Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_NR_STAT,
37};
38
39enum memcg_memory_event {
40 MEMCG_LOW,
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
44 MEMCG_OOM_KILL,
45 MEMCG_SWAP_HIGH,
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
48 MEMCG_NR_MEMORY_EVENTS,
49};
50
51struct mem_cgroup_reclaim_cookie {
52 pg_data_t *pgdat;
53 unsigned int generation;
54};
55
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
63 refcount_t ref;
64};
65
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
75 MEM_CGROUP_NTARGETS,
76};
77
78struct memcg_vmstats_percpu {
79 long stat[MEMCG_NR_STAT];
80 unsigned long events[NR_VM_EVENT_ITEMS];
81 unsigned long nr_page_events;
82 unsigned long targets[MEM_CGROUP_NTARGETS];
83};
84
85struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89};
90
91struct lruvec_stat {
92 long count[NR_VM_NODE_STAT_ITEMS];
93};
94
95/*
96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97 * which have elements charged to this memcg.
98 */
99struct memcg_shrinker_map {
100 struct rcu_head rcu;
101 unsigned long map[];
102};
103
104/*
105 * per-node information in memory controller.
106 */
107struct mem_cgroup_per_node {
108 struct lruvec lruvec;
109
110 /* Legacy local VM stats */
111 struct lruvec_stat __percpu *lruvec_stat_local;
112
113 /* Subtree VM stats (batched updates) */
114 struct lruvec_stat __percpu *lruvec_stat_cpu;
115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116
117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
118
119 struct mem_cgroup_reclaim_iter iter;
120
121 struct memcg_shrinker_map __rcu *shrinker_map;
122
123 struct rb_node tree_node; /* RB tree node */
124 unsigned long usage_in_excess;/* Set to the value by which */
125 /* the soft limit is exceeded*/
126 bool on_tree;
127 struct mem_cgroup *memcg; /* Back pointer, we cannot */
128 /* use container_of */
129};
130
131struct mem_cgroup_threshold {
132 struct eventfd_ctx *eventfd;
133 unsigned long threshold;
134};
135
136/* For threshold */
137struct mem_cgroup_threshold_ary {
138 /* An array index points to threshold just below or equal to usage. */
139 int current_threshold;
140 /* Size of entries[] */
141 unsigned int size;
142 /* Array of thresholds */
143 struct mem_cgroup_threshold entries[];
144};
145
146struct mem_cgroup_thresholds {
147 /* Primary thresholds array */
148 struct mem_cgroup_threshold_ary *primary;
149 /*
150 * Spare threshold array.
151 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 * It must be able to store at least primary->size - 1 entries.
153 */
154 struct mem_cgroup_threshold_ary *spare;
155};
156
157enum memcg_kmem_state {
158 KMEM_NONE,
159 KMEM_ALLOCATED,
160 KMEM_ONLINE,
161};
162
163#if defined(CONFIG_SMP)
164struct memcg_padding {
165 char x[0];
166} ____cacheline_internodealigned_in_smp;
167#define MEMCG_PADDING(name) struct memcg_padding name;
168#else
169#define MEMCG_PADDING(name)
170#endif
171
172/*
173 * Remember four most recent foreign writebacks with dirty pages in this
174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
175 * one in a given round, we're likely to catch it later if it keeps
176 * foreign-dirtying, so a fairly low count should be enough.
177 *
178 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179 */
180#define MEMCG_CGWB_FRN_CNT 4
181
182struct memcg_cgwb_frn {
183 u64 bdi_id; /* bdi->id of the foreign inode */
184 int memcg_id; /* memcg->css.id of foreign inode */
185 u64 at; /* jiffies_64 at the time of dirtying */
186 struct wb_completion done; /* tracks in-flight foreign writebacks */
187};
188
189/*
190 * Bucket for arbitrarily byte-sized objects charged to a memory
191 * cgroup. The bucket can be reparented in one piece when the cgroup
192 * is destroyed, without having to round up the individual references
193 * of all live memory objects in the wild.
194 */
195struct obj_cgroup {
196 struct percpu_ref refcnt;
197 struct mem_cgroup *memcg;
198 atomic_t nr_charged_bytes;
199 union {
200 struct list_head list;
201 struct rcu_head rcu;
202 };
203};
204
205/*
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
210 */
211struct mem_cgroup {
212 struct cgroup_subsys_state css;
213
214 /* Private memcg ID. Used to ID objects that outlive the cgroup */
215 struct mem_cgroup_id id;
216
217 /* Accounted resources */
218 struct page_counter memory; /* Both v1 & v2 */
219
220 union {
221 struct page_counter swap; /* v2 only */
222 struct page_counter memsw; /* v1 only */
223 };
224
225 /* Legacy consumer-oriented counters */
226 struct page_counter kmem; /* v1 only */
227 struct page_counter tcpmem; /* v1 only */
228
229 /* Range enforcement for interrupt charges */
230 struct work_struct high_work;
231
232 unsigned long soft_limit;
233
234 /* vmpressure notifications */
235 struct vmpressure vmpressure;
236
237 /*
238 * Should the OOM killer kill all belonging tasks, had it kill one?
