3025void *vmemmap_alloc_block(unsigned long size, int node);
3026struct vmem_altmap;
3027void *vmemmap_alloc_block_buf(unsigned long size, int node,
3028 struct vmem_altmap *altmap);
3029void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3030int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3031 int node, struct vmem_altmap *altmap);
3032int vmemmap_populate(unsigned long start, unsigned long end, int node,
3033 struct vmem_altmap *altmap);
3034void vmemmap_populate_print_last(void);
3035#ifdef CONFIG_MEMORY_HOTPLUG
3036void vmemmap_free(unsigned long start, unsigned long end,
3037 struct vmem_altmap *altmap);
3038#endif
3039void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3040 unsigned long nr_pages);
3041
3042enum mf_flags {
3043 MF_COUNT_INCREASED = 1 << 0,
3044 MF_ACTION_REQUIRED = 1 << 1,
3045 MF_MUST_KILL = 1 << 2,
3046 MF_SOFT_OFFLINE = 1 << 3,
3047};
3048extern int memory_failure(unsigned long pfn, int flags);
3049extern void memory_failure_queue(unsigned long pfn, int flags);
3050extern void memory_failure_queue_kick(int cpu);
3051extern int unpoison_memory(unsigned long pfn);
3052extern int sysctl_memory_failure_early_kill;
3053extern int sysctl_memory_failure_recovery;
3054extern void shake_page(struct page *p, int access);
3055extern atomic_long_t num_poisoned_pages __read_mostly;
3056extern int soft_offline_page(unsigned long pfn, int flags);
3057
3058
3059/*
3060 * Error handlers for various types of pages.
3061 */
3062enum mf_result {
3063 MF_IGNORED, /* Error: cannot be handled */
3064 MF_FAILED, /* Error: handling failed */
3065 MF_DELAYED, /* Will be handled later */
3066 MF_RECOVERED, /* Successfully recovered */
3067};
3068
3069enum mf_action_page_type {
3070 MF_MSG_KERNEL,
3071 MF_MSG_KERNEL_HIGH_ORDER,
3072 MF_MSG_SLAB,
3073 MF_MSG_DIFFERENT_COMPOUND,
3074 MF_MSG_POISONED_HUGE,
3075 MF_MSG_HUGE,
3076 MF_MSG_FREE_HUGE,
3077 MF_MSG_NON_PMD_HUGE,
3078 MF_MSG_UNMAP_FAILED,
3079 MF_MSG_DIRTY_SWAPCACHE,
3080 MF_MSG_CLEAN_SWAPCACHE,
3081 MF_MSG_DIRTY_MLOCKED_LRU,
3082 MF_MSG_CLEAN_MLOCKED_LRU,
3083 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3084 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3085 MF_MSG_DIRTY_LRU,
3086 MF_MSG_CLEAN_LRU,
3087 MF_MSG_TRUNCATED_LRU,
3088 MF_MSG_BUDDY,
3089 MF_MSG_BUDDY_2ND,
3090 MF_MSG_DAX,
3091 MF_MSG_UNSPLIT_THP,
3092 MF_MSG_UNKNOWN,
3093};
3094
3095#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3096extern void clear_huge_page(struct page *page,
3097 unsigned long addr_hint,
3098 unsigned int pages_per_huge_page);
3099extern void copy_user_huge_page(struct page *dst, struct page *src,
3100 unsigned long addr_hint,
3101 struct vm_area_struct *vma,
3102 unsigned int pages_per_huge_page);
3103extern long copy_huge_page_from_user(struct page *dst_page,
3104 const void __user *usr_src,
3105 unsigned int pages_per_huge_page,
3106 bool allow_pagefault);
3107
3108/**
3109 * vma_is_special_huge - Are transhuge page-table entries considered special?
3110 * @vma: Pointer to the struct vm_area_struct to consider
3111 *
3112 * Whether transhuge page-table entries are considered "special" following
3113 * the definition in vm_normal_page().
3114 *
3115 * Return: true if transhuge page-table entries should be considered special,
3116 * false otherwise.
3117 */
3118static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3119{
3120 return vma_is_dax(vma) || (vma->vm_file &&
3121 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3122}
3123
3124#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3125
3126#ifdef CONFIG_DEBUG_PAGEALLOC
3127extern unsigned int _debug_guardpage_minorder;
3128DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3129
3130static inline unsigned int debug_guardpage_minorder(void)
3131{
3132 return _debug_guardpage_minorder;
3133}
3134
3135static inline bool debug_guardpage_enabled(void)
3136{
3137 return static_branch_unlikely(&_debug_guardpage_enabled);
3138}
3139
3140static inline bool page_is_guard(struct page *page)
3141{
3142 if (!debug_guardpage_enabled())
3143 return false;
3144
3145 return PageGuard(page);
3146}
3147#else
3148static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3149static inline bool debug_guardpage_enabled(void) { return false; }
3150static inline bool page_is_guard(struct page *page) { return false; }
3151#endif /* CONFIG_DEBUG_PAGEALLOC */
3152
3153#if MAX_NUMNODES > 1
3154void __init setup_nr_node_ids(void);
3155#else
3156static inline void setup_nr_node_ids(void) {}
3157#endif
3158
3159extern int memcmp_pages(struct page *page1, struct page *page2);
3160
3161static inline int pages_identical(struct page *page1, struct page *page2)
3162{
3163 return !memcmp_pages(page1, page2);
3164}
3165
3166#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3167unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3168 pgoff_t first_index, pgoff_t nr,
3169 pgoff_t bitmap_pgoff,
3170 unsigned long *bitmap,
3171 pgoff_t *start,
3172 pgoff_t *end);
3173
3174unsigned long wp_shared_mapping_range(struct address_space *mapping,
3175 pgoff_t first_index, pgoff_t nr);
3176#endif
3177
3178extern int sysctl_nr_trim_pages;
3179
3180#endif /* __KERNEL__ */
3181#endif /* _LINUX_MM_H */