Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/sysfs.h>
31
32#include "base.h"
33#include "power/power.h"
34
35#ifdef CONFIG_SYSFS_DEPRECATED
36#ifdef CONFIG_SYSFS_DEPRECATED_V2
37long sysfs_deprecated = 1;
38#else
39long sysfs_deprecated = 0;
40#endif
41static int __init sysfs_deprecated_setup(char *arg)
42{
43 return kstrtol(arg, 10, &sysfs_deprecated);
44}
45early_param("sysfs.deprecated", sysfs_deprecated_setup);
46#endif
47
48/* Device links support. */
49static LIST_HEAD(deferred_sync);
50static unsigned int defer_sync_state_count = 1;
51static DEFINE_MUTEX(fwnode_link_lock);
52static bool fw_devlink_is_permissive(void);
53
54/**
55 * fwnode_link_add - Create a link between two fwnode_handles.
56 * @con: Consumer end of the link.
57 * @sup: Supplier end of the link.
58 *
59 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
60 * represents the detail that the firmware lists @sup fwnode as supplying a
61 * resource to @con.
62 *
63 * The driver core will use the fwnode link to create a device link between the
64 * two device objects corresponding to @con and @sup when they are created. The
65 * driver core will automatically delete the fwnode link between @con and @sup
66 * after doing that.
67 *
68 * Attempts to create duplicate links between the same pair of fwnode handles
69 * are ignored and there is no reference counting.
70 */
71int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
72{
73 struct fwnode_link *link;
74 int ret = 0;
75
76 mutex_lock(&fwnode_link_lock);
77
78 list_for_each_entry(link, &sup->consumers, s_hook)
79 if (link->consumer == con)
80 goto out;
81
82 link = kzalloc(sizeof(*link), GFP_KERNEL);
83 if (!link) {
84 ret = -ENOMEM;
85 goto out;
86 }
87
88 link->supplier = sup;
89 INIT_LIST_HEAD(&link->s_hook);
90 link->consumer = con;
91 INIT_LIST_HEAD(&link->c_hook);
92
93 list_add(&link->s_hook, &sup->consumers);
94 list_add(&link->c_hook, &con->suppliers);
95out:
96 mutex_unlock(&fwnode_link_lock);
97
98 return ret;
99}
100
101/**
102 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
103 * @fwnode: fwnode whose supplier links need to be deleted
104 *
105 * Deletes all supplier links connecting directly to @fwnode.
106 */
107static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
108{
109 struct fwnode_link *link, *tmp;
110
111 mutex_lock(&fwnode_link_lock);
112 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
113 list_del(&link->s_hook);
114 list_del(&link->c_hook);
115 kfree(link);
116 }
117 mutex_unlock(&fwnode_link_lock);
118}
119
120/**
121 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
122 * @fwnode: fwnode whose consumer links need to be deleted
123 *
124 * Deletes all consumer links connecting directly to @fwnode.
125 */
126static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
127{
128 struct fwnode_link *link, *tmp;
129
130 mutex_lock(&fwnode_link_lock);
131 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
132 list_del(&link->s_hook);
133 list_del(&link->c_hook);
134 kfree(link);
135 }
136 mutex_unlock(&fwnode_link_lock);
137}
138
139/**
140 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
141 * @fwnode: fwnode whose links needs to be deleted
142 *
143 * Deletes all links connecting directly to a fwnode.
