at v5.11 36 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 */ 6 7#include <linux/module.h> 8#include <linux/kernel.h> 9#include <linux/slab.h> 10#include <linux/netdevice.h> 11#include <linux/if_arp.h> 12#include <linux/workqueue.h> 13#include <linux/can.h> 14#include <linux/can/can-ml.h> 15#include <linux/can/dev.h> 16#include <linux/can/skb.h> 17#include <linux/can/netlink.h> 18#include <linux/can/led.h> 19#include <linux/of.h> 20#include <net/rtnetlink.h> 21 22#define MOD_DESC "CAN device driver interface" 23 24MODULE_DESCRIPTION(MOD_DESC); 25MODULE_LICENSE("GPL v2"); 26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 27 28/* CAN DLC to real data length conversion helpers */ 29 30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 31 8, 12, 16, 20, 24, 32, 48, 64}; 32 33/* get data length from raw data length code (DLC) */ 34u8 can_fd_dlc2len(u8 dlc) 35{ 36 return dlc2len[dlc & 0x0F]; 37} 38EXPORT_SYMBOL_GPL(can_fd_dlc2len); 39 40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 41 9, 9, 9, 9, /* 9 - 12 */ 42 10, 10, 10, 10, /* 13 - 16 */ 43 11, 11, 11, 11, /* 17 - 20 */ 44 12, 12, 12, 12, /* 21 - 24 */ 45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 50 51/* map the sanitized data length to an appropriate data length code */ 52u8 can_fd_len2dlc(u8 len) 53{ 54 if (unlikely(len > 64)) 55 return 0xF; 56 57 return len2dlc[len]; 58} 59EXPORT_SYMBOL_GPL(can_fd_len2dlc); 60 61#ifdef CONFIG_CAN_CALC_BITTIMING 62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 63 64/* Bit-timing calculation derived from: 65 * 66 * Code based on LinCAN sources and H8S2638 project 67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 68 * Copyright 2005 Stanislav Marek 69 * email: pisa@cmp.felk.cvut.cz 70 * 71 * Calculates proper bit-timing parameters for a specified bit-rate 72 * and sample-point, which can then be used to set the bit-timing 73 * registers of the CAN controller. You can find more information 74 * in the header file linux/can/netlink.h. 75 */ 76static int 77can_update_sample_point(const struct can_bittiming_const *btc, 78 unsigned int sample_point_nominal, unsigned int tseg, 79 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 80 unsigned int *sample_point_error_ptr) 81{ 82 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 83 unsigned int sample_point, best_sample_point = 0; 84 unsigned int tseg1, tseg2; 85 int i; 86 87 for (i = 0; i <= 1; i++) { 88 tseg2 = tseg + CAN_SYNC_SEG - 89 (sample_point_nominal * (tseg + CAN_SYNC_SEG)) / 90 1000 - i; 91 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 92 tseg1 = tseg - tseg2; 93 if (tseg1 > btc->tseg1_max) { 94 tseg1 = btc->tseg1_max; 95 tseg2 = tseg - tseg1; 96 } 97 98 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) / 99 (tseg + CAN_SYNC_SEG); 100 sample_point_error = abs(sample_point_nominal - sample_point); 101 102 if (sample_point <= sample_point_nominal && 103 sample_point_error < best_sample_point_error) { 104 best_sample_point = sample_point; 105 best_sample_point_error = sample_point_error; 106 *tseg1_ptr = tseg1; 107 *tseg2_ptr = tseg2; 108 } 109 } 110 111 if (sample_point_error_ptr) 112 *sample_point_error_ptr = best_sample_point_error; 113 114 return best_sample_point; 115} 116 117static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 118 const struct can_bittiming_const *btc) 119{ 120 struct can_priv *priv = netdev_priv(dev); 121 unsigned int bitrate; /* current bitrate */ 122 unsigned int bitrate_error; /* difference between current and nominal value */ 123 unsigned int best_bitrate_error = UINT_MAX; 124 unsigned int sample_point_error; /* difference between current and nominal value */ 125 unsigned int best_sample_point_error = UINT_MAX; 126 unsigned int sample_point_nominal; /* nominal sample point */ 127 unsigned int best_tseg = 0; /* current best value for tseg */ 128 unsigned int best_brp = 0; /* current best value for brp */ 129 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 130 u64 v64; 131 132 /* Use CiA recommended sample points */ 133 if (bt->sample_point) { 134 sample_point_nominal = bt->sample_point; 135 } else { 136 if (bt->bitrate > 800000) 137 sample_point_nominal = 750; 138 else if (bt->bitrate > 500000) 139 sample_point_nominal = 800; 140 else 141 sample_point_nominal = 875; 142 } 143 144 /* tseg even = round down, odd = round up */ 145 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 146 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 147 tsegall = CAN_SYNC_SEG + tseg / 2; 148 149 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 150 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 151 152 /* choose brp step which is possible in system */ 153 brp = (brp / btc->brp_inc) * btc->brp_inc; 154 if (brp < btc->brp_min || brp > btc->brp_max) 155 continue; 156 