Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/rcuwait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37#include <linux/kvm_dirty_ring.h>
38
39#ifndef KVM_MAX_VCPU_ID
40#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
41#endif
42
43/*
44 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
45 * in kvm, other bits are visible for userspace which are defined in
46 * include/linux/kvm_h.
47 */
48#define KVM_MEMSLOT_INVALID (1UL << 16)
49
50/*
51 * Bit 63 of the memslot generation number is an "update in-progress flag",
52 * e.g. is temporarily set for the duration of install_new_memslots().
53 * This flag effectively creates a unique generation number that is used to
54 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
55 * i.e. may (or may not) have come from the previous memslots generation.
56 *
57 * This is necessary because the actual memslots update is not atomic with
58 * respect to the generation number update. Updating the generation number
59 * first would allow a vCPU to cache a spte from the old memslots using the
60 * new generation number, and updating the generation number after switching
61 * to the new memslots would allow cache hits using the old generation number
62 * to reference the defunct memslots.
63 *
64 * This mechanism is used to prevent getting hits in KVM's caches while a
65 * memslot update is in-progress, and to prevent cache hits *after* updating
66 * the actual generation number against accesses that were inserted into the
67 * cache *before* the memslots were updated.
68 */
69#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
70
71/* Two fragments for cross MMIO pages. */
72#define KVM_MAX_MMIO_FRAGMENTS 2
73
74#ifndef KVM_ADDRESS_SPACE_NUM
75#define KVM_ADDRESS_SPACE_NUM 1
76#endif
77
78/*
79 * For the normal pfn, the highest 12 bits should be zero,
80 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
81 * mask bit 63 to indicate the noslot pfn.
82 */
83#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
84#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
85#define KVM_PFN_NOSLOT (0x1ULL << 63)
86
87#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
88#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
89#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
90
91/*
92 * error pfns indicate that the gfn is in slot but faild to
93 * translate it to pfn on host.
94 */
95static inline bool is_error_pfn(kvm_pfn_t pfn)
96{
97 return !!(pfn & KVM_PFN_ERR_MASK);
98}
99
100/*
101 * error_noslot pfns indicate that the gfn can not be
102 * translated to pfn - it is not in slot or failed to
103 * translate it to pfn.
104 */
105static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
106{
107 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
108}
109
110/* noslot pfn indicates that the gfn is not in slot. */
111static inline bool is_noslot_pfn(kvm_pfn_t pfn)
112{
113 return pfn == KVM_PFN_NOSLOT;
114}
115
116/*
117 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
118 * provide own defines and kvm_is_error_hva
119 */
120#ifndef KVM_HVA_ERR_BAD
121
122#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
123#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
124
125static inline bool kvm_is_error_hva(unsigned long addr)
126{
127 return addr >= PAGE_OFFSET;
128}
129
130#endif
131
132#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
133
134static inline bool is_error_page(struct page *page)
135{
136 return IS_ERR(page);
137}
138
139#define KVM_REQUEST_MASK GENMASK(7,0)
140#define KVM_REQUEST_NO_WAKEUP BIT(8)
141#define KVM_REQUEST_WAIT BIT(9)
142/*
143 * Architecture-independent vcpu->requests bit members
144 * Bits 4-7 are reserved for more arch-independent bits.
