at v5.11 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <stdarg.h> 9 10#include <linux/atomic.h> 11#include <linux/refcount.h> 12#include <linux/compat.h> 13#include <linux/skbuff.h> 14#include <linux/linkage.h> 15#include <linux/printk.h> 16#include <linux/workqueue.h> 17#include <linux/sched.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25 26#include <net/sch_generic.h> 27 28#include <asm/byteorder.h> 29#include <uapi/linux/filter.h> 30#include <uapi/linux/bpf.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark call to interpreter with arguments */ 73#define BPF_CALL_ARGS 0xe0 74 75/* As per nm, we expose JITed images as text (code) section for 76 * kallsyms. That way, tools like perf can find it to match 77 * addresses. 78 */ 79#define BPF_SYM_ELF_TYPE 't' 80 81/* BPF program can access up to 512 bytes of stack space. */ 82#define MAX_BPF_STACK 512 83 84/* Helper macros for filter block array initializers. */ 85 86/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 87 88#define BPF_ALU64_REG(OP, DST, SRC) \ 89 ((struct bpf_insn) { \ 90 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 91 .dst_reg = DST, \ 92 .src_reg = SRC, \ 93 .off = 0, \ 94 .imm = 0 }) 95 96#define BPF_ALU32_REG(OP, DST, SRC) \ 97 ((struct bpf_insn) { \ 98 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 99 .dst_reg = DST, \ 100 .src_reg = SRC, \ 101 .off = 0, \ 102 .imm = 0 }) 103 104/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 105 106#define BPF_ALU64_IMM(OP, DST, IMM) \ 107 ((struct bpf_insn) { \ 108 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 109 .dst_reg = DST, \ 110 .src_reg = 0, \ 111 .off = 0, \ 112 .imm = IMM }) 113 114#define BPF_ALU32_IMM(OP, DST, IMM) \ 115 ((struct bpf_insn) { \ 116 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 117 .dst_reg = DST, \ 118 .src_reg = 0, \ 119 .off = 0, \ 120 .imm = IMM }) 121 122/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 123 124#define BPF_ENDIAN(TYPE, DST, LEN) \ 125 ((struct bpf_insn) { \ 126 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 127 .dst_reg = DST, \ 128 .src_reg = 0, \ 129 .off = 0, \ 130 .imm = LEN }) 131 132/* Short form of mov, dst_reg = src_reg */ 133 134#define BPF_MOV64_REG(DST, SRC) \ 135 ((struct bpf_insn) { \ 136 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 137 .dst_reg = DST, \ 138 .src_reg = SRC, \ 139 .off = 0, \ 140 .imm = 0 }) 141 142#define BPF_MOV32_REG(DST, SRC) \ 143 ((struct bpf_insn) { \ 144 .code = BPF_ALU | BPF_MOV | BPF_X, \ 145 .dst_reg = DST, \ 146 .src_reg = SRC, \ 147 .off = 0, \ 148 .imm = 0 }) 149 150/* Short form of mov, dst_reg = imm32 */ 151 152#define BPF_MOV64_IMM(DST, IMM) \ 153 ((struct bpf_insn) { \ 154 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 155 .dst_reg = DST, \ 156 .src_reg = 0, \ 157 .off = 0, \ 158 .imm = IMM }) 159 160#define BPF_MOV32_IMM(DST, IMM) \ 161 ((struct bpf_insn) { \ 162 .code = BPF_ALU | BPF_MOV | BPF_K, \ 163 .dst_reg = DST, \ 164 .src_reg = 0, \ 165 .off = 0, \ 166 .imm = IMM }) 167 168/* Special form of mov32, used for doing explicit zero extension on dst. */ 169#define BPF_ZEXT_REG(DST) \ 170 ((struct bpf_insn) { \ 171 .code = BPF_ALU | BPF_MOV | BPF_X, \ 172 .dst_reg = DST, \ 173 .src_reg = DST, \ 174 .off = 0, \ 175 .imm = 1 }) 176 177static inline bool insn_is_zext(const struct bpf_insn *insn) 178{ 179 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 180} 181 182/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 183#define BPF_LD_IMM64(DST, IMM) \ 184 BPF_LD_IMM64_RAW(DST, 0, IMM) 185 186#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 187 ((struct bpf_insn) { \ 188 .code = BPF_LD | BPF_DW | BPF_IMM, \ 189 .dst_reg = DST, \ 190 .src_reg = SRC, \ 191 .off = 0, \ 192 .imm = (__u32) (IMM) }), \ 193 ((struct bpf_insn) { \ 194 .code = 0, /* zero is reserved opcode */ \ 195 .dst_reg = 0, \ 196 .src_reg = 0, \ 197 .off = 0, \ 198 .imm = ((__u64) (IMM)) >> 32 }) 199 200/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 201#define BPF_LD_MAP_FD(DST, MAP_FD) \ 202 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 203 204/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 205 206#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 207 ((struct bpf_insn) { \ 208 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 209 .dst_reg = DST, \ 210 .src_reg = SRC, \ 211 .off = 0, \ 212 .imm = IMM }) 213 214#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 215 ((struct bpf_insn) { \ 216 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 217 .dst_reg = DST, \ 218 .src_reg = SRC, \ 219 .off = 0, \ 220 .imm = IMM }) 221 222/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 223 224#define BPF_LD_ABS(SIZE, IMM) \ 225 ((struct bpf_insn) { \ 226 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 227 .dst_reg = 0, \ 228 .src_reg = 0, \ 229 .off = 0, \ 230 .imm = IMM }) 231 232/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 233 234#define BPF_LD_IND(SIZE, SRC, IMM) \ 235 ((struct bpf_insn) { \ 236 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 