157 bitrate = priv->clock.freq / (brp * tsegall); 158 bitrate_error = abs(bt->bitrate - bitrate); 159 160 /* tseg brp biterror */ 161 if (bitrate_error > best_bitrate_error) 162 continue; 163 164 /* reset sample point error if we have a better bitrate */ 165 if (bitrate_error < best_bitrate_error) 166 best_sample_point_error = UINT_MAX; 167 168 can_update_sample_point(btc, sample_point_nominal, tseg / 2, 169 &tseg1, &tseg2, &sample_point_error); 170 if (sample_point_error > best_sample_point_error) 171 continue; 172 173 best_sample_point_error = sample_point_error; 174 best_bitrate_error = bitrate_error; 175 best_tseg = tseg / 2; 176 best_brp = brp; 177 178 if (bitrate_error == 0 && sample_point_error == 0) 179 break; 180 } 181 182 if (best_bitrate_error) { 183 /* Error in one-tenth of a percent */ 184 v64 = (u64)best_bitrate_error * 1000; 185 do_div(v64, bt->bitrate); 186 bitrate_error = (u32)v64; 187 if (bitrate_error > CAN_CALC_MAX_ERROR) { 188 netdev_err(dev, 189 "bitrate error %d.%d%% too high\n", 190 bitrate_error / 10, bitrate_error % 10); 191 return -EDOM; 192 } 193 netdev_warn(dev, "bitrate error %d.%d%%\n", 194 bitrate_error / 10, bitrate_error % 10); 195 } 196 197 /* real sample point */ 198 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, 199 best_tseg, &tseg1, &tseg2, 200 NULL); 201 202 v64 = (u64)best_brp * 1000 * 1000 * 1000; 203 do_div(v64, priv->clock.freq); 204 bt->tq = (u32)v64; 205 bt->prop_seg = tseg1 / 2; 206 bt->phase_seg1 = tseg1 - bt->prop_seg; 207 bt->phase_seg2 = tseg2; 208 209 /* check for sjw user settings */ 210 if (!bt->sjw || !btc->sjw_max) { 211 bt->sjw = 1; 212 } else { 213 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 214 if (bt->sjw > btc->sjw_max) 215 bt->sjw = btc->sjw_max; 216 /* bt->sjw must not be higher than tseg2 */ 217 if (tseg2 < bt->sjw) 218 bt->sjw = tseg2; 219 } 220 221 bt->brp = best_brp; 222 223 /* real bitrate */ 224 bt->bitrate = priv->clock.freq / 225 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2)); 226 227 return 0; 228} 229#else /* !CONFIG_CAN_CALC_BITTIMING */ 230static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 231 const struct can_bittiming_const *btc) 232{ 233 netdev_err(dev, "bit-timing calculation not available\n"); 234 return -EINVAL; 235} 236#endif /* CONFIG_CAN_CALC_BITTIMING */ 237 238/* Checks the validity of the specified bit-timing parameters prop_seg, 239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 240 * prescaler value brp. You can find more information in the header 241 * file linux/can/netlink.h. 242 */ 243static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 244 const struct can_bittiming_const *btc) 245{ 246 struct can_priv *priv = netdev_priv(dev); 247 int tseg1, alltseg; 248 u64 brp64; 249 250 tseg1 = bt->prop_seg + bt->phase_seg1; 251 if (!bt->sjw) 252 bt->sjw = 1; 253 if (bt->sjw > btc->sjw_max || 254 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 255 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 256 return -ERANGE; 257 258 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 259 if (btc->brp_inc > 1) 260 do_div(brp64, btc->brp_inc); 261 brp64 += 500000000UL - 1; 262 do_div(brp64, 1000000000UL); /* the practicable BRP */ 263 if (btc->brp_inc > 1) 264 brp64 *= btc->brp_inc; 265 bt->brp = (u32)brp64; 266 267 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 268 return -EINVAL; 269 270 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 271 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 272 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 273 274 return 0; 275} 276 277/* Checks the validity of predefined bitrate settings */ 278static int 279can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 280 const u32 *bitrate_const, 281 const unsigned int bitrate_const_cnt) 282{ 283 struct can_priv *priv = netdev_priv(dev); 284 unsigned int i; 285 286 for (i = 0; i < bitrate_const_cnt; i++) { 287 if (bt->bitrate == bitrate_const[i]) 288 break; 289 } 290 291 if (i >= priv->bitrate_const_cnt) 292 return -EINVAL; 293 294 return 0; 295} 296 297static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 298 const struct can_bittiming_const *btc, 299 const u32 *bitrate_const, 300 const unsigned int bitrate_const_cnt) 301{ 302 int err; 303 304 /* Depending on the given can_bittiming parameter structure the CAN 305 * timing parameters are calculated based on the provided bitrate OR 306 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 307 * provided directly which are then checked and fixed up. 308 */ 309 if (!bt->tq && bt->bitrate && btc) 310 err = can_calc_bittiming(dev, bt, btc); 311 else if (bt->tq && !bt->bitrate && btc) 312 err = can_fixup_bittiming(dev, bt, btc); 313 else if (!bt->tq && bt->bitrate && bitrate_const) 314 err = can_validate_bitrate(dev, bt, bitrate_const, 