239 */
240 bool oom_group;
241
242 /* protected by memcg_oom_lock */
243 bool oom_lock;
244 int under_oom;
245
246 int swappiness;
247 /* OOM-Killer disable */
248 int oom_kill_disable;
249
250 /* memory.events and memory.events.local */
251 struct cgroup_file events_file;
252 struct cgroup_file events_local_file;
253
254 /* handle for "memory.swap.events" */
255 struct cgroup_file swap_events_file;
256
257 /* protect arrays of thresholds */
258 struct mutex thresholds_lock;
259
260 /* thresholds for memory usage. RCU-protected */
261 struct mem_cgroup_thresholds thresholds;
262
263 /* thresholds for mem+swap usage. RCU-protected */
264 struct mem_cgroup_thresholds memsw_thresholds;
265
266 /* For oom notifier event fd */
267 struct list_head oom_notify;
268
269 /*
270 * Should we move charges of a task when a task is moved into this
271 * mem_cgroup ? And what type of charges should we move ?
272 */
273 unsigned long move_charge_at_immigrate;
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
276 unsigned long move_lock_flags;
277
278 MEMCG_PADDING(_pad1_);
279
280 atomic_long_t vmstats[MEMCG_NR_STAT];
281 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
282
283 /* memory.events */
284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286
287 unsigned long socket_pressure;
288
289 /* Legacy tcp memory accounting */
290 bool tcpmem_active;
291 int tcpmem_pressure;
292
293#ifdef CONFIG_MEMCG_KMEM
294 int kmemcg_id;
295 enum memcg_kmem_state kmem_state;
296 struct obj_cgroup __rcu *objcg;
297 struct list_head objcg_list; /* list of inherited objcgs */
298#endif
299
300 MEMCG_PADDING(_pad2_);
301
302 /*
303 * set > 0 if pages under this cgroup are moving to other cgroup.
304 */
305 atomic_t moving_account;
306 struct task_struct *move_lock_task;
307
308 /* Legacy local VM stats and events */
309 struct memcg_vmstats_percpu __percpu *vmstats_local;
310
311 /* Subtree VM stats and events (batched updates) */
312 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
313
314#ifdef CONFIG_CGROUP_WRITEBACK
315 struct list_head cgwb_list;
316 struct wb_domain cgwb_domain;
317 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
318#endif
319
320 /* List of events which userspace want to receive */
321 struct list_head event_list;
322 spinlock_t event_list_lock;
323
324#ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 struct deferred_split deferred_split_queue;
326#endif
327
328 struct mem_cgroup_per_node *nodeinfo[0];
329 /* WARNING: nodeinfo must be the last member here */
330};
331
332/*
333 * size of first charge trial. "32" comes from vmscan.c's magic value.
334 * TODO: maybe necessary to use big numbers in big irons.
335 */
336#define MEMCG_CHARGE_BATCH 32U
337
338extern struct mem_cgroup *root_mem_cgroup;
339
340enum page_memcg_data_flags {
341 /* page->memcg_data is a pointer to an objcgs vector */
342 MEMCG_DATA_OBJCGS = (1UL << 0),
343 /* page has been accounted as a non-slab kernel page */
344 MEMCG_DATA_KMEM = (1UL << 1),
345 /* the next bit after the last actual flag */
346 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347};
348
349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350
351/*
352 * page_memcg - get the memory cgroup associated with a page
353 * @page: a pointer to the page struct
354 *
355 * Returns a pointer to the memory cgroup associated with the page,
356 * or NULL. This function assumes that the page is known to have a
357 * proper memory cgroup pointer. It's not safe to call this function
358 * against some type of pages, e.g. slab pages or ex-slab pages.
359 *
360 * Any of the following ensures page and memcg binding stability:
361 * - the page lock
362 * - LRU isolation
363 * - lock_page_memcg()
364 * - exclusive reference
365 */
366static inline struct mem_cgroup *page_memcg(struct page *page)
367{
368 unsigned long memcg_data = page->memcg_data;
369
370 VM_BUG_ON_PAGE(PageSlab(page), page);
371 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
372
373 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
374}
375
376/*
377 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
378 * @page: a pointer to the page struct
379 *
380 * Returns a pointer to the memory cgroup associated with the page,
381 * or NULL. This function assumes that the page is known to have a
382 * proper memory cgroup pointer. It's not safe to call this function
383 * against some type of pages, e.g. slab pages or ex-slab pages.
384 */
385static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
386{
387 VM_BUG_ON_PAGE(PageSlab(page), page);
388 WARN_ON_ONCE(!rcu_read_lock_held());
389
390 return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
391 ~MEMCG_DATA_FLAGS_MASK);
392}
393
394/*
395 * page_memcg_check - get the memory cgroup associated with a page
396 * @page: a pointer to the page struct
397 *
398 * Returns a pointer to the memory cgroup associated with the page,
399 * or NULL. This function unlike page_memcg() can take any page
400 * as an argument. It has to be used in cases when it's not known if a page
401 * has an associated memory cgroup pointer or an object cgroups vector.
