Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Copyright (C) 2016 - 2020 Christoph Hellwig
6 */
7
8#include <linux/init.h>
9#include <linux/mm.h>
10#include <linux/fcntl.h>
11#include <linux/slab.h>
12#include <linux/kmod.h>
13#include <linux/major.h>
14#include <linux/device_cgroup.h>
15#include <linux/highmem.h>
16#include <linux/blkdev.h>
17#include <linux/backing-dev.h>
18#include <linux/module.h>
19#include <linux/blkpg.h>
20#include <linux/magic.h>
21#include <linux/buffer_head.h>
22#include <linux/swap.h>
23#include <linux/pagevec.h>
24#include <linux/writeback.h>
25#include <linux/mpage.h>
26#include <linux/mount.h>
27#include <linux/pseudo_fs.h>
28#include <linux/uio.h>
29#include <linux/namei.h>
30#include <linux/log2.h>
31#include <linux/cleancache.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/falloc.h>
34#include <linux/part_stat.h>
35#include <linux/uaccess.h>
36#include <linux/suspend.h>
37#include "internal.h"
38
39struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42};
43
44static const struct address_space_operations def_blk_aops;
45
46static inline struct bdev_inode *BDEV_I(struct inode *inode)
47{
48 return container_of(inode, struct bdev_inode, vfs_inode);
49}
50
51struct block_device *I_BDEV(struct inode *inode)
52{
53 return &BDEV_I(inode)->bdev;
54}
55EXPORT_SYMBOL(I_BDEV);
56
57static void bdev_write_inode(struct block_device *bdev)
58{
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75}
76
77/* Kill _all_ buffers and pagecache , dirty or not.. */
78static void kill_bdev(struct block_device *bdev)
79{
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87}
88
89/* Invalidate clean unused buffers and pagecache. */
90void invalidate_bdev(struct block_device *bdev)
91{
92 struct address_space *mapping = bdev->bd_inode->i_mapping;
93
94 if (mapping->nrpages) {
95 invalidate_bh_lrus();
96 lru_add_drain_all(); /* make sure all lru add caches are flushed */
97 invalidate_mapping_pages(mapping, 0, -1);
98 }
99 /* 99% of the time, we don't need to flush the cleancache on the bdev.
100 * But, for the strange corners, lets be cautious
101 */
102 cleancache_invalidate_inode(mapping);
103}
104EXPORT_SYMBOL(invalidate_bdev);
105
106/*
107 * Drop all buffers & page cache for given bdev range. This function bails
108 * with error if bdev has other exclusive owner (such as filesystem).
109 */
110int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
111 loff_t lstart, loff_t lend)
112{
113 /*
114 * If we don't hold exclusive handle for the device, upgrade to it
115 * while we discard the buffer cache to avoid discarding buffers
116 * under live filesystem.
117 */
118 if (!(mode & FMODE_EXCL)) {
119 int err = bd_prepare_to_claim(bdev, truncate_bdev_range);
120 if (err)
121 return err;
122 }
123
124 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend);
125 if (!(mode & FMODE_EXCL))
126 bd_abort_claiming(bdev, truncate_bdev_range);
127 return 0;
128}
129EXPORT_SYMBOL(truncate_bdev_range);
130
131static void set_init_blocksize(struct block_device *bdev)
132{
133 unsigned int bsize = bdev_logical_block_size(bdev);
134 loff_t size = i_size_read(bdev->bd_inode);
135
136 while (bsize < PAGE_SIZE) {
137 if (size & bsize)
138 break;
139 bsize <<= 1;
140 }
141 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
142}
143
144int set_blocksize(struct block_device *bdev, int size)
145{
146 /* Size must be a power of two, and between 512 and PAGE_SIZE */
147 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
148 return -EINVAL;
149
150 /* Size cannot be smaller than the size supported by the device */
151 if (size < bdev_logical_block_size(bdev))
152 return -EINVAL;
153
154 /* Don't change the size if it is same as current */
155 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) {
156 sync_blockdev(bdev);
157 bdev->bd_inode->i_blkbits = blksize_bits(size);
158 kill_bdev(bdev);
159 }
160 return 0;
161}
162
163EXPORT_SYMBOL(set_blocksize);
164
165int sb_set_blocksize(struct super_block *sb, int size)
166{
167 if (set_blocksize(sb->s_bdev, size))
168 return 0;
169 /* If we get here, we know size is power of two
170 * and it's value is between 512 and PAGE_SIZE */
171 sb->s_blocksize = size;
172 sb->s_blocksize_bits = blksize_bits(size);
173 return sb->s_blocksize;
174}
175
176EXPORT_SYMBOL(sb_set_blocksize);
177
178int sb_min_blocksize(struct super_block *sb, int size)
179{
180 int minsize = bdev_logical_block_size(sb->s_bdev);
181 if (size < minsize)
182 size = minsize;
183 return sb_set_blocksize(sb, size);
184}
185
186EXPORT_SYMBOL(sb_min_blocksize);
187
188static int
189blkdev_get_block(struct inode *inode, sector_t iblock,
190 struct buffer_head *bh, int create)
191{
192 bh->b_bdev = I_BDEV(inode);
193 bh->b_blocknr = iblock;
194 set_buffer_mapped(bh);
195 return 0;
196}
197
198static struct inode *bdev_file_inode(struct file *file)
199{
200 return file->f_mapping->host;
201}
202
203static unsigned int dio_bio_write_op(struct kiocb *iocb)
204{
205 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
206
207 /* avoid the need for a I/O completion work item */
208 if (iocb->ki_flags & IOCB_DSYNC)
209 op |= REQ_FUA;
210 return op;
211}
212
213#define DIO_INLINE_BIO_VECS 4
214
215static void blkdev_bio_end_io_simple(struct bio *bio)
216{
217 struct task_struct *waiter = bio->bi_private;
218
219 WRITE_ONCE(bio->bi_private, NULL);
220 blk_wake_io_task(waiter);
221}
222
223static ssize_t
224__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
225 int nr_pages)
226{
227 struct file *file = iocb->ki_filp;
228 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
229 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
230 loff_t pos = iocb->ki_pos;
231 bool should_dirty = false;
232 struct bio bio;
233 ssize_t ret;
234 blk_qc_t qc;
235
236 if ((pos | iov_iter_alignment(iter)) &
237 (bdev_logical_block_size(bdev) - 1))
238 return -EINVAL;
239
240 if (nr_pages <= DIO_INLINE_BIO_VECS)
241 vecs = inline_vecs;
242 else {
243 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
244 GFP_KERNEL);
245 if (!vecs)
246 return -ENOMEM;
247 }
248
249 bio_init(&bio, vecs, nr_pages);
250 bio_set_dev(&bio, bdev);
251 bio.bi_iter.bi_sector = pos >> 9;
252 bio.bi_write_hint = iocb->ki_hint;
253 bio.bi_private = current;
254 bio.bi_end_io = blkdev_bio_end_io_simple;
255 bio.bi_ioprio = iocb->ki_ioprio;
256
257 ret = bio_iov_iter_get_pages(&bio, iter);
258 if (unlikely(ret))
259 goto out;
260 ret = bio.bi_iter.bi_size;
261