315 bitrate_const_cnt); 316 else 317 err = -EINVAL; 318 319 return err; 320} 321 322static void can_update_state_error_stats(struct net_device *dev, 323 enum can_state new_state) 324{ 325 struct can_priv *priv = netdev_priv(dev); 326 327 if (new_state <= priv->state) 328 return; 329 330 switch (new_state) { 331 case CAN_STATE_ERROR_WARNING: 332 priv->can_stats.error_warning++; 333 break; 334 case CAN_STATE_ERROR_PASSIVE: 335 priv->can_stats.error_passive++; 336 break; 337 case CAN_STATE_BUS_OFF: 338 priv->can_stats.bus_off++; 339 break; 340 default: 341 break; 342 } 343} 344 345static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 346{ 347 switch (state) { 348 case CAN_STATE_ERROR_ACTIVE: 349 return CAN_ERR_CRTL_ACTIVE; 350 case CAN_STATE_ERROR_WARNING: 351 return CAN_ERR_CRTL_TX_WARNING; 352 case CAN_STATE_ERROR_PASSIVE: 353 return CAN_ERR_CRTL_TX_PASSIVE; 354 default: 355 return 0; 356 } 357} 358 359static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 360{ 361 switch (state) { 362 case CAN_STATE_ERROR_ACTIVE: 363 return CAN_ERR_CRTL_ACTIVE; 364 case CAN_STATE_ERROR_WARNING: 365 return CAN_ERR_CRTL_RX_WARNING; 366 case CAN_STATE_ERROR_PASSIVE: 367 return CAN_ERR_CRTL_RX_PASSIVE; 368 default: 369 return 0; 370 } 371} 372 373static const char *can_get_state_str(const enum can_state state) 374{ 375 switch (state) { 376 case CAN_STATE_ERROR_ACTIVE: 377 return "Error Active"; 378 case CAN_STATE_ERROR_WARNING: 379 return "Error Warning"; 380 case CAN_STATE_ERROR_PASSIVE: 381 return "Error Passive"; 382 case CAN_STATE_BUS_OFF: 383 return "Bus Off"; 384 case CAN_STATE_STOPPED: 385 return "Stopped"; 386 case CAN_STATE_SLEEPING: 387 return "Sleeping"; 388 default: 389 return "<unknown>"; 390 } 391 392 return "<unknown>"; 393} 394 395void can_change_state(struct net_device *dev, struct can_frame *cf, 396 enum can_state tx_state, enum can_state rx_state) 397{ 398 struct can_priv *priv = netdev_priv(dev); 399 enum can_state new_state = max(tx_state, rx_state); 400 401 if (unlikely(new_state == priv->state)) { 402 netdev_warn(dev, "%s: oops, state did not change", __func__); 403 return; 404 } 405 406 netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n", 407 can_get_state_str(priv->state), priv->state, 408 can_get_state_str(new_state), new_state); 409 410 can_update_state_error_stats(dev, new_state); 411 priv->state = new_state; 412 413 if (!cf) 414 return; 415 416 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 417 cf->can_id |= CAN_ERR_BUSOFF; 418 return; 419 } 420 421 cf->can_id |= CAN_ERR_CRTL; 422 cf->data[1] |= tx_state >= rx_state ? 423 can_tx_state_to_frame(dev, tx_state) : 0; 424 cf->data[1] |= tx_state <= rx_state ? 425 can_rx_state_to_frame(dev, rx_state) : 0; 426} 427EXPORT_SYMBOL_GPL(can_change_state); 428 429/* Local echo of CAN messages 430 * 431 * CAN network devices *should* support a local echo functionality 432 * (see Documentation/networking/can.rst). To test the handling of CAN 433 * interfaces that do not support the local echo both driver types are 434 * implemented. In the case that the driver does not support the echo 435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 436 * to perform the echo as a fallback solution. 437 */ 438static void can_flush_echo_skb(struct net_device *dev) 439{ 440 struct can_priv *priv = netdev_priv(dev); 441 struct net_device_stats *stats = &dev->stats; 442 int i; 443 444 for (i = 0; i < priv->echo_skb_max; i++) { 445 if (priv->echo_skb[i]) { 446 kfree_skb(priv->echo_skb[i]); 447 priv->echo_skb[i] = NULL; 448 stats->tx_dropped++; 449 stats->tx_aborted_errors++; 450 } 451 } 452} 453 454/* Put the skb on the stack to be looped backed locally lateron 455 * 456 * The function is typically called in the start_xmit function 457 * of the device driver. The driver must protect access to 458 * priv->echo_skb, if necessary. 459 */ 460int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 461 unsigned int idx) 462{ 463 struct can_priv *priv = netdev_priv(dev); 464 465 BUG_ON(idx >= priv->echo_skb_max); 466 467 /* check flag whether this packet has to be looped back */ 468 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 469 (skb->protocol != htons(ETH_P_CAN) && 470 skb->protocol != htons(ETH_P_CANFD))) { 471 kfree_skb(skb); 472 return 0; 473 } 474 475 if (!priv->echo_skb[idx]) { 476 skb = can_create_echo_skb(skb); 477 if (!skb) 478 return -ENOMEM; 479 480 /* make settings for echo to reduce code in irq context */ 481 skb->pkt_type = PACKET_BROADCAST; 482 skb->ip_summed = CHECKSUM_UNNECESSARY; 483 skb->dev = dev; 484 485 /* save this skb for tx interrupt echo handling */ 486 priv->echo_skb[idx] = skb; 487 } else { 488 /* locking problem with netif_stop_queue() ?? */ 489 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx); 490 kfree_skb(skb); 491 return -EBUSY; 492 } 493 494 return 0; 495} 496EXPORT_SYMBOL_GPL(can_put_echo_skb); 497 498struct sk_buff * 499__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 500{ 501 struct can_priv *priv = netdev_priv(dev); 502 503 if (idx >= priv->echo_skb_max) { 504 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 505 __func__, idx, priv->echo_skb_max); 506 return NULL; 507 } 508 509 if (priv->echo_skb[idx]) { 510 /* Using "struct canfd_frame::len" for the frame 511 * length is supported on both CAN and CANFD frames. 