402 *
403 * Any of the following ensures page and memcg binding stability:
404 * - the page lock
405 * - LRU isolation
406 * - lock_page_memcg()
407 * - exclusive reference
408 */
409static inline struct mem_cgroup *page_memcg_check(struct page *page)
410{
411 /*
412 * Because page->memcg_data might be changed asynchronously
413 * for slab pages, READ_ONCE() should be used here.
414 */
415 unsigned long memcg_data = READ_ONCE(page->memcg_data);
416
417 if (memcg_data & MEMCG_DATA_OBJCGS)
418 return NULL;
419
420 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
421}
422
423/*
424 * PageMemcgKmem - check if the page has MemcgKmem flag set
425 * @page: a pointer to the page struct
426 *
427 * Checks if the page has MemcgKmem flag set. The caller must ensure that
428 * the page has an associated memory cgroup. It's not safe to call this function
429 * against some types of pages, e.g. slab pages.
430 */
431static inline bool PageMemcgKmem(struct page *page)
432{
433 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
434 return page->memcg_data & MEMCG_DATA_KMEM;
435}
436
437#ifdef CONFIG_MEMCG_KMEM
438/*
439 * page_objcgs - get the object cgroups vector associated with a page
440 * @page: a pointer to the page struct
441 *
442 * Returns a pointer to the object cgroups vector associated with the page,
443 * or NULL. This function assumes that the page is known to have an
444 * associated object cgroups vector. It's not safe to call this function
445 * against pages, which might have an associated memory cgroup: e.g.
446 * kernel stack pages.
447 */
448static inline struct obj_cgroup **page_objcgs(struct page *page)
449{
450 unsigned long memcg_data = READ_ONCE(page->memcg_data);
451
452 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
453 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
454
455 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
456}
457
458/*
459 * page_objcgs_check - get the object cgroups vector associated with a page
460 * @page: a pointer to the page struct
461 *
462 * Returns a pointer to the object cgroups vector associated with the page,
463 * or NULL. This function is safe to use if the page can be directly associated
464 * with a memory cgroup.
465 */
466static inline struct obj_cgroup **page_objcgs_check(struct page *page)
467{
468 unsigned long memcg_data = READ_ONCE(page->memcg_data);
469
470 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
471 return NULL;
472
473 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
474
475 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
476}
477
478/*
479 * set_page_objcgs - associate a page with a object cgroups vector
480 * @page: a pointer to the page struct
481 * @objcgs: a pointer to the object cgroups vector
482 *
483 * Atomically associates a page with a vector of object cgroups.
484 */
485static inline bool set_page_objcgs(struct page *page,
486 struct obj_cgroup **objcgs)
487{
488 return !cmpxchg(&page->memcg_data, 0, (unsigned long)objcgs |
489 MEMCG_DATA_OBJCGS);
490}
491#else
492static inline struct obj_cgroup **page_objcgs(struct page *page)
493{
494 return NULL;
495}
496
497static inline struct obj_cgroup **page_objcgs_check(struct page *page)
498{
499 return NULL;
500}
501
502static inline bool set_page_objcgs(struct page *page,
503 struct obj_cgroup **objcgs)
504{
505 return true;
506}
507#endif
508
509static __always_inline bool memcg_stat_item_in_bytes(int idx)
510{
511 if (idx == MEMCG_PERCPU_B)
512 return true;
513 return vmstat_item_in_bytes(idx);
514}
515
516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517{
518 return (memcg == root_mem_cgroup);
519}
520
521static inline bool mem_cgroup_disabled(void)
522{
523 return !cgroup_subsys_enabled(memory_cgrp_subsys);
524}
525
526static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
527 struct mem_cgroup *memcg,
528 bool in_low_reclaim)
529{
530 if (mem_cgroup_disabled())
531 return 0;
532
533 /*
534 * There is no reclaim protection applied to a targeted reclaim.
535 * We are special casing this specific case here because
536 * mem_cgroup_protected calculation is not robust enough to keep
537 * the protection invariant for calculated effective values for
538 * parallel reclaimers with different reclaim target. This is
539 * especially a problem for tail memcgs (as they have pages on LRU)
540 * which would want to have effective values 0 for targeted reclaim
541 * but a different value for external reclaim.
542 *
543 * Example
544 * Let's have global and A's reclaim in parallel:
545 * |
546 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
547 * |\
548 * | C (low = 1G, usage = 2.5G)
549 * B (low = 1G, usage = 0.5G)
550 *
551 * For the global reclaim
552 * A.elow = A.low
553 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
554 * C.elow = min(C.usage, C.low)
555 *
556 * With the effective values resetting we have A reclaim
557 * A.elow = 0
558 * B.elow = B.low
559 * C.elow = C.low
560 *
561 * If the global reclaim races with A's reclaim then
562 * B.elow = C.elow = 0 because children_low_usage > A.elow)
563 * is possible and reclaiming B would be violating the protection.
564 *
565 */
566 if (root == memcg)
567 return 0;
568
569 if (in_low_reclaim)
570 return READ_ONCE(memcg->memory.emin);
571
572 return max(READ_ONCE(memcg->memory.emin),
573 READ_ONCE(memcg->memory.elow));
574}
575
576void mem_cgroup_calculate_protection(struct mem_cgroup *root,
577 struct mem_cgroup *memcg);
578
579static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
580{
581 /*
582 * The root memcg doesn't account charges, and doesn't support
583 * protection.