262 if (iov_iter_rw(iter) == READ) {
263 bio.bi_opf = REQ_OP_READ;
264 if (iter_is_iovec(iter))
265 should_dirty = true;
266 } else {
267 bio.bi_opf = dio_bio_write_op(iocb);
268 task_io_account_write(ret);
269 }
270 if (iocb->ki_flags & IOCB_HIPRI)
271 bio_set_polled(&bio, iocb);
272
273 qc = submit_bio(&bio);
274 for (;;) {
275 set_current_state(TASK_UNINTERRUPTIBLE);
276 if (!READ_ONCE(bio.bi_private))
277 break;
278 if (!(iocb->ki_flags & IOCB_HIPRI) ||
279 !blk_poll(bdev_get_queue(bdev), qc, true))
280 blk_io_schedule();
281 }
282 __set_current_state(TASK_RUNNING);
283
284 bio_release_pages(&bio, should_dirty);
285 if (unlikely(bio.bi_status))
286 ret = blk_status_to_errno(bio.bi_status);
287
288out:
289 if (vecs != inline_vecs)
290 kfree(vecs);
291
292 bio_uninit(&bio);
293
294 return ret;
295}
296
297struct blkdev_dio {
298 union {
299 struct kiocb *iocb;
300 struct task_struct *waiter;
301 };
302 size_t size;
303 atomic_t ref;
304 bool multi_bio : 1;
305 bool should_dirty : 1;
306 bool is_sync : 1;
307 struct bio bio;
308};
309
310static struct bio_set blkdev_dio_pool;
311
312static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
313{
314 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
315 struct request_queue *q = bdev_get_queue(bdev);
316
317 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
318}
319
320static void blkdev_bio_end_io(struct bio *bio)
321{
322 struct blkdev_dio *dio = bio->bi_private;
323 bool should_dirty = dio->should_dirty;
324
325 if (bio->bi_status && !dio->bio.bi_status)
326 dio->bio.bi_status = bio->bi_status;
327
328 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
329 if (!dio->is_sync) {
330 struct kiocb *iocb = dio->iocb;
331 ssize_t ret;
332
333 if (likely(!dio->bio.bi_status)) {
334 ret = dio->size;
335 iocb->ki_pos += ret;
336 } else {
337 ret = blk_status_to_errno(dio->bio.bi_status);
338 }
339
340 dio->iocb->ki_complete(iocb, ret, 0);
341 if (dio->multi_bio)
342 bio_put(&dio->bio);
343 } else {
344 struct task_struct *waiter = dio->waiter;
345
346 WRITE_ONCE(dio->waiter, NULL);
347 blk_wake_io_task(waiter);
348 }
349 }
350
351 if (should_dirty) {
352 bio_check_pages_dirty(bio);
353 } else {
354 bio_release_pages(bio, false);
355 bio_put(bio);
356 }
357}
358
359static ssize_t
360__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
361{
362 struct file *file = iocb->ki_filp;
363 struct inode *inode = bdev_file_inode(file);
364 struct block_device *bdev = I_BDEV(inode);
365 struct blk_plug plug;
366 struct blkdev_dio *dio;
367 struct bio *bio;
368 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
369 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
370 loff_t pos = iocb->ki_pos;
371 blk_qc_t qc = BLK_QC_T_NONE;
372 int ret = 0;
373
374 if ((pos | iov_iter_alignment(iter)) &
375 (bdev_logical_block_size(bdev) - 1))
376 return -EINVAL;
377
378 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
379
380 dio = container_of(bio, struct blkdev_dio, bio);
381 dio->is_sync = is_sync = is_sync_kiocb(iocb);
382 if (dio->is_sync) {
383 dio->waiter = current;
384 bio_get(bio);
385 } else {
386 dio->iocb = iocb;
387 }
388
389 dio->size = 0;
390 dio->multi_bio = false;
391 dio->should_dirty = is_read && iter_is_iovec(iter);
392
393 /*
394 * Don't plug for HIPRI/polled IO, as those should go straight
395 * to issue
396 */
397 if (!is_poll)
398 blk_start_plug(&plug);
399
400 for (;;) {
401 bio_set_dev(bio, bdev);
402 bio->bi_iter.bi_sector = pos >> 9;
403 bio->bi_write_hint = iocb->ki_hint;
404 bio->bi_private = dio;
405 bio->bi_end_io = blkdev_bio_end_io;
406 bio->bi_ioprio = iocb->ki_ioprio;
407
408 ret = bio_iov_iter_get_pages(bio, iter);
409 if (unlikely(ret)) {
410 bio->bi_status = BLK_STS_IOERR;
411 bio_endio(bio);
412 break;
413 }
414
415 if (is_read) {
416 bio->bi_opf = REQ_OP_READ;
417 if (dio->should_dirty)
418 bio_set_pages_dirty(bio);
419 } else {
420 bio->bi_opf = dio_bio_write_op(iocb);
421 task_io_account_write(bio->bi_iter.bi_size);
422 }
423
424 dio->size += bio->bi_iter.bi_size;
425 pos += bio->bi_iter.bi_size;
426
427 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
428 if (!nr_pages) {
429 bool polled = false;
430
431 if (iocb->ki_flags & IOCB_HIPRI) {
432 bio_set_polled(bio, iocb);
433 polled = true;
434 }
435
436 qc = submit_bio(bio);
437
438 if (polled)
439 WRITE_ONCE(iocb->ki_cookie, qc);
440 break;
441 }
442
443 if (!dio->multi_bio) {
444 /*
445 * AIO needs an extra reference to ensure the dio
446 * structure which is embedded into the first bio
447 * stays around.
448 */
449 if (!is_sync)
450 bio_get(bio);
451 dio->multi_bio = true;
452 atomic_set(&dio->ref, 2);
453 } else {
454 atomic_inc(&dio->ref);
455 }
456
457 submit_bio(bio);
458 bio = bio_alloc(GFP_KERNEL, nr_pages);
459 }
460
461 if (!is_poll)
462 blk_finish_plug(&plug);
463
464 if (!is_sync)
465 return -EIOCBQUEUED;
466
467 for (;;) {
468 set_current_state(TASK_UNINTERRUPTIBLE);
469 if (!READ_ONCE(dio->waiter))
470 break;
471
472 if (!(iocb->ki_flags & IOCB_HIPRI) ||
473 !blk_poll(bdev_get_queue(bdev), qc, true))
474 blk_io_schedule();
475 }
476 __set_current_state(TASK_RUNNING);
477
478 if (!ret)
479 ret = blk_status_to_errno(dio->bio.bi_status);
480 if (likely(!ret))
481 ret = dio->size;
482
483 bio_put(&dio->bio);
484 return ret;
485}
486
487static ssize_t
488blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
489{
490 int nr_pages;
491
492 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
493 if (!nr_pages)
494 return 0;
495 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
496 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
497
498 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
499}
500
501static __init int blkdev_init(void)
502{
503 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
504}
505module_init(blkdev_init);
506
507int __sync_blockdev(struct block_device *bdev, int wait)
508{
509 if (!bdev)
510 return 0;
511 if (!wait)
512 return filemap_flush(bdev->bd_inode->i_mapping);
513 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
514}
515
516/*
517 * Write out and wait upon all the dirty data associated with a block
518 * device via its mapping. Does not take the superblock lock.
519 */
520int sync_blockdev(struct block_device *bdev)
521{
522 return __sync_blockdev(bdev, 1);
523}
524EXPORT_SYMBOL(sync_blockdev);
525
526/*
527 * Write out and wait upon all dirty data associated with this
528 * device. Filesystem data as well as the underlying block
529 * device. Takes the superblock lock.