237 .dst_reg = 0, \ 238 .src_reg = SRC, \ 239 .off = 0, \ 240 .imm = IMM }) 241 242/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 243 244#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 245 ((struct bpf_insn) { \ 246 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 247 .dst_reg = DST, \ 248 .src_reg = SRC, \ 249 .off = OFF, \ 250 .imm = 0 }) 251 252/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 253 254#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 255 ((struct bpf_insn) { \ 256 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 257 .dst_reg = DST, \ 258 .src_reg = SRC, \ 259 .off = OFF, \ 260 .imm = 0 }) 261 262/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */ 263 264#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \ 265 ((struct bpf_insn) { \ 266 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \ 267 .dst_reg = DST, \ 268 .src_reg = SRC, \ 269 .off = OFF, \ 270 .imm = 0 }) 271 272/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 273 274#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 275 ((struct bpf_insn) { \ 276 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 277 .dst_reg = DST, \ 278 .src_reg = 0, \ 279 .off = OFF, \ 280 .imm = IMM }) 281 282/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 283 284#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 285 ((struct bpf_insn) { \ 286 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 287 .dst_reg = DST, \ 288 .src_reg = SRC, \ 289 .off = OFF, \ 290 .imm = 0 }) 291 292/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 293 294#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 295 ((struct bpf_insn) { \ 296 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 297 .dst_reg = DST, \ 298 .src_reg = 0, \ 299 .off = OFF, \ 300 .imm = IMM }) 301 302/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 303 304#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 305 ((struct bpf_insn) { \ 306 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 307 .dst_reg = DST, \ 308 .src_reg = SRC, \ 309 .off = OFF, \ 310 .imm = 0 }) 311 312/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 313 314#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 315 ((struct bpf_insn) { \ 316 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 317 .dst_reg = DST, \ 318 .src_reg = 0, \ 319 .off = OFF, \ 320 .imm = IMM }) 321 322/* Unconditional jumps, goto pc + off16 */ 323 324#define BPF_JMP_A(OFF) \ 325 ((struct bpf_insn) { \ 326 .code = BPF_JMP | BPF_JA, \ 327 .dst_reg = 0, \ 328 .src_reg = 0, \ 329 .off = OFF, \ 330 .imm = 0 }) 331 332/* Relative call */ 333 334#define BPF_CALL_REL(TGT) \ 335 ((struct bpf_insn) { \ 336 .code = BPF_JMP | BPF_CALL, \ 337 .dst_reg = 0, \ 338 .src_reg = BPF_PSEUDO_CALL, \ 339 .off = 0, \ 340 .imm = TGT }) 341 342/* Function call */ 343 344#define BPF_CAST_CALL(x) \ 345 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 346 347#define BPF_EMIT_CALL(FUNC) \ 348 ((struct bpf_insn) { \ 349 .code = BPF_JMP | BPF_CALL, \ 350 .dst_reg = 0, \ 351 .src_reg = 0, \ 352 .off = 0, \ 353 .imm = ((FUNC) - __bpf_call_base) }) 354 355/* Raw code statement block */ 356 357#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 358 ((struct bpf_insn) { \ 359 .code = CODE, \ 360 .dst_reg = DST, \ 361 .src_reg = SRC, \ 362 .off = OFF, \ 363 .imm = IMM }) 364 365/* Program exit */ 366 367#define BPF_EXIT_INSN() \ 368 ((struct bpf_insn) { \ 369 .code = BPF_JMP | BPF_EXIT, \ 370 .dst_reg = 0, \ 371 .src_reg = 0, \ 372 .off = 0, \ 373 .imm = 0 }) 374 375/* Internal classic blocks for direct assignment */ 376 377#define __BPF_STMT(CODE, K) \ 378 ((struct sock_filter) BPF_STMT(CODE, K)) 379 380#define __BPF_JUMP(CODE, K, JT, JF) \ 381 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 382 383#define bytes_to_bpf_size(bytes) \ 384({ \ 385 int bpf_size = -EINVAL; \ 386 \ 387 if (bytes == sizeof(u8)) \ 388 bpf_size = BPF_B; \ 389 else if (bytes == sizeof(u16)) \ 390 bpf_size = BPF_H; \ 391 else if (bytes == sizeof(u32)) \ 392 bpf_size = BPF_W; \ 393 else if (bytes == sizeof(u64)) \ 394 bpf_size = BPF_DW; \ 395 \ 396 bpf_size; \ 397}) 398 399#define bpf_size_to_bytes(bpf_size) \ 400({ \ 401 int bytes = -EINVAL; \ 402 \ 403 if (bpf_size == BPF_B) \ 404 bytes = sizeof(u8); \ 405 else if (bpf_size == BPF_H) \ 406 bytes = sizeof(u16); \ 407 else if (bpf_size == BPF_W) \ 408 bytes = sizeof(u32); \ 409 else if (bpf_size == BPF_DW) \ 410 bytes = sizeof(u64); \ 411 \ 412 bytes; \ 413}) 414 415#define BPF_SIZEOF(type) \ 416 ({ \ 417 const int __size = bytes_to_bpf_size(sizeof(type)); \ 418 BUILD_BUG_ON(__size < 0); \ 419 __size; \ 420 }) 421 422#define BPF_FIELD_SIZEOF(type, field) \ 423 ({ \ 424 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 425 BUILD_BUG_ON(__size < 0); \ 426 __size; \ 427 }) 428 429#define BPF_LDST_BYTES(insn) \ 430 ({ \ 431 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 432 WARN_ON(__size < 0); \ 433 __size; \ 434 }) 435 436#define __BPF_MAP_0(m, v, ...) v 