584 */
585 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
586
587}
588
589static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
590{
591 if (!mem_cgroup_supports_protection(memcg))
592 return false;
593
594 return READ_ONCE(memcg->memory.elow) >=
595 page_counter_read(&memcg->memory);
596}
597
598static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
599{
600 if (!mem_cgroup_supports_protection(memcg))
601 return false;
602
603 return READ_ONCE(memcg->memory.emin) >=
604 page_counter_read(&memcg->memory);
605}
606
607int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
608
609void mem_cgroup_uncharge(struct page *page);
610void mem_cgroup_uncharge_list(struct list_head *page_list);
611
612void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
613
614static struct mem_cgroup_per_node *
615mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
616{
617 return memcg->nodeinfo[nid];
618}
619
620/**
621 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
622 * @memcg: memcg of the wanted lruvec
623 * @pgdat: pglist_data
624 *
625 * Returns the lru list vector holding pages for a given @memcg &
626 * @pgdat combination. This can be the node lruvec, if the memory
627 * controller is disabled.
628 */
629static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
630 struct pglist_data *pgdat)
631{
632 struct mem_cgroup_per_node *mz;
633 struct lruvec *lruvec;
634
635 if (mem_cgroup_disabled()) {
636 lruvec = &pgdat->__lruvec;
637 goto out;
638 }
639
640 if (!memcg)
641 memcg = root_mem_cgroup;
642
643 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
644 lruvec = &mz->lruvec;
645out:
646 /*
647 * Since a node can be onlined after the mem_cgroup was created,
648 * we have to be prepared to initialize lruvec->pgdat here;
649 * and if offlined then reonlined, we need to reinitialize it.
650 */
651 if (unlikely(lruvec->pgdat != pgdat))
652 lruvec->pgdat = pgdat;
653 return lruvec;
654}
655
656/**
657 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
658 * @page: the page
659 * @pgdat: pgdat of the page
660 *
661 * This function relies on page->mem_cgroup being stable.
662 */
663static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
664 struct pglist_data *pgdat)
665{
666 struct mem_cgroup *memcg = page_memcg(page);
667
668 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
669 return mem_cgroup_lruvec(memcg, pgdat);
670}
671
672static inline bool lruvec_holds_page_lru_lock(struct page *page,
673 struct lruvec *lruvec)
674{
675 pg_data_t *pgdat = page_pgdat(page);
676 const struct mem_cgroup *memcg;
677 struct mem_cgroup_per_node *mz;
678
679 if (mem_cgroup_disabled())
680 return lruvec == &pgdat->__lruvec;
681
682 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
683 memcg = page_memcg(page) ? : root_mem_cgroup;
684
685 return lruvec->pgdat == pgdat && mz->memcg == memcg;
686}
687
688struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
689
690struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
691
692struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
693
694struct lruvec *lock_page_lruvec(struct page *page);
695struct lruvec *lock_page_lruvec_irq(struct page *page);
696struct lruvec *lock_page_lruvec_irqsave(struct page *page,
697 unsigned long *flags);
698
699#ifdef CONFIG_DEBUG_VM
700void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
701#else
702static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
703{
704}
705#endif
706
707static inline
708struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
709 return css ? container_of(css, struct mem_cgroup, css) : NULL;
710}
711
712static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
713{
714 return percpu_ref_tryget(&objcg->refcnt);
715}
716
717static inline void obj_cgroup_get(struct obj_cgroup *objcg)
718{
719 percpu_ref_get(&objcg->refcnt);
720}
721
722static inline void obj_cgroup_put(struct obj_cgroup *objcg)
723{
724 percpu_ref_put(&objcg->refcnt);
725}
726
727/*
728 * After the initialization objcg->memcg is always pointing at
729 * a valid memcg, but can be atomically swapped to the parent memcg.
730 *
731 * The caller must ensure that the returned memcg won't be released:
732 * e.g. acquire the rcu_read_lock or css_set_lock.
733 */
734static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
735{
736 return READ_ONCE(objcg->memcg);
737}
738
739static inline void mem_cgroup_put(struct mem_cgroup *memcg)
740{
741 if (memcg)
742 css_put(&memcg->css);
743}
744
745#define mem_cgroup_from_counter(counter, member) \
746 container_of(counter, struct mem_cgroup, member)
747
748struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
749 struct mem_cgroup *,
750 struct mem_cgroup_reclaim_cookie *);
751void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
752int mem_cgroup_scan_tasks(struct mem_cgroup *,
753 int (*)(struct task_struct *, void *), void *);
754
755static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
756{
757 if (mem_cgroup_disabled())
758 return 0;
759
760 return memcg->id.id;
761}
762struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
763
764static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
765{
766 return mem_cgroup_from_css(seq_css(m));
767}
768
769static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
770{
771 struct mem_cgroup_per_node *mz;
772
773 if (mem_cgroup_disabled())
774 return NULL;
775
776 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
777 return mz->memcg;
778}
779
780/**
781 * parent_mem_cgroup - find the accounting parent of a memcg
782 * @memcg: memcg whose parent to find
783 *
784 * Returns the parent memcg, or NULL if this is the root or the memory
785 * controller is in legacy no-hierarchy mode.