512 */ 513 struct sk_buff *skb = priv->echo_skb[idx]; 514 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 515 516 /* get the real payload length for netdev statistics */ 517 if (cf->can_id & CAN_RTR_FLAG) 518 *len_ptr = 0; 519 else 520 *len_ptr = cf->len; 521 522 priv->echo_skb[idx] = NULL; 523 524 return skb; 525 } 526 527 return NULL; 528} 529 530/* Get the skb from the stack and loop it back locally 531 * 532 * The function is typically called when the TX done interrupt 533 * is handled in the device driver. The driver must protect 534 * access to priv->echo_skb, if necessary. 535 */ 536unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 537{ 538 struct sk_buff *skb; 539 u8 len; 540 541 skb = __can_get_echo_skb(dev, idx, &len); 542 if (!skb) 543 return 0; 544 545 skb_get(skb); 546 if (netif_rx(skb) == NET_RX_SUCCESS) 547 dev_consume_skb_any(skb); 548 else 549 dev_kfree_skb_any(skb); 550 551 return len; 552} 553EXPORT_SYMBOL_GPL(can_get_echo_skb); 554 555/* Remove the skb from the stack and free it. 556 * 557 * The function is typically called when TX failed. 558 */ 559void can_free_echo_skb(struct net_device *dev, unsigned int idx) 560{ 561 struct can_priv *priv = netdev_priv(dev); 562 563 BUG_ON(idx >= priv->echo_skb_max); 564 565 if (priv->echo_skb[idx]) { 566 dev_kfree_skb_any(priv->echo_skb[idx]); 567 priv->echo_skb[idx] = NULL; 568 } 569} 570EXPORT_SYMBOL_GPL(can_free_echo_skb); 571 572/* CAN device restart for bus-off recovery */ 573static void can_restart(struct net_device *dev) 574{ 575 struct can_priv *priv = netdev_priv(dev); 576 struct net_device_stats *stats = &dev->stats; 577 struct sk_buff *skb; 578 struct can_frame *cf; 579 int err; 580 581 BUG_ON(netif_carrier_ok(dev)); 582 583 /* No synchronization needed because the device is bus-off and 584 * no messages can come in or go out. 585 */ 586 can_flush_echo_skb(dev); 587 588 /* send restart message upstream */ 589 skb = alloc_can_err_skb(dev, &cf); 590 if (!skb) 591 goto restart; 592 593 cf->can_id |= CAN_ERR_RESTARTED; 594 595 stats->rx_packets++; 596 stats->rx_bytes += cf->len; 597 598 netif_rx_ni(skb); 599 600restart: 601 netdev_dbg(dev, "restarted\n"); 602 priv->can_stats.restarts++; 603 604 /* Now restart the device */ 605 err = priv->do_set_mode(dev, CAN_MODE_START); 606 607 netif_carrier_on(dev); 608 if (err) 609 netdev_err(dev, "Error %d during restart", err); 610} 611 612static void can_restart_work(struct work_struct *work) 613{ 614 struct delayed_work *dwork = to_delayed_work(work); 615 struct can_priv *priv = container_of(dwork, struct can_priv, 616 restart_work); 617 618 can_restart(priv->dev); 619} 620 621int can_restart_now(struct net_device *dev) 622{ 623 struct can_priv *priv = netdev_priv(dev); 624 625 /* A manual restart is only permitted if automatic restart is 626 * disabled and the device is in the bus-off state 627 */ 628 if (priv->restart_ms) 629 return -EINVAL; 630 if (priv->state != CAN_STATE_BUS_OFF) 631 return -EBUSY; 632 633 cancel_delayed_work_sync(&priv->restart_work); 634 can_restart(dev); 635 636 return 0; 637} 638 639/* CAN bus-off 640 * 641 * This functions should be called when the device goes bus-off to 642 * tell the netif layer that no more packets can be sent or received. 643 * If enabled, a timer is started to trigger bus-off recovery. 644 */ 645void can_bus_off(struct net_device *dev) 646{ 647 struct can_priv *priv = netdev_priv(dev); 648 649 if (priv->restart_ms) 650 netdev_info(dev, "bus-off, scheduling restart in %d ms\n", 651 priv->restart_ms); 652 else 653 netdev_info(dev, "bus-off\n"); 654 655 netif_carrier_off(dev); 656 657 if (priv->restart_ms) 658 schedule_delayed_work(&priv->restart_work, 659 msecs_to_jiffies(priv->restart_ms)); 660} 661EXPORT_SYMBOL_GPL(can_bus_off); 662 663static void can_setup(struct net_device *dev) 664{ 665 dev->type = ARPHRD_CAN; 666 dev->mtu = CAN_MTU; 667 dev->hard_header_len = 0; 668 dev->addr_len = 0; 669 dev->tx_queue_len = 10; 670 671 /* New-style flags. */ 672 dev->flags = IFF_NOARP; 673 dev->features = NETIF_F_HW_CSUM; 674} 675 676struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 677{ 678 struct sk_buff *skb; 679 680 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 681 sizeof(struct