Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 * Not all operations are supported by fast commits today (e.g extended
69 * attributes). Fast commit ineligiblity is marked by calling one of the
70 * two following functions:
71 *
72 * - ext4_fc_mark_ineligible(): This makes next fast commit operation to fall
73 * back to full commit. This is useful in case of transient errors.
74 *
75 * - ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() - This makes all
76 * the fast commits happening between ext4_fc_start_ineligible() and
77 * ext4_fc_stop_ineligible() and one fast commit after the call to
78 * ext4_fc_stop_ineligible() to fall back to full commits. It is important to
79 * make one more fast commit to fall back to full commit after stop call so
80 * that it guaranteed that the fast commit ineligible operation contained
81 * within ext4_fc_start_ineligible() and ext4_fc_stop_ineligible() is
82 * followed by at least 1 full commit.
83 *
84 * Atomicity of commits
85 * --------------------
86 * In order to guarantee atomicity during the commit operation, fast commit
87 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
88 * tag contains CRC of the contents and TID of the transaction after which
89 * this fast commit should be applied. Recovery code replays fast commit
90 * logs only if there's at least 1 valid tail present. For every fast commit
91 * operation, there is 1 tail. This means, we may end up with multiple tails
92 * in the fast commit space. Here's an example:
93 *
94 * - Create a new file A and remove existing file B
95 * - fsync()
96 * - Append contents to file A
97 * - Truncate file A
98 * - fsync()
99 *
100 * The fast commit space at the end of above operations would look like this:
101 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
102 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
103 *
104 * Replay code should thus check for all the valid tails in the FC area.
105 *
106 * Fast Commit Replay Idempotence
107 * ------------------------------
108 *
109 * Fast commits tags are idempotent in nature provided the recovery code follows
110 * certain rules. The guiding principle that the commit path follows while
111 * committing is that it stores the result of a particular operation instead of
112 * storing the procedure.
113 *
114 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
115 * was associated with inode 10. During fast commit, instead of storing this
116 * operation as a procedure "rename a to b", we store the resulting file system
117 * state as a "series" of outcomes:
118 *
119 * - Link dirent b to inode 10
120 * - Unlink dirent a
121 * - Inode <10> with valid refcount
122 *
123 * Now when recovery code runs, it needs "enforce" this state on the file
124 * system. This is what guarantees idempotence of fast commit replay.
125 *
126 * Let's take an example of a procedure that is not idempotent and see how fast
127 * commits make it idempotent. Consider following sequence of operations:
128 *
129 * rm A; mv B A; read A
130 * (x) (y) (z)
131 *
132 * (x), (y) and (z) are the points at which we can crash. If we store this
133 * sequence of operations as is then the replay is not idempotent. Let's say
134 * while in replay, we crash at (z). During the second replay, file A (which was
135 * actually created as a result of "mv B A" operation) would get deleted. Thus,
136 * file named A would be absent when we try to read A. So, this sequence of
137 * operations is not idempotent. However, as mentioned above, instead of storing
138 * the procedure fast commits store the outcome of each procedure. Thus the fast
139 * commit log for above procedure would be as follows:
140 *
141 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
142 * inode 11 before the replay)
143 *
144 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
145 * (w) (x) (y) (z)
146 *
147 * If we crash at (z), we will have file A linked to inode 11. During the second
148 * replay, we will remove file A (inode 11). But we will create it back and make
149 * it point to inode 11. We won't find B, so we'll just skip that step. At this
150 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
151 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
152 * similarly. Thus, by converting a non-idempotent procedure into a series of
153 * idempotent outcomes, fast commits ensured idempotence during the replay.
154 *
155 * TODOs
156 * -----
157 *
158 * 0) Fast commit replay path hardening: Fast commit replay code should use
159 * journal handles to make sure all the updates it does during the replay
160 * path are atomic. With that if we crash during fast commit replay, after
161 * trying to do recovery again, we will find a file system where fast commit
162 * area is invalid (because new full commit would be found). In order to deal
163 * with that, fast commit replay code should ensure that the "FC_REPLAY"
164 * superblock state is persisted before starting the replay, so that after
165 * the crash, fast commit recovery code can look at that flag and perform
166 * fast commit recovery even if that area is invalidated by later full
167 * commits.
168 *
169 * 1) Make fast commit atomic updates more fine grained. Today, a fast commit
170 * eligible update must be protected within ext4_fc_start_update() and
171 * ext4_fc_stop_update(). These routines are called at much higher
172 * routines. This can be made more fine grained by combining with
173 * ext4_journal_start().
174 *
175 * 2) Same above for ext4_fc_start_ineligible() and ext4_fc_stop_ineligible()
176 *
177 * 3) Handle more ineligible cases.
178 */
179
180#include <trace/events/ext4.h>
181static struct kmem_cache *ext4_fc_dentry_cachep;
182
183static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
184{
185 BUFFER_TRACE(bh, "");
186 if (uptodate) {
187 ext4_debug("%s: Block %lld up-to-date",
188 __func__, bh->b_blocknr);
189 set_buffer_uptodate(bh);
190 } else {
191 ext4_debug("%s: Block %lld not up-to-date",
192 __func__, bh->b_blocknr);
193 clear_buffer_uptodate(bh);
194 }
195
196 unlock_buffer(bh);
197}
198
199static inline void ext4_fc_reset_inode(struct inode *inode)
200{
201 struct ext4_inode_info *ei = EXT4_I(inode);
202
203 ei->i_fc_lblk_start = 0;
204 ei->i_fc_lblk_len = 0;
205}
206
207void ext4_fc_init_inode(struct inode *inode)
208{
209 struct ext4_inode_info *ei = EXT4_I(inode);
210
211 ext4_fc_reset_inode(inode);
212 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
213 INIT_LIST_HEAD(&ei->i_fc_list);
214 init_waitqueue_head(&ei->i_fc_wait);
215 atomic_set(&ei->i_fc_updates, 0);
216}
217
218/* This function must be called with sbi->s_fc_lock held. */
219static void ext4_fc_wait_committing_inode(struct inode *inode)
220__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
221{
222 wait_queue_head_t *wq;
223 struct ext4_inode_info *ei = EXT4_I(inode);
224
225#if (BITS_PER_LONG < 64)
226 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
227 EXT4_STATE_FC_COMMITTING);
228 wq = bit_waitqueue(&ei->i_state_flags,
229 EXT4_STATE_FC_COMMITTING);
230#else
231 DEFINE_WAIT_BIT(wait, &ei->i_flags,
232 EXT4_STATE_FC_COMMITTING);
233 wq = bit_waitqueue(&ei->i_flags,
234 EXT4_STATE_FC_COMMITTING);
235#endif
236 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
237 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
238 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
239 schedule();
240 finish_wait(wq, &wait.wq_entry);
241}
242
243/*
244 * Inform Ext4's fast about start of an inode update
245 *
246 * This function is called by the high level call VFS callbacks before
247 * performing any inode update. This function blocks if there's an ongoing
248 * fast commit on the inode in question.
249 */
250void ext4_fc_start_update(struct inode *inode)
251{
252 struct ext4_inode_info *ei = EXT4_I(inode);
253
254 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
255 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
256 return;
257
258restart:
259 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
260 if (list_empty(&ei->i_fc_list))
261 goto out;
262
263 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
264 ext4_fc_wait_committing_inode(inode);
265 goto restart;
266 }
267out:
268 atomic_inc(&ei->i_fc_updates);
269 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
270}
271
272/*
273 * Stop inode update and wake up waiting fast commits if any.
274 */
275void ext4_fc_stop_update(struct inode *inode)
276{
277 struct ext4_inode_info *ei = EXT4_I(inode);
278
279 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
280 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
281 return;
282
283 if (atomic_dec_and_test(&ei->i_fc_updates))
284 wake_up_all(&ei->i_fc_wait);
285}
286
287/*
288 * Remove inode from fast commit list. If the inode is being committed
289 * we wait until inode commit is done.
290 */
291void ext4_fc_del(struct inode *inode)
292{
293 struct ext4_inode_info *ei = EXT4_I(inode);
294
295 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
296 (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY))
297 return;
298
299restart:
300 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
301 if (list_empty(&ei->i_fc_list)) {
302 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
303 return;
304 }
305
306 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
307 ext4_fc_wait_committing_inode(inode);
308 goto restart;
309 }
310 list_del_init(&ei->i_fc_list);
311 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
312}
313
314/*
315 * Mark file system as fast commit ineligible. This means that next commit
316 * operation would result in a full jbd2 commit.
317 */
318void ext4_fc_mark_ineligible(struct super_block *sb, int reason)
319{
320 struct ext4_sb_info *sbi = EXT4_SB(sb);
321
322 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
323 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
324 return;
325
326 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
327 WARN_ON(reason >= EXT4_FC_REASON_MAX);
328 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
329}
330
331/*
332 * Start a fast commit ineligible update. Any commits that happen while
333 * such an operation is in progress fall back to full commits.