144 */
145void fwnode_links_purge(struct fwnode_handle *fwnode)
146{
147 fwnode_links_purge_suppliers(fwnode);
148 fwnode_links_purge_consumers(fwnode);
149}
150
151#ifdef CONFIG_SRCU
152static DEFINE_MUTEX(device_links_lock);
153DEFINE_STATIC_SRCU(device_links_srcu);
154
155static inline void device_links_write_lock(void)
156{
157 mutex_lock(&device_links_lock);
158}
159
160static inline void device_links_write_unlock(void)
161{
162 mutex_unlock(&device_links_lock);
163}
164
165int device_links_read_lock(void) __acquires(&device_links_srcu)
166{
167 return srcu_read_lock(&device_links_srcu);
168}
169
170void device_links_read_unlock(int idx) __releases(&device_links_srcu)
171{
172 srcu_read_unlock(&device_links_srcu, idx);
173}
174
175int device_links_read_lock_held(void)
176{
177 return srcu_read_lock_held(&device_links_srcu);
178}
179#else /* !CONFIG_SRCU */
180static DECLARE_RWSEM(device_links_lock);
181
182static inline void device_links_write_lock(void)
183{
184 down_write(&device_links_lock);
185}
186
187static inline void device_links_write_unlock(void)
188{
189 up_write(&device_links_lock);
190}
191
192int device_links_read_lock(void)
193{
194 down_read(&device_links_lock);
195 return 0;
196}
197
198void device_links_read_unlock(int not_used)
199{
200 up_read(&device_links_lock);
201}
202
203#ifdef CONFIG_DEBUG_LOCK_ALLOC
204int device_links_read_lock_held(void)
205{
206 return lockdep_is_held(&device_links_lock);
207}
208#endif
209#endif /* !CONFIG_SRCU */
210
211static bool device_is_ancestor(struct device *dev, struct device *target)
212{
213 while (target->parent) {
214 target = target->parent;
215 if (dev == target)
216 return true;
217 }
218 return false;
219}
220
221/**
222 * device_is_dependent - Check if one device depends on another one
223 * @dev: Device to check dependencies for.
224 * @target: Device to check against.
225 *
226 * Check if @target depends on @dev or any device dependent on it (its child or
227 * its consumer etc). Return 1 if that is the case or 0 otherwise.
228 */
229int device_is_dependent(struct device *dev, void *target)
230{
231 struct device_link *link;
232 int ret;
233
234 /*
235 * The "ancestors" check is needed to catch the case when the target
236 * device has not been completely initialized yet and it is still
237 * missing from the list of children of its parent device.
238 */
239 if (dev == target || device_is_ancestor(dev, target))
240 return 1;
241
242 ret = device_for_each_child(dev, target, device_is_dependent);
243 if (ret)
244 return ret;
245
246 list_for_each_entry(link, &dev->links.consumers, s_node) {
247 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
248 continue;
249
250 if (link->consumer == target)
251 return 1;
252
253 ret = device_is_dependent(link->consumer, target);
254 if (ret)
255 break;
256 }
257 return ret;
258}
259
260static void device_link_init_status(struct device_link *link,
261 struct device *consumer,
262 struct device *supplier)
263{
264 switch (supplier->links.status) {
265 case DL_DEV_PROBING:
266 switch (consumer->links.status) {
267 case DL_DEV_PROBING:
268 /*
269 * A consumer driver can create a link to a supplier
270 * that has not completed its probing yet as long as it
271 * knows that the supplier is already functional (for
272 * example, it has just acquired some resources from the
273 * supplier).
274 */
275 link->status = DL_STATE_CONSUMER_PROBE;
276 break;
277 default:
278 link->status = DL_STATE_DORMANT;
279 break;
280 }
281 break;
282 case DL_DEV_DRIVER_BOUND:
283 switch (consumer->links.status) {
284 case DL_DEV_PROBING:
285 link->status = DL_STATE_CONSUMER_PROBE;
286 break;
287 case DL_DEV_DRIVER_BOUND:
288 link->status = DL_STATE_ACTIVE;
289 break;
290 default:
291 link->status = DL_STATE_AVAILABLE;
292 break;
293 }
294 break;
295 case DL_DEV_UNBINDING:
296 link->status = DL_STATE_SUPPLIER_UNBIND;
297 break;
298 default:
299 link->status = DL_STATE_DORMANT;
300 break;
301 }
302}
303
304static int device_reorder_to_tail(struct device *dev, void *not_used)
305{
306 struct device_link *link;
307
308 /*
309 * Devices that have not been registered yet will be put to the ends
310 * of the lists during the registration, so skip them here.