145 */
146#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148#define KVM_REQ_PENDING_TIMER 2
149#define KVM_REQ_UNHALT 3
150#define KVM_REQUEST_ARCH_BASE 8
151
152#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
153 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
154 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
155})
156#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
157
158#define KVM_USERSPACE_IRQ_SOURCE_ID 0
159#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
160
161extern struct mutex kvm_lock;
162extern struct list_head vm_list;
163
164struct kvm_io_range {
165 gpa_t addr;
166 int len;
167 struct kvm_io_device *dev;
168};
169
170#define NR_IOBUS_DEVS 1000
171
172struct kvm_io_bus {
173 int dev_count;
174 int ioeventfd_count;
175 struct kvm_io_range range[];
176};
177
178enum kvm_bus {
179 KVM_MMIO_BUS,
180 KVM_PIO_BUS,
181 KVM_VIRTIO_CCW_NOTIFY_BUS,
182 KVM_FAST_MMIO_BUS,
183 KVM_NR_BUSES
184};
185
186int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
187 int len, const void *val);
188int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
189 gpa_t addr, int len, const void *val, long cookie);
190int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 int len, void *val);
192int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
193 int len, struct kvm_io_device *dev);
194void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
195 struct kvm_io_device *dev);
196struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
197 gpa_t addr);
198
199#ifdef CONFIG_KVM_ASYNC_PF
200struct kvm_async_pf {
201 struct work_struct work;
202 struct list_head link;
203 struct list_head queue;
204 struct kvm_vcpu *vcpu;
205 struct mm_struct *mm;
206 gpa_t cr2_or_gpa;
207 unsigned long addr;
208 struct kvm_arch_async_pf arch;
209 bool wakeup_all;
210 bool notpresent_injected;
211};
212
213void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
216 unsigned long hva, struct kvm_arch_async_pf *arch);
217int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218#endif
219
220enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225};
226
227#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242};
243
244/*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
248static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249{
250 return !!map->hva;
251}
252
253/*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261};
262
263struct kvm_vcpu {
264 struct kvm *kvm;
265#ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267#endif
268 int cpu;
269 int vcpu_id; /* id given by userspace at creation */
270 int vcpu_idx; /* index in kvm->vcpus array */
271 int srcu_idx;
272 int mode;
273 u64 requests;
274 unsigned long guest_debug;
275
276 int pre_pcpu;
277 struct list_head blocked_vcpu_list;
278
279 struct mutex mutex;
280 struct kvm_run *run;
281
282 struct rcuwait wait;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290#ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297#endif
298
299#ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306#endif
307
308#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319#endif
320 bool preempted;
321 bool ready;
322 struct kvm_vcpu_arch arch;
323 struct kvm_dirty_ring dirty_ring;
324};
325
326static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
327{
328 /*
329 * The memory barrier ensures a previous write to vcpu->requests cannot
330 * be reordered with the read of vcpu->mode. It pairs with the general
331 * memory barrier following the write of vcpu->mode in VCPU RUN.
332 */
333 smp_mb__before_atomic();
334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
335}
336
337/*
338 * Some of the bitops functions do not support too long bitmaps.
339 * This number must be determined not to exceed such limits.
340 */
341#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
342
343struct kvm_memory_slot {
344 gfn_t base_gfn;
345 unsigned long npages;
346 unsigned long *dirty_bitmap;
347 struct kvm_arch_memory_slot arch;
348 unsigned long userspace_addr;
349 u32 flags;
350 short id;
351 u16 as_id;
352};
353
354static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot)
355{
356 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
357}
358
359static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
360{
361 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
362}
363
364static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
365{
366 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
367
368 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
369}
370
371#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
372#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
373#endif
374
375struct kvm_s390_adapter_int {
376 u64 ind_addr;
377 u64 summary_addr;
378 u64 ind_offset;
379 u32 summary_offset;
380 u32 adapter_id;
381};
382
383struct kvm_hv_sint {
384 u32 vcpu;
385 u32 sint;
386};
387
388struct kvm_kernel_irq_routing_entry {
389 u32 gsi;
390 u32 type;
391 int (*set)(struct kvm_kernel_irq_routing_entry *e,
392 struct kvm *kvm, int irq_source_id, int level,
393 bool line_status);
394 union {
395 struct {
396 unsigned irqchip;
397 unsigned pin;
398 } irqchip;
399 struct {
400 u32 address_lo;
401 u32 address_hi;
402 u32 data;
403 u32 flags;
404 u32 devid;
405 } msi;
406 struct kvm_s390_adapter_int adapter;
407 struct kvm_hv_sint hv_sint;
408 };
409 struct hlist_node link;
410};
411
412#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
413struct kvm_irq_routing_table {
414 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
415 u32 nr_rt_entries;
416 /*
417 * Array indexed by gsi. Each entry contains list of irq chips
418 * the gsi is connected to.
419 */
420 struct hlist_head map[];
421};
422#endif
423
424#ifndef KVM_PRIVATE_MEM_SLOTS
425#define KVM_PRIVATE_MEM_SLOTS 0
426#endif
427
428#ifndef KVM_MEM_SLOTS_NUM
429#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
430#endif
431
432#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
433static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
434{
435 return 0;
436}
437#endif
438
439/*
440 * Note:
441 * memslots are not sorted by id anymore, please use id_to_memslot()
442 * to get the memslot by its id.