437#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 438#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 439#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 440#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 441#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 442 443#define __BPF_REG_0(...) __BPF_PAD(5) 444#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 445#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 446#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 447#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 448#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 449 450#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 451#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 452 453#define __BPF_CAST(t, a) \ 454 (__force t) \ 455 (__force \ 456 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 457 (unsigned long)0, (t)0))) a 458#define __BPF_V void 459#define __BPF_N 460 461#define __BPF_DECL_ARGS(t, a) t a 462#define __BPF_DECL_REGS(t, a) u64 a 463 464#define __BPF_PAD(n) \ 465 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 466 u64, __ur_3, u64, __ur_4, u64, __ur_5) 467 468#define BPF_CALL_x(x, name, ...) \ 469 static __always_inline \ 470 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 471 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 472 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 473 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 474 { \ 475 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 476 } \ 477 static __always_inline \ 478 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 479 480#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 481#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 482#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 483#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 484#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 485#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 486 487#define bpf_ctx_range(TYPE, MEMBER) \ 488 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 489#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 490 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 491#if BITS_PER_LONG == 64 492# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 493 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 494#else 495# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 496 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 497#endif /* BITS_PER_LONG == 64 */ 498 499#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 500 ({ \ 501 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 502 *(PTR_SIZE) = (SIZE); \ 503 offsetof(TYPE, MEMBER); \ 504 }) 505 506/* A struct sock_filter is architecture independent. */ 507struct compat_sock_fprog { 508 u16 len; 509 compat_uptr_t filter; /* struct sock_filter * */ 510}; 511 512struct sock_fprog_kern { 513 u16 len; 514 struct sock_filter *filter; 515}; 516 517/* Some arches need doubleword alignment for their instructions and/or data */ 518#define BPF_IMAGE_ALIGNMENT 8 519 520struct bpf_binary_header { 521 u32 pages; 522 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 523}; 524 525struct bpf_prog { 526 u16 pages; /* Number of allocated pages */ 527 u16 jited:1, /* Is our filter JIT'ed? */ 528 jit_requested:1,/* archs need to JIT the prog */ 529 gpl_compatible:1, /* Is filter GPL compatible? */ 530 cb_access:1, /* Is control block accessed? */ 531 dst_needed:1, /* Do we need dst entry? */ 532 blinded:1, /* Was blinded */ 533 is_func:1, /* program is a bpf function */ 534 kprobe_override:1, /* Do we override a kprobe? */ 535 has_callchain_buf:1, /* callchain buffer allocated? */ 536 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 537 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */ 538 enum bpf_prog_type type; /* Type of BPF program */ 539 enum bpf_attach_type expected_attach_type; /* For some prog types */ 540 u32 len; /* Number of filter blocks */ 541 u32 jited_len; /* Size of jited insns in bytes */ 542 u8 tag[BPF_TAG_SIZE]; 543 struct bpf_prog_aux *aux; /* Auxiliary fields */ 544 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 545 unsigned int (*bpf_func)(const void *ctx, 546 const struct bpf_insn *insn); 547 /* Instructions for interpreter */ 548 struct sock_filter insns[0]; 549 struct bpf_insn insnsi[]; 550}; 551 552struct sk_filter { 553 refcount_t refcnt; 554 struct rcu_head rcu; 555 struct bpf_prog *prog; 556}; 557 558DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 559 560#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \ 561 u32 __ret; \ 562 cant_migrate(); \ 563 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \ 564 struct bpf_prog_stats *__stats; \ 565 u64 __start = sched_clock(); \ 566 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 567 __stats = this_cpu_ptr(prog->aux->stats); \ 568 u64_stats_update_begin(&__stats->syncp); \ 569 __stats->cnt++; \ 570 __stats->nsecs += sched_clock() - __start; \ 571 u64_stats_update_end(&__stats->syncp); \ 572 } else { \ 573 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \ 574 } \ 575 __ret; }) 576 577#define BPF_PROG_RUN(prog, ctx) \ 578 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func) 579 580/* 581 * Use in preemptible and therefore migratable context to make sure that 582 * the execution of the BPF program runs on one CPU. 583 * 584 * This uses migrate_disable/enable() explicitly to document that the 585 * invocation of a BPF program does not require reentrancy protection 586 * against a BPF program which is invoked from a preempting task. 587 * 588 * For non RT enabled kernels migrate_disable/enable() maps to 589 * preempt_disable/enable(), i.e. it disables also preemption. 