311 */
312 if (device_is_registered(dev))
313 devices_kset_move_last(dev);
314
315 if (device_pm_initialized(dev))
316 device_pm_move_last(dev);
317
318 device_for_each_child(dev, NULL, device_reorder_to_tail);
319 list_for_each_entry(link, &dev->links.consumers, s_node) {
320 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
321 continue;
322 device_reorder_to_tail(link->consumer, NULL);
323 }
324
325 return 0;
326}
327
328/**
329 * device_pm_move_to_tail - Move set of devices to the end of device lists
330 * @dev: Device to move
331 *
332 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
333 *
334 * It moves the @dev along with all of its children and all of its consumers
335 * to the ends of the device_kset and dpm_list, recursively.
336 */
337void device_pm_move_to_tail(struct device *dev)
338{
339 int idx;
340
341 idx = device_links_read_lock();
342 device_pm_lock();
343 device_reorder_to_tail(dev, NULL);
344 device_pm_unlock();
345 device_links_read_unlock(idx);
346}
347
348#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
349
350static ssize_t status_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352{
353 const char *output;
354
355 switch (to_devlink(dev)->status) {
356 case DL_STATE_NONE:
357 output = "not tracked";
358 break;
359 case DL_STATE_DORMANT:
360 output = "dormant";
361 break;
362 case DL_STATE_AVAILABLE:
363 output = "available";
364 break;
365 case DL_STATE_CONSUMER_PROBE:
366 output = "consumer probing";
367 break;
368 case DL_STATE_ACTIVE:
369 output = "active";
370 break;
371 case DL_STATE_SUPPLIER_UNBIND:
372 output = "supplier unbinding";
373 break;
374 default:
375 output = "unknown";
376 break;
377 }
378
379 return sysfs_emit(buf, "%s\n", output);
380}
381static DEVICE_ATTR_RO(status);
382
383static ssize_t auto_remove_on_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct device_link *link = to_devlink(dev);
387 const char *output;
388
389 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
390 output = "supplier unbind";
391 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
392 output = "consumer unbind";
393 else
394 output = "never";
395
396 return sysfs_emit(buf, "%s\n", output);
397}
398static DEVICE_ATTR_RO(auto_remove_on);
399
400static ssize_t runtime_pm_show(struct device *dev,
401 struct device_attribute *attr, char *buf)
402{
403 struct device_link *link = to_devlink(dev);
404
405 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
406}
407static DEVICE_ATTR_RO(runtime_pm);
408
409static ssize_t sync_state_only_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
411{
412 struct device_link *link = to_devlink(dev);
413
414 return sysfs_emit(buf, "%d\n",
415 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
416}
417static DEVICE_ATTR_RO(sync_state_only);
418
419static struct attribute *devlink_attrs[] = {
420 &dev_attr_status.attr,
421 &dev_attr_auto_remove_on.attr,
422 &dev_attr_runtime_pm.attr,
423 &dev_attr_sync_state_only.attr,
424 NULL,
425};
426ATTRIBUTE_GROUPS(devlink);
427
428static void device_link_free(struct device_link *link)
429{
430 while (refcount_dec_not_one(&link->rpm_active))
431 pm_runtime_put(link->supplier);
432
433 put_device(link->consumer);
434 put_device(link->supplier);
435 kfree(link);
436}
437
438#ifdef CONFIG_SRCU
439static void __device_link_free_srcu(struct rcu_head *rhead)
440{
441 device_link_free(container_of(rhead, struct device_link, rcu_head));
442}
443
444static void devlink_dev_release(struct device *dev)
445{
446 struct device_link *link = to_devlink(dev);
447
448 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
449}
450#else
451static void devlink_dev_release(struct device *dev)
452{
453 device_link_free(to_devlink(dev));
454}
455#endif
456
457static struct class devlink_class = {
458 .name = "devlink",
459 .owner = THIS_MODULE,
460 .dev_groups = devlink_groups,
461 .dev_release = devlink_dev_release,
462};
463
464static int devlink_add_symlinks(struct device *dev,
465 struct class_interface *class_intf)
466{
467 int ret;
468 size_t len;
469 struct device_link *link = to_devlink(dev);
470 struct device *sup = link->supplier;
471 struct device *con = link->consumer;
472 char *buf;
473
474 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
475 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
476 len += strlen(":");
477 len += strlen("supplier:") + 1;
478 buf = kzalloc(len, GFP_KERNEL);
479 if (!buf)
480 return -ENOMEM;
481
482 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
483 if (ret)
484 goto out;
485
486 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
487 if (ret)
488 goto err_con;
489
490 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
491 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
492 if (ret)
493 goto err_con_dev;
494
495 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