443 */
444struct kvm_memslots {
445 u64 generation;
446 /* The mapping table from slot id to the index in memslots[]. */
447 short id_to_index[KVM_MEM_SLOTS_NUM];
448 atomic_t lru_slot;
449 int used_slots;
450 struct kvm_memory_slot memslots[];
451};
452
453struct kvm {
454 spinlock_t mmu_lock;
455 struct mutex slots_lock;
456 struct mm_struct *mm; /* userspace tied to this vm */
457 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
458 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
459
460 /*
461 * created_vcpus is protected by kvm->lock, and is incremented
462 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
463 * incremented after storing the kvm_vcpu pointer in vcpus,
464 * and is accessed atomically.
465 */
466 atomic_t online_vcpus;
467 int created_vcpus;
468 int last_boosted_vcpu;
469 struct list_head vm_list;
470 struct mutex lock;
471 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
472#ifdef CONFIG_HAVE_KVM_EVENTFD
473 struct {
474 spinlock_t lock;
475 struct list_head items;
476 struct list_head resampler_list;
477 struct mutex resampler_lock;
478 } irqfds;
479 struct list_head ioeventfds;
480#endif
481 struct kvm_vm_stat stat;
482 struct kvm_arch arch;
483 refcount_t users_count;
484#ifdef CONFIG_KVM_MMIO
485 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
486 spinlock_t ring_lock;
487 struct list_head coalesced_zones;
488#endif
489
490 struct mutex irq_lock;
491#ifdef CONFIG_HAVE_KVM_IRQCHIP
492 /*
493 * Update side is protected by irq_lock.
494 */
495 struct kvm_irq_routing_table __rcu *irq_routing;
496#endif
497#ifdef CONFIG_HAVE_KVM_IRQFD
498 struct hlist_head irq_ack_notifier_list;
499#endif
500
501#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
502 struct mmu_notifier mmu_notifier;
503 unsigned long mmu_notifier_seq;
504 long mmu_notifier_count;
505#endif
506 long tlbs_dirty;
507 struct list_head devices;
508 u64 manual_dirty_log_protect;
509 struct dentry *debugfs_dentry;
510 struct kvm_stat_data **debugfs_stat_data;
511 struct srcu_struct srcu;
512 struct srcu_struct irq_srcu;
513 pid_t userspace_pid;
514 unsigned int max_halt_poll_ns;
515 u32 dirty_ring_size;
516};
517
518#define kvm_err(fmt, ...) \
519 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
520#define kvm_info(fmt, ...) \
521 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
522#define kvm_debug(fmt, ...) \
523 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
524#define kvm_debug_ratelimited(fmt, ...) \
525 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
526 ## __VA_ARGS__)
527#define kvm_pr_unimpl(fmt, ...) \
528 pr_err_ratelimited("kvm [%i]: " fmt, \
529 task_tgid_nr(current), ## __VA_ARGS__)
530
531/* The guest did something we don't support. */
532#define vcpu_unimpl(vcpu, fmt, ...) \
533 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
534 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
535
536#define vcpu_debug(vcpu, fmt, ...) \
537 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
538#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
539 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
540 ## __VA_ARGS__)
541#define vcpu_err(vcpu, fmt, ...) \
542 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
543
544static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
545{
546 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
547}
548
549static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
550{
551 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
552 lockdep_is_held(&kvm->slots_lock) ||
553 !refcount_read(&kvm->users_count));
554}
555
556static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
557{
558 int num_vcpus = atomic_read(&kvm->online_vcpus);
559 i = array_index_nospec(i, num_vcpus);
560
561 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
562 smp_rmb();
563 return kvm->vcpus[i];
564}
565
566#define kvm_for_each_vcpu(idx, vcpup, kvm) \
567 for (idx = 0; \
568 idx < atomic_read(&kvm->online_vcpus) && \
569 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
570 idx++)
571
572static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
573{
574 struct kvm_vcpu *vcpu = NULL;
575 int i;
576
577 if (id < 0)
578 return NULL;
579 if (id < KVM_MAX_VCPUS)
580 vcpu = kvm_get_vcpu(kvm, id);
581 if (vcpu && vcpu->vcpu_id == id)
582 return vcpu;
583 kvm_for_each_vcpu(i, vcpu, kvm)
584 if (vcpu->vcpu_id == id)
585 return vcpu;
586 return NULL;
587}
588
589static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
590{
591 return vcpu->vcpu_idx;
592}
593
594#define kvm_for_each_memslot(memslot, slots) \
595 for (memslot = &slots->memslots[0]; \
596 memslot < slots->memslots + slots->used_slots; memslot++) \
597 if (WARN_ON_ONCE(!memslot->npages)) { \
598 } else
599
600void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
601
602void vcpu_load(struct kvm_vcpu *vcpu);
603void vcpu_put(struct kvm_vcpu *vcpu);
604
605#ifdef __KVM_HAVE_IOAPIC
606void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
607void kvm_arch_post_irq_routing_update(struct kvm *kvm);
608#else
609static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
610{
611}
612static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
613{
614}
615#endif
616
617#ifdef CONFIG_HAVE_KVM_IRQFD
618int kvm_irqfd_init(void);
619void kvm_irqfd_exit(void);
620#else
621static inline int kvm_irqfd_init(void)
622{
623 return 0;
624}
625
626static inline void kvm_irqfd_exit(void)
627{
628}
629#endif
630int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
631 struct module *module);
632void kvm_exit(void);
633
634void kvm_get_kvm(struct kvm *kvm);
635void kvm_put_kvm(struct kvm *kvm);
636void kvm_put_kvm_no_destroy(struct kvm *kvm);
637
638static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
639{
640 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
641 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