334 */
335void ext4_fc_start_ineligible(struct super_block *sb, int reason)
336{
337 struct ext4_sb_info *sbi = EXT4_SB(sb);
338
339 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
340 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
341 return;
342
343 WARN_ON(reason >= EXT4_FC_REASON_MAX);
344 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
345 atomic_inc(&sbi->s_fc_ineligible_updates);
346}
347
348/*
349 * Stop a fast commit ineligible update. We set EXT4_MF_FC_INELIGIBLE flag here
350 * to ensure that after stopping the ineligible update, at least one full
351 * commit takes place.
352 */
353void ext4_fc_stop_ineligible(struct super_block *sb)
354{
355 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
356 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))
357 return;
358
359 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 atomic_dec(&EXT4_SB(sb)->s_fc_ineligible_updates);
361}
362
363static inline int ext4_fc_is_ineligible(struct super_block *sb)
364{
365 return (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE) ||
366 atomic_read(&EXT4_SB(sb)->s_fc_ineligible_updates));
367}
368
369/*
370 * Generic fast commit tracking function. If this is the first time this we are
371 * called after a full commit, we initialize fast commit fields and then call
372 * __fc_track_fn() with update = 0. If we have already been called after a full
373 * commit, we pass update = 1. Based on that, the track function can determine
374 * if it needs to track a field for the first time or if it needs to just
375 * update the previously tracked value.
376 *
377 * If enqueue is set, this function enqueues the inode in fast commit list.
378 */
379static int ext4_fc_track_template(
380 handle_t *handle, struct inode *inode,
381 int (*__fc_track_fn)(struct inode *, void *, bool),
382 void *args, int enqueue)
383{
384 bool update = false;
385 struct ext4_inode_info *ei = EXT4_I(inode);
386 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
387 tid_t tid = 0;
388 int ret;
389
390 if (!test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT) ||
391 (sbi->s_mount_state & EXT4_FC_REPLAY))
392 return -EOPNOTSUPP;
393
394 if (ext4_fc_is_ineligible(inode->i_sb))
395 return -EINVAL;
396
397 tid = handle->h_transaction->t_tid;
398 mutex_lock(&ei->i_fc_lock);
399 if (tid == ei->i_sync_tid) {
400 update = true;
401 } else {
402 ext4_fc_reset_inode(inode);
403 ei->i_sync_tid = tid;
404 }
405 ret = __fc_track_fn(inode, args, update);
406 mutex_unlock(&ei->i_fc_lock);
407
408 if (!enqueue)
409 return ret;
410
411 spin_lock(&sbi->s_fc_lock);
412 if (list_empty(&EXT4_I(inode)->i_fc_list))
413 list_add_tail(&EXT4_I(inode)->i_fc_list,
414 (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING)) ?
415 &sbi->s_fc_q[FC_Q_STAGING] :
416 &sbi->s_fc_q[FC_Q_MAIN]);
417 spin_unlock(&sbi->s_fc_lock);
418
419 return ret;
420}
421
422struct __track_dentry_update_args {
423 struct dentry *dentry;
424 int op;
425};
426
427/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
428static int __track_dentry_update(struct inode *inode, void *arg, bool update)
429{
430 struct ext4_fc_dentry_update *node;
431 struct ext4_inode_info *ei = EXT4_I(inode);
432 struct __track_dentry_update_args *dentry_update =
433 (struct __track_dentry_update_args *)arg;
434 struct dentry *dentry = dentry_update->dentry;
435 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
436
437 mutex_unlock(&ei->i_fc_lock);
438 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
439 if (!node) {
440 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM);
441 mutex_lock(&ei->i_fc_lock);
442 return -ENOMEM;
443 }
444
445 node->fcd_op = dentry_update->op;
446 node->fcd_parent = dentry->d_parent->d_inode->i_ino;
447 node->fcd_ino = inode->i_ino;
448 if (dentry->d_name.len > DNAME_INLINE_LEN) {
449 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
450 if (!node->fcd_name.name) {
451 kmem_cache_free(ext4_fc_dentry_cachep, node);
452 ext4_fc_mark_ineligible(inode->i_sb,
453 EXT4_FC_REASON_NOMEM);
454 mutex_lock(&ei->i_fc_lock);
455 return -ENOMEM;
456 }
457 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
458 dentry->d_name.len);
459 } else {
460 memcpy(node->fcd_iname, dentry->d_name.name,
461 dentry->d_name.len);
462 node->fcd_name.name = node->fcd_iname;
463 }
464 node->fcd_name.len = dentry->d_name.len;
465
466 spin_lock(&sbi->s_fc_lock);
467 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_COMMITTING))
468 list_add_tail(&node->fcd_list,
469 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
470 else
471 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
472 spin_unlock(&sbi->s_fc_lock);
473 mutex_lock(&ei->i_fc_lock);
474
475 return 0;
476}
477
478void __ext4_fc_track_unlink(handle_t *handle,
479 struct inode *inode, struct dentry *dentry)
480{
481 struct __track_dentry_update_args args;
482 int ret;
483
484 args.dentry = dentry;
485 args.op = EXT4_FC_TAG_UNLINK;
486
487 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
488 (void *)&args, 0);
489 trace_ext4_fc_track_unlink(inode, dentry, ret);
490}
491
492void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
493{
494 __ext4_fc_track_unlink(handle, d_inode(dentry), dentry);
495}
496
497void __ext4_fc_track_link(handle_t *handle,
498 struct inode *inode, struct dentry *dentry)
499{
500 struct __track_dentry_update_args args;
501 int ret;
502
503 args.dentry = dentry;
504 args.op = EXT4_FC_TAG_LINK;
505
506 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
507 (void *)&args, 0);
508 trace_ext4_fc_track_link(inode, dentry, ret);
509}
510
511void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
512{
513 __ext4_fc_track_link(handle, d_inode(dentry), dentry);
514}
515
516void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
517{
518 struct __track_dentry_update_args args;
519 struct inode *inode = d_inode(dentry);
520 int ret;
521
522 args.dentry = dentry;
523 args.op = EXT4_FC_TAG_CREAT;
524
525 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
526 (void *)&args, 0);
527 trace_ext4_fc_track_create(inode, dentry, ret);
528}
529
530/* __track_fn for inode tracking */
531static int __track_inode(struct inode *inode, void *arg, bool update)
532{
533 if (update)
534 return -EEXIST;
535
536 EXT4_I(inode)->i_fc_lblk_len = 0;
537
538 return 0;
539}
540
541void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
542{
543 int ret;
544
545 if (S_ISDIR(inode->i_mode))
546 return;
547
548 if (ext4_should_journal_data(inode)) {
549 ext4_fc_mark_ineligible(inode->i_sb,
550 EXT4_FC_REASON_INODE_JOURNAL_DATA);
551 return;
552 }
553
554 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
555 trace_ext4_fc_track_inode(inode, ret);
556}
557
558struct __track_range_args {
559 ext4_lblk_t start, end;
560};
561
562/* __track_fn for tracking data updates */
563static int __track_range(struct inode *inode, void *arg, bool update)
564{
565 struct ext4_inode_info *ei = EXT4_I(inode);
566 ext4_lblk_t oldstart;
567 struct __track_range_args *__arg =
568 (struct __track_range_args *)arg;
569
570 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
571 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
572 return -ECANCELED;
573 }
574
575 oldstart = ei->i_fc_lblk_start;
576
577 if (update && ei->i_fc_lblk_len > 0) {
578 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
579 ei->i_fc_lblk_len =
580 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
581 ei->i_fc_lblk_start + 1;
582 } else {
583 ei->i_fc_lblk_start = __arg->start;
584 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
585 }
586
587 return 0;
588}
589
590void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
591 ext4_lblk_t end)
592{
593 struct __track_range_args args;
594 int ret;
595
596 if (S_ISDIR(inode->i_mode))
597 return;
598
599 args.start = start;
600 args.end = end;
601
602 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
603
604 trace_ext4_fc_track_range(inode, start, end, ret);
605}
606
607static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
608{
609 int write_flags = REQ_SYNC;
610 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
611
612 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
613 if (test_opt(sb, BARRIER) && is_tail)
614 write_flags |= REQ_FUA | REQ_PREFLUSH;
615 lock_buffer(bh);
616 set_buffer_dirty(bh);
617 set_buffer_uptodate(bh);
618 bh->b_end_io = ext4_end_buffer_io_sync;
619 submit_bh(REQ_OP_WRITE, write_flags, bh);
620 EXT4_SB(sb)->s_fc_bh = NULL;
621}
622
623/* Ext4 commit path routines */
624
625/* memzero and update CRC */
626static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
627 u32 *crc)
628{
629 void *ret;
630
631 ret = memset(dst, 0, len);
632 if (crc)
633 *crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
634 return ret;
635}
636
637/*
638 * Allocate len bytes on a fast commit buffer.