590 */ 591static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 592 const void *ctx) 593{ 594 u32 ret; 595 596 migrate_disable(); 597 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func); 598 migrate_enable(); 599 return ret; 600} 601 602#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 603 604struct bpf_skb_data_end { 605 struct qdisc_skb_cb qdisc_cb; 606 void *data_meta; 607 void *data_end; 608}; 609 610struct bpf_nh_params { 611 u32 nh_family; 612 union { 613 u32 ipv4_nh; 614 struct in6_addr ipv6_nh; 615 }; 616}; 617 618struct bpf_redirect_info { 619 u32 flags; 620 u32 tgt_index; 621 void *tgt_value; 622 struct bpf_map *map; 623 u32 kern_flags; 624 struct bpf_nh_params nh; 625}; 626 627DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 628 629/* flags for bpf_redirect_info kern_flags */ 630#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 631 632/* Compute the linear packet data range [data, data_end) which 633 * will be accessed by various program types (cls_bpf, act_bpf, 634 * lwt, ...). Subsystems allowing direct data access must (!) 635 * ensure that cb[] area can be written to when BPF program is 636 * invoked (otherwise cb[] save/restore is necessary). 637 */ 638static inline void bpf_compute_data_pointers(struct sk_buff *skb) 639{ 640 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 641 642 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 643 cb->data_meta = skb->data - skb_metadata_len(skb); 644 cb->data_end = skb->data + skb_headlen(skb); 645} 646 647/* Similar to bpf_compute_data_pointers(), except that save orginal 648 * data in cb->data and cb->meta_data for restore. 649 */ 650static inline void bpf_compute_and_save_data_end( 651 struct sk_buff *skb, void **saved_data_end) 652{ 653 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 654 655 *saved_data_end = cb->data_end; 656 cb->data_end = skb->data + skb_headlen(skb); 657} 658 659/* Restore data saved by bpf_compute_data_pointers(). */ 660static inline void bpf_restore_data_end( 661 struct sk_buff *skb, void *saved_data_end) 662{ 663 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 664 665 cb->data_end = saved_data_end; 666} 667 668static inline u8 *bpf_skb_cb(struct sk_buff *skb) 669{ 670 /* eBPF programs may read/write skb->cb[] area to transfer meta 671 * data between tail calls. Since this also needs to work with 672 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 673 * 674 * In some socket filter cases, the cb unfortunately needs to be 675 * saved/restored so that protocol specific skb->cb[] data won't 676 * be lost. In any case, due to unpriviledged eBPF programs 677 * attached to sockets, we need to clear the bpf_skb_cb() area 678 * to not leak previous contents to user space. 679 */ 680 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 681 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 682 sizeof_field(struct qdisc_skb_cb, data)); 683 684 return qdisc_skb_cb(skb)->data; 685} 686 687/* Must be invoked with migration disabled */ 688static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 689 struct sk_buff *skb) 690{ 691 u8 *cb_data = bpf_skb_cb(skb); 692 u8 cb_saved[BPF_SKB_CB_LEN]; 693 u32 res; 694 695 if (unlikely(prog->cb_access)) { 696 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 697 memset(cb_data, 0, sizeof(cb_saved)); 698 } 699 700 res = BPF_PROG_RUN(prog, skb); 701 702 if (unlikely(prog->cb_access)) 703 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 704 705 return res; 706} 707 708static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 709 struct sk_buff *skb) 710{ 711 u32 res; 712 713 migrate_disable(); 714 res = __bpf_prog_run_save_cb(prog, skb); 715 migrate_enable(); 716 return res; 717} 718 719static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 720 struct sk_buff *skb) 721{ 722 u8 *cb_data = bpf_skb_cb(skb); 723 u32 res; 724 725 if (unlikely(prog->cb_access)) 726 memset(cb_data, 0, BPF_SKB_CB_LEN); 727 728 res = bpf_prog_run_pin_on_cpu(prog, skb); 729 return res; 730} 731 732DECLARE_BPF_DISPATCHER(xdp) 733 734static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 735 struct xdp_buff *xdp) 736{ 737 /* Caller needs to hold rcu_read_lock() (!), otherwise program 738 * can be released while still running, or map elements could be 739 * freed early while still having concurrent users. XDP fastpath 740 * already takes rcu_read_lock() when fetching the program, so 741 * it's not necessary here anymore. 