642 lockdep_is_held(&kvm->slots_lock) ||
643 !refcount_read(&kvm->users_count));
644}
645
646static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
647{
648 return __kvm_memslots(kvm, 0);
649}
650
651static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
652{
653 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
654
655 return __kvm_memslots(vcpu->kvm, as_id);
656}
657
658static inline
659struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
660{
661 int index = slots->id_to_index[id];
662 struct kvm_memory_slot *slot;
663
664 if (index < 0)
665 return NULL;
666
667 slot = &slots->memslots[index];
668
669 WARN_ON(slot->id != id);
670 return slot;
671}
672
673/*
674 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
675 * - create a new memory slot
676 * - delete an existing memory slot
677 * - modify an existing memory slot
678 * -- move it in the guest physical memory space
679 * -- just change its flags
680 *
681 * Since flags can be changed by some of these operations, the following
682 * differentiation is the best we can do for __kvm_set_memory_region():
683 */
684enum kvm_mr_change {
685 KVM_MR_CREATE,
686 KVM_MR_DELETE,
687 KVM_MR_MOVE,
688 KVM_MR_FLAGS_ONLY,
689};
690
691int kvm_set_memory_region(struct kvm *kvm,
692 const struct kvm_userspace_memory_region *mem);
693int __kvm_set_memory_region(struct kvm *kvm,
694 const struct kvm_userspace_memory_region *mem);
695void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
696void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
697int kvm_arch_prepare_memory_region(struct kvm *kvm,
698 struct kvm_memory_slot *memslot,
699 const struct kvm_userspace_memory_region *mem,
700 enum kvm_mr_change change);
701void kvm_arch_commit_memory_region(struct kvm *kvm,
702 const struct kvm_userspace_memory_region *mem,
703 struct kvm_memory_slot *old,
704 const struct kvm_memory_slot *new,
705 enum kvm_mr_change change);
706/* flush all memory translations */
707void kvm_arch_flush_shadow_all(struct kvm *kvm);
708/* flush memory translations pointing to 'slot' */
709void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
710 struct kvm_memory_slot *slot);
711
712int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
713 struct page **pages, int nr_pages);
714
715struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
716unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
717unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
718unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
719unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
720 bool *writable);
721void kvm_release_page_clean(struct page *page);
722void kvm_release_page_dirty(struct page *page);
723void kvm_set_page_accessed(struct page *page);
724
725kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
726kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
727 bool *writable);
728kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
729kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
730kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
731 bool atomic, bool *async, bool write_fault,
732 bool *writable);
733
734void kvm_release_pfn_clean(kvm_pfn_t pfn);
735void kvm_release_pfn_dirty(kvm_pfn_t pfn);
736void kvm_set_pfn_dirty(kvm_pfn_t pfn);
737void kvm_set_pfn_accessed(kvm_pfn_t pfn);
738void kvm_get_pfn(kvm_pfn_t pfn);
739
740void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
741int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
742 int len);
743int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
744int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 void *data, unsigned long len);
746int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 void *data, unsigned int offset,
748 unsigned long len);
749int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
750 int offset, int len);
751int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
752 unsigned long len);
753int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
754 void *data, unsigned long len);
755int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
756 void *data, unsigned int offset,
757 unsigned long len);
758int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
759 gpa_t gpa, unsigned long len);
760
761#define __kvm_get_guest(kvm, gfn, offset, v) \
762({ \
763 unsigned long __addr = gfn_to_hva(kvm, gfn); \
764 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
765 int __ret = -EFAULT; \
766 \
767 if (!kvm_is_error_hva(__addr)) \
768 __ret = get_user(v, __uaddr); \
769 __ret; \
770})
771
772#define kvm_get_guest(kvm, gpa, v) \
773({ \
774 gpa_t __gpa = gpa; \
775 struct kvm *__kvm = kvm; \
776 \
777 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
778 offset_in_page(__gpa), v); \
779})
780
781#define __kvm_put_guest(kvm, gfn, offset, v) \
782({ \
783 unsigned long __addr = gfn_to_hva(kvm, gfn); \
784 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
785 int __ret = -EFAULT; \
786 \
787 if (!kvm_is_error_hva(__addr)) \
788 __ret = put_user(v, __uaddr); \
789 if (!__ret) \
790 mark_page_dirty(kvm, gfn); \
791 __ret; \
792})
793
794#define kvm_put_guest(kvm, gpa, v) \
795({ \
796 gpa_t __gpa = gpa; \
797 struct kvm *__kvm = kvm; \
798 \
799 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
800 offset_in_page(__gpa), v); \
801})
802
803int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
804struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
805bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
806bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
807unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
808void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn);
809void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
810
811struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
812struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
813kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
814kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
815int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
816int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
817 struct gfn_to_pfn_cache *cache, bool atomic);
818struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
819void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
820int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
821 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
822unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
823unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
824int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
825 int len);
826int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
827 unsigned long len);
828int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
829 unsigned long len);
830int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
831 int offset, int len);
832int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
833 unsigned long len);
834void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
835
836void kvm_sigset_activate(struct kvm_vcpu *vcpu);
837void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
838
839void kvm_vcpu_block(struct kvm_vcpu *vcpu);
840void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
841void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
842bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
843void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
844int kvm_vcpu_yield_to(struct kvm_vcpu *target);
845void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
846
847void kvm_flush_remote_tlbs(struct kvm *kvm);
848void kvm_reload_remote_mmus(struct kvm *kvm);
849
850#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
851int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
852int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
853void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
854void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
855#endif
856
857bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
858 struct kvm_vcpu *except,
859 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
860bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
861bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
862 struct kvm_vcpu *except);
863bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
864 unsigned long *vcpu_bitmap);
865
866long kvm_arch_dev_ioctl(struct file *filp,
867 unsigned int ioctl, unsigned long arg);
868long kvm_arch_vcpu_ioctl(struct file *filp,
869 unsigned int ioctl, unsigned long arg);
870vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
871
872int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
873
874void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
875 struct kvm_memory_slot *slot,
876 gfn_t gfn_offset,
877 unsigned long mask);
878void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
879
880#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
881void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
882 struct kvm_memory_slot *memslot);
883#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
884int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
885int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
886 int *is_dirty, struct kvm_memory_slot **memslot);
887#endif
888
889int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
890 bool line_status);
891int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
892 struct kvm_enable_cap *cap);
893long kvm_arch_vm_ioctl(struct file *filp,
894 unsigned int ioctl, unsigned long arg);
895
896int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
897int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
898
899int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
900 struct kvm_translation *tr);
901
902int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
903int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
904int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
905 struct kvm_sregs *sregs);
906int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
907 struct kvm_sregs *sregs);
908int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
909 struct kvm_mp_state *mp_state);
910int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
911 struct kvm_mp_state *mp_state);
912int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
913 struct kvm_guest_debug *dbg);
914int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
915
916int kvm_arch_init(void *opaque);
917void kvm_arch_exit(void);
918
919void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
920
921void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
922void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
923int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
924int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
925void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
926void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
927
928#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
929void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
930#endif
931
932int kvm_arch_hardware_enable(void);
933void kvm_arch_hardware_disable(void);
934int kvm_arch_hardware_setup(void *opaque);
935void kvm_arch_hardware_unsetup(void);
936int kvm_arch_check_processor_compat(void *opaque);
937int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
938bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
939int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
940bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
941int kvm_arch_post_init_vm(struct kvm *kvm);
942void kvm_arch_pre_destroy_vm(struct kvm *kvm);
943
944#ifndef __KVM_HAVE_ARCH_VM_ALLOC
945/*
946 * All architectures that want to use vzalloc currently also
947 * need their own kvm_arch_alloc_vm implementation.