496 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
497 if (ret)
498 goto err_sup_dev;
499
500 goto out;
501
502err_sup_dev:
503 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
504 sysfs_remove_link(&sup->kobj, buf);
505err_con_dev:
506 sysfs_remove_link(&link->link_dev.kobj, "consumer");
507err_con:
508 sysfs_remove_link(&link->link_dev.kobj, "supplier");
509out:
510 kfree(buf);
511 return ret;
512}
513
514static void devlink_remove_symlinks(struct device *dev,
515 struct class_interface *class_intf)
516{
517 struct device_link *link = to_devlink(dev);
518 size_t len;
519 struct device *sup = link->supplier;
520 struct device *con = link->consumer;
521 char *buf;
522
523 sysfs_remove_link(&link->link_dev.kobj, "consumer");
524 sysfs_remove_link(&link->link_dev.kobj, "supplier");
525
526 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
527 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
528 len += strlen(":");
529 len += strlen("supplier:") + 1;
530 buf = kzalloc(len, GFP_KERNEL);
531 if (!buf) {
532 WARN(1, "Unable to properly free device link symlinks!\n");
533 return;
534 }
535
536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 sysfs_remove_link(&con->kobj, buf);
538 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
539 sysfs_remove_link(&sup->kobj, buf);
540 kfree(buf);
541}
542
543static struct class_interface devlink_class_intf = {
544 .class = &devlink_class,
545 .add_dev = devlink_add_symlinks,
546 .remove_dev = devlink_remove_symlinks,
547};
548
549static int __init devlink_class_init(void)
550{
551 int ret;
552
553 ret = class_register(&devlink_class);
554 if (ret)
555 return ret;
556
557 ret = class_interface_register(&devlink_class_intf);
558 if (ret)
559 class_unregister(&devlink_class);
560
561 return ret;
562}
563postcore_initcall(devlink_class_init);
564
565#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
566 DL_FLAG_AUTOREMOVE_SUPPLIER | \
567 DL_FLAG_AUTOPROBE_CONSUMER | \
568 DL_FLAG_SYNC_STATE_ONLY)
569
570#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
571 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
572
573/**
574 * device_link_add - Create a link between two devices.
575 * @consumer: Consumer end of the link.
576 * @supplier: Supplier end of the link.
577 * @flags: Link flags.
578 *
579 * The caller is responsible for the proper synchronization of the link creation
580 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
581 * runtime PM framework to take the link into account. Second, if the
582 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
583 * be forced into the active meta state and reference-counted upon the creation
584 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
585 * ignored.
586 *
587 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
588 * expected to release the link returned by it directly with the help of either
589 * device_link_del() or device_link_remove().
590 *
591 * If that flag is not set, however, the caller of this function is handing the
592 * management of the link over to the driver core entirely and its return value
593 * can only be used to check whether or not the link is present. In that case,
594 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
595 * flags can be used to indicate to the driver core when the link can be safely
596 * deleted. Namely, setting one of them in @flags indicates to the driver core
597 * that the link is not going to be used (by the given caller of this function)
598 * after unbinding the consumer or supplier driver, respectively, from its
599 * device, so the link can be deleted at that point. If none of them is set,
600 * the link will be maintained until one of the devices pointed to by it (either
601 * the consumer or the supplier) is unregistered.
602 *
603 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
604 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
605 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
606 * be used to request the driver core to automatically probe for a consumer
607 * driver after successfully binding a driver to the supplier device.
608 *
609 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
610 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
611 * the same time is invalid and will cause NULL to be returned upfront.
612 * However, if a device link between the given @consumer and @supplier pair
613 * exists already when this function is called for them, the existing link will
614 * be returned regardless of its current type and status (the link's flags may
615 * be modified then). The caller of this function is then expected to treat
616 * the link as though it has just been created, so (in particular) if
617 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
618 * explicitly when not needed any more (as stated above).