639 *
640 * During the commit time this function is used to manage fast commit
641 * block space. We don't split a fast commit log onto different
642 * blocks. So this function makes sure that if there's not enough space
643 * on the current block, the remaining space in the current block is
644 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
645 * new block is from jbd2 and CRC is updated to reflect the padding
646 * we added.
647 */
648static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
649{
650 struct ext4_fc_tl *tl;
651 struct ext4_sb_info *sbi = EXT4_SB(sb);
652 struct buffer_head *bh;
653 int bsize = sbi->s_journal->j_blocksize;
654 int ret, off = sbi->s_fc_bytes % bsize;
655 int pad_len;
656
657 /*
658 * After allocating len, we should have space at least for a 0 byte
659 * padding.
660 */
661 if (len + sizeof(struct ext4_fc_tl) > bsize)
662 return NULL;
663
664 if (bsize - off - 1 > len + sizeof(struct ext4_fc_tl)) {
665 /*
666 * Only allocate from current buffer if we have enough space for
667 * this request AND we have space to add a zero byte padding.
668 */
669 if (!sbi->s_fc_bh) {
670 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
671 if (ret)
672 return NULL;
673 sbi->s_fc_bh = bh;
674 }
675 sbi->s_fc_bytes += len;
676 return sbi->s_fc_bh->b_data + off;
677 }
678 /* Need to add PAD tag */
679 tl = (struct ext4_fc_tl *)(sbi->s_fc_bh->b_data + off);
680 tl->fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
681 pad_len = bsize - off - 1 - sizeof(struct ext4_fc_tl);
682 tl->fc_len = cpu_to_le16(pad_len);
683 if (crc)
684 *crc = ext4_chksum(sbi, *crc, tl, sizeof(*tl));
685 if (pad_len > 0)
686 ext4_fc_memzero(sb, tl + 1, pad_len, crc);
687 ext4_fc_submit_bh(sb, false);
688
689 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
690 if (ret)
691 return NULL;
692 sbi->s_fc_bh = bh;
693 sbi->s_fc_bytes = (sbi->s_fc_bytes / bsize + 1) * bsize + len;
694 return sbi->s_fc_bh->b_data;
695}
696
697/* memcpy to fc reserved space and update CRC */
698static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
699 int len, u32 *crc)
700{
701 if (crc)
702 *crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
703 return memcpy(dst, src, len);
704}
705
706/*
707 * Complete a fast commit by writing tail tag.
708 *
709 * Writing tail tag marks the end of a fast commit. In order to guarantee
710 * atomicity, after writing tail tag, even if there's space remaining
711 * in the block, next commit shouldn't use it. That's why tail tag
712 * has the length as that of the remaining space on the block.
713 */
714static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
715{
716 struct ext4_sb_info *sbi = EXT4_SB(sb);
717 struct ext4_fc_tl tl;
718 struct ext4_fc_tail tail;
719 int off, bsize = sbi->s_journal->j_blocksize;
720 u8 *dst;
721
722 /*
723 * ext4_fc_reserve_space takes care of allocating an extra block if
724 * there's no enough space on this block for accommodating this tail.
725 */
726 dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(tail), &crc);
727 if (!dst)
728 return -ENOSPC;
729
730 off = sbi->s_fc_bytes % bsize;
731
732 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
733 tl.fc_len = cpu_to_le16(bsize - off - 1 + sizeof(struct ext4_fc_tail));
734 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
735
736 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), &crc);
737 dst += sizeof(tl);
738 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
739 ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
740 dst += sizeof(tail.fc_tid);
741 tail.fc_crc = cpu_to_le32(crc);
742 ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
743
744 ext4_fc_submit_bh(sb, true);
745
746 return 0;
747}
748
749/*
750 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
751 * Returns false if there's not enough space.
752 */
753static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
754 u32 *crc)
755{
756 struct ext4_fc_tl tl;
757 u8 *dst;
758
759 dst = ext4_fc_reserve_space(sb, sizeof(tl) + len, crc);
760 if (!dst)
761 return false;
762
763 tl.fc_tag = cpu_to_le16(tag);
764 tl.fc_len = cpu_to_le16(len);
765
766 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
767 ext4_fc_memcpy(sb, dst + sizeof(tl), val, len, crc);
768
769 return true;
770}
771
772/* Same as above, but adds dentry tlv. */
773static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u16 tag,
774 int parent_ino, int ino, int dlen,
775 const unsigned char *dname,
776 u32 *crc)
777{
778 struct ext4_fc_dentry_info fcd;
779 struct ext4_fc_tl tl;
780 u8 *dst = ext4_fc_reserve_space(sb, sizeof(tl) + sizeof(fcd) + dlen,
781 crc);
782
783 if (!dst)
784 return false;
785
786 fcd.fc_parent_ino = cpu_to_le32(parent_ino);
787 fcd.fc_ino = cpu_to_le32(ino);
788 tl.fc_tag = cpu_to_le16(tag);
789 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
790 ext4_fc_memcpy(sb, dst, &tl, sizeof(tl), crc);
791 dst += sizeof(tl);
792 ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
793 dst += sizeof(fcd);
794 ext4_fc_memcpy(sb, dst, dname, dlen, crc);
795 dst += dlen;
796
797 return true;
798}
799
800/*
801 * Writes inode in the fast commit space under TLV with tag @tag.
802 * Returns 0 on success, error on failure.
803 */
804static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
805{
806 struct ext4_inode_info *ei = EXT4_I(inode);
807 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
808 int ret;
809 struct ext4_iloc iloc;
810 struct ext4_fc_inode fc_inode;
811 struct ext4_fc_tl tl;
812 u8 *dst;
813
814 ret = ext4_get_inode_loc(inode, &iloc);
815 if (ret)
816 return ret;
817
818 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
819 inode_len += ei->i_extra_isize;
820
821 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
822 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
823 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
824
825 dst = ext4_fc_reserve_space(inode->i_sb,
826 sizeof(tl) + inode_len + sizeof(fc_inode.fc_ino), crc);
827 if (!dst)
828 return -ECANCELED;
829
830 if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, sizeof(tl), crc))
831 return -ECANCELED;
832 dst += sizeof(tl);
833 if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
834 return -ECANCELED;
835 dst += sizeof(fc_inode);
836 if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
837 inode_len, crc))
838 return -ECANCELED;
839
840 return 0;
841}
842
843/*
844 * Writes updated data ranges for the inode in question. Updates CRC.
845 * Returns 0 on success, error otherwise.