948 */
949static inline struct kvm *kvm_arch_alloc_vm(void)
950{
951 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
952}
953
954static inline void kvm_arch_free_vm(struct kvm *kvm)
955{
956 kfree(kvm);
957}
958#endif
959
960#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
961static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
962{
963 return -ENOTSUPP;
964}
965#endif
966
967#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
968void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
969void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
970bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
971#else
972static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
973{
974}
975
976static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
977{
978}
979
980static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
981{
982 return false;
983}
984#endif
985#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
986void kvm_arch_start_assignment(struct kvm *kvm);
987void kvm_arch_end_assignment(struct kvm *kvm);
988bool kvm_arch_has_assigned_device(struct kvm *kvm);
989#else
990static inline void kvm_arch_start_assignment(struct kvm *kvm)
991{
992}
993
994static inline void kvm_arch_end_assignment(struct kvm *kvm)
995{
996}
997
998static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
999{
1000 return false;
1001}
1002#endif
1003
1004static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1005{
1006#ifdef __KVM_HAVE_ARCH_WQP
1007 return vcpu->arch.waitp;
1008#else
1009 return &vcpu->wait;
1010#endif
1011}
1012
1013#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1014/*
1015 * returns true if the virtual interrupt controller is initialized and
1016 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1017 * controller is dynamically instantiated and this is not always true.
1018 */
1019bool kvm_arch_intc_initialized(struct kvm *kvm);
1020#else
1021static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1022{
1023 return true;
1024}
1025#endif
1026
1027int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1028void kvm_arch_destroy_vm(struct kvm *kvm);
1029void kvm_arch_sync_events(struct kvm *kvm);
1030
1031int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1032
1033bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1034bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1035bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
1036
1037struct kvm_irq_ack_notifier {
1038 struct hlist_node link;
1039 unsigned gsi;
1040 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1041};
1042
1043int kvm_irq_map_gsi(struct kvm *kvm,
1044 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1045int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1046
1047int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1048 bool line_status);
1049int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1050 int irq_source_id, int level, bool line_status);
1051int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1052 struct kvm *kvm, int irq_source_id,
1053 int level, bool line_status);
1054bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1055void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1056void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1057void kvm_register_irq_ack_notifier(struct kvm *kvm,
1058 struct kvm_irq_ack_notifier *kian);
1059void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1060 struct kvm_irq_ack_notifier *kian);
1061int kvm_request_irq_source_id(struct kvm *kvm);
1062void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1063bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1064
1065/*
1066 * search_memslots() and __gfn_to_memslot() are here because they are
1067 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1068 * gfn_to_memslot() itself isn't here as an inline because that would
1069 * bloat other code too much.
1070 *
1071 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1072 */
1073static inline struct kvm_memory_slot *
1074search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1075{
1076 int start = 0, end = slots->used_slots;
1077 int slot = atomic_read(&slots->lru_slot);
1078 struct kvm_memory_slot *memslots = slots->memslots;
1079
1080 if (unlikely(!slots->used_slots))
1081 return NULL;
1082
1083 if (gfn >= memslots[slot].base_gfn &&
1084 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1085 return &memslots[slot];
1086
1087 while (start < end) {
1088 slot = start + (end - start) / 2;
1089
1090 if (gfn >= memslots[slot].base_gfn)
1091 end = slot;
1092 else
1093 start = slot + 1;
1094 }
1095
1096 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1097 gfn < memslots[start].base_gfn + memslots[start].npages) {
1098 atomic_set(&slots->lru_slot, start);
1099 return &memslots[start];
1100 }
1101
1102 return NULL;
1103}
1104
1105static inline struct kvm_memory_slot *
1106__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1107{
1108 return search_memslots(slots, gfn);
1109}
1110
1111static inline unsigned long
1112__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1113{
1114 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1115}
1116
1117static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1118{
1119 return gfn_to_memslot(kvm, gfn)->id;
1120}
1121
1122static inline gfn_t
1123hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1124{
1125 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1126
1127 return slot->base_gfn + gfn_offset;
1128}
1129
1130static inline gpa_t gfn_to_gpa(gfn_t gfn)
1131{
1132 return (gpa_t)gfn << PAGE_SHIFT;
1133}
1134
1135static inline gfn_t gpa_to_gfn(gpa_t gpa)
1136{
1137 return (gfn_t)(gpa >> PAGE_SHIFT);
1138}
1139
1140static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1141{
1142 return (hpa_t)pfn << PAGE_SHIFT;
1143}
1144
1145static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1146 gpa_t gpa)
1147{
1148 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1149}
1150
1151static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1152{
1153 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1154
1155 return kvm_is_error_hva(hva);
1156}
1157
1158enum kvm_stat_kind {
1159 KVM_STAT_VM,
1160 KVM_STAT_VCPU,
1161};
1162
1163struct kvm_stat_data {
1164 struct kvm *kvm;
1165 struct kvm_stats_debugfs_item *dbgfs_item;
1166};
1167
1168struct kvm_stats_debugfs_item {
1169 const char *name;
1170 int offset;
1171 enum kvm_stat_kind kind;
1172 int mode;
1173};
1174
1175#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1176 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1177
1178#define VM_STAT(n, x, ...) \
1179 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1180#define VCPU_STAT(n, x, ...) \
1181 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1182
1183extern struct kvm_stats_debugfs_item debugfs_entries[];
1184extern struct dentry *kvm_debugfs_dir;
1185
1186#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1187static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1188{
1189 if (unlikely(kvm->mmu_notifier_count))
1190 return 1;
1191 /*
1192 * Ensure the read of mmu_notifier_count happens before the read
1193 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1194 * mmu_notifier_invalidate_range_end to make sure that the caller
1195 * either sees the old (non-zero) value of mmu_notifier_count or
1196 * the new (incremented) value of mmu_notifier_seq.