can_frame)); 682 if (unlikely(!skb)) 683 return NULL; 684 685 skb->protocol = htons(ETH_P_CAN); 686 skb->pkt_type = PACKET_BROADCAST; 687 skb->ip_summed = CHECKSUM_UNNECESSARY; 688 689 skb_reset_mac_header(skb); 690 skb_reset_network_header(skb); 691 skb_reset_transport_header(skb); 692 693 can_skb_reserve(skb); 694 can_skb_prv(skb)->ifindex = dev->ifindex; 695 can_skb_prv(skb)->skbcnt = 0; 696 697 *cf = skb_put_zero(skb, sizeof(struct can_frame)); 698 699 return skb; 700} 701EXPORT_SYMBOL_GPL(alloc_can_skb); 702 703struct sk_buff *alloc_canfd_skb(struct net_device *dev, 704 struct canfd_frame **cfd) 705{ 706 struct sk_buff *skb; 707 708 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 709 sizeof(struct canfd_frame)); 710 if (unlikely(!skb)) 711 return NULL; 712 713 skb->protocol = htons(ETH_P_CANFD); 714 skb->pkt_type = PACKET_BROADCAST; 715 skb->ip_summed = CHECKSUM_UNNECESSARY; 716 717 skb_reset_mac_header(skb); 718 skb_reset_network_header(skb); 719 skb_reset_transport_header(skb); 720 721 can_skb_reserve(skb); 722 can_skb_prv(skb)->ifindex = dev->ifindex; 723 can_skb_prv(skb)->skbcnt = 0; 724 725 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); 726 727 return skb; 728} 729EXPORT_SYMBOL_GPL(alloc_canfd_skb); 730 731struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 732{ 733 struct sk_buff *skb; 734 735 skb = alloc_can_skb(dev, cf); 736 if (unlikely(!skb)) 737 return NULL; 738 739 (*cf)->can_id = CAN_ERR_FLAG; 740 (*cf)->len = CAN_ERR_DLC; 741 742 return skb; 743} 744EXPORT_SYMBOL_GPL(alloc_can_err_skb); 745 746/* Allocate and setup space for the CAN network device */ 747struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max, 748 unsigned int txqs, unsigned int rxqs) 749{ 750 struct net_device *dev; 751 struct can_priv *priv; 752 int size; 753 754 /* We put the driver's priv, the CAN mid layer priv and the 755 * echo skb into the netdevice's priv. The memory layout for 756 * the netdev_priv is like this: 757 * 758 * +-------------------------+ 759 * | driver's priv | 760 * +-------------------------+ 761 * | struct can_ml_priv | 762 * +-------------------------+ 763 * | array of struct sk_buff | 764 * +-------------------------+ 765 */ 766 767 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv); 768 769 if (echo_skb_max) 770 size = ALIGN(size, sizeof(struct sk_buff *)) + 771 echo_skb_max * sizeof(struct sk_buff *); 772 773 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup, 774 txqs, rxqs); 775 if (!dev) 776 return NULL; 777 778 priv = netdev_priv(dev); 779 priv->dev = dev; 780 781 dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN); 782 783 if (echo_skb_max) { 784 priv->echo_skb_max = echo_skb_max; 785 priv->echo_skb = (void *)priv + 786 (size - echo_skb_max * sizeof(struct sk_buff *)); 787 } 788 789 priv->state = CAN_STATE_STOPPED; 790 791 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 792 793 return dev; 794} 795EXPORT_SYMBOL_GPL(alloc_candev_mqs); 796 797/* Free space of the CAN network device */ 798void free_candev(struct net_device *dev) 799{ 800 free_netdev(dev); 801} 802EXPORT_SYMBOL_GPL(free_candev); 803 804/* changing MTU and control mode for CAN/CANFD devices */ 805int can_change_mtu(struct net_device *dev, int new_mtu) 806{ 807 struct can_priv *priv = netdev_priv(dev); 808 809 /* Do not allow changing the MTU while running */ 810 if (dev->flags & IFF_UP) 811 return -EBUSY; 812 813 /* allow change of MTU according to the CANFD ability of the device */ 814 switch (new_mtu) { 815 case CAN_MTU: 816 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 817 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 818 return -EINVAL; 819 820 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 821 break; 822 823 case CANFD_MTU: 824 /* check for potential CANFD ability */ 825 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 826 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 827 return -EINVAL; 828 829 priv->ctrlmode |= CAN_CTRLMODE_FD; 830 break; 831 832 default: 833 return -EINVAL; 834 } 835 836 dev->mtu = new_mtu; 837 return 0; 838} 839EXPORT_SYMBOL_GPL(can_change_mtu); 840 841/* Common open function when the device gets opened. 842 * 843 * This function should be called in the open function of the device 844 * driver. 845 */ 846int open_candev(struct net_device *dev) 847{ 848 struct can_priv *priv = netdev_priv(dev); 849 850 if (!priv->bittiming.bitrate) { 851 netdev_err(dev, "bit-timing not yet defined\n"); 852 return -EINVAL; 853 } 854 855 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 856 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 857 (!priv->data_bittiming.bitrate || 858 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) { 859 netdev_err(dev, "incorrect/missing data bit-timing\n"); 860 return -EINVAL; 861 } 862 863 /* Switch carrier on if device was stopped while in bus-off state */ 864 if (!netif_carrier_ok(dev)) 865 netif_carrier_on(dev); 866 867 return 0; 868} 869EXPORT_SYMBOL_GPL(open_candev); 870 871#ifdef CONFIG_OF 872/* Common function that can be used to understand the limitation of 873 * a transceiver when it provides no means to determine these limitations 874 * at runtime. 