786 */
787static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
788{
789 if (!memcg->memory.parent)
790 return NULL;
791 return mem_cgroup_from_counter(memcg->memory.parent, memory);
792}
793
794static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
795 struct mem_cgroup *root)
796{
797 if (root == memcg)
798 return true;
799 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
800}
801
802static inline bool mm_match_cgroup(struct mm_struct *mm,
803 struct mem_cgroup *memcg)
804{
805 struct mem_cgroup *task_memcg;
806 bool match = false;
807
808 rcu_read_lock();
809 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
810 if (task_memcg)
811 match = mem_cgroup_is_descendant(task_memcg, memcg);
812 rcu_read_unlock();
813 return match;
814}
815
816struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
817ino_t page_cgroup_ino(struct page *page);
818
819static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
820{
821 if (mem_cgroup_disabled())
822 return true;
823 return !!(memcg->css.flags & CSS_ONLINE);
824}
825
826/*
827 * For memory reclaim.
828 */
829int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
830
831void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
832 int zid, int nr_pages);
833
834static inline
835unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
836 enum lru_list lru, int zone_idx)
837{
838 struct mem_cgroup_per_node *mz;
839
840 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
841 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
842}
843
844void mem_cgroup_handle_over_high(void);
845
846unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
847
848unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
849
850void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
851 struct task_struct *p);
852
853void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
854
855static inline void mem_cgroup_enter_user_fault(void)
856{
857 WARN_ON(current->in_user_fault);
858 current->in_user_fault = 1;
859}
860
861static inline void mem_cgroup_exit_user_fault(void)
862{
863 WARN_ON(!current->in_user_fault);
864 current->in_user_fault = 0;
865}
866
867static inline bool task_in_memcg_oom(struct task_struct *p)
868{
869 return p->memcg_in_oom;
870}
871
872bool mem_cgroup_oom_synchronize(bool wait);
873struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
874 struct mem_cgroup *oom_domain);
875void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
876
877#ifdef CONFIG_MEMCG_SWAP
878extern bool cgroup_memory_noswap;
879#endif
880
881struct mem_cgroup *lock_page_memcg(struct page *page);
882void __unlock_page_memcg(struct mem_cgroup *memcg);
883void unlock_page_memcg(struct page *page);
884
885/*
886 * idx can be of type enum memcg_stat_item or node_stat_item.
887 * Keep in sync with memcg_exact_page_state().
888 */
889static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
890{
891 long x = atomic_long_read(&memcg->vmstats[idx]);
892#ifdef CONFIG_SMP
893 if (x < 0)
894 x = 0;
895#endif
896 return x;
897}
898
899/*
900 * idx can be of type enum memcg_stat_item or node_stat_item.
901 * Keep in sync with memcg_exact_page_state().
902 */
903static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
904 int idx)
905{
906 long x = 0;
907 int cpu;
908
909 for_each_possible_cpu(cpu)
910 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
911#ifdef CONFIG_SMP
912 if (x < 0)
913 x = 0;
914#endif
915 return x;
916}
917
918void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
919
920/* idx can be of type enum memcg_stat_item or node_stat_item */
921static inline void mod_memcg_state(struct mem_cgroup *memcg,
922 int idx, int val)
923{
924 unsigned long flags;
925
926 local_irq_save(flags);
927 __mod_memcg_state(memcg, idx, val);
928 local_irq_restore(flags);
929}
930
931static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
932 enum node_stat_item idx)
933{
934 struct mem_cgroup_per_node *pn;
935 long x;
936
937 if (mem_cgroup_disabled())
938 return node_page_state(lruvec_pgdat(lruvec), idx);
939
940 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
941 x = atomic_long_read(&pn->lruvec_stat[idx]);
942#ifdef CONFIG_SMP
943 if (x < 0)
944 x = 0;
945#endif
946 return x;
947}
948
949static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
950 enum node_stat_item idx)
951{
952 struct mem_cgroup_per_node *pn;
953 long x = 0;
954 int cpu;
955
956 if (mem_cgroup_disabled())
957 return node_page_state(lruvec_pgdat(lruvec), idx);
958
959 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
960 for_each_possible_cpu(cpu)
961 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
962#ifdef CONFIG_SMP
963 if (x < 0)
964 x = 0;
965#endif
966 return x;
967}
968
969void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
970 int val);
971void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
972
973static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
974 int val)
975{
976 unsigned long flags;
977
978 local_irq_save(flags);
979 __mod_lruvec_kmem_state(p, idx, val);
980 local_irq_restore(flags);
981}
982
983static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
984 enum node_stat_item idx, int val)
985{
986 unsigned long flags;
987
988 local_irq_save(flags);
989 __mod_memcg_lruvec_state(lruvec, idx, val);
990 local_irq_restore(flags);
991}
992
993unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
994 gfp_t gfp_mask,
995 unsigned long *total_scanned);
996
997void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
998 unsigned long count);
999
1000static inline void count_memcg_events(struct mem_cgroup *memcg,
1001 enum vm_event_item idx,
1002 unsigned long count)
1003{
1004 unsigned long flags;
1005