846 */
847static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
848{
849 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
850 struct ext4_inode_info *ei = EXT4_I(inode);
851 struct ext4_map_blocks map;
852 struct ext4_fc_add_range fc_ext;
853 struct ext4_fc_del_range lrange;
854 struct ext4_extent *ex;
855 int ret;
856
857 mutex_lock(&ei->i_fc_lock);
858 if (ei->i_fc_lblk_len == 0) {
859 mutex_unlock(&ei->i_fc_lock);
860 return 0;
861 }
862 old_blk_size = ei->i_fc_lblk_start;
863 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
864 ei->i_fc_lblk_len = 0;
865 mutex_unlock(&ei->i_fc_lock);
866
867 cur_lblk_off = old_blk_size;
868 jbd_debug(1, "%s: will try writing %d to %d for inode %ld\n",
869 __func__, cur_lblk_off, new_blk_size, inode->i_ino);
870
871 while (cur_lblk_off <= new_blk_size) {
872 map.m_lblk = cur_lblk_off;
873 map.m_len = new_blk_size - cur_lblk_off + 1;
874 ret = ext4_map_blocks(NULL, inode, &map, 0);
875 if (ret < 0)
876 return -ECANCELED;
877
878 if (map.m_len == 0) {
879 cur_lblk_off++;
880 continue;
881 }
882
883 if (ret == 0) {
884 lrange.fc_ino = cpu_to_le32(inode->i_ino);
885 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
886 lrange.fc_len = cpu_to_le32(map.m_len);
887 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
888 sizeof(lrange), (u8 *)&lrange, crc))
889 return -ENOSPC;
890 } else {
891 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
892 ex = (struct ext4_extent *)&fc_ext.fc_ex;
893 ex->ee_block = cpu_to_le32(map.m_lblk);
894 ex->ee_len = cpu_to_le16(map.m_len);
895 ext4_ext_store_pblock(ex, map.m_pblk);
896 if (map.m_flags & EXT4_MAP_UNWRITTEN)
897 ext4_ext_mark_unwritten(ex);
898 else
899 ext4_ext_mark_initialized(ex);
900 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
901 sizeof(fc_ext), (u8 *)&fc_ext, crc))
902 return -ENOSPC;
903 }
904
905 cur_lblk_off += map.m_len;
906 }
907
908 return 0;
909}
910
911
912/* Submit data for all the fast commit inodes */
913static int ext4_fc_submit_inode_data_all(journal_t *journal)
914{
915 struct super_block *sb = (struct super_block *)(journal->j_private);
916 struct ext4_sb_info *sbi = EXT4_SB(sb);
917 struct ext4_inode_info *ei;
918 struct list_head *pos;
919 int ret = 0;
920
921 spin_lock(&sbi->s_fc_lock);
922 ext4_set_mount_flag(sb, EXT4_MF_FC_COMMITTING);
923 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
924 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
925 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
926 while (atomic_read(&ei->i_fc_updates)) {
927 DEFINE_WAIT(wait);
928
929 prepare_to_wait(&ei->i_fc_wait, &wait,
930 TASK_UNINTERRUPTIBLE);
931 if (atomic_read(&ei->i_fc_updates)) {
932 spin_unlock(&sbi->s_fc_lock);
933 schedule();
934 spin_lock(&sbi->s_fc_lock);
935 }
936 finish_wait(&ei->i_fc_wait, &wait);
937 }
938 spin_unlock(&sbi->s_fc_lock);
939 ret = jbd2_submit_inode_data(ei->jinode);
940 if (ret)
941 return ret;
942 spin_lock(&sbi->s_fc_lock);
943 }
944 spin_unlock(&sbi->s_fc_lock);
945
946 return ret;
947}
948
949/* Wait for completion of data for all the fast commit inodes */
950static int ext4_fc_wait_inode_data_all(journal_t *journal)
951{
952 struct super_block *sb = (struct super_block *)(journal->j_private);
953 struct ext4_sb_info *sbi = EXT4_SB(sb);
954 struct ext4_inode_info *pos, *n;
955 int ret = 0;
956
957 spin_lock(&sbi->s_fc_lock);
958 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
959 if (!ext4_test_inode_state(&pos->vfs_inode,
960 EXT4_STATE_FC_COMMITTING))
961 continue;
962 spin_unlock(&sbi->s_fc_lock);
963
964 ret = jbd2_wait_inode_data(journal, pos->jinode);
965 if (ret)
966 return ret;
967 spin_lock(&sbi->s_fc_lock);
968 }
969 spin_unlock(&sbi->s_fc_lock);
970
971 return 0;
972}
973
974/* Commit all the directory entry updates */
975static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
976__acquires(&sbi->s_fc_lock)
977__releases(&sbi->s_fc_lock)
978{
979 struct super_block *sb = (struct super_block *)(journal->j_private);
980 struct ext4_sb_info *sbi = EXT4_SB(sb);
981 struct ext4_fc_dentry_update *fc_dentry;
982 struct inode *inode;
983 struct list_head *pos, *n, *fcd_pos, *fcd_n;
984 struct ext4_inode_info *ei;
985 int ret;
986
987 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
988 return 0;
989 list_for_each_safe(fcd_pos, fcd_n, &sbi->s_fc_dentry_q[FC_Q_MAIN]) {
990 fc_dentry = list_entry(fcd_pos, struct ext4_fc_dentry_update,
991 fcd_list);
992 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
993 spin_unlock(&sbi->s_fc_lock);
994 if (!ext4_fc_add_dentry_tlv(
995 sb, fc_dentry->fcd_op,
996 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
997 fc_dentry->fcd_name.len,
998 fc_dentry->fcd_name.name, crc)) {
999 ret = -ENOSPC;
1000 goto lock_and_exit;
1001 }
1002 spin_lock(&sbi->s_fc_lock);
1003 continue;
1004 }
1005
1006 inode = NULL;
1007 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1008 ei = list_entry(pos, struct ext4_inode_info, i_fc_list);
1009 if (ei->vfs_inode.i_ino == fc_dentry->fcd_ino) {
1010 inode = &ei->vfs_inode;
1011 break;
1012 }
1013 }
1014 /*
1015 * If we don't find inode in our list, then it was deleted,
1016 * in which case, we don't need to record it's create tag.
1017 */
1018 if (!inode)
1019 continue;
1020 spin_unlock(&sbi->s_fc_lock);
1021
1022 /*
1023 * We first write the inode and then the create dirent. This
1024 * allows the recovery code to create an unnamed inode first
1025 * and then link it to a directory entry. This allows us
1026 * to use namei.c routines almost as is and simplifies
1027 * the recovery code.
1028 */
1029 ret = ext4_fc_write_inode(inode, crc);
1030 if (ret)
1031 goto lock_and_exit;
1032
1033 ret = ext4_fc_write_inode_data(inode, crc);
1034 if (ret)
1035 goto lock_and_exit;
1036
1037 if (!ext4_fc_add_dentry_tlv(
1038 sb, fc_dentry->fcd_op,
1039 fc_dentry->fcd_parent, fc_dentry->fcd_ino,
1040 fc_dentry->fcd_name.len,
1041 fc_dentry->fcd_name.name, crc)) {
1042 ret = -ENOSPC;
1043 goto lock_and_exit;
1044 }
1045
1046 spin_lock(&sbi->s_fc_lock);
1047 }
1048 return 0;
1049lock_and_exit:
1050 spin_lock(&sbi->s_fc_lock);
1051 return ret;
1052}
1053
1054static int ext4_fc_perform_commit(journal_t *journal)
1055{
1056 struct super_block *sb = (struct super_block *)(journal->j_private);
1057 struct ext4_sb_info *sbi = EXT4_SB(sb);
1058 struct ext4_inode_info *iter;
1059 struct ext4_fc_head head;
1060 struct list_head *pos;
1061 struct inode *inode;
1062 struct blk_plug plug;
1063 int ret = 0;
1064 u32 crc = 0;
1065
1066 ret = ext4_fc_submit_inode_data_all(journal);
1067 if (ret)
1068 return ret;
1069
1070 ret = ext4_fc_wait_inode_data_all(journal);
1071 if (ret)
1072 return ret;
1073
1074 /*
1075 * If file system device is different from journal device, issue a cache
1076 * flush before we start writing fast commit blocks.
1077 */
1078 if (journal->j_fs_dev != journal->j_dev)
1079 blkdev_issue_flush(journal->j_fs_dev, GFP_NOFS);
1080
1081 blk_start_plug(&plug);
1082 if (sbi->s_fc_bytes == 0) {
1083 /*
1084 * Add a head tag only if this is the first fast commit
1085 * in this TID.
1086 */
1087 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1088 head.fc_tid = cpu_to_le32(
1089 sbi->s_journal->j_running_transaction->t_tid);
1090 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1091 (u8 *)&head, &crc))
1092 goto out;
1093 }
1094
1095 spin_lock(&sbi->s_fc_lock);
1096 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1097 if (ret) {
1098 spin_unlock(&sbi->s_fc_lock);
1099 goto out;
1100 }
1101
1102 list_for_each(pos, &sbi->s_fc_q[FC_Q_MAIN]) {
1103 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1104 inode = &iter->vfs_inode;
1105 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1106 continue;
1107
1108 spin_unlock(&sbi->s_fc_lock);
1109 ret = ext4_fc_write_inode_data(inode, &crc);
1110 if (ret)
1111 goto out;
1112 ret = ext4_fc_write_inode(inode, &crc);
1113 if (ret)
1114 goto out;
1115 spin_lock(&sbi->s_fc_lock);
1116 }
1117 spin_unlock(&sbi->s_fc_lock);
1118
1119 ret = ext4_fc_write_tail(sb, crc);
1120
1121out:
1122 blk_finish_plug(&plug);
1123 return ret;
1124}
1125
1126/*
1127 * The main commit entry point. Performs a fast commit for transaction
1128 * commit_tid if needed. If it's not possible to perform a fast commit
1129 * due to various reasons, we fall back to full commit. Returns 0
1130 * on success, error otherwise.