530 */
531int fsync_bdev(struct block_device *bdev)
532{
533 struct super_block *sb = get_super(bdev);
534 if (sb) {
535 int res = sync_filesystem(sb);
536 drop_super(sb);
537 return res;
538 }
539 return sync_blockdev(bdev);
540}
541EXPORT_SYMBOL(fsync_bdev);
542
543/**
544 * freeze_bdev -- lock a filesystem and force it into a consistent state
545 * @bdev: blockdevice to lock
546 *
547 * If a superblock is found on this device, we take the s_umount semaphore
548 * on it to make sure nobody unmounts until the snapshot creation is done.
549 * The reference counter (bd_fsfreeze_count) guarantees that only the last
550 * unfreeze process can unfreeze the frozen filesystem actually when multiple
551 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
552 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
553 * actually.
554 */
555int freeze_bdev(struct block_device *bdev)
556{
557 struct super_block *sb;
558 int error = 0;
559
560 mutex_lock(&bdev->bd_fsfreeze_mutex);
561 if (++bdev->bd_fsfreeze_count > 1)
562 goto done;
563
564 sb = get_active_super(bdev);
565 if (!sb)
566 goto sync;
567 if (sb->s_op->freeze_super)
568 error = sb->s_op->freeze_super(sb);
569 else
570 error = freeze_super(sb);
571 deactivate_super(sb);
572
573 if (error) {
574 bdev->bd_fsfreeze_count--;
575 goto done;
576 }
577 bdev->bd_fsfreeze_sb = sb;
578
579sync:
580 sync_blockdev(bdev);
581done:
582 mutex_unlock(&bdev->bd_fsfreeze_mutex);
583 return error;
584}
585EXPORT_SYMBOL(freeze_bdev);
586
587/**
588 * thaw_bdev -- unlock filesystem
589 * @bdev: blockdevice to unlock
590 *
591 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
592 */
593int thaw_bdev(struct block_device *bdev)
594{
595 struct super_block *sb;
596 int error = -EINVAL;
597
598 mutex_lock(&bdev->bd_fsfreeze_mutex);
599 if (!bdev->bd_fsfreeze_count)
600 goto out;
601
602 error = 0;
603 if (--bdev->bd_fsfreeze_count > 0)
604 goto out;
605
606 sb = bdev->bd_fsfreeze_sb;
607 if (!sb)
608 goto out;
609
610 if (sb->s_op->thaw_super)
611 error = sb->s_op->thaw_super(sb);
612 else
613 error = thaw_super(sb);
614 if (error)
615 bdev->bd_fsfreeze_count++;
616 else
617 bdev->bd_fsfreeze_sb = NULL;
618out:
619 mutex_unlock(&bdev->bd_fsfreeze_mutex);
620 return error;
621}
622EXPORT_SYMBOL(thaw_bdev);
623
624static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
625{
626 return block_write_full_page(page, blkdev_get_block, wbc);
627}
628
629static int blkdev_readpage(struct file * file, struct page * page)
630{
631 return block_read_full_page(page, blkdev_get_block);
632}
633
634static void blkdev_readahead(struct readahead_control *rac)
635{
636 mpage_readahead(rac, blkdev_get_block);
637}
638
639static int blkdev_write_begin(struct file *file, struct address_space *mapping,
640 loff_t pos, unsigned len, unsigned flags,
641 struct page **pagep, void **fsdata)
642{
643 return block_write_begin(mapping, pos, len, flags, pagep,
644 blkdev_get_block);
645}
646
647static int blkdev_write_end(struct file *file, struct address_space *mapping,
648 loff_t pos, unsigned len, unsigned copied,
649 struct page *page, void *fsdata)
650{
651 int ret;
652 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
653
654 unlock_page(page);
655 put_page(page);
656
657 return ret;
658}
659
660/*
661 * private llseek:
662 * for a block special file file_inode(file)->i_size is zero
663 * so we compute the size by hand (just as in block_read/write above)
664 */
665static loff_t block_llseek(struct file *file, loff_t offset, int whence)
666{
667 struct inode *bd_inode = bdev_file_inode(file);
668 loff_t retval;
669
670 inode_lock(bd_inode);
671 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
672 inode_unlock(bd_inode);
673 return retval;
674}
675
676int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
677{
678 struct inode *bd_inode = bdev_file_inode(filp);
679 struct block_device *bdev = I_BDEV(bd_inode);
680 int error;
681
682 error = file_write_and_wait_range(filp, start, end);
683 if (error)
684 return error;
685
686 /*
687 * There is no need to serialise calls to blkdev_issue_flush with
688 * i_mutex and doing so causes performance issues with concurrent
689 * O_SYNC writers to a block device.
690 */
691 error = blkdev_issue_flush(bdev, GFP_KERNEL);
692 if (error == -EOPNOTSUPP)
693 error = 0;
694
695 return error;
696}
697EXPORT_SYMBOL(blkdev_fsync);
698
699/**
700 * bdev_read_page() - Start reading a page from a block device
701 * @bdev: The device to read the page from
702 * @sector: The offset on the device to read the page to (need not be aligned)
703 * @page: The page to read
704 *
705 * On entry, the page should be locked. It will be unlocked when the page
706 * has been read. If the block driver implements rw_page synchronously,
707 * that will be true on exit from this function, but it need not be.
708 *
709 * Errors returned by this function are usually "soft", eg out of memory, or
710 * queue full; callers should try a different route to read this page rather
711 * than propagate an error back up the stack.
712 *
713 * Return: negative errno if an error occurs, 0 if submission was successful.
714 */
715int bdev_read_page(struct block_device *bdev, sector_t sector,
716 struct page *page)
717{
718 const struct block_device_operations *ops = bdev->bd_disk->fops;
719 int result = -EOPNOTSUPP;
720
721 if (!ops->rw_page || bdev_get_integrity(bdev))
722 return result;
723
724 result = blk_queue_enter(bdev->bd_disk->queue, 0);
725 if (result)
726 return result;
727 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
728 REQ_OP_READ);
729 blk_queue_exit(bdev->bd_disk->queue);
730 return result;
731}
732
733/**
734 * bdev_write_page() - Start writing a page to a block device
735 * @bdev: The device to write the page to
736 * @sector: The offset on the device to write the page to (need not be aligned)
737 * @page: The page to write
738 * @wbc: The writeback_control for the write
739 *
740 * On entry, the page should be locked and not currently under writeback.
741 * On exit, if the write started successfully, the page will be unlocked and
742 * under writeback. If the write failed already (eg the driver failed to
743 * queue the page to the device), the page will still be locked. If the
744 * caller is a ->writepage implementation, it will need to unlock the page.
745 *
746 * Errors returned by this function are usually "soft", eg out of memory, or
747 * queue full; callers should try a different route to write this page rather
748 * than propagate an error back up the stack.
749 *
750 * Return: negative errno if an error occurs, 0 if submission was successful.