1006 local_irq_save(flags);
1007 __count_memcg_events(memcg, idx, count);
1008 local_irq_restore(flags);
1009}
1010
1011static inline void count_memcg_page_event(struct page *page,
1012 enum vm_event_item idx)
1013{
1014 struct mem_cgroup *memcg = page_memcg(page);
1015
1016 if (memcg)
1017 count_memcg_events(memcg, idx, 1);
1018}
1019
1020static inline void count_memcg_event_mm(struct mm_struct *mm,
1021 enum vm_event_item idx)
1022{
1023 struct mem_cgroup *memcg;
1024
1025 if (mem_cgroup_disabled())
1026 return;
1027
1028 rcu_read_lock();
1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 if (likely(memcg))
1031 count_memcg_events(memcg, idx, 1);
1032 rcu_read_unlock();
1033}
1034
1035static inline void memcg_memory_event(struct mem_cgroup *memcg,
1036 enum memcg_memory_event event)
1037{
1038 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1039 event == MEMCG_SWAP_FAIL;
1040
1041 atomic_long_inc(&memcg->memory_events_local[event]);
1042 if (!swap_event)
1043 cgroup_file_notify(&memcg->events_local_file);
1044
1045 do {
1046 atomic_long_inc(&memcg->memory_events[event]);
1047 if (swap_event)
1048 cgroup_file_notify(&memcg->swap_events_file);
1049 else
1050 cgroup_file_notify(&memcg->events_file);
1051
1052 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1053 break;
1054 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1055 break;
1056 } while ((memcg = parent_mem_cgroup(memcg)) &&
1057 !mem_cgroup_is_root(memcg));
1058}
1059
1060static inline void memcg_memory_event_mm(struct mm_struct *mm,
1061 enum memcg_memory_event event)
1062{
1063 struct mem_cgroup *memcg;
1064
1065 if (mem_cgroup_disabled())
1066 return;
1067
1068 rcu_read_lock();
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (likely(memcg))
1071 memcg_memory_event(memcg, event);
1072 rcu_read_unlock();
1073}
1074
1075#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076void mem_cgroup_split_huge_fixup(struct page *head);
1077#endif
1078
1079#else /* CONFIG_MEMCG */
1080
1081#define MEM_CGROUP_ID_SHIFT 0
1082#define MEM_CGROUP_ID_MAX 0
1083
1084struct mem_cgroup;
1085
1086static inline struct mem_cgroup *page_memcg(struct page *page)
1087{
1088 return NULL;
1089}
1090
1091static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1092{
1093 WARN_ON_ONCE(!rcu_read_lock_held());
1094 return NULL;
1095}
1096
1097static inline struct mem_cgroup *page_memcg_check(struct page *page)
1098{
1099 return NULL;
1100}
1101
1102static inline bool PageMemcgKmem(struct page *page)
1103{
1104 return false;
1105}
1106
1107static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1108{
1109 return true;
1110}
1111
1112static inline bool mem_cgroup_disabled(void)
1113{
1114 return true;
1115}
1116
1117static inline void memcg_memory_event(struct mem_cgroup *memcg,
1118 enum memcg_memory_event event)
1119{
1120}
1121
1122static inline void memcg_memory_event_mm(struct mm_struct *mm,
1123 enum memcg_memory_event event)
1124{
1125}
1126
1127static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1128 struct mem_cgroup *memcg,
1129 bool in_low_reclaim)
1130{
1131 return 0;
1132}
1133
1134static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1135 struct mem_cgroup *memcg)
1136{
1137}
1138
1139static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1140{
1141 return false;
1142}
1143
1144static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1145{
1146 return false;
1147}
1148
1149static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1150 gfp_t gfp_mask)
1151{
1152 return 0;
1153}
1154
1155static inline void mem_cgroup_uncharge(struct page *page)
1156{
1157}
1158
1159static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1160{
1161}
1162
1163static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1164{
1165}
1166
1167static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1168 struct pglist_data *pgdat)
1169{
1170 return &pgdat->__lruvec;
1171}
1172
1173static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1174 struct pglist_data *pgdat)
1175{
1176 return &pgdat->__lruvec;
1177}
1178
1179static inline bool lruvec_holds_page_lru_lock(struct page *page,
1180 struct lruvec *lruvec)
1181{
1182 pg_data_t *pgdat = page_pgdat(page);
1183
1184 return lruvec == &pgdat->__lruvec;
1185}
1186
1187static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1188{
1189 return NULL;
1190}
1191
1192static inline bool mm_match_cgroup(struct mm_struct *mm,
1193 struct mem_cgroup *memcg)
1194{
1195 return true;
1196}
1197
1198static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1199{
1200 return NULL;
1201}
1202
1203static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1204{
1205 return NULL;
1206}
1207
1208static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1209{
1210}
1211
1212static inline struct lruvec *lock_page_lruvec(struct page *page)
1213{
1214 struct pglist_data *pgdat = page_pgdat(page);
1215
1216 spin_lock(&pgdat->__lruvec.lru_lock);
1217 return &pgdat->__lruvec;
1218}
1219
1220static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1221{
1222 struct pglist_data *pgdat = page_pgdat(page);
1223
1224 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1225 return &pgdat->__lruvec;
1226}
1227
1228static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1229 unsigned long *flagsp)
1230{
1231 struct pglist_data *pgdat = page_pgdat(page);
1232
1233 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1234 return &pgdat->__lruvec;
1235}
1236
1237static inline struct mem_cgroup *
1238mem_cgroup_iter(struct mem_cgroup *root,
1239 struct mem_cgroup *prev,
1240 struct mem_cgroup_reclaim_cookie *reclaim)
1241{
1242 return NULL;
1243}
1244