742 */ 743 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 744} 745 746void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 747 748static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 749{ 750 return prog->len * sizeof(struct bpf_insn); 751} 752 753static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 754{ 755 return round_up(bpf_prog_insn_size(prog) + 756 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 757} 758 759static inline unsigned int bpf_prog_size(unsigned int proglen) 760{ 761 return max(sizeof(struct bpf_prog), 762 offsetof(struct bpf_prog, insns[proglen])); 763} 764 765static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 766{ 767 /* When classic BPF programs have been loaded and the arch 768 * does not have a classic BPF JIT (anymore), they have been 769 * converted via bpf_migrate_filter() to eBPF and thus always 770 * have an unspec program type. 771 */ 772 return prog->type == BPF_PROG_TYPE_UNSPEC; 773} 774 775static inline u32 bpf_ctx_off_adjust_machine(u32 size) 776{ 777 const u32 size_machine = sizeof(unsigned long); 778 779 if (size > size_machine && size % size_machine == 0) 780 size = size_machine; 781 782 return size; 783} 784 785static inline bool 786bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 787{ 788 return size <= size_default && (size & (size - 1)) == 0; 789} 790 791static inline u8 792bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 793{ 794 u8 access_off = off & (size_default - 1); 795 796#ifdef __LITTLE_ENDIAN 797 return access_off; 798#else 799 return size_default - (access_off + size); 800#endif 801} 802 803#define bpf_ctx_wide_access_ok(off, size, type, field) \ 804 (size == sizeof(__u64) && \ 805 off >= offsetof(type, field) && \ 806 off + sizeof(__u64) <= offsetofend(type, field) && \ 807 off % sizeof(__u64) == 0) 808 809#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 810 811static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 812{ 813#ifndef CONFIG_BPF_JIT_ALWAYS_ON 814 if (!fp->jited) { 815 set_vm_flush_reset_perms(fp); 816 set_memory_ro((unsigned long)fp, fp->pages); 817 } 818#endif 819} 820 821static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 822{ 823 set_vm_flush_reset_perms(hdr); 824 set_memory_ro((unsigned long)hdr, hdr->pages); 825 set_memory_x((unsigned long)hdr, hdr->pages); 826} 827 828static inline struct bpf_binary_header * 829bpf_jit_binary_hdr(const struct bpf_prog *fp) 830{ 831 unsigned long real_start = (unsigned long)fp->bpf_func; 832 unsigned long addr = real_start & PAGE_MASK; 833 834 return (void *)addr; 835} 836 837int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 838static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 839{ 840 return sk_filter_trim_cap(sk, skb, 1); 841} 842 843struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 844void bpf_prog_free(struct bpf_prog *fp); 845 846bool bpf_opcode_in_insntable(u8 code); 847 848void bpf_prog_free_linfo(struct bpf_prog *prog); 849void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 850 const u32 *insn_to_jit_off); 851int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 852void bpf_prog_free_jited_linfo(struct bpf_prog *prog); 853void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog); 854 855struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 856struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 857struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 858 gfp_t gfp_extra_flags); 859void __bpf_prog_free(struct bpf_prog *fp); 860 861static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 862{ 863 __bpf_prog_free(fp); 864} 865 866typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 867 unsigned int flen); 868 869int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 870int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 871 bpf_aux_classic_check_t trans, bool save_orig); 872void bpf_prog_destroy(struct bpf_prog *fp); 873 874int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 875int sk_attach_bpf(u32 ufd, struct sock *sk); 876int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 877int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 878void sk_reuseport_prog_free(struct bpf_prog *prog); 879int sk_detach_filter(struct sock *sk); 880int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 881 unsigned int len); 882 883bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 884void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 885 886u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 887#define __bpf_call_base_args \ 888 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 889 __bpf_call_base) 890 891struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 892void bpf_jit_compile(struct bpf_prog *prog); 893bool bpf_jit_needs_zext(void); 894bool bpf_helper_changes_pkt_data(void *func); 895 896static inline bool bpf_dump_raw_ok(const struct cred *cred) 897{ 898 /* Reconstruction of call-sites is dependent on kallsyms, 899 * thus make dump the same restriction. 