751 */
752int bdev_write_page(struct block_device *bdev, sector_t sector,
753 struct page *page, struct writeback_control *wbc)
754{
755 int result;
756 const struct block_device_operations *ops = bdev->bd_disk->fops;
757
758 if (!ops->rw_page || bdev_get_integrity(bdev))
759 return -EOPNOTSUPP;
760 result = blk_queue_enter(bdev->bd_disk->queue, 0);
761 if (result)
762 return result;
763
764 set_page_writeback(page);
765 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
766 REQ_OP_WRITE);
767 if (result) {
768 end_page_writeback(page);
769 } else {
770 clean_page_buffers(page);
771 unlock_page(page);
772 }
773 blk_queue_exit(bdev->bd_disk->queue);
774 return result;
775}
776
777/*
778 * pseudo-fs
779 */
780
781static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
782static struct kmem_cache * bdev_cachep __read_mostly;
783
784static struct inode *bdev_alloc_inode(struct super_block *sb)
785{
786 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
787
788 if (!ei)
789 return NULL;
790 memset(&ei->bdev, 0, sizeof(ei->bdev));
791 ei->bdev.bd_bdi = &noop_backing_dev_info;
792 return &ei->vfs_inode;
793}
794
795static void bdev_free_inode(struct inode *inode)
796{
797 struct block_device *bdev = I_BDEV(inode);
798
799 free_percpu(bdev->bd_stats);
800 kfree(bdev->bd_meta_info);
801
802 kmem_cache_free(bdev_cachep, BDEV_I(inode));
803}
804
805static void init_once(void *data)
806{
807 struct bdev_inode *ei = data;
808
809 inode_init_once(&ei->vfs_inode);
810}
811
812static void bdev_evict_inode(struct inode *inode)
813{
814 struct block_device *bdev = &BDEV_I(inode)->bdev;
815 truncate_inode_pages_final(&inode->i_data);
816 invalidate_inode_buffers(inode); /* is it needed here? */
817 clear_inode(inode);
818 /* Detach inode from wb early as bdi_put() may free bdi->wb */
819 inode_detach_wb(inode);
820 if (bdev->bd_bdi != &noop_backing_dev_info) {
821 bdi_put(bdev->bd_bdi);
822 bdev->bd_bdi = &noop_backing_dev_info;
823 }
824}
825
826static const struct super_operations bdev_sops = {
827 .statfs = simple_statfs,
828 .alloc_inode = bdev_alloc_inode,
829 .free_inode = bdev_free_inode,
830 .drop_inode = generic_delete_inode,
831 .evict_inode = bdev_evict_inode,
832};
833
834static int bd_init_fs_context(struct fs_context *fc)
835{
836 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
837 if (!ctx)
838 return -ENOMEM;
839 fc->s_iflags |= SB_I_CGROUPWB;
840 ctx->ops = &bdev_sops;
841 return 0;
842}
843
844static struct file_system_type bd_type = {
845 .name = "bdev",
846 .init_fs_context = bd_init_fs_context,
847 .kill_sb = kill_anon_super,
848};
849
850struct super_block *blockdev_superblock __read_mostly;
851EXPORT_SYMBOL_GPL(blockdev_superblock);
852
853void __init bdev_cache_init(void)
854{
855 int err;
856 static struct vfsmount *bd_mnt;
857
858 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
859 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
860 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
861 init_once);
862 err = register_filesystem(&bd_type);
863 if (err)
864 panic("Cannot register bdev pseudo-fs");
865 bd_mnt = kern_mount(&bd_type);
866 if (IS_ERR(bd_mnt))
867 panic("Cannot create bdev pseudo-fs");
868 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
869}
870
871struct block_device *bdev_alloc(struct gendisk *disk, u8 partno)
872{
873 struct block_device *bdev;
874 struct inode *inode;
875
876 inode = new_inode(blockdev_superblock);
877 if (!inode)
878 return NULL;
879 inode->i_mode = S_IFBLK;
880 inode->i_rdev = 0;
881 inode->i_data.a_ops = &def_blk_aops;
882 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
883
884 bdev = I_BDEV(inode);
885 mutex_init(&bdev->bd_mutex);
886 mutex_init(&bdev->bd_fsfreeze_mutex);
887 spin_lock_init(&bdev->bd_size_lock);
888 bdev->bd_disk = disk;
889 bdev->bd_partno = partno;
890 bdev->bd_inode = inode;
891#ifdef CONFIG_SYSFS
892 INIT_LIST_HEAD(&bdev->bd_holder_disks);
893#endif
894 bdev->bd_stats = alloc_percpu(struct disk_stats);
895 if (!bdev->bd_stats) {
896 iput(inode);
897 return NULL;
898 }
899 return bdev;
900}
901
902void bdev_add(struct block_device *bdev, dev_t dev)
903{
904 bdev->bd_dev = dev;
905 bdev->bd_inode->i_rdev = dev;
906 bdev->bd_inode->i_ino = dev;
907 insert_inode_hash(bdev->bd_inode);
908}
909
910static struct block_device *bdget(dev_t dev)
911{
912 struct inode *inode;
913
914 inode = ilookup(blockdev_superblock, dev);
915 if (!inode)
916 return NULL;
917 return &BDEV_I(inode)->bdev;
918}
919
920/**
921 * bdgrab -- Grab a reference to an already referenced block device
922 * @bdev: Block device to grab a reference to.
923 *
924 * Returns the block_device with an additional reference when successful,
925 * or NULL if the inode is already beeing freed.
926 */
927struct block_device *bdgrab(struct block_device *bdev)
928{
929 if (!igrab(bdev->bd_inode))
930 return NULL;
931 return bdev;
932}
933EXPORT_SYMBOL(bdgrab);
934
935long nr_blockdev_pages(void)
936{
937 struct inode *inode;
938 long ret = 0;
939
940 spin_lock(&blockdev_superblock->s_inode_list_lock);
941 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list)
942 ret += inode->i_mapping->nrpages;
943 spin_unlock(&blockdev_superblock->s_inode_list_lock);
944
945 return ret;
946}
947
948void bdput(struct block_device *bdev)
949{
950 iput(bdev->bd_inode);
951}
952EXPORT_SYMBOL(bdput);
953
954/**
955 * bd_may_claim - test whether a block device can be claimed
956 * @bdev: block device of interest
957 * @whole: whole block device containing @bdev, may equal @bdev
958 * @holder: holder trying to claim @bdev
959 *
960 * Test whether @bdev can be claimed by @holder.
961 *
962 * CONTEXT:
963 * spin_lock(&bdev_lock).
964 *
965 * RETURNS:
966 * %true if @bdev can be claimed, %false otherwise.
967 */
968static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
969 void *holder)
970{
971 if (bdev->bd_holder == holder)
972 return true; /* already a holder */
973 else if (bdev->bd_holder != NULL)
974 return false; /* held by someone else */
975 else if (whole == bdev)
976 return true; /* is a whole device which isn't held */
977
978 else if (whole->bd_holder == bd_may_claim)
979 return true; /* is a partition of a device that is being partitioned */
980 else if (whole->bd_holder != NULL)
981 return false; /* is a partition of a held device */
982 else
983 return true; /* is a partition of an un-held device */
984}
985
986/**
987 * bd_prepare_to_claim - claim a block device
988 * @bdev: block device of interest
989 * @holder: holder trying to claim @bdev
990 *
991 * Claim @bdev. This function fails if @bdev is already claimed by another
992 * holder and waits if another claiming is in progress. return, the caller
993 * has ownership of bd_claiming and bd_holder[s].
994 *
995 * RETURNS:
996 * 0 if @bdev can be claimed, -EBUSY otherwise.