1245static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1246 struct mem_cgroup *prev)
1247{
1248}
1249
1250static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1251 int (*fn)(struct task_struct *, void *), void *arg)
1252{
1253 return 0;
1254}
1255
1256static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1257{
1258 return 0;
1259}
1260
1261static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1262{
1263 WARN_ON_ONCE(id);
1264 /* XXX: This should always return root_mem_cgroup */
1265 return NULL;
1266}
1267
1268static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1269{
1270 return NULL;
1271}
1272
1273static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1274{
1275 return NULL;
1276}
1277
1278static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1279{
1280 return true;
1281}
1282
1283static inline
1284unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1285 enum lru_list lru, int zone_idx)
1286{
1287 return 0;
1288}
1289
1290static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1291{
1292 return 0;
1293}
1294
1295static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1296{
1297 return 0;
1298}
1299
1300static inline void
1301mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1302{
1303}
1304
1305static inline void
1306mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1307{
1308}
1309
1310static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1311{
1312 return NULL;
1313}
1314
1315static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1316{
1317}
1318
1319static inline void unlock_page_memcg(struct page *page)
1320{
1321}
1322
1323static inline void mem_cgroup_handle_over_high(void)
1324{
1325}
1326
1327static inline void mem_cgroup_enter_user_fault(void)
1328{
1329}
1330
1331static inline void mem_cgroup_exit_user_fault(void)
1332{
1333}
1334
1335static inline bool task_in_memcg_oom(struct task_struct *p)
1336{
1337 return false;
1338}
1339
1340static inline bool mem_cgroup_oom_synchronize(bool wait)
1341{
1342 return false;
1343}
1344
1345static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1346 struct task_struct *victim, struct mem_cgroup *oom_domain)
1347{
1348 return NULL;
1349}
1350
1351static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1352{
1353}
1354
1355static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1356{
1357 return 0;
1358}
1359
1360static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1361 int idx)
1362{
1363 return 0;
1364}
1365
1366static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1367 int idx,
1368 int nr)
1369{
1370}
1371
1372static inline void mod_memcg_state(struct mem_cgroup *memcg,
1373 int idx,
1374 int nr)
1375{
1376}
1377
1378static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1379 enum node_stat_item idx)
1380{
1381 return node_page_state(lruvec_pgdat(lruvec), idx);
1382}
1383
1384static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1385 enum node_stat_item idx)
1386{
1387 return node_page_state(lruvec_pgdat(lruvec), idx);
1388}
1389
1390static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1391 enum node_stat_item idx, int val)
1392{
1393}
1394
1395static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1396 int val)
1397{
1398 struct page *page = virt_to_head_page(p);
1399
1400 __mod_node_page_state(page_pgdat(page), idx, val);
1401}
1402
1403static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1404 int val)
1405{
1406 struct page *page = virt_to_head_page(p);
1407
1408 mod_node_page_state(page_pgdat(page), idx, val);
1409}
1410
1411static inline
1412unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1413 gfp_t gfp_mask,
1414 unsigned long *total_scanned)
1415{
1416 return 0;
1417}
1418
1419static inline void mem_cgroup_split_huge_fixup(struct page *head)
1420{
1421}
1422
1423static inline void count_memcg_events(struct mem_cgroup *memcg,
1424 enum vm_event_item idx,
1425 unsigned long count)
1426{
1427}
1428
1429static inline void __count_memcg_events(struct mem_cgroup *memcg,
1430 enum vm_event_item idx,
1431 unsigned long count)
1432{
1433}
1434
1435static inline void count_memcg_page_event(struct page *page,
1436 int idx)
1437{
1438}
1439
1440static inline
1441void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1442{
1443}
1444
1445static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1446{
1447}
1448#endif /* CONFIG_MEMCG */
1449
1450static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1451{
1452 __mod_lruvec_kmem_state(p, idx, 1);
1453}
1454
1455static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1456{
1457 __mod_lruvec_kmem_state(p, idx, -1);
1458}
1459
1460static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1461{
1462 struct mem_cgroup *memcg;
1463
1464 memcg = lruvec_memcg(lruvec);
1465 if (!memcg)
1466 return NULL;
1467 memcg = parent_mem_cgroup(memcg);
1468 if (!memcg)
1469 return NULL;
1470 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1471}
1472
1473static inline void unlock_page_lruvec(struct lruvec *lruvec)
1474{
1475 spin_unlock(&lruvec->lru_lock);
1476}
1477
1478static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1479{
1480 spin_unlock_irq(&lruvec->lru_lock);
1481}
1482
1483static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1484 unsigned long flags)
1485{
1486 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1487}
1488
1489/* Don't lock again iff page's lruvec locked */
1490static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1491 struct lruvec *locked_lruvec)
1492{
1493 if (locked_lruvec) {
1494 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1495 return locked_lruvec;
1496
1497 unlock_page_lruvec_irq(locked_lruvec);
1498 }
1499
1500 return lock_page_lruvec_irq(page);
1501}