619 *
620 * A side effect of the link creation is re-ordering of dpm_list and the
621 * devices_kset list by moving the consumer device and all devices depending
622 * on it to the ends of these lists (that does not happen to devices that have
623 * not been registered when this function is called).
624 *
625 * The supplier device is required to be registered when this function is called
626 * and NULL will be returned if that is not the case. The consumer device need
627 * not be registered, however.
628 */
629struct device_link *device_link_add(struct device *consumer,
630 struct device *supplier, u32 flags)
631{
632 struct device_link *link;
633
634 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
635 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
636 (flags & DL_FLAG_SYNC_STATE_ONLY &&
637 flags != DL_FLAG_SYNC_STATE_ONLY) ||
638 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
639 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
640 DL_FLAG_AUTOREMOVE_SUPPLIER)))
641 return NULL;
642
643 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
644 if (pm_runtime_get_sync(supplier) < 0) {
645 pm_runtime_put_noidle(supplier);
646 return NULL;
647 }
648 }
649
650 if (!(flags & DL_FLAG_STATELESS))
651 flags |= DL_FLAG_MANAGED;
652
653 device_links_write_lock();
654 device_pm_lock();
655
656 /*
657 * If the supplier has not been fully registered yet or there is a
658 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
659 * the supplier already in the graph, return NULL. If the link is a
660 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
661 * because it only affects sync_state() callbacks.
662 */
663 if (!device_pm_initialized(supplier)
664 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
665 device_is_dependent(consumer, supplier))) {
666 link = NULL;
667 goto out;
668 }
669
670 /*
671 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
672 * So, only create it if the consumer hasn't probed yet.
673 */
674 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
675 consumer->links.status != DL_DEV_NO_DRIVER &&
676 consumer->links.status != DL_DEV_PROBING) {
677 link = NULL;
678 goto out;
679 }
680
681 /*
682 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
683 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
684 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
685 */
686 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
687 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
688
689 list_for_each_entry(link, &supplier->links.consumers, s_node) {
690 if (link->consumer != consumer)
691 continue;
692
693 if (flags & DL_FLAG_PM_RUNTIME) {
694 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
695 pm_runtime_new_link(consumer);
696 link->flags |= DL_FLAG_PM_RUNTIME;
697 }
698 if (flags & DL_FLAG_RPM_ACTIVE)
699 refcount_inc(&link->rpm_active);
700 }
701
702 if (flags & DL_FLAG_STATELESS) {
703 kref_get(&link->kref);
704 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
705 !(link->flags & DL_FLAG_STATELESS)) {
706 link->flags |= DL_FLAG_STATELESS;
707 goto reorder;
708 } else {
709 link->flags |= DL_FLAG_STATELESS;
710 goto out;
711 }
712 }
713
714 /*
715 * If the life time of the link following from the new flags is
716 * longer than indicated by the flags of the existing link,
717 * update the existing link to stay around longer.
718 */
719 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
720 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
721 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
722 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
723 }
724 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
725 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
726 DL_FLAG_AUTOREMOVE_SUPPLIER);
727 }
728 if (!(link->flags & DL_FLAG_MANAGED)) {
729 kref_get(&link->kref);
730 link->flags |= DL_FLAG_MANAGED;
731 device_link_init_status(link, consumer, supplier);
732 }
733 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
734 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
735 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
736 goto reorder;
737 }
738
739 goto out;
740 }
741
742 link = kzalloc(sizeof(*link), GFP_KERNEL);
743 if (!link)
744 goto out;
745
746 refcount_set(&link->rpm_active, 1);
747
748 get_device(supplier);
749 link->supplier = supplier;
750 INIT_LIST_HEAD(&link->s_node);
751 get_device(consumer);
752 link->consumer = consumer;
753 INIT_LIST_HEAD(&link->c_node);
754 link->flags = flags;
755 kref_init(&link->kref);
756
757 link->link_dev.class = &devlink_class;
758 device_set_pm_not_required(&link->link_dev);
759 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
760 dev_bus_name(supplier), dev_name(supplier),
761 dev_bus_name(consumer), dev_name(consumer));
762 if (device_register(&link->link_dev)) {
763 put_device(consumer);
764 put_device(supplier);
765 kfree(link);
766 link = NULL;
767 goto out;
768 }
769
770 if (flags & DL_FLAG_PM_RUNTIME) {
771 if (flags & DL_FLAG_RPM_ACTIVE)
772 refcount_inc(&link->rpm_active);
773
774 pm_runtime_new_link(consumer);
775 }
776
777 /* Determine the initial link state. */
778 if (flags & DL_FLAG_STATELESS)
779 link->status = DL_STATE_NONE;
780 else
781 device_link_init_status(link, consumer, supplier);
782
783 /*
784 * Some callers expect the link creation during consumer driver probe to
785 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
786 */
787 if (link->status == DL_STATE_CONSUMER_PROBE &&
788 flags & DL_FLAG_PM_RUNTIME)
789 pm_runtime_resume(supplier);
790
791 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
792 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
793
794 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
795 dev_dbg(consumer,
796 "Linked as a sync state only consumer to %s\n",
797 dev_name(supplier));
798 goto out;
799 }
800
801reorder:
802 /*
803 * Move the consumer and all of the devices depending on it to the end
804 * of dpm_list and the devices_kset list.