997 */
998int bd_prepare_to_claim(struct block_device *bdev, void *holder)
999{
1000 struct block_device *whole = bdev_whole(bdev);
1001
1002 if (WARN_ON_ONCE(!holder))
1003 return -EINVAL;
1004retry:
1005 spin_lock(&bdev_lock);
1006 /* if someone else claimed, fail */
1007 if (!bd_may_claim(bdev, whole, holder)) {
1008 spin_unlock(&bdev_lock);
1009 return -EBUSY;
1010 }
1011
1012 /* if claiming is already in progress, wait for it to finish */
1013 if (whole->bd_claiming) {
1014 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1015 DEFINE_WAIT(wait);
1016
1017 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1018 spin_unlock(&bdev_lock);
1019 schedule();
1020 finish_wait(wq, &wait);
1021 goto retry;
1022 }
1023
1024 /* yay, all mine */
1025 whole->bd_claiming = holder;
1026 spin_unlock(&bdev_lock);
1027 return 0;
1028}
1029EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */
1030
1031static void bd_clear_claiming(struct block_device *whole, void *holder)
1032{
1033 lockdep_assert_held(&bdev_lock);
1034 /* tell others that we're done */
1035 BUG_ON(whole->bd_claiming != holder);
1036 whole->bd_claiming = NULL;
1037 wake_up_bit(&whole->bd_claiming, 0);
1038}
1039
1040/**
1041 * bd_finish_claiming - finish claiming of a block device
1042 * @bdev: block device of interest
1043 * @holder: holder that has claimed @bdev
1044 *
1045 * Finish exclusive open of a block device. Mark the device as exlusively
1046 * open by the holder and wake up all waiters for exclusive open to finish.
1047 */
1048static void bd_finish_claiming(struct block_device *bdev, void *holder)
1049{
1050 struct block_device *whole = bdev_whole(bdev);
1051
1052 spin_lock(&bdev_lock);
1053 BUG_ON(!bd_may_claim(bdev, whole, holder));
1054 /*
1055 * Note that for a whole device bd_holders will be incremented twice,
1056 * and bd_holder will be set to bd_may_claim before being set to holder
1057 */
1058 whole->bd_holders++;
1059 whole->bd_holder = bd_may_claim;
1060 bdev->bd_holders++;
1061 bdev->bd_holder = holder;
1062 bd_clear_claiming(whole, holder);
1063 spin_unlock(&bdev_lock);
1064}
1065
1066/**
1067 * bd_abort_claiming - abort claiming of a block device
1068 * @bdev: block device of interest
1069 * @holder: holder that has claimed @bdev
1070 *
1071 * Abort claiming of a block device when the exclusive open failed. This can be
1072 * also used when exclusive open is not actually desired and we just needed
1073 * to block other exclusive openers for a while.
1074 */
1075void bd_abort_claiming(struct block_device *bdev, void *holder)
1076{
1077 spin_lock(&bdev_lock);
1078 bd_clear_claiming(bdev_whole(bdev), holder);
1079 spin_unlock(&bdev_lock);
1080}
1081EXPORT_SYMBOL(bd_abort_claiming);
1082
1083#ifdef CONFIG_SYSFS
1084struct bd_holder_disk {
1085 struct list_head list;
1086 struct gendisk *disk;
1087 int refcnt;
1088};
1089
1090static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1091 struct gendisk *disk)
1092{
1093 struct bd_holder_disk *holder;
1094
1095 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1096 if (holder->disk == disk)
1097 return holder;
1098 return NULL;
1099}
1100
1101static int add_symlink(struct kobject *from, struct kobject *to)
1102{
1103 return sysfs_create_link(from, to, kobject_name(to));
1104}
1105
1106static void del_symlink(struct kobject *from, struct kobject *to)
1107{
1108 sysfs_remove_link(from, kobject_name(to));
1109}
1110
1111/**
1112 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1113 * @bdev: the claimed slave bdev
1114 * @disk: the holding disk
1115 *
1116 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1117 *
1118 * This functions creates the following sysfs symlinks.
1119 *
1120 * - from "slaves" directory of the holder @disk to the claimed @bdev
1121 * - from "holders" directory of the @bdev to the holder @disk
1122 *
1123 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1124 * passed to bd_link_disk_holder(), then:
1125 *
1126 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1127 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1128 *
1129 * The caller must have claimed @bdev before calling this function and
1130 * ensure that both @bdev and @disk are valid during the creation and
1131 * lifetime of these symlinks.
1132 *
1133 * CONTEXT:
1134 * Might sleep.
1135 *
1136 * RETURNS:
1137 * 0 on success, -errno on failure.
1138 */
1139int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1140{
1141 struct bd_holder_disk *holder;
1142 int ret = 0;
1143
1144 mutex_lock(&bdev->bd_mutex);
1145
1146 WARN_ON_ONCE(!bdev->bd_holder);
1147
1148 /* FIXME: remove the following once add_disk() handles errors */
1149 if (WARN_ON(!disk->slave_dir || !bdev->bd_holder_dir))
1150 goto out_unlock;
1151
1152 holder = bd_find_holder_disk(bdev, disk);
1153 if (holder) {
1154 holder->refcnt++;
1155 goto out_unlock;
1156 }
1157
1158 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1159 if (!holder) {
1160 ret = -ENOMEM;
1161 goto out_unlock;
1162 }
1163
1164 INIT_LIST_HEAD(&holder->list);
1165 holder->disk = disk;
1166 holder->refcnt = 1;
1167
1168 ret = add_symlink(disk->slave_dir, bdev_kobj(bdev));
1169 if (ret)
1170 goto out_free;
1171
1172 ret = add_symlink(bdev->bd_holder_dir, &disk_to_dev(disk)->kobj);
1173 if (ret)
1174 goto out_del;
1175 /*
1176 * bdev could be deleted beneath us which would implicitly destroy
1177 * the holder directory. Hold on to it.
1178 */
1179 kobject_get(bdev->bd_holder_dir);
1180
1181 list_add(&holder->list, &bdev->bd_holder_disks);
1182 goto out_unlock;
1183
1184out_del:
1185 del_symlink(disk->slave_dir, bdev_kobj(bdev));
1186out_free:
1187 kfree(holder);
1188out_unlock:
1189 mutex_unlock(&bdev->bd_mutex);
1190 return ret;
1191}
1192EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1193
1194/**
1195 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1196 * @bdev: the calimed slave bdev
1197 * @disk: the holding disk
1198 *
1199 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1200 *
1201 * CONTEXT:
1202 * Might sleep.
1203 */
1204void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1205{
1206 struct bd_holder_disk *holder;
1207
1208 mutex_lock(&bdev->bd_mutex);
1209
1210 holder = bd_find_holder_disk(bdev, disk);
1211
1212 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1213 del_symlink(disk->slave_dir, bdev_kobj(bdev));
1214 del_symlink(bdev->bd_holder_dir, &disk_to_dev(disk)->kobj);
1215 kobject_put(bdev->bd_holder_dir);
1216 list_del_init(&holder->list);
1217 kfree(holder);
1218 }
1219
1220 mutex_unlock(&bdev->bd_mutex);
1221}
1222EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1223#endif
1224
1225static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1226
1227int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1228{
1229 struct gendisk *disk = bdev->bd_disk;
1230 int ret;
1231
1232 lockdep_assert_held(&bdev->bd_mutex);
1233
1234 clear_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1235
1236rescan:
1237 ret = blk_drop_partitions(bdev);
1238 if (ret)
1239 return ret;
1240
1241 /*
1242 * Historically we only set the capacity to zero for devices that
1243 * support partitions (independ of actually having partitions created).
1244 * Doing that is rather inconsistent, but changing it broke legacy
1245 * udisks polling for legacy ide-cdrom devices. Use the crude check
1246 * below to get the sane behavior for most device while not breaking
1247 * userspace for this particular setup.