1197 * PowerPC Book3s HV KVM calls this under a per-page lock
1198 * rather than under kvm->mmu_lock, for scalability, so
1199 * can't rely on kvm->mmu_lock to keep things ordered.
1200 */
1201 smp_rmb();
1202 if (kvm->mmu_notifier_seq != mmu_seq)
1203 return 1;
1204 return 0;
1205}
1206#endif
1207
1208#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1209
1210#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1211
1212bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1213int kvm_set_irq_routing(struct kvm *kvm,
1214 const struct kvm_irq_routing_entry *entries,
1215 unsigned nr,
1216 unsigned flags);
1217int kvm_set_routing_entry(struct kvm *kvm,
1218 struct kvm_kernel_irq_routing_entry *e,
1219 const struct kvm_irq_routing_entry *ue);
1220void kvm_free_irq_routing(struct kvm *kvm);
1221
1222#else
1223
1224static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1225
1226#endif
1227
1228int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1229
1230#ifdef CONFIG_HAVE_KVM_EVENTFD
1231
1232void kvm_eventfd_init(struct kvm *kvm);
1233int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1234
1235#ifdef CONFIG_HAVE_KVM_IRQFD
1236int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1237void kvm_irqfd_release(struct kvm *kvm);
1238void kvm_irq_routing_update(struct kvm *);
1239#else
1240static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1241{
1242 return -EINVAL;
1243}
1244
1245static inline void kvm_irqfd_release(struct kvm *kvm) {}
1246#endif
1247
1248#else
1249
1250static inline void kvm_eventfd_init(struct kvm *kvm) {}
1251
1252static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1253{
1254 return -EINVAL;
1255}
1256
1257static inline void kvm_irqfd_release(struct kvm *kvm) {}
1258
1259#ifdef CONFIG_HAVE_KVM_IRQCHIP
1260static inline void kvm_irq_routing_update(struct kvm *kvm)
1261{
1262}
1263#endif
1264
1265static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1266{
1267 return -ENOSYS;
1268}
1269
1270#endif /* CONFIG_HAVE_KVM_EVENTFD */
1271
1272void kvm_arch_irq_routing_update(struct kvm *kvm);
1273
1274static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1275{
1276 /*
1277 * Ensure the rest of the request is published to kvm_check_request's
1278 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1279 */
1280 smp_wmb();
1281 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1282}
1283
1284static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1285{
1286 return READ_ONCE(vcpu->requests);
1287}
1288
1289static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1290{
1291 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1292}
1293
1294static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1295{
1296 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1297}
1298
1299static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1300{
1301 if (kvm_test_request(req, vcpu)) {
1302 kvm_clear_request(req, vcpu);
1303
1304 /*
1305 * Ensure the rest of the request is visible to kvm_check_request's
1306 * caller. Paired with the smp_wmb in kvm_make_request.