900 */ 901 return kallsyms_show_value(cred); 902} 903 904struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 905 const struct bpf_insn *patch, u32 len); 906int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 907 908void bpf_clear_redirect_map(struct bpf_map *map); 909 910static inline bool xdp_return_frame_no_direct(void) 911{ 912 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 913 914 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 915} 916 917static inline void xdp_set_return_frame_no_direct(void) 918{ 919 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 920 921 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 922} 923 924static inline void xdp_clear_return_frame_no_direct(void) 925{ 926 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 927 928 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 929} 930 931static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 932 unsigned int pktlen) 933{ 934 unsigned int len; 935 936 if (unlikely(!(fwd->flags & IFF_UP))) 937 return -ENETDOWN; 938 939 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 940 if (pktlen > len) 941 return -EMSGSIZE; 942 943 return 0; 944} 945 946/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 947 * same cpu context. Further for best results no more than a single map 948 * for the do_redirect/do_flush pair should be used. This limitation is 949 * because we only track one map and force a flush when the map changes. 950 * This does not appear to be a real limitation for existing software. 951 */ 952int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 953 struct xdp_buff *xdp, struct bpf_prog *prog); 954int xdp_do_redirect(struct net_device *dev, 955 struct xdp_buff *xdp, 956 struct bpf_prog *prog); 957void xdp_do_flush(void); 958 959/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 960 * it is no longer only flushing maps. Keep this define for compatibility 961 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 962 */ 963#define xdp_do_flush_map xdp_do_flush 964 965void bpf_warn_invalid_xdp_action(u32 act); 966 967#ifdef CONFIG_INET 968struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 969 struct bpf_prog *prog, struct sk_buff *skb, 970 u32 hash); 971#else 972static inline struct sock * 973bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 974 struct bpf_prog *prog, struct sk_buff *skb, 975 u32 hash) 976{ 977 return NULL; 978} 979#endif 980 981#ifdef CONFIG_BPF_JIT 982extern int bpf_jit_enable; 983extern int bpf_jit_harden; 984extern int bpf_jit_kallsyms; 985extern long bpf_jit_limit; 986 987typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 988 989struct bpf_binary_header * 990bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 991 unsigned int alignment, 992 bpf_jit_fill_hole_t bpf_fill_ill_insns); 993void bpf_jit_binary_free(struct bpf_binary_header *hdr); 994u64 bpf_jit_alloc_exec_limit(void); 995void *bpf_jit_alloc_exec(unsigned long size); 996void bpf_jit_free_exec(void *addr); 997void bpf_jit_free(struct bpf_prog *fp); 998 999int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1000 struct bpf_jit_poke_descriptor *poke); 1001 1002int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1003 const struct bpf_insn *insn, bool extra_pass, 1004 u64 *func_addr, bool *func_addr_fixed); 1005 1006struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1007void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1008 1009static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1010 u32 pass, void *image) 1011{ 1012 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1013 proglen, pass, image, current->comm, task_pid_nr(current)); 1014 1015 if (image) 1016 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1017 16, 1, image, proglen, false); 1018} 1019 1020static inline bool bpf_jit_is_ebpf(void) 1021{ 1022# ifdef CONFIG_HAVE_EBPF_JIT 1023 return true; 1024# else 1025 return false; 1026# endif 1027} 1028 1029static inline bool ebpf_jit_enabled(void) 1030{ 1031 return bpf_jit_enable && bpf_jit_is_ebpf(); 1032} 1033 1034static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1035{ 1036 return fp->jited && bpf_jit_is_ebpf(); 1037} 1038 1039static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1040{ 1041 /* These are the prerequisites, should someone ever have the 1042 * idea to call blinding outside of them, we make sure to 1043 * bail out. 1044 */ 1045 if (!bpf_jit_is_ebpf()) 1046 return false; 1047 if (!prog->jit_requested) 1048 return false; 1049 if (!bpf_jit_harden) 1050 return false; 1051 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1052 return false; 1053 1054 return true; 1055} 1056 1057static inline bool bpf_jit_kallsyms_enabled(void) 1058{ 1059 /* There are a couple of corner cases where kallsyms should 1060 * not be enabled f.e. on hardening. 