1248 */
1249 if (invalidate) {
1250 if (disk_part_scan_enabled(disk) ||
1251 !(disk->flags & GENHD_FL_REMOVABLE))
1252 set_capacity(disk, 0);
1253 } else {
1254 if (disk->fops->revalidate_disk)
1255 disk->fops->revalidate_disk(disk);
1256 }
1257
1258 if (get_capacity(disk)) {
1259 ret = blk_add_partitions(disk, bdev);
1260 if (ret == -EAGAIN)
1261 goto rescan;
1262 } else if (invalidate) {
1263 /*
1264 * Tell userspace that the media / partition table may have
1265 * changed.
1266 */
1267 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1268 }
1269
1270 return ret;
1271}
1272/*
1273 * Only exported for for loop and dasd for historic reasons. Don't use in new
1274 * code!
1275 */
1276EXPORT_SYMBOL_GPL(bdev_disk_changed);
1277
1278/*
1279 * bd_mutex locking:
1280 *
1281 * mutex_lock(part->bd_mutex)
1282 * mutex_lock_nested(whole->bd_mutex, 1)
1283 */
1284static int __blkdev_get(struct block_device *bdev, fmode_t mode)
1285{
1286 struct gendisk *disk = bdev->bd_disk;
1287 int ret = 0;
1288
1289 if (!bdev->bd_openers) {
1290 if (!bdev_is_partition(bdev)) {
1291 ret = 0;
1292 if (disk->fops->open)
1293 ret = disk->fops->open(bdev, mode);
1294
1295 if (!ret)
1296 set_init_blocksize(bdev);
1297
1298 /*
1299 * If the device is invalidated, rescan partition
1300 * if open succeeded or failed with -ENOMEDIUM.
1301 * The latter is necessary to prevent ghost
1302 * partitions on a removed medium.
1303 */
1304 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1305 (!ret || ret == -ENOMEDIUM))
1306 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1307
1308 if (ret)
1309 return ret;
1310 } else {
1311 struct block_device *whole = bdgrab(disk->part0);
1312
1313 mutex_lock_nested(&whole->bd_mutex, 1);
1314 ret = __blkdev_get(whole, mode);
1315 if (ret) {
1316 mutex_unlock(&whole->bd_mutex);
1317 bdput(whole);
1318 return ret;
1319 }
1320 whole->bd_part_count++;
1321 mutex_unlock(&whole->bd_mutex);
1322
1323 if (!(disk->flags & GENHD_FL_UP) ||
1324 !bdev_nr_sectors(bdev)) {
1325 __blkdev_put(whole, mode, 1);
1326 bdput(whole);
1327 return -ENXIO;
1328 }
1329 set_init_blocksize(bdev);
1330 }
1331
1332 if (bdev->bd_bdi == &noop_backing_dev_info)
1333 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1334 } else {
1335 if (!bdev_is_partition(bdev)) {
1336 if (bdev->bd_disk->fops->open)
1337 ret = bdev->bd_disk->fops->open(bdev, mode);
1338 /* the same as first opener case, read comment there */
1339 if (test_bit(GD_NEED_PART_SCAN, &disk->state) &&
1340 (!ret || ret == -ENOMEDIUM))
1341 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1342 if (ret)
1343 return ret;
1344 }
1345 }
1346 bdev->bd_openers++;
1347 return 0;
1348}
1349
1350struct block_device *blkdev_get_no_open(dev_t dev)
1351{
1352 struct block_device *bdev;
1353 struct gendisk *disk;
1354
1355 down_read(&bdev_lookup_sem);
1356 bdev = bdget(dev);
1357 if (!bdev) {
1358 up_read(&bdev_lookup_sem);
1359 blk_request_module(dev);
1360 down_read(&bdev_lookup_sem);
1361
1362 bdev = bdget(dev);
1363 if (!bdev)
1364 goto unlock;
1365 }
1366
1367 disk = bdev->bd_disk;
1368 if (!kobject_get_unless_zero(&disk_to_dev(disk)->kobj))
1369 goto bdput;
1370 if ((disk->flags & (GENHD_FL_UP | GENHD_FL_HIDDEN)) != GENHD_FL_UP)
1371 goto put_disk;
1372 if (!try_module_get(bdev->bd_disk->fops->owner))
1373 goto put_disk;
1374 up_read(&bdev_lookup_sem);
1375 return bdev;
1376put_disk:
1377 put_disk(disk);
1378bdput:
1379 bdput(bdev);
1380unlock:
1381 up_read(&bdev_lookup_sem);
1382 return NULL;
1383}
1384
1385void blkdev_put_no_open(struct block_device *bdev)
1386{
1387 module_put(bdev->bd_disk->fops->owner);
1388 put_disk(bdev->bd_disk);
1389 bdput(bdev);
1390}
1391
1392/**
1393 * blkdev_get_by_dev - open a block device by device number
1394 * @dev: device number of block device to open
1395 * @mode: FMODE_* mask
1396 * @holder: exclusive holder identifier
1397 *
1398 * Open the block device described by device number @dev. If @mode includes
1399 * %FMODE_EXCL, the block device is opened with exclusive access. Specifying
1400 * %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may nest for
1401 * the same @holder.
1402 *
1403 * Use this interface ONLY if you really do not have anything better - i.e. when
1404 * you are behind a truly sucky interface and all you are given is a device
1405 * number. Everything else should use blkdev_get_by_path().
1406 *
1407 * CONTEXT:
1408 * Might sleep.
1409 *
1410 * RETURNS:
1411 * Reference to the block_device on success, ERR_PTR(-errno) on failure.
1412 */
1413struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1414{
1415 bool unblock_events = true;
1416 struct block_device *bdev;
1417 struct gendisk *disk;
1418 int ret;
1419
1420 ret = devcgroup_check_permission(DEVCG_DEV_BLOCK,
1421 MAJOR(dev), MINOR(dev),
1422 ((mode & FMODE_READ) ? DEVCG_ACC_READ : 0) |
1423 ((mode & FMODE_WRITE) ? DEVCG_ACC_WRITE : 0));
1424 if (ret)
1425 return ERR_PTR(ret);
1426
1427 /*
1428 * If we lost a race with 'disk' being deleted, try again. See md.c.
1429 */
1430retry:
1431 bdev = blkdev_get_no_open(dev);
1432 if (!bdev)
1433 return ERR_PTR(-ENXIO);
1434 disk = bdev->bd_disk;
1435
1436 if (mode & FMODE_EXCL) {
1437 ret = bd_prepare_to_claim(bdev, holder);
1438 if (ret)
1439 goto put_blkdev;
1440 }
1441
1442 disk_block_events(disk);
1443
1444 mutex_lock(&bdev->bd_mutex);
1445 ret =__blkdev_get(bdev, mode);
1446 if (ret)
1447 goto abort_claiming;
1448 if (mode & FMODE_EXCL) {
1449 bd_finish_claiming(bdev, holder);
1450
1451 /*
1452 * Block event polling for write claims if requested. Any write
1453 * holder makes the write_holder state stick until all are
1454 * released. This is good enough and tracking individual
1455 * writeable reference is too fragile given the way @mode is
1456 * used in blkdev_get/put().