1307 */
1308 smp_mb__after_atomic();
1309 return true;
1310 } else {
1311 return false;
1312 }
1313}
1314
1315extern bool kvm_rebooting;
1316
1317extern unsigned int halt_poll_ns;
1318extern unsigned int halt_poll_ns_grow;
1319extern unsigned int halt_poll_ns_grow_start;
1320extern unsigned int halt_poll_ns_shrink;
1321
1322struct kvm_device {
1323 const struct kvm_device_ops *ops;
1324 struct kvm *kvm;
1325 void *private;
1326 struct list_head vm_node;
1327};
1328
1329/* create, destroy, and name are mandatory */
1330struct kvm_device_ops {
1331 const char *name;
1332
1333 /*
1334 * create is called holding kvm->lock and any operations not suitable
1335 * to do while holding the lock should be deferred to init (see
1336 * below).
1337 */
1338 int (*create)(struct kvm_device *dev, u32 type);
1339
1340 /*
1341 * init is called after create if create is successful and is called
1342 * outside of holding kvm->lock.
1343 */
1344 void (*init)(struct kvm_device *dev);
1345
1346 /*
1347 * Destroy is responsible for freeing dev.
1348 *
1349 * Destroy may be called before or after destructors are called
1350 * on emulated I/O regions, depending on whether a reference is
1351 * held by a vcpu or other kvm component that gets destroyed
1352 * after the emulated I/O.
1353 */
1354 void (*destroy)(struct kvm_device *dev);
1355
1356 /*
1357 * Release is an alternative method to free the device. It is
1358 * called when the device file descriptor is closed. Once
1359 * release is called, the destroy method will not be called
1360 * anymore as the device is removed from the device list of
1361 * the VM. kvm->lock is held.
1362 */
1363 void (*release)(struct kvm_device *dev);
1364
1365 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1366 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1367 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1368 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1369 unsigned long arg);
1370 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1371};
1372
1373void kvm_device_get(struct kvm_device *dev);
1374void kvm_device_put(struct kvm_device *dev);
1375struct kvm_device *kvm_device_from_filp(struct file *filp);
1376int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1377void kvm_unregister_device_ops(u32 type);
1378
1379extern struct kvm_device_ops kvm_mpic_ops;
1380extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1381extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1382
1383#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1384
1385static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1386{
1387 vcpu->spin_loop.in_spin_loop = val;
1388}
1389static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1390{
1391 vcpu->spin_loop.dy_eligible = val;
1392}
1393
1394#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1395
1396static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1397{
1398}
1399
1400static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1401{
1402}
1403#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1404
1405static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1406{
1407 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1408 !(memslot->flags & KVM_MEMSLOT_INVALID));
1409}
1410
1411struct kvm_vcpu *kvm_get_running_vcpu(void);
1412struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1413
1414#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1415bool kvm_arch_has_irq_bypass(void);
1416int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1417 struct irq_bypass_producer *);
1418void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1419 struct irq_bypass_producer *);
1420void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1421void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1422int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1423 uint32_t guest_irq, bool set);
1424#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1425
1426#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1427/* If we wakeup during the poll time, was it a sucessful poll? */
1428static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1429{
1430 return vcpu->valid_wakeup;
1431}
1432
1433#else
1434static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1435{
1436 return true;
1437}
1438#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1439
1440#ifdef CONFIG_HAVE_KVM_NO_POLL
1441/* Callback that tells if we must not poll */
1442bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1443#else
1444static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1445{
1446 return false;
1447}
1448#endif /* CONFIG_HAVE_KVM_NO_POLL */
1449
1450#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1451long kvm_arch_vcpu_async_ioctl(struct file *filp,
1452 unsigned int ioctl, unsigned long arg);
1453#else
1454static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1455 unsigned int ioctl,
1456 unsigned long arg)
1457{
1458 return -ENOIOCTLCMD;
1459}
1460#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1461
1462void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1463 unsigned long start, unsigned long end);
1464
1465#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1466int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1467#else
1468static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1469{
1470 return 0;
1471}
1472#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1473
1474typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1475
1476int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1477 uintptr_t data, const char *name,
1478 struct task_struct **thread_ptr);
1479
1480#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
1481static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
1482{
1483 vcpu->run->exit_reason = KVM_EXIT_INTR;
1484 vcpu->stat.signal_exits++;
1485}
1486#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
1487
1488/*
1489 * This defines how many reserved entries we want to keep before we
1490 * kick the vcpu to the userspace to avoid dirty ring full. This
1491 * value can be tuned to higher if e.g. PML is enabled on the host.
1492 */
1493#define KVM_DIRTY_RING_RSVD_ENTRIES 64
1494
1495/* Max number of entries allowed for each kvm dirty ring */
1496#define KVM_DIRTY_RING_MAX_ENTRIES 65536
1497
1498#endif