1061 */ 1062 if (bpf_jit_harden) 1063 return false; 1064 if (!bpf_jit_kallsyms) 1065 return false; 1066 if (bpf_jit_kallsyms == 1) 1067 return true; 1068 1069 return false; 1070} 1071 1072const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1073 unsigned long *off, char *sym); 1074bool is_bpf_text_address(unsigned long addr); 1075int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1076 char *sym); 1077 1078static inline const char * 1079bpf_address_lookup(unsigned long addr, unsigned long *size, 1080 unsigned long *off, char **modname, char *sym) 1081{ 1082 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1083 1084 if (ret && modname) 1085 *modname = NULL; 1086 return ret; 1087} 1088 1089void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1090void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1091 1092#else /* CONFIG_BPF_JIT */ 1093 1094static inline bool ebpf_jit_enabled(void) 1095{ 1096 return false; 1097} 1098 1099static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1100{ 1101 return false; 1102} 1103 1104static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1105{ 1106 return false; 1107} 1108 1109static inline int 1110bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1111 struct bpf_jit_poke_descriptor *poke) 1112{ 1113 return -ENOTSUPP; 1114} 1115 1116static inline void bpf_jit_free(struct bpf_prog *fp) 1117{ 1118 bpf_prog_unlock_free(fp); 1119} 1120 1121static inline bool bpf_jit_kallsyms_enabled(void) 1122{ 1123 return false; 1124} 1125 1126static inline const char * 1127__bpf_address_lookup(unsigned long addr, unsigned long *size, 1128 unsigned long *off, char *sym) 1129{ 1130 return NULL; 1131} 1132 1133static inline bool is_bpf_text_address(unsigned long addr) 1134{ 1135 return false; 1136} 1137 1138static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1139 char *type, char *sym) 1140{ 1141 return -ERANGE; 1142} 1143 1144static inline const char * 1145bpf_address_lookup(unsigned long addr, unsigned long *size, 1146 unsigned long *off, char **modname, char *sym) 1147{ 1148 return NULL; 1149} 1150 1151static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1152{ 1153} 1154 1155static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1156{ 1157} 1158 1159#endif /* CONFIG_BPF_JIT */ 1160 1161void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1162 1163#define BPF_ANC BIT(15) 1164 1165static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1166{ 1167 switch (first->code) { 1168 case BPF_RET | BPF_K: 1169 case BPF_LD | BPF_W | BPF_LEN: 1170 return false; 1171 1172 case BPF_LD | BPF_W | BPF_ABS: 1173 case BPF_LD | BPF_H | BPF_ABS: 1174 case BPF_LD | BPF_B | BPF_ABS: 1175 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1176 return true; 1177 return false; 1178 1179 default: 1180 return true; 1181 } 1182} 1183 1184static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1185{ 1186 BUG_ON(ftest->code & BPF_ANC); 1187 1188 switch (ftest->code) { 1189 case BPF_LD | BPF_W | BPF_ABS: 1190 case BPF_LD | BPF_H | BPF_ABS: 1191 case BPF_LD | BPF_B | BPF_ABS: 1192#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1193 return BPF_ANC | SKF_AD_##CODE 1194 switch (ftest->k) { 1195 BPF_ANCILLARY(PROTOCOL); 1196 BPF_ANCILLARY(PKTTYPE); 1197 BPF_ANCILLARY(IFINDEX); 1198 BPF_ANCILLARY(NLATTR); 1199 BPF_ANCILLARY(NLATTR_NEST); 1200 BPF_ANCILLARY(MARK); 1201 BPF_ANCILLARY(QUEUE); 1202 BPF_ANCILLARY(HATYPE); 1203 BPF_ANCILLARY(RXHASH); 1204 BPF_ANCILLARY(CPU); 1205 BPF_ANCILLARY(ALU_XOR_X); 1206 BPF_ANCILLARY(VLAN_TAG); 1207 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1208 BPF_ANCILLARY(PAY_OFFSET); 1209 BPF_ANCILLARY(RANDOM); 1210 BPF_ANCILLARY(VLAN_TPID); 1211 } 1212 fallthrough; 1213 default: 1214 return ftest->code; 1215 } 1216} 1217 1218void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1219 int k, unsigned int size); 1220 1221static inline void *bpf_load_pointer(const struct sk_buff *skb, int k, 1222 unsigned int size, void *buffer) 1223{ 1224 if (k >= 0) 1225 return skb_header_pointer(skb, k, size, buffer); 1226 1227 return bpf_internal_load_pointer_neg_helper(skb, k, size); 1228} 1229 1230static inline int bpf_tell_extensions(void) 1231{ 1232 return SKF_AD_MAX; 1233} 1234 1235struct bpf_sock_addr_kern { 1236 struct sock *sk; 1237 struct sockaddr *uaddr; 1238 /* Temporary "register" to make indirect stores to nested structures 1239 * defined above. We need three registers to make such a store, but 1240 * only two (src and dst) are available at convert_ctx_access time 1241 */ 1242 u64 tmp_reg; 1243 void *t_ctx; /* Attach type specific context. */ 1244}; 1245 1246struct bpf_sock_ops_kern { 1247 struct sock *sk; 1248 union { 1249 u32 args[4]; 1250 u32 reply; 1251 u32 replylong[4]; 1252 }; 1253 struct sk_buff *syn_skb; 1254 struct sk_buff *skb; 1255 void *skb_data_end; 1256 u8 op; 1257 u8 is_fullsock; 1258 u8 remaining_opt_len; 1259 u64 temp; /* temp and everything after is not 1260 * initialized to 0 before calling 1261 * the BPF program. New fields that 1262 * should be initialized to 0 should 1263 * be inserted before temp. 1264 * temp is scratch storage used by 1265 * sock_ops_convert_ctx_access 1266 * as temporary storage of a register. 