1502
1503/* Don't lock again iff page's lruvec locked */
1504static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1505 struct lruvec *locked_lruvec, unsigned long *flags)
1506{
1507 if (locked_lruvec) {
1508 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1509 return locked_lruvec;
1510
1511 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1512 }
1513
1514 return lock_page_lruvec_irqsave(page, flags);
1515}
1516
1517#ifdef CONFIG_CGROUP_WRITEBACK
1518
1519struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1520void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1521 unsigned long *pheadroom, unsigned long *pdirty,
1522 unsigned long *pwriteback);
1523
1524void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1525 struct bdi_writeback *wb);
1526
1527static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1528 struct bdi_writeback *wb)
1529{
1530 if (mem_cgroup_disabled())
1531 return;
1532
1533 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1534 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1535}
1536
1537void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1538
1539#else /* CONFIG_CGROUP_WRITEBACK */
1540
1541static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1542{
1543 return NULL;
1544}
1545
1546static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1547 unsigned long *pfilepages,
1548 unsigned long *pheadroom,
1549 unsigned long *pdirty,
1550 unsigned long *pwriteback)
1551{
1552}
1553
1554static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1555 struct bdi_writeback *wb)
1556{
1557}
1558
1559static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1560{
1561}
1562
1563#endif /* CONFIG_CGROUP_WRITEBACK */
1564
1565struct sock;
1566bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1567void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1568#ifdef CONFIG_MEMCG
1569extern struct static_key_false memcg_sockets_enabled_key;
1570#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1571void mem_cgroup_sk_alloc(struct sock *sk);
1572void mem_cgroup_sk_free(struct sock *sk);
1573static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1574{
1575 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1576 return true;
1577 do {
1578 if (time_before(jiffies, memcg->socket_pressure))
1579 return true;
1580 } while ((memcg = parent_mem_cgroup(memcg)));
1581 return false;
1582}
1583
1584extern int memcg_expand_shrinker_maps(int new_id);
1585
1586extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1587 int nid, int shrinker_id);
1588#else
1589#define mem_cgroup_sockets_enabled 0
1590static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1591static inline void mem_cgroup_sk_free(struct sock *sk) { };
1592static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1593{
1594 return false;
1595}
1596
1597static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1598 int nid, int shrinker_id)
1599{
1600}
1601#endif
1602
1603#ifdef CONFIG_MEMCG_KMEM
1604int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1605 unsigned int nr_pages);
1606void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1607int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1608void __memcg_kmem_uncharge_page(struct page *page, int order);
1609
1610struct obj_cgroup *get_obj_cgroup_from_current(void);
1611
1612int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1613void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1614
1615extern struct static_key_false memcg_kmem_enabled_key;
1616
1617extern int memcg_nr_cache_ids;
1618void memcg_get_cache_ids(void);
1619void memcg_put_cache_ids(void);
1620
1621/*
1622 * Helper macro to loop through all memcg-specific caches. Callers must still
1623 * check if the cache is valid (it is either valid or NULL).
1624 * the slab_mutex must be held when looping through those caches
1625 */
1626#define for_each_memcg_cache_index(_idx) \
1627 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1628
1629static inline bool memcg_kmem_enabled(void)
1630{
1631 return static_branch_likely(&memcg_kmem_enabled_key);
1632}
1633
1634static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1635 int order)
1636{
1637 if (memcg_kmem_enabled())
1638 return __memcg_kmem_charge_page(page, gfp, order);
1639 return 0;
1640}
1641
1642static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1643{
1644 if (memcg_kmem_enabled())
1645 __memcg_kmem_uncharge_page(page, order);
1646}
1647
1648/*
1649 * A helper for accessing memcg's kmem_id, used for getting
1650 * corresponding LRU lists.
1651 */
1652static inline int memcg_cache_id(struct mem_cgroup *memcg)
1653{
1654 return memcg ? memcg->kmemcg_id : -1;
1655}
1656
1657struct mem_cgroup *mem_cgroup_from_obj(void *p);
1658
1659#else
1660
1661static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1662 int order)
1663{
1664 return 0;
1665}
1666
1667static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1668{
1669}
1670
1671static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1672 int order)
1673{
1674 return 0;
1675}
1676
1677static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1678{
1679}
1680
1681#define for_each_memcg_cache_index(_idx) \
1682 for (; NULL; )
1683
1684static inline bool memcg_kmem_enabled(void)
1685{
1686 return false;
1687}
1688
1689static inline int memcg_cache_id(struct mem_cgroup *memcg)
1690{
1691 return -1;
1692}
1693
1694static inline void memcg_get_cache_ids(void)
1695{
1696}
1697
1698static inline void memcg_put_cache_ids(void)
1699{
1700}
1701
1702static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1703{
1704 return NULL;
1705}
1706
1707#endif /* CONFIG_MEMCG_KMEM */
1708
1709#endif /* _LINUX_MEMCONTROL_H */