875 */ 876void of_can_transceiver(struct net_device *dev) 877{ 878 struct device_node *dn; 879 struct can_priv *priv = netdev_priv(dev); 880 struct device_node *np = dev->dev.parent->of_node; 881 int ret; 882 883 dn = of_get_child_by_name(np, "can-transceiver"); 884 if (!dn) 885 return; 886 887 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 888 of_node_put(dn); 889 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 890 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 891} 892EXPORT_SYMBOL_GPL(of_can_transceiver); 893#endif 894 895/* Common close function for cleanup before the device gets closed. 896 * 897 * This function should be called in the close function of the device 898 * driver. 899 */ 900void close_candev(struct net_device *dev) 901{ 902 struct can_priv *priv = netdev_priv(dev); 903 904 cancel_delayed_work_sync(&priv->restart_work); 905 can_flush_echo_skb(dev); 906} 907EXPORT_SYMBOL_GPL(close_candev); 908 909/* CAN netlink interface */ 910static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 911 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 912 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 913 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 914 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 915 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 916 [IFLA_CAN_BITTIMING_CONST] 917 = { .len = sizeof(struct can_bittiming_const) }, 918 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 919 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 920 [IFLA_CAN_DATA_BITTIMING] 921 = { .len = sizeof(struct can_bittiming) }, 922 [IFLA_CAN_DATA_BITTIMING_CONST] 923 = { .len = sizeof(struct can_bittiming_const) }, 924 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 }, 925}; 926 927static int can_validate(struct nlattr *tb[], struct nlattr *data[], 928 struct netlink_ext_ack *extack) 929{ 930 bool is_can_fd = false; 931 932 /* Make sure that valid CAN FD configurations always consist of 933 * - nominal/arbitration bittiming 934 * - data bittiming 935 * - control mode with CAN_CTRLMODE_FD set 936 */ 937 938 if (!data) 939 return 0; 940 941 if (data[IFLA_CAN_CTRLMODE]) { 942 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 943 944 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 945 } 946 947 if (is_can_fd) { 948 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 949 return -EOPNOTSUPP; 950 } 951 952 if (data[IFLA_CAN_DATA_BITTIMING]) { 953 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 954 return -EOPNOTSUPP; 955 } 956 957 return 0; 958} 959 960static int can_changelink(struct net_device *dev, struct nlattr *tb[], 961 struct nlattr *data[], 962 struct netlink_ext_ack *extack) 963{ 964 struct can_priv *priv = netdev_priv(dev); 965 int err; 966 967 /* We need synchronization with dev->stop() */ 968 ASSERT_RTNL(); 969 970 if (data[IFLA_CAN_BITTIMING]) { 971 struct can_bittiming bt; 972 973 /* Do not allow changing bittiming while running */ 974 if (dev->flags & IFF_UP) 975 return -EBUSY; 976 977 /* Calculate bittiming parameters based on 978 * bittiming_const if set, otherwise pass bitrate 979 * directly via do_set_bitrate(). Bail out if neither 980 * is given. 981 */ 982 if (!priv->bittiming_const && !priv->do_set_bittiming) 983 return -EOPNOTSUPP; 984 985 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 986 err = can_get_bittiming(dev, &bt, 987 priv->bittiming_const, 988 priv->bitrate_const, 989 priv->bitrate_const_cnt); 990 if (err) 991 return err; 992 993 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 994 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 995 priv->bitrate_max); 996 return -EINVAL; 997 } 998 999 memcpy(&priv->bittiming, &bt, sizeof(bt)); 1000 1001 if (priv->do_set_bittiming) { 1002 /* Finally, set the bit-timing registers */ 1003 err = priv->do_set_bittiming(dev); 1004 if (err) 1005 return err; 1006 } 1007 } 1008 1009 if (data[IFLA_CAN_CTRLMODE]) { 1010 struct can_ctrlmode *cm; 1011 u32 ctrlstatic; 1012 u32 maskedflags; 1013 1014 /* Do not allow changing controller mode while running */ 1015 if (dev->flags & IFF_UP) 1016 return -EBUSY; 1017 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 1018 ctrlstatic = priv->ctrlmode_static; 1019 maskedflags = cm->flags & cm->mask; 1020 1021 /* check whether provided bits are allowed to be passed */ 1022 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 1023 return -EOPNOTSUPP; 1024 1025 /* do not check for static fd-non-iso if 'fd' is disabled */ 1026 if (!