1457 */
1458 if ((mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1459 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1460 bdev->bd_write_holder = true;
1461 unblock_events = false;
1462 }
1463 }
1464 mutex_unlock(&bdev->bd_mutex);
1465
1466 if (unblock_events)
1467 disk_unblock_events(disk);
1468 return bdev;
1469
1470abort_claiming:
1471 if (mode & FMODE_EXCL)
1472 bd_abort_claiming(bdev, holder);
1473 mutex_unlock(&bdev->bd_mutex);
1474 disk_unblock_events(disk);
1475put_blkdev:
1476 blkdev_put_no_open(bdev);
1477 if (ret == -ERESTARTSYS)
1478 goto retry;
1479 return ERR_PTR(ret);
1480}
1481EXPORT_SYMBOL(blkdev_get_by_dev);
1482
1483/**
1484 * blkdev_get_by_path - open a block device by name
1485 * @path: path to the block device to open
1486 * @mode: FMODE_* mask
1487 * @holder: exclusive holder identifier
1488 *
1489 * Open the block device described by the device file at @path. If @mode
1490 * includes %FMODE_EXCL, the block device is opened with exclusive access.
1491 * Specifying %FMODE_EXCL with a %NULL @holder is invalid. Exclusive opens may
1492 * nest for the same @holder.
1493 *
1494 * CONTEXT:
1495 * Might sleep.
1496 *
1497 * RETURNS:
1498 * Reference to the block_device on success, ERR_PTR(-errno) on failure.
1499 */
1500struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1501 void *holder)
1502{
1503 struct block_device *bdev;
1504 dev_t dev;
1505 int error;
1506
1507 error = lookup_bdev(path, &dev);
1508 if (error)
1509 return ERR_PTR(error);
1510
1511 bdev = blkdev_get_by_dev(dev, mode, holder);
1512 if (!IS_ERR(bdev) && (mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1513 blkdev_put(bdev, mode);
1514 return ERR_PTR(-EACCES);
1515 }
1516
1517 return bdev;
1518}
1519EXPORT_SYMBOL(blkdev_get_by_path);
1520
1521static int blkdev_open(struct inode * inode, struct file * filp)
1522{
1523 struct block_device *bdev;
1524
1525 /*
1526 * Preserve backwards compatibility and allow large file access
1527 * even if userspace doesn't ask for it explicitly. Some mkfs
1528 * binary needs it. We might want to drop this workaround
1529 * during an unstable branch.
1530 */
1531 filp->f_flags |= O_LARGEFILE;
1532
1533 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1534
1535 if (filp->f_flags & O_NDELAY)
1536 filp->f_mode |= FMODE_NDELAY;
1537 if (filp->f_flags & O_EXCL)
1538 filp->f_mode |= FMODE_EXCL;
1539 if ((filp->f_flags & O_ACCMODE) == 3)
1540 filp->f_mode |= FMODE_WRITE_IOCTL;
1541
1542 bdev = blkdev_get_by_dev(inode->i_rdev, filp->f_mode, filp);
1543 if (IS_ERR(bdev))
1544 return PTR_ERR(bdev);
1545 filp->f_mapping = bdev->bd_inode->i_mapping;
1546 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1547 return 0;
1548}
1549
1550static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1551{
1552 struct gendisk *disk = bdev->bd_disk;
1553 struct block_device *victim = NULL;
1554
1555 /*
1556 * Sync early if it looks like we're the last one. If someone else
1557 * opens the block device between now and the decrement of bd_openers
1558 * then we did a sync that we didn't need to, but that's not the end
1559 * of the world and we want to avoid long (could be several minute)
1560 * syncs while holding the mutex.
1561 */
1562 if (bdev->bd_openers == 1)
1563 sync_blockdev(bdev);
1564
1565 mutex_lock_nested(&bdev->bd_mutex, for_part);
1566 if (for_part)
1567 bdev->bd_part_count--;
1568
1569 if (!--bdev->bd_openers) {
1570 WARN_ON_ONCE(bdev->bd_holders);
1571 sync_blockdev(bdev);
1572 kill_bdev(bdev);
1573 bdev_write_inode(bdev);
1574 if (bdev_is_partition(bdev))
1575 victim = bdev_whole(bdev);
1576 }
1577
1578 if (!bdev_is_partition(bdev) && disk->fops->release)
1579 disk->fops->release(disk, mode);
1580 mutex_unlock(&bdev->bd_mutex);
1581 if (victim) {
1582 __blkdev_put(victim, mode, 1);
1583 bdput(victim);
1584 }
1585}
1586
1587void blkdev_put(struct block_device *bdev, fmode_t mode)
1588{
1589 struct gendisk *disk = bdev->bd_disk;
1590
1591 mutex_lock(&bdev->bd_mutex);
1592
1593 if (mode & FMODE_EXCL) {
1594 struct block_device *whole = bdev_whole(bdev);
1595 bool bdev_free;
1596
1597 /*
1598 * Release a claim on the device. The holder fields
1599 * are protected with bdev_lock. bd_mutex is to
1600 * synchronize disk_holder unlinking.
1601 */
1602 spin_lock(&bdev_lock);
1603
1604 WARN_ON_ONCE(--bdev->bd_holders < 0);
1605 WARN_ON_ONCE(--whole->bd_holders < 0);
1606
1607 if ((bdev_free = !bdev->bd_holders))
1608 bdev->bd_holder = NULL;
1609 if (!whole->bd_holders)
1610 whole->bd_holder = NULL;
1611
1612 spin_unlock(&bdev_lock);
1613
1614 /*
1615 * If this was the last claim, remove holder link and
1616 * unblock evpoll if it was a write holder.
1617 */
1618 if (bdev_free && bdev->bd_write_holder) {
1619 disk_unblock_events(disk);
1620 bdev->bd_write_holder = false;
1621 }
1622 }
1623
1624 /*
1625 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1626 * event. This is to ensure detection of media removal commanded
1627 * from userland - e.g. eject(1).
1628 */
1629 disk_flush_events(disk, DISK_EVENT_MEDIA_CHANGE);
1630 mutex_unlock(&bdev->bd_mutex);
1631
1632 __blkdev_put(bdev, mode, 0);
1633 blkdev_put_no_open(bdev);
1634}
1635EXPORT_SYMBOL(blkdev_put);
1636
1637static int blkdev_close(struct inode * inode, struct file * filp)
1638{
1639 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1640 blkdev_put(bdev, filp->f_mode);
1641 return 0;
1642}
1643
1644static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1645{
1646 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1647 fmode_t mode = file->f_mode;
1648
1649 /*
1650 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1651 * to updated it before every ioctl.
1652 */
1653 if (file->f_flags & O_NDELAY)
1654 mode |= FMODE_NDELAY;
1655 else
1656 mode &= ~FMODE_NDELAY;
1657
1658 return blkdev_ioctl(bdev, mode, cmd, arg);
1659}
1660
1661/*
1662 * Write data to the block device. Only intended for the block device itself
1663 * and the raw driver which basically is a fake block device.
1664 *
1665 * Does not take i_mutex for the write and thus is not for general purpose
1666 * use.