1131 */
1132int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1133{
1134 struct super_block *sb = (struct super_block *)(journal->j_private);
1135 struct ext4_sb_info *sbi = EXT4_SB(sb);
1136 int nblks = 0, ret, bsize = journal->j_blocksize;
1137 int subtid = atomic_read(&sbi->s_fc_subtid);
1138 int reason = EXT4_FC_REASON_OK, fc_bufs_before = 0;
1139 ktime_t start_time, commit_time;
1140
1141 trace_ext4_fc_commit_start(sb);
1142
1143 start_time = ktime_get();
1144
1145 if (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
1146 (ext4_fc_is_ineligible(sb))) {
1147 reason = EXT4_FC_REASON_INELIGIBLE;
1148 goto out;
1149 }
1150
1151restart_fc:
1152 ret = jbd2_fc_begin_commit(journal, commit_tid);
1153 if (ret == -EALREADY) {
1154 /* There was an ongoing commit, check if we need to restart */
1155 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1156 commit_tid > journal->j_commit_sequence)
1157 goto restart_fc;
1158 reason = EXT4_FC_REASON_ALREADY_COMMITTED;
1159 goto out;
1160 } else if (ret) {
1161 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1162 reason = EXT4_FC_REASON_FC_START_FAILED;
1163 goto out;
1164 }
1165
1166 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1167 ret = ext4_fc_perform_commit(journal);
1168 if (ret < 0) {
1169 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1170 reason = EXT4_FC_REASON_FC_FAILED;
1171 goto out;
1172 }
1173 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1174 ret = jbd2_fc_wait_bufs(journal, nblks);
1175 if (ret < 0) {
1176 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1177 reason = EXT4_FC_REASON_FC_FAILED;
1178 goto out;
1179 }
1180 atomic_inc(&sbi->s_fc_subtid);
1181 jbd2_fc_end_commit(journal);
1182out:
1183 /* Has any ineligible update happened since we started? */
1184 if (reason == EXT4_FC_REASON_OK && ext4_fc_is_ineligible(sb)) {
1185 sbi->s_fc_stats.fc_ineligible_reason_count[EXT4_FC_COMMIT_FAILED]++;
1186 reason = EXT4_FC_REASON_INELIGIBLE;
1187 }
1188
1189 spin_lock(&sbi->s_fc_lock);
1190 if (reason != EXT4_FC_REASON_OK &&
1191 reason != EXT4_FC_REASON_ALREADY_COMMITTED) {
1192 sbi->s_fc_stats.fc_ineligible_commits++;
1193 } else {
1194 sbi->s_fc_stats.fc_num_commits++;
1195 sbi->s_fc_stats.fc_numblks += nblks;
1196 }
1197 spin_unlock(&sbi->s_fc_lock);
1198 nblks = (reason == EXT4_FC_REASON_OK) ? nblks : 0;
1199 trace_ext4_fc_commit_stop(sb, nblks, reason);
1200 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1201 /*
1202 * weight the commit time higher than the average time so we don't
1203 * react too strongly to vast changes in the commit time
1204 */
1205 if (likely(sbi->s_fc_avg_commit_time))
1206 sbi->s_fc_avg_commit_time = (commit_time +
1207 sbi->s_fc_avg_commit_time * 3) / 4;
1208 else
1209 sbi->s_fc_avg_commit_time = commit_time;
1210 jbd_debug(1,
1211 "Fast commit ended with blks = %d, reason = %d, subtid - %d",
1212 nblks, reason, subtid);
1213 if (reason == EXT4_FC_REASON_FC_FAILED)
1214 return jbd2_fc_end_commit_fallback(journal);
1215 if (reason == EXT4_FC_REASON_FC_START_FAILED ||
1216 reason == EXT4_FC_REASON_INELIGIBLE)
1217 return jbd2_complete_transaction(journal, commit_tid);
1218 return 0;
1219}
1220
1221/*
1222 * Fast commit cleanup routine. This is called after every fast commit and
1223 * full commit. full is true if we are called after a full commit.
1224 */
1225static void ext4_fc_cleanup(journal_t *journal, int full)
1226{
1227 struct super_block *sb = journal->j_private;
1228 struct ext4_sb_info *sbi = EXT4_SB(sb);
1229 struct ext4_inode_info *iter;
1230 struct ext4_fc_dentry_update *fc_dentry;
1231 struct list_head *pos, *n;
1232
1233 if (full && sbi->s_fc_bh)
1234 sbi->s_fc_bh = NULL;
1235
1236 jbd2_fc_release_bufs(journal);
1237
1238 spin_lock(&sbi->s_fc_lock);
1239 list_for_each_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN]) {
1240 iter = list_entry(pos, struct ext4_inode_info, i_fc_list);
1241 list_del_init(&iter->i_fc_list);
1242 ext4_clear_inode_state(&iter->vfs_inode,
1243 EXT4_STATE_FC_COMMITTING);
1244 ext4_fc_reset_inode(&iter->vfs_inode);
1245 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1246 smp_mb();
1247#if (BITS_PER_LONG < 64)
1248 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1249#else
1250 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1251#endif
1252 }
1253
1254 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1255 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1256 struct ext4_fc_dentry_update,
1257 fcd_list);
1258 list_del_init(&fc_dentry->fcd_list);
1259 spin_unlock(&sbi->s_fc_lock);
1260
1261 if (fc_dentry->fcd_name.name &&
1262 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1263 kfree(fc_dentry->fcd_name.name);
1264 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1265 spin_lock(&sbi->s_fc_lock);
1266 }
1267
1268 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1269 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1270 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1271 &sbi->s_fc_q[FC_Q_MAIN]);
1272
1273 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
1274 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1275
1276 if (full)
1277 sbi->s_fc_bytes = 0;
1278 spin_unlock(&sbi->s_fc_lock);
1279 trace_ext4_fc_stats(sb);
1280}
1281
1282/* Ext4 Replay Path Routines */
1283
1284/* Helper struct for dentry replay routines */
1285struct dentry_info_args {
1286 int parent_ino, dname_len, ino, inode_len;
1287 char *dname;
1288};
1289
1290static inline void tl_to_darg(struct dentry_info_args *darg,
1291 struct ext4_fc_tl *tl)
1292{
1293 struct ext4_fc_dentry_info *fcd;
1294
1295 fcd = (struct ext4_fc_dentry_info *)ext4_fc_tag_val(tl);
1296
1297 darg->parent_ino = le32_to_cpu(fcd->fc_parent_ino);
1298 darg->ino = le32_to_cpu(fcd->fc_ino);
1299 darg->dname = fcd->fc_dname;
1300 darg->dname_len = ext4_fc_tag_len(tl) -
1301 sizeof(struct ext4_fc_dentry_info);
1302}
1303
1304/* Unlink replay function */
1305static int ext4_fc_replay_unlink(struct super_block *sb, struct ext4_fc_tl *tl)
1306{
1307 struct inode *inode, *old_parent;
1308 struct qstr entry;
1309 struct dentry_info_args darg;
1310 int ret = 0;
1311
1312 tl_to_darg(&darg, tl);
1313
1314 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1315 darg.parent_ino, darg.dname_len);
1316
1317 entry.name = darg.dname;
1318 entry.len = darg.dname_len;
1319 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1320
1321 if (IS_ERR(inode)) {
1322 jbd_debug(1, "Inode %d not found", darg.ino);
1323 return 0;
1324 }
1325
1326 old_parent = ext4_iget(sb, darg.parent_ino,
1327 EXT4_IGET_NORMAL);
1328 if (IS_ERR(old_parent)) {
1329 jbd_debug(1, "Dir with inode %d not found", darg.parent_ino);
1330 iput(inode);
1331 return 0;
1332 }
1333
1334 ret = __ext4_unlink(NULL, old_parent, &entry, inode);
1335 /* -ENOENT ok coz it might not exist anymore. */
1336 if (ret == -ENOENT)
1337 ret = 0;
1338 iput(old_parent);
1339 iput(inode);
1340 return ret;
1341}
1342
1343static int ext4_fc_replay_link_internal(struct super_block *sb,
1344 struct dentry_info_args *darg,
1345 struct inode *inode)
1346{
1347 struct inode *dir = NULL;
1348 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1349 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1350 int ret = 0;
1351
1352 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1353 if (IS_ERR(dir)) {
1354 jbd_debug(1, "Dir with inode %d not found.", darg->parent_ino);
1355 dir = NULL;
1356 goto out;
1357 }
1358
1359 dentry_dir = d_obtain_alias(dir);
1360 if (IS_ERR(dentry_dir)) {
1361 jbd_debug(1, "Failed to obtain dentry");
1362 dentry_dir = NULL;
1363 goto out;
1364 }
1365
1366 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1367 if (!dentry_inode) {
1368 jbd_debug(1, "Inode dentry not created.");
1369 ret = -ENOMEM;
1370 goto out;
1371 }
1372
1373 ret = __ext4_link(dir, inode, dentry_inode);
1374 /*
1375 * It's possible that link already existed since data blocks
1376 * for the dir in question got persisted before we crashed OR
1377 * we replayed this tag and crashed before the entire replay
1378 * could complete.
1379 */
1380 if (ret && ret != -EEXIST) {
1381 jbd_debug(1, "Failed to link\n");
1382 goto out;
1383 }
1384
1385 ret = 0;
1386out:
1387 if (dentry_dir) {
1388 d_drop(dentry_dir);
1389 dput(dentry_dir);
1390 } else if (dir) {
1391 iput(dir);
1392 }
1393 if (dentry_inode) {
1394 d_drop(dentry_inode);
1395 dput(dentry_inode);
1396 }
1397
1398 return ret;
1399}
1400
1401/* Link replay function */
1402static int ext4_fc_replay_link(struct super_block *sb, struct ext4_fc_tl *tl)
1403{
1404 struct inode *inode;
1405 struct dentry_info_args darg;
1406 int ret = 0;
1407
1408 tl_to_darg(&darg, tl);
1409 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1410 darg.parent_ino, darg.dname_len);
1411
1412 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1413 if (IS_ERR(inode)) {
1414 jbd_debug(1, "Inode not found.");
1415 return 0;
1416 }
1417
1418 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1419 iput(inode);
1420 return ret;
1421}
1422
1423/*
1424 * Record all the modified inodes during replay. We use this later to setup
1425 * block bitmaps correctly.