(maskedflags & CAN_CTRLMODE_FD)) 1027 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 1028 1029 /* make sure static options are provided by configuration */ 1030 if ((maskedflags & ctrlstatic) != ctrlstatic) 1031 return -EOPNOTSUPP; 1032 1033 /* clear bits to be modified and copy the flag values */ 1034 priv->ctrlmode &= ~cm->mask; 1035 priv->ctrlmode |= maskedflags; 1036 1037 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 1038 if (priv->ctrlmode & CAN_CTRLMODE_FD) 1039 dev->mtu = CANFD_MTU; 1040 else 1041 dev->mtu = CAN_MTU; 1042 } 1043 1044 if (data[IFLA_CAN_RESTART_MS]) { 1045 /* Do not allow changing restart delay while running */ 1046 if (dev->flags & IFF_UP) 1047 return -EBUSY; 1048 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 1049 } 1050 1051 if (data[IFLA_CAN_RESTART]) { 1052 /* Do not allow a restart while not running */ 1053 if (!(dev->flags & IFF_UP)) 1054 return -EINVAL; 1055 err = can_restart_now(dev); 1056 if (err) 1057 return err; 1058 } 1059 1060 if (data[IFLA_CAN_DATA_BITTIMING]) { 1061 struct can_bittiming dbt; 1062 1063 /* Do not allow changing bittiming while running */ 1064 if (dev->flags & IFF_UP) 1065 return -EBUSY; 1066 1067 /* Calculate bittiming parameters based on 1068 * data_bittiming_const if set, otherwise pass bitrate 1069 * directly via do_set_bitrate(). Bail out if neither 1070 * is given. 1071 */ 1072 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1073 return -EOPNOTSUPP; 1074 1075 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1076 sizeof(dbt)); 1077 err = can_get_bittiming(dev, &dbt, 1078 priv->data_bittiming_const, 1079 priv->data_bitrate_const, 1080 priv->data_bitrate_const_cnt); 1081 if (err) 1082 return err; 1083 1084 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1085 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1086 priv->bitrate_max); 1087 return -EINVAL; 1088 } 1089 1090 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1091 1092 if (priv->do_set_data_bittiming) { 1093 /* Finally, set the bit-timing registers */ 1094 err = priv->do_set_data_bittiming(dev); 1095 if (err) 1096 return err; 1097 } 1098 } 1099 1100 if (data[IFLA_CAN_TERMINATION]) { 1101 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1102 const unsigned int num_term = priv->termination_const_cnt; 1103 unsigned int i; 1104 1105 if (!priv->do_set_termination) 1106 return -EOPNOTSUPP; 1107 1108 /* check whether given value is supported by the interface */ 1109 for (i = 0; i < num_term; i++) { 1110 if (termval == priv->termination_const[i]) 1111 break; 1112 } 1113 if (i >= num_term) 1114 return -EINVAL; 1115 1116 /* Finally, set the termination value */ 1117 err = priv->do_set_termination(dev, termval); 1118 if (err) 1119 return err; 1120 1121 priv->termination = termval; 1122 } 1123 1124 return 0; 1125} 1126 1127static size_t can_get_size(const struct net_device *dev) 1128{ 1129 struct can_priv *priv = netdev_priv(dev); 1130 size_t size = 0; 1131 1132 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1133 size += nla_total_size(sizeof(struct can_bittiming)); 1134 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1135 size += nla_total_size(sizeof(struct can_bittiming_const)); 1136 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1137 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1138 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1139 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1140 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1141 size += nla_total_size(sizeof(struct can_berr_counter)); 1142 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1143 size += nla_total_size(sizeof(struct can_bittiming)); 1144 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1145 size += nla_total_size(sizeof(struct can_bittiming_const)); 1146 if (priv->termination_const) { 1147 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1148 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1149 priv->termination_const_cnt); 1150 } 1151 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1152 size += nla_total_size(sizeof(*priv->bitrate_const) * 1153 priv->bitrate_const_cnt); 1154 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1155 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1156 priv->data_bitrate_const_cnt); 1157 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1158 1159 return size; 1160} 1161 1162static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1163{ 1164 struct can_priv *priv = netdev_priv(dev); 1165 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1166 struct can_berr_counter bec = { }; 1167 enum can_state state = priv->state; 1168 1169 if (priv->do_get_state) 1170 priv->do_get_state(dev, &state); 