1667 */
1668ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1669{
1670 struct file *file = iocb->ki_filp;
1671 struct inode *bd_inode = bdev_file_inode(file);
1672 loff_t size = i_size_read(bd_inode);
1673 struct blk_plug plug;
1674 ssize_t ret;
1675
1676 if (bdev_read_only(I_BDEV(bd_inode)))
1677 return -EPERM;
1678
1679 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev))
1680 return -ETXTBSY;
1681
1682 if (!iov_iter_count(from))
1683 return 0;
1684
1685 if (iocb->ki_pos >= size)
1686 return -ENOSPC;
1687
1688 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1689 return -EOPNOTSUPP;
1690
1691 iov_iter_truncate(from, size - iocb->ki_pos);
1692
1693 blk_start_plug(&plug);
1694 ret = __generic_file_write_iter(iocb, from);
1695 if (ret > 0)
1696 ret = generic_write_sync(iocb, ret);
1697 blk_finish_plug(&plug);
1698 return ret;
1699}
1700EXPORT_SYMBOL_GPL(blkdev_write_iter);
1701
1702ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1703{
1704 struct file *file = iocb->ki_filp;
1705 struct inode *bd_inode = bdev_file_inode(file);
1706 loff_t size = i_size_read(bd_inode);
1707 loff_t pos = iocb->ki_pos;
1708
1709 if (pos >= size)
1710 return 0;
1711
1712 size -= pos;
1713 iov_iter_truncate(to, size);
1714 return generic_file_read_iter(iocb, to);
1715}
1716EXPORT_SYMBOL_GPL(blkdev_read_iter);
1717
1718/*
1719 * Try to release a page associated with block device when the system
1720 * is under memory pressure.
1721 */
1722static int blkdev_releasepage(struct page *page, gfp_t wait)
1723{
1724 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1725
1726 if (super && super->s_op->bdev_try_to_free_page)
1727 return super->s_op->bdev_try_to_free_page(super, page, wait);
1728
1729 return try_to_free_buffers(page);
1730}
1731
1732static int blkdev_writepages(struct address_space *mapping,
1733 struct writeback_control *wbc)
1734{
1735 return generic_writepages(mapping, wbc);
1736}
1737
1738static const struct address_space_operations def_blk_aops = {
1739 .readpage = blkdev_readpage,
1740 .readahead = blkdev_readahead,
1741 .writepage = blkdev_writepage,
1742 .write_begin = blkdev_write_begin,
1743 .write_end = blkdev_write_end,
1744 .writepages = blkdev_writepages,
1745 .releasepage = blkdev_releasepage,
1746 .direct_IO = blkdev_direct_IO,
1747 .migratepage = buffer_migrate_page_norefs,
1748 .is_dirty_writeback = buffer_check_dirty_writeback,
1749};
1750
1751#define BLKDEV_FALLOC_FL_SUPPORTED \
1752 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1753 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1754
1755static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1756 loff_t len)
1757{
1758 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1759 loff_t end = start + len - 1;
1760 loff_t isize;
1761 int error;
1762
1763 /* Fail if we don't recognize the flags. */
1764 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1765 return -EOPNOTSUPP;
1766
1767 /* Don't go off the end of the device. */
1768 isize = i_size_read(bdev->bd_inode);
1769 if (start >= isize)
1770 return -EINVAL;
1771 if (end >= isize) {
1772 if (mode & FALLOC_FL_KEEP_SIZE) {
1773 len = isize - start;
1774 end = start + len - 1;
1775 } else
1776 return -EINVAL;
1777 }
1778
1779 /*
1780 * Don't allow IO that isn't aligned to logical block size.
1781 */
1782 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1783 return -EINVAL;
1784
1785 /* Invalidate the page cache, including dirty pages. */
1786 error = truncate_bdev_range(bdev, file->f_mode, start, end);
1787 if (error)
1788 return error;
1789
1790 switch (mode) {
1791 case FALLOC_FL_ZERO_RANGE:
1792 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1793 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1794 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
1795 break;
1796 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1797 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1798 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
1799 break;
1800 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1801 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1802 GFP_KERNEL, 0);
1803 break;
1804 default:
1805 return -EOPNOTSUPP;
1806 }
1807 if (error)
1808 return error;
1809
1810 /*
1811 * Invalidate again; if someone wandered in and dirtied a page,
1812 * the caller will be given -EBUSY. The third argument is
1813 * inclusive, so the rounding here is safe.
1814 */
1815 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping,
1816 start >> PAGE_SHIFT,
1817 end >> PAGE_SHIFT);
1818}
1819
1820const struct file_operations def_blk_fops = {
1821 .open = blkdev_open,
1822 .release = blkdev_close,
1823 .llseek = block_llseek,
1824 .read_iter = blkdev_read_iter,
1825 .write_iter = blkdev_write_iter,
1826 .iopoll = blkdev_iopoll,
1827 .mmap = generic_file_mmap,
1828 .fsync = blkdev_fsync,
1829 .unlocked_ioctl = block_ioctl,
1830#ifdef CONFIG_COMPAT
1831 .compat_ioctl = compat_blkdev_ioctl,
1832#endif
1833 .splice_read = generic_file_splice_read,
1834 .splice_write = iter_file_splice_write,
1835 .fallocate = blkdev_fallocate,
1836};
1837
1838/**
1839 * lookup_bdev - lookup a struct block_device by name
1840 * @pathname: special file representing the block device
1841 * @dev: return value of the block device's dev_t
1842 *
1843 * Get a reference to the blockdevice at @pathname in the current
1844 * namespace if possible and return it. Return ERR_PTR(error)
1845 * otherwise.
1846 */
1847int lookup_bdev(const char *pathname, dev_t *dev)
1848{
1849 struct inode *inode;
1850 struct path path;
1851 int error;
1852
1853 if (!pathname || !*pathname)
1854 return -EINVAL;
1855
1856 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1857 if (error)
1858 return error;
1859
1860 inode = d_backing_inode(path.dentry);
1861 error = -ENOTBLK;
1862 if (!S_ISBLK(inode->i_mode))
1863 goto out_path_put;
1864 error = -EACCES;
1865 if (!may_open_dev(&path))
1866 goto out_path_put;
1867
1868 *dev = inode->i_rdev;
1869 error = 0;
1870out_path_put:
1871 path_put(&path);
1872 return error;
1873}
1874EXPORT_SYMBOL(lookup_bdev);
1875
1876int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1877{
1878 struct super_block *sb = get_super(bdev);
1879 int res = 0;
1880
1881 if (sb) {
1882 /*
1883 * no need to lock the super, get_super holds the
1884 * read mutex so the filesystem cannot go away
1885 * under us (->put_super runs with the write lock
1886 * hold).
1887 */
1888 shrink_dcache_sb(sb);
1889 res = invalidate_inodes(sb, kill_dirty);
1890 drop_super(sb);
1891 }
1892 invalidate_bdev(bdev);
1893 return res;
1894}
1895EXPORT_SYMBOL(__invalidate_device);
1896
1897void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1898{
1899 struct inode *inode, *old_inode = NULL;
1900
1901 spin_lock(&blockdev_superblock->s_inode_list_lock);
1902 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1903 struct address_space *mapping = inode->i_mapping;
1904 struct block_device *bdev;
1905
1906 spin_lock(&inode->i_lock);
1907 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1908 mapping->nrpages == 0) {
1909 spin_unlock(&inode->i_lock);
1910 continue;
1911 }
1912 __iget(inode);
1913 spin_unlock(&inode->i_lock);
1914 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1915 /*
1916 * We hold a reference to 'inode' so it couldn't have been
1917 * removed from s_inodes list while we dropped the
1918 * s_inode_list_lock We cannot iput the inode now as we can
1919 * be holding the last reference and we cannot iput it under
1920 * s_inode_list_lock. So we keep the reference and iput it
1921 * later.
1922 */
1923 iput(old_inode);
1924 old_inode = inode;
1925 bdev = I_BDEV(inode);
1926
1927 mutex_lock(&bdev->bd_mutex);
1928 if (bdev->bd_openers)
1929 func(bdev, arg);
1930 mutex_unlock(&bdev->bd_mutex);
1931
1932 spin_lock(&blockdev_superblock->s_inode_list_lock);
1933 }
1934 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1935 iput(old_inode);
1936}