805 *
806 * It is necessary to hold dpm_list locked throughout all that or else
807 * we may end up suspending with a wrong ordering of it.
808 */
809 device_reorder_to_tail(consumer, NULL);
810
811 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
812
813out:
814 device_pm_unlock();
815 device_links_write_unlock();
816
817 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
818 pm_runtime_put(supplier);
819
820 return link;
821}
822EXPORT_SYMBOL_GPL(device_link_add);
823
824#ifdef CONFIG_SRCU
825static void __device_link_del(struct kref *kref)
826{
827 struct device_link *link = container_of(kref, struct device_link, kref);
828
829 dev_dbg(link->consumer, "Dropping the link to %s\n",
830 dev_name(link->supplier));
831
832 pm_runtime_drop_link(link);
833
834 list_del_rcu(&link->s_node);
835 list_del_rcu(&link->c_node);
836 device_unregister(&link->link_dev);
837}
838#else /* !CONFIG_SRCU */
839static void __device_link_del(struct kref *kref)
840{
841 struct device_link *link = container_of(kref, struct device_link, kref);
842
843 dev_info(link->consumer, "Dropping the link to %s\n",
844 dev_name(link->supplier));
845
846 pm_runtime_drop_link(link);
847
848 list_del(&link->s_node);
849 list_del(&link->c_node);
850 device_unregister(&link->link_dev);
851}
852#endif /* !CONFIG_SRCU */
853
854static void device_link_put_kref(struct device_link *link)
855{
856 if (link->flags & DL_FLAG_STATELESS)
857 kref_put(&link->kref, __device_link_del);
858 else
859 WARN(1, "Unable to drop a managed device link reference\n");
860}
861
862/**
863 * device_link_del - Delete a stateless link between two devices.
864 * @link: Device link to delete.
865 *
866 * The caller must ensure proper synchronization of this function with runtime
867 * PM. If the link was added multiple times, it needs to be deleted as often.
868 * Care is required for hotplugged devices: Their links are purged on removal
869 * and calling device_link_del() is then no longer allowed.
870 */
871void device_link_del(struct device_link *link)
872{
873 device_links_write_lock();
874 device_link_put_kref(link);
875 device_links_write_unlock();
876}
877EXPORT_SYMBOL_GPL(device_link_del);
878
879/**
880 * device_link_remove - Delete a stateless link between two devices.
881 * @consumer: Consumer end of the link.
882 * @supplier: Supplier end of the link.
883 *
884 * The caller must ensure proper synchronization of this function with runtime
885 * PM.