1171 1172 if ((priv->bittiming.bitrate && 1173 nla_put(skb, IFLA_CAN_BITTIMING, 1174 sizeof(priv->bittiming), &priv->bittiming)) || 1175 1176 (priv->bittiming_const && 1177 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1178 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1179 1180 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1181 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1182 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1183 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1184 1185 (priv->do_get_berr_counter && 1186 !priv->do_get_berr_counter(dev, &bec) && 1187 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1188 1189 (priv->data_bittiming.bitrate && 1190 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1191 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1192 1193 (priv->data_bittiming_const && 1194 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1195 sizeof(*priv->data_bittiming_const), 1196 priv->data_bittiming_const)) || 1197 1198 (priv->termination_const && 1199 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1200 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1201 sizeof(*priv->termination_const) * 1202 priv->termination_const_cnt, 1203 priv->termination_const))) || 1204 1205 (priv->bitrate_const && 1206 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1207 sizeof(*priv->bitrate_const) * 1208 priv->bitrate_const_cnt, 1209 priv->bitrate_const)) || 1210 1211 (priv->data_bitrate_const && 1212 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1213 sizeof(*priv->data_bitrate_const) * 1214 priv->data_bitrate_const_cnt, 1215 priv->data_bitrate_const)) || 1216 1217 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1218 sizeof(priv->bitrate_max), 1219 &priv->bitrate_max)) 1220 ) 1221 1222 return -EMSGSIZE; 1223 1224 return 0; 1225} 1226 1227static size_t can_get_xstats_size(const struct net_device *dev) 1228{ 1229 return sizeof(struct can_device_stats); 1230} 1231 1232static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1233{ 1234 struct can_priv *priv = netdev_priv(dev); 1235 1236 if (nla_put(skb, IFLA_INFO_XSTATS, 1237 sizeof(priv->can_stats), &priv->can_stats)) 1238 goto nla_put_failure; 1239 return 0; 1240 1241nla_put_failure: 1242 return -EMSGSIZE; 1243} 1244 1245static int can_newlink(struct net *src_net, struct net_device *dev, 1246 struct nlattr *tb[], struct nlattr *data[], 1247 struct netlink_ext_ack *extack) 1248{ 1249 return -EOPNOTSUPP; 1250} 1251 1252static void can_dellink(struct net_device *dev, struct list_head *head) 1253{ 1254} 1255 1256static struct rtnl_link_ops can_link_ops __read_mostly = { 1257 .kind = "can", 1258 .maxtype = IFLA_CAN_MAX, 1259 .policy = can_policy, 1260 .setup = can_setup, 1261 .validate = can_validate, 1262 .newlink = can_newlink, 1263 .changelink = can_changelink, 1264 .dellink = can_dellink, 1265 .get_size = can_get_size, 1266 .fill_info = can_fill_info, 1267 .get_xstats_size = can_get_xstats_size, 1268 .fill_xstats = can_fill_xstats, 1269}; 1270 1271/* Register the CAN network device */ 1272int register_candev(struct net_device *dev) 1273{ 1274 struct can_priv *priv = netdev_priv(dev); 1275 1276 /* Ensure termination_const, termination_const_cnt and 1277 * do_set_termination consistency. All must be either set or 1278 * unset. 1279 */ 1280 if ((!priv->termination_const != !priv->termination_const_cnt) || 1281 (!priv->termination_const != !priv->do_set_termination)) 1282 return -EINVAL; 1283 1284 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1285 return -EINVAL; 1286 1287 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1288 return -EINVAL; 1289 1290 dev->rtnl_link_ops = &can_link_ops; 1291 netif_carrier_off(dev); 1292 1293 return register_netdev(dev); 1294} 1295EXPORT_SYMBOL_GPL(register_candev); 1296 1297/* Unregister the CAN network device */ 1298void unregister_candev(struct net_device *dev) 1299{ 1300 unregister_netdev(dev); 1301} 1302EXPORT_SYMBOL_GPL(unregister_candev); 1303 1304/* Test if a network device is a candev based device 1305 * and return the can_priv* if so. 1306 */ 1307struct can_priv *safe_candev_priv(struct net_device *dev) 1308{ 1309 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops) 1310 return NULL; 1311 1312 return netdev_priv(dev); 1313} 1314EXPORT_SYMBOL_GPL(safe_candev_priv); 1315 1316static __init int can_dev_init(void) 1317{ 1318 int err; 1319 1320 can_led_notifier_init(); 1321 1322 err = rtnl_link_register(&can_link_ops); 1323 if (!err) 1324 pr_info(MOD_DESC "\n"); 1325 1326 return err; 1327} 1328module_init(can_dev_init); 1329 1330static __exit void can_dev_exit(void) 1331{ 1332 rtnl_link_unregister(&can_link_ops); 1333 1334 can_led_notifier_exit(); 1335} 1336module_exit(can_dev_exit); 1337 1338MODULE_ALIAS_RTNL_LINK("can");