1426 */
1427static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1428{
1429 struct ext4_fc_replay_state *state;
1430 int i;
1431
1432 state = &EXT4_SB(sb)->s_fc_replay_state;
1433 for (i = 0; i < state->fc_modified_inodes_used; i++)
1434 if (state->fc_modified_inodes[i] == ino)
1435 return 0;
1436 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1437 state->fc_modified_inodes_size +=
1438 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1439 state->fc_modified_inodes = krealloc(
1440 state->fc_modified_inodes, sizeof(int) *
1441 state->fc_modified_inodes_size,
1442 GFP_KERNEL);
1443 if (!state->fc_modified_inodes)
1444 return -ENOMEM;
1445 }
1446 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1447 return 0;
1448}
1449
1450/*
1451 * Inode replay function
1452 */
1453static int ext4_fc_replay_inode(struct super_block *sb, struct ext4_fc_tl *tl)
1454{
1455 struct ext4_fc_inode *fc_inode;
1456 struct ext4_inode *raw_inode;
1457 struct ext4_inode *raw_fc_inode;
1458 struct inode *inode = NULL;
1459 struct ext4_iloc iloc;
1460 int inode_len, ino, ret, tag = le16_to_cpu(tl->fc_tag);
1461 struct ext4_extent_header *eh;
1462
1463 fc_inode = (struct ext4_fc_inode *)ext4_fc_tag_val(tl);
1464
1465 ino = le32_to_cpu(fc_inode->fc_ino);
1466 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1467
1468 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1469 if (!IS_ERR(inode)) {
1470 ext4_ext_clear_bb(inode);
1471 iput(inode);
1472 }
1473 inode = NULL;
1474
1475 ext4_fc_record_modified_inode(sb, ino);
1476
1477 raw_fc_inode = (struct ext4_inode *)fc_inode->fc_raw_inode;
1478 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1479 if (ret)
1480 goto out;
1481
1482 inode_len = ext4_fc_tag_len(tl) - sizeof(struct ext4_fc_inode);
1483 raw_inode = ext4_raw_inode(&iloc);
1484
1485 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1486 memcpy(&raw_inode->i_generation, &raw_fc_inode->i_generation,
1487 inode_len - offsetof(struct ext4_inode, i_generation));
1488 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1489 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1490 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1491 memset(eh, 0, sizeof(*eh));
1492 eh->eh_magic = EXT4_EXT_MAGIC;
1493 eh->eh_max = cpu_to_le16(
1494 (sizeof(raw_inode->i_block) -
1495 sizeof(struct ext4_extent_header))
1496 / sizeof(struct ext4_extent));
1497 }
1498 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1499 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1500 sizeof(raw_inode->i_block));
1501 }
1502
1503 /* Immediately update the inode on disk. */
1504 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1505 if (ret)
1506 goto out;
1507 ret = sync_dirty_buffer(iloc.bh);
1508 if (ret)
1509 goto out;
1510 ret = ext4_mark_inode_used(sb, ino);
1511 if (ret)
1512 goto out;
1513
1514 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1515 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1516 if (IS_ERR(inode)) {
1517 jbd_debug(1, "Inode not found.");
1518 return -EFSCORRUPTED;
1519 }
1520
1521 /*
1522 * Our allocator could have made different decisions than before
1523 * crashing. This should be fixed but until then, we calculate
1524 * the number of blocks the inode.
1525 */
1526 ext4_ext_replay_set_iblocks(inode);
1527
1528 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1529 ext4_reset_inode_seed(inode);
1530
1531 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1532 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1533 sync_dirty_buffer(iloc.bh);
1534 brelse(iloc.bh);
1535out:
1536 iput(inode);
1537 if (!ret)
1538 blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
1539
1540 return 0;
1541}
1542
1543/*
1544 * Dentry create replay function.
1545 *
1546 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1547 * inode for which we are trying to create a dentry here, should already have
1548 * been replayed before we start here.
1549 */
1550static int ext4_fc_replay_create(struct super_block *sb, struct ext4_fc_tl *tl)
1551{
1552 int ret = 0;
1553 struct inode *inode = NULL;
1554 struct inode *dir = NULL;
1555 struct dentry_info_args darg;
1556
1557 tl_to_darg(&darg, tl);
1558
1559 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1560 darg.parent_ino, darg.dname_len);
1561
1562 /* This takes care of update group descriptor and other metadata */
1563 ret = ext4_mark_inode_used(sb, darg.ino);
1564 if (ret)
1565 goto out;
1566
1567 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1568 if (IS_ERR(inode)) {
1569 jbd_debug(1, "inode %d not found.", darg.ino);
1570 inode = NULL;
1571 ret = -EINVAL;
1572 goto out;
1573 }
1574
1575 if (S_ISDIR(inode->i_mode)) {
1576 /*
1577 * If we are creating a directory, we need to make sure that the
1578 * dot and dot dot dirents are setup properly.
1579 */
1580 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1581 if (IS_ERR(dir)) {
1582 jbd_debug(1, "Dir %d not found.", darg.ino);
1583 goto out;
1584 }
1585 ret = ext4_init_new_dir(NULL, dir, inode);
1586 iput(dir);
1587 if (ret) {
1588 ret = 0;
1589 goto out;
1590 }
1591 }
1592 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1593 if (ret)
1594 goto out;
1595 set_nlink(inode, 1);
1596 ext4_mark_inode_dirty(NULL, inode);
1597out:
1598 if (inode)
1599 iput(inode);
1600 return ret;
1601}
1602
1603/*
1604 * Record physical disk regions which are in use as per fast commit area. Our
1605 * simple replay phase allocator excludes these regions from allocation.
1606 */
1607static int ext4_fc_record_regions(struct super_block *sb, int ino,
1608 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len)
1609{
1610 struct ext4_fc_replay_state *state;
1611 struct ext4_fc_alloc_region *region;
1612
1613 state = &EXT4_SB(sb)->s_fc_replay_state;
1614 if (state->fc_regions_used == state->fc_regions_size) {
1615 state->fc_regions_size +=
1616 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1617 state->fc_regions = krealloc(
1618 state->fc_regions,
1619 state->fc_regions_size *
1620 sizeof(struct ext4_fc_alloc_region),
1621 GFP_KERNEL);
1622 if (!state->fc_regions)
1623 return -ENOMEM;
1624 }
1625 region = &state->fc_regions[state->fc_regions_used++];
1626 region->ino = ino;
1627 region->lblk = lblk;
1628 region->pblk = pblk;
1629 region->len = len;
1630
1631 return 0;
1632}
1633
1634/* Replay add range tag */
1635static int ext4_fc_replay_add_range(struct super_block *sb,
1636 struct ext4_fc_tl *tl)
1637{
1638 struct ext4_fc_add_range *fc_add_ex;
1639 struct ext4_extent newex, *ex;
1640 struct inode *inode;
1641 ext4_lblk_t start, cur;
1642 int remaining, len;
1643 ext4_fsblk_t start_pblk;
1644 struct ext4_map_blocks map;
1645 struct ext4_ext_path *path = NULL;
1646 int ret;
1647
1648 fc_add_ex = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1649 ex = (struct ext4_extent *)&fc_add_ex->fc_ex;
1650
1651 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1652 le32_to_cpu(fc_add_ex->fc_ino), le32_to_cpu(ex->ee_block),
1653 ext4_ext_get_actual_len(ex));
1654
1655 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex->fc_ino),
1656 EXT4_IGET_NORMAL);
1657 if (IS_ERR(inode)) {
1658 jbd_debug(1, "Inode not found.");
1659 return 0;
1660 }
1661
1662 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1663
1664 start = le32_to_cpu(ex->ee_block);
1665 start_pblk = ext4_ext_pblock(ex);
1666 len = ext4_ext_get_actual_len(ex);
1667
1668 cur = start;
1669 remaining = len;
1670 jbd_debug(1, "ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1671 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1672 inode->i_ino);
1673
1674 while (remaining > 0) {
1675 map.m_lblk = cur;
1676 map.m_len = remaining;
1677 map.m_pblk = 0;
1678 ret = ext4_map_blocks(NULL, inode, &map, 0);
1679
1680 if (ret < 0) {
1681 iput(inode);
1682 return 0;
1683 }
1684
1685 if (ret == 0) {
1686 /* Range is not mapped */
1687 path = ext4_find_extent(inode, cur, NULL, 0);
1688 if (IS_ERR(path)) {
1689 iput(inode);
1690 return 0;
1691 }
1692 memset(&newex, 0, sizeof(newex));
1693 newex.ee_block = cpu_to_le32(cur);
1694 ext4_ext_store_pblock(
1695 &newex, start_pblk + cur - start);
1696 newex.ee_len = cpu_to_le16(map.m_len);
1697 if (ext4_ext_is_unwritten(ex))
1698 ext4_ext_mark_unwritten(&newex);
1699 down_write(&EXT4_I(inode)->i_data_sem);
1700 ret = ext4_ext_insert_extent(
1701 NULL, inode, &path, &newex, 0);
1702 up_write((&EXT4_I(inode)->i_data_sem));
1703 ext4_ext_drop_refs(path);
1704 kfree(path);
1705 if (ret) {
1706 iput(inode);
1707 return 0;
1708 }
1709 goto next;
1710 }
1711
1712 if (start_pblk + cur - start != map.m_pblk) {
1713 /*
1714 * Logical to physical mapping changed. This can happen
1715 * if this range was removed and then reallocated to
1716 * map to new physical blocks during a fast commit.