886 */
887void device_link_remove(void *consumer, struct device *supplier)
888{
889 struct device_link *link;
890
891 if (WARN_ON(consumer == supplier))
892 return;
893
894 device_links_write_lock();
895
896 list_for_each_entry(link, &supplier->links.consumers, s_node) {
897 if (link->consumer == consumer) {
898 device_link_put_kref(link);
899 break;
900 }
901 }
902
903 device_links_write_unlock();
904}
905EXPORT_SYMBOL_GPL(device_link_remove);
906
907static void device_links_missing_supplier(struct device *dev)
908{
909 struct device_link *link;
910
911 list_for_each_entry(link, &dev->links.suppliers, c_node) {
912 if (link->status != DL_STATE_CONSUMER_PROBE)
913 continue;
914
915 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
916 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
917 } else {
918 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
919 WRITE_ONCE(link->status, DL_STATE_DORMANT);
920 }
921 }
922}
923
924/**
925 * device_links_check_suppliers - Check presence of supplier drivers.
926 * @dev: Consumer device.
927 *
928 * Check links from this device to any suppliers. Walk the list of the device's
929 * links to suppliers and see if all of them are available. If not, simply
930 * return -EPROBE_DEFER.
931 *
932 * We need to guarantee that the supplier will not go away after the check has
933 * been positive here. It only can go away in __device_release_driver() and
934 * that function checks the device's links to consumers. This means we need to
935 * mark the link as "consumer probe in progress" to make the supplier removal
936 * wait for us to complete (or bad things may happen).
937 *
938 * Links without the DL_FLAG_MANAGED flag set are ignored.
939 */
940int device_links_check_suppliers(struct device *dev)
941{
942 struct device_link *link;
943 int ret = 0;
944
945 /*
946 * Device waiting for supplier to become available is not allowed to
947 * probe.
948 */
949 mutex_lock(&fwnode_link_lock);
950 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
951 !fw_devlink_is_permissive()) {
952 mutex_unlock(&fwnode_link_lock);
953 return -EPROBE_DEFER;
954 }
955 mutex_unlock(&fwnode_link_lock);
956
957 device_links_write_lock();
958
959 list_for_each_entry(link, &dev->links.suppliers, c_node) {
960 if (!(link->flags & DL_FLAG_MANAGED))
961 continue;
962
963 if (link->status != DL_STATE_AVAILABLE &&
964 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
965 device_links_missing_supplier(dev);
966 ret = -EPROBE_DEFER;
967 break;
968 }
969 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
970 }
971 dev->links.status = DL_DEV_PROBING;
972
973 device_links_write_unlock();
974 return ret;
975}
976
977/**
978 * __device_links_queue_sync_state - Queue a device for sync_state() callback
979 * @dev: Device to call sync_state() on
980 * @list: List head to queue the @dev on
981 *
982 * Queues a device for a sync_state() callback when the device links write lock
983 * isn't held. This allows the sync_state() execution flow to use device links
984 * APIs. The caller must ensure this function is called with
985 * device_links_write_lock() held.
986 *
987 * This function does a get_device() to make sure the device is not freed while
988 * on this list.
989 *
990 * So the caller must also ensure that device_links_flush_sync_list() is called
991 * as soon as the caller releases device_links_write_lock(). This is necessary
992 * to make sure the sync_state() is called in a timely fashion and the
993 * put_device() is called on this device.
994 */
995static void __device_links_queue_sync_state(struct device *dev,
996 struct list_head *list)
997{
998 struct device_link *link;
999
1000 if (!dev_has_sync_state(dev))
1001 return;
1002 if (dev->state_synced)
1003 return;
1004
1005 list_for_each_entry(link, &dev->links.consumers, s_node) {
1006 if (!(link->flags & DL_FLAG_MANAGED))
1007 continue;
1008 if (link->status != DL_STATE_ACTIVE)
1009 return;
1010 }
1011
1012 /*
1013 * Set the flag here to avoid adding the same device to a list more
1014 * than once. This can happen if new consumers get added to the device
1015 * and probed before the list is flushed.
1016 */
1017 dev->state_synced = true;
1018
1019 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1020 return;
1021
1022 get_device(dev);
1023 list_add_tail(&dev->links.defer_sync, list);
1024}
1025
1026/**
1027 * device_links_flush_sync_list - Call sync_state() on a list of devices
1028 * @list: List of devices to call sync_state() on
1029 * @dont_lock_dev: Device for which lock is already held by the caller
1030 *
1031 * Calls sync_state() on all the devices that have been queued for it. This
1032 * function is used in conjunction with __device_links_queue_sync_state(). The
1033 * @dont_lock_dev parameter is useful when this function is called from a
1034 * context where a device lock is already held.