1267 */ 1268}; 1269 1270struct bpf_sysctl_kern { 1271 struct ctl_table_header *head; 1272 struct ctl_table *table; 1273 void *cur_val; 1274 size_t cur_len; 1275 void *new_val; 1276 size_t new_len; 1277 int new_updated; 1278 int write; 1279 loff_t *ppos; 1280 /* Temporary "register" for indirect stores to ppos. */ 1281 u64 tmp_reg; 1282}; 1283 1284struct bpf_sockopt_kern { 1285 struct sock *sk; 1286 u8 *optval; 1287 u8 *optval_end; 1288 s32 level; 1289 s32 optname; 1290 s32 optlen; 1291 s32 retval; 1292}; 1293 1294int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1295 1296struct bpf_sk_lookup_kern { 1297 u16 family; 1298 u16 protocol; 1299 __be16 sport; 1300 u16 dport; 1301 struct { 1302 __be32 saddr; 1303 __be32 daddr; 1304 } v4; 1305 struct { 1306 const struct in6_addr *saddr; 1307 const struct in6_addr *daddr; 1308 } v6; 1309 struct sock *selected_sk; 1310 bool no_reuseport; 1311}; 1312 1313extern struct static_key_false bpf_sk_lookup_enabled; 1314 1315/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1316 * 1317 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1318 * SK_DROP. Their meaning is as follows: 1319 * 1320 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1321 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1322 * SK_DROP : terminate lookup with -ECONNREFUSED 1323 * 1324 * This macro aggregates return values and selected sockets from 1325 * multiple BPF programs according to following rules in order: 1326 * 1327 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1328 * macro result is SK_PASS and last ctx.selected_sk is used. 1329 * 2. If any program returned SK_DROP return value, 1330 * macro result is SK_DROP. 1331 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1332 * 1333 * Caller must ensure that the prog array is non-NULL, and that the 1334 * array as well as the programs it contains remain valid. 1335 */ 1336#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1337 ({ \ 1338 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1339 struct bpf_prog_array_item *_item; \ 1340 struct sock *_selected_sk = NULL; \ 1341 bool _no_reuseport = false; \ 1342 struct bpf_prog *_prog; \ 1343 bool _all_pass = true; \ 1344 u32 _ret; \ 1345 \ 1346 migrate_disable(); \ 1347 _item = &(array)->items[0]; \ 1348 while ((_prog = READ_ONCE(_item->prog))) { \ 1349 /* restore most recent selection */ \ 1350 _ctx->selected_sk = _selected_sk; \ 1351 _ctx->no_reuseport = _no_reuseport; \ 1352 \ 1353 _ret = func(_prog, _ctx); \ 1354 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1355 /* remember last non-NULL socket */ \ 1356 _selected_sk = _ctx->selected_sk; \ 1357 _no_reuseport = _ctx->no_reuseport; \ 1358 } else if (_ret == SK_DROP && _all_pass) { \ 1359 _all_pass = false; \ 1360 } \ 1361 _item++; \ 1362 } \ 1363 _ctx->selected_sk = _selected_sk; \ 1364 _ctx->no_reuseport = _no_reuseport; \ 1365 migrate_enable(); \ 1366 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1367 }) 1368 1369static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1370 const __be32 saddr, const __be16 sport, 1371 const __be32 daddr, const u16 dport, 1372 struct sock **psk) 1373{ 1374 struct bpf_prog_array *run_array; 1375 struct sock *selected_sk = NULL; 1376 bool no_reuseport = false; 1377 1378 rcu_read_lock(); 1379 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1380 if (run_array) { 1381 struct bpf_sk_lookup_kern ctx = { 1382 .family = AF_INET, 1383 .protocol = protocol, 1384 .v4.saddr = saddr, 1385 .v4.daddr = daddr, 1386 .sport = sport, 1387 .dport = dport, 1388 }; 1389 u32 act; 1390 1391 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); 1392 if (act == SK_PASS) { 1393 selected_sk = ctx.selected_sk; 1394 no_reuseport = ctx.no_reuseport; 1395 } else { 1396 selected_sk = ERR_PTR(-ECONNREFUSED); 1397 } 1398 } 1399 rcu_read_unlock(); 1400 *psk = selected_sk; 1401 return no_reuseport; 1402} 1403 1404#if IS_ENABLED(CONFIG_IPV6) 1405static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1406 const struct in6_addr *saddr, 1407 const __be16 sport, 1408 const struct in6_addr *daddr, 1409 const u16 dport, 1410 struct sock **psk) 1411{ 1412 struct bpf_prog_array *run_array; 1413 struct sock *selected_sk = NULL; 1414 bool no_reuseport = false; 1415 1416 rcu_read_lock(); 1417 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1418 if (run_array) { 1419 struct bpf_sk_lookup_kern ctx = { 1420 .family = AF_INET6, 1421 .protocol = protocol, 1422 .v6.saddr = saddr, 1423 .v6.daddr = daddr, 1424 .sport = sport, 1425 .dport = dport, 1426 }; 1427 u32 act; 1428 1429 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN); 1430 if (act == SK_PASS) { 1431 selected_sk = ctx.selected_sk; 1432 no_reuseport = ctx.no_reuseport; 1433 } else { 1434 selected_sk = ERR_PTR(-ECONNREFUSED); 1435 } 1436 } 1437 rcu_read_unlock(); 1438 *psk = selected_sk; 1439 return no_reuseport; 1440} 1441#endif /* IS_ENABLED(CONFIG_IPV6) */ 1442 1443#endif /* __LINUX_FILTER_H__ */