1717 */
1718 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1719 ext4_ext_is_unwritten(ex),
1720 start_pblk + cur - start);
1721 if (ret) {
1722 iput(inode);
1723 return 0;
1724 }
1725 /*
1726 * Mark the old blocks as free since they aren't used
1727 * anymore. We maintain an array of all the modified
1728 * inodes. In case these blocks are still used at either
1729 * a different logical range in the same inode or in
1730 * some different inode, we will mark them as allocated
1731 * at the end of the FC replay using our array of
1732 * modified inodes.
1733 */
1734 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1735 goto next;
1736 }
1737
1738 /* Range is mapped and needs a state change */
1739 jbd_debug(1, "Converting from %d to %d %lld",
1740 map.m_flags & EXT4_MAP_UNWRITTEN,
1741 ext4_ext_is_unwritten(ex), map.m_pblk);
1742 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1743 ext4_ext_is_unwritten(ex), map.m_pblk);
1744 if (ret) {
1745 iput(inode);
1746 return 0;
1747 }
1748 /*
1749 * We may have split the extent tree while toggling the state.
1750 * Try to shrink the extent tree now.
1751 */
1752 ext4_ext_replay_shrink_inode(inode, start + len);
1753next:
1754 cur += map.m_len;
1755 remaining -= map.m_len;
1756 }
1757 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1758 sb->s_blocksize_bits);
1759 iput(inode);
1760 return 0;
1761}
1762
1763/* Replay DEL_RANGE tag */
1764static int
1765ext4_fc_replay_del_range(struct super_block *sb, struct ext4_fc_tl *tl)
1766{
1767 struct inode *inode;
1768 struct ext4_fc_del_range *lrange;
1769 struct ext4_map_blocks map;
1770 ext4_lblk_t cur, remaining;
1771 int ret;
1772
1773 lrange = (struct ext4_fc_del_range *)ext4_fc_tag_val(tl);
1774 cur = le32_to_cpu(lrange->fc_lblk);
1775 remaining = le32_to_cpu(lrange->fc_len);
1776
1777 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1778 le32_to_cpu(lrange->fc_ino), cur, remaining);
1779
1780 inode = ext4_iget(sb, le32_to_cpu(lrange->fc_ino), EXT4_IGET_NORMAL);
1781 if (IS_ERR(inode)) {
1782 jbd_debug(1, "Inode %d not found", le32_to_cpu(lrange->fc_ino));
1783 return 0;
1784 }
1785
1786 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1787
1788 jbd_debug(1, "DEL_RANGE, inode %ld, lblk %d, len %d\n",
1789 inode->i_ino, le32_to_cpu(lrange->fc_lblk),
1790 le32_to_cpu(lrange->fc_len));
1791 while (remaining > 0) {
1792 map.m_lblk = cur;
1793 map.m_len = remaining;
1794
1795 ret = ext4_map_blocks(NULL, inode, &map, 0);
1796 if (ret < 0) {
1797 iput(inode);
1798 return 0;
1799 }
1800 if (ret > 0) {
1801 remaining -= ret;
1802 cur += ret;
1803 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1804 } else {
1805 remaining -= map.m_len;
1806 cur += map.m_len;
1807 }
1808 }
1809
1810 ret = ext4_punch_hole(inode,
1811 le32_to_cpu(lrange->fc_lblk) << sb->s_blocksize_bits,
1812 le32_to_cpu(lrange->fc_len) << sb->s_blocksize_bits);
1813 if (ret)
1814 jbd_debug(1, "ext4_punch_hole returned %d", ret);
1815 ext4_ext_replay_shrink_inode(inode,
1816 i_size_read(inode) >> sb->s_blocksize_bits);
1817 ext4_mark_inode_dirty(NULL, inode);
1818 iput(inode);
1819
1820 return 0;
1821}
1822
1823static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1824{
1825 struct ext4_fc_replay_state *state;
1826 struct inode *inode;
1827 struct ext4_ext_path *path = NULL;
1828 struct ext4_map_blocks map;
1829 int i, ret, j;
1830 ext4_lblk_t cur, end;
1831
1832 state = &EXT4_SB(sb)->s_fc_replay_state;
1833 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1834 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1835 EXT4_IGET_NORMAL);
1836 if (IS_ERR(inode)) {
1837 jbd_debug(1, "Inode %d not found.",
1838 state->fc_modified_inodes[i]);
1839 continue;
1840 }
1841 cur = 0;
1842 end = EXT_MAX_BLOCKS;
1843 while (cur < end) {
1844 map.m_lblk = cur;
1845 map.m_len = end - cur;
1846
1847 ret = ext4_map_blocks(NULL, inode, &map, 0);
1848 if (ret < 0)
1849 break;
1850
1851 if (ret > 0) {
1852 path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1853 if (!IS_ERR(path)) {
1854 for (j = 0; j < path->p_depth; j++)
1855 ext4_mb_mark_bb(inode->i_sb,
1856 path[j].p_block, 1, 1);
1857 ext4_ext_drop_refs(path);
1858 kfree(path);
1859 }
1860 cur += ret;
1861 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1862 map.m_len, 1);
1863 } else {
1864 cur = cur + (map.m_len ? map.m_len : 1);
1865 }
1866 }
1867 iput(inode);
1868 }
1869}
1870
1871/*
1872 * Check if block is in excluded regions for block allocation. The simple
1873 * allocator that runs during replay phase is calls this function to see
1874 * if it is okay to use a block.
1875 */
1876bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1877{
1878 int i;
1879 struct ext4_fc_replay_state *state;
1880
1881 state = &EXT4_SB(sb)->s_fc_replay_state;
1882 for (i = 0; i < state->fc_regions_valid; i++) {
1883 if (state->fc_regions[i].ino == 0 ||
1884 state->fc_regions[i].len == 0)
1885 continue;
1886 if (blk >= state->fc_regions[i].pblk &&
1887 blk < state->fc_regions[i].pblk + state->fc_regions[i].len)
1888 return true;
1889 }
1890 return false;
1891}
1892
1893/* Cleanup function called after replay */
1894void ext4_fc_replay_cleanup(struct super_block *sb)
1895{
1896 struct ext4_sb_info *sbi = EXT4_SB(sb);
1897
1898 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1899 kfree(sbi->s_fc_replay_state.fc_regions);
1900 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
1901}
1902
1903/*
1904 * Recovery Scan phase handler
1905 *
1906 * This function is called during the scan phase and is responsible
1907 * for doing following things:
1908 * - Make sure the fast commit area has valid tags for replay
1909 * - Count number of tags that need to be replayed by the replay handler
1910 * - Verify CRC
1911 * - Create a list of excluded blocks for allocation during replay phase
1912 *
1913 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
1914 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
1915 * to indicate that scan has finished and JBD2 can now start replay phase.
1916 * It returns a negative error to indicate that there was an error. At the end
1917 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
1918 * to indicate the number of tags that need to replayed during the replay phase.
1919 */
1920static int ext4_fc_replay_scan(journal_t *journal,
1921 struct buffer_head *bh, int off,
1922 tid_t expected_tid)
1923{
1924 struct super_block *sb = journal->j_private;
1925 struct ext4_sb_info *sbi = EXT4_SB(sb);
1926 struct ext4_fc_replay_state *state;
1927 int ret = JBD2_FC_REPLAY_CONTINUE;
1928 struct ext4_fc_add_range *ext;
1929 struct ext4_fc_tl *tl;
1930 struct ext4_fc_tail *tail;
1931 __u8 *start, *end;
1932 struct ext4_fc_head *head;
1933 struct ext4_extent *ex;
1934
1935 state = &sbi->s_fc_replay_state;
1936
1937 start = (u8 *)bh->b_data;
1938 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
1939
1940 if (state->fc_replay_expected_off == 0) {
1941 state->fc_cur_tag = 0;
1942 state->fc_replay_num_tags = 0;
1943 state->fc_crc = 0;
1944 state->fc_regions = NULL;
1945 state->fc_regions_valid = state->fc_regions_used =
1946 state->fc_regions_size = 0;
1947 /* Check if we can stop early */
1948 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
1949 != EXT4_FC_TAG_HEAD)
1950 return 0;
1951 }
1952
1953 if (off != state->fc_replay_expected_off) {
1954 ret = -EFSCORRUPTED;
1955 goto out_err;
1956 }
1957
1958 state->fc_replay_expected_off++;
1959 fc_for_each_tl(start, end, tl) {
1960 jbd_debug(3, "Scan phase, tag:%s, blk %lld\n",
1961 tag2str(le16_to_cpu(tl->fc_tag)), bh->b_blocknr);
1962 switch (le16_to_cpu(tl->fc_tag)) {
1963 case EXT4_FC_TAG_ADD_RANGE:
1964 ext = (struct ext4_fc_add_range *)ext4_fc_tag_val(tl);
1965 ex = (struct ext4_extent *)&ext->fc_ex;
1966 ret = ext4_fc_record_regions(sb,
1967 le32_to_cpu(ext->fc_ino),
1968 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
1969 ext4_ext_get_actual_len(ex));
1970 if (ret < 0)
1971 break;
1972 ret = JBD2_FC_REPLAY_CONTINUE;
1973 fallthrough;
1974 case EXT4_FC_TAG_DEL_RANGE:
1975 case EXT4_FC_TAG_LINK:
1976 case EXT4_FC_TAG_UNLINK:
1977 case EXT4_FC_TAG_CREAT:
1978 case EXT4_FC_TAG_INODE:
1979 case EXT4_FC_TAG_PAD:
1980 state->fc_cur_tag++;
1981 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1982 sizeof(*tl) + ext4_fc_tag_len(tl));
1983 break;
1984 case EXT4_FC_TAG_TAIL:
1985 state->fc_cur_tag++;
1986 tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
1987 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
1988 sizeof(*tl) +
1989 offsetof(struct ext4_fc_tail,
1990 fc_crc));
1991 if (le32_to_cpu(tail->fc_tid) == expected_tid &&
1992 le32_to_cpu(tail->fc_crc) == state->fc_crc) {
1993 state->fc_replay_num_tags = state->fc_cur_tag;
1994 state->fc_regions_valid =
1995 state->fc_regions_used;
1996 } else {
1997 ret = state->fc_replay_num_tags ?
1998 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
1999 }
2000 state->fc_crc = 0;
2001 break;
2002 case EXT4_FC_TAG_HEAD:
2003 head = (struct ext4_fc_head *)ext4_fc_tag_val(tl);
2004 if (le32_to_cpu(head->fc_features) &
2005 ~EXT4_FC_SUPPORTED_FEATURES) {
2006 ret = -EOPNOTSUPP;
2007 break;
2008 }
2009 if (le32_to_cpu(head->fc_tid) != expected_tid) {
2010 ret = JBD2_FC_REPLAY_STOP;
2011 break;
2012 }
2013 state->fc_cur_tag++;
2014 state->fc_crc = ext4_chksum(sbi, state->fc_crc, tl,
2015 sizeof(*tl) + ext4_fc_tag_len(tl));
2016 break;
2017 default:
2018 ret = state->fc_replay_num_tags ?
2019 JBD2_FC_REPLAY_STOP : -ECANCELED;
2020 }
2021 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2022 break;
2023 }
2024
2025out_err:
2026 trace_ext4_fc_replay_scan(sb, ret, off);
2027 return ret;
2028}
2029
2030/*
2031 * Main recovery path entry point.
2032 * The meaning of return codes is similar as above.
2033 */
2034static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2035 enum passtype pass, int off, tid_t expected_tid)
2036{
2037 struct super_block *sb = journal->j_private;
2038 struct ext4_sb_info *sbi = EXT4_SB(sb);
2039 struct ext4_fc_tl *tl;
2040 __u8 *start, *end;
2041 int ret = JBD2_FC_REPLAY_CONTINUE;
2042 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2043 struct ext4_fc_tail *tail;
2044
2045 if (pass == PASS_SCAN) {
2046 state->fc_current_pass = PASS_SCAN;
2047 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2048 }
2049
2050 if (state->fc_current_pass != pass) {
2051 state->fc_current_pass = pass;
2052 sbi->s_mount_state |= EXT4_FC_REPLAY;
2053 }
2054 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2055 jbd_debug(1, "Replay stops\n");
2056 ext4_fc_set_bitmaps_and_counters(sb);
2057 return 0;
2058 }
2059
2060#ifdef CONFIG_EXT4_DEBUG
2061 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2062 pr_warn("Dropping fc block %d because max_replay set\n", off);
2063 return JBD2_FC_REPLAY_STOP;
2064 }
2065#endif
2066
2067 start = (u8 *)bh->b_data;
2068 end = (__u8 *)bh->b_data + journal->j_blocksize - 1;
2069
2070 fc_for_each_tl(start, end, tl) {
2071 if (state->fc_replay_num_tags == 0) {
2072 ret = JBD2_FC_REPLAY_STOP;
2073 ext4_fc_set_bitmaps_and_counters(sb);
2074 break;
2075 }
2076 jbd_debug(3, "Replay phase, tag:%s\n",
2077 tag2str(le16_to_cpu(tl->fc_tag)));
2078 state->fc_replay_num_tags--;
2079 switch (le16_to_cpu(tl->fc_tag)) {
2080 case EXT4_FC_TAG_LINK:
2081 ret = ext4_fc_replay_link(sb, tl);
2082 break;
2083 case EXT4_FC_TAG_UNLINK:
2084 ret = ext4_fc_replay_unlink(sb, tl);
2085 break;
2086 case EXT4_FC_TAG_ADD_RANGE:
2087 ret = ext4_fc_replay_add_range(sb, tl);
2088 break;
2089 case EXT4_FC_TAG_CREAT:
2090 ret = ext4_fc_replay_create(sb, tl);
2091 break;
2092 case EXT4_FC_TAG_DEL_RANGE:
2093 ret = ext4_fc_replay_del_range(sb, tl);
2094 break;
2095 case EXT4_FC_TAG_INODE:
2096 ret = ext4_fc_replay_inode(sb, tl);
2097 break;
2098 case EXT4_FC_TAG_PAD:
2099 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2100 ext4_fc_tag_len(tl), 0);
2101 break;
2102 case EXT4_FC_TAG_TAIL:
2103 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL, 0,
2104 ext4_fc_tag_len(tl), 0);
2105 tail = (struct ext4_fc_tail *)ext4_fc_tag_val(tl);
2106 WARN_ON(le32_to_cpu(tail->fc_tid) != expected_tid);
2107 break;
2108 case EXT4_FC_TAG_HEAD:
2109 break;
2110 default:
2111 trace_ext4_fc_replay(sb, le16_to_cpu(tl->fc_tag), 0,
2112 ext4_fc_tag_len(tl), 0);
2113 ret = -ECANCELED;
2114 break;
2115 }
2116 if (ret < 0)
2117 break;
2118 ret = JBD2_FC_REPLAY_CONTINUE;
2119 }
2120 return ret;
2121}
2122
2123void ext4_fc_init(struct super_block *sb, journal_t *journal)
2124{
2125 /*
2126 * We set replay callback even if fast commit disabled because we may
2127 * could still have fast commit blocks that need to be replayed even if
2128 * fast commit has now been turned off.
2129 */
2130 journal->j_fc_replay_callback = ext4_fc_replay;
2131 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2132 return;
2133 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2134}
2135
2136static const char *fc_ineligible_reasons[] = {
2137 "Extended attributes changed",
2138 "Cross rename",
2139 "Journal flag changed",
2140 "Insufficient memory",
2141 "Swap boot",
2142 "Resize",
2143 "Dir renamed",
2144 "Falloc range op",
2145 "Data journalling",
2146 "FC Commit Failed"
2147};
2148
2149int ext4_fc_info_show(struct seq_file *seq, void *v)
2150{
2151 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2152 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2153 int i;
2154
2155 if (v != SEQ_START_TOKEN)
2156 return 0;
2157
2158 seq_printf(seq,
2159 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2160 stats->fc_num_commits, stats->fc_ineligible_commits,
2161 stats->fc_numblks,
2162 div_u64(sbi->s_fc_avg_commit_time, 1000));
2163 seq_puts(seq, "Ineligible reasons:\n");
2164 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2165 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2166 stats->fc_ineligible_reason_count[i]);
2167
2168 return 0;
2169}
2170
2171int __init ext4_fc_init_dentry_cache(void)
2172{
2173 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2174 SLAB_RECLAIM_ACCOUNT);
2175
2176 if (ext4_fc_dentry_cachep == NULL)
2177 return -ENOMEM;
2178
2179 return 0;
2180}