1035 */
1036static void device_links_flush_sync_list(struct list_head *list,
1037 struct device *dont_lock_dev)
1038{
1039 struct device *dev, *tmp;
1040
1041 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1042 list_del_init(&dev->links.defer_sync);
1043
1044 if (dev != dont_lock_dev)
1045 device_lock(dev);
1046
1047 if (dev->bus->sync_state)
1048 dev->bus->sync_state(dev);
1049 else if (dev->driver && dev->driver->sync_state)
1050 dev->driver->sync_state(dev);
1051
1052 if (dev != dont_lock_dev)
1053 device_unlock(dev);
1054
1055 put_device(dev);
1056 }
1057}
1058
1059void device_links_supplier_sync_state_pause(void)
1060{
1061 device_links_write_lock();
1062 defer_sync_state_count++;
1063 device_links_write_unlock();
1064}
1065
1066void device_links_supplier_sync_state_resume(void)
1067{
1068 struct device *dev, *tmp;
1069 LIST_HEAD(sync_list);
1070
1071 device_links_write_lock();
1072 if (!defer_sync_state_count) {
1073 WARN(true, "Unmatched sync_state pause/resume!");
1074 goto out;
1075 }
1076 defer_sync_state_count--;
1077 if (defer_sync_state_count)
1078 goto out;
1079
1080 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1081 /*
1082 * Delete from deferred_sync list before queuing it to
1083 * sync_list because defer_sync is used for both lists.
1084 */
1085 list_del_init(&dev->links.defer_sync);
1086 __device_links_queue_sync_state(dev, &sync_list);
1087 }
1088out:
1089 device_links_write_unlock();
1090
1091 device_links_flush_sync_list(&sync_list, NULL);
1092}
1093
1094static int sync_state_resume_initcall(void)
1095{
1096 device_links_supplier_sync_state_resume();
1097 return 0;
1098}
1099late_initcall(sync_state_resume_initcall);
1100
1101static void __device_links_supplier_defer_sync(struct device *sup)
1102{
1103 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1104 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1105}
1106
1107static void device_link_drop_managed(struct device_link *link)
1108{
1109 link->flags &= ~DL_FLAG_MANAGED;
1110 WRITE_ONCE(link->status, DL_STATE_NONE);
1111 kref_put(&link->kref, __device_link_del);
1112}
1113
1114static ssize_t waiting_for_supplier_show(struct device *dev,
1115 struct device_attribute *attr,
1116 char *buf)
1117{
1118 bool val;
1119
1120 device_lock(dev);
1121 val = !list_empty(&dev->fwnode->suppliers);
1122 device_unlock(dev);
1123 return sysfs_emit(buf, "%u\n", val);
1124}
1125static DEVICE_ATTR_RO(waiting_for_supplier);
1126
1127/**
1128 * device_links_driver_bound - Update device links after probing its driver.
1129 * @dev: Device to update the links for.
1130 *
1131 * The probe has been successful, so update links from this device to any
1132 * consumers by changing their status to "available".
1133 *
1134 * Also change the status of @dev's links to suppliers to "active".
1135 *
1136 * Links without the DL_FLAG_MANAGED flag set are ignored.
1137 */
1138void device_links_driver_bound(struct device *dev)
1139{
1140 struct device_link *link, *ln;
1141 LIST_HEAD(sync_list);
1142
1143 /*
1144 * If a device probes successfully, it's expected to have created all
1145 * the device links it needs to or make new device links as it needs
1146 * them. So, it no longer needs to wait on any suppliers.
1147 */
1148 if (dev->fwnode && dev->fwnode->dev == dev)
1149 fwnode_links_purge_suppliers(dev->fwnode);
1150 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1151
1152 device_links_write_lock();
1153
1154 list_for_each_entry(link, &dev->links.consumers, s_node) {
1155 if (!(link->flags & DL_FLAG_MANAGED))
1156 continue;
1157
1158 /*
1159 * Links created during consumer probe may be in the "consumer
1160 * probe" state to start with if the supplier is still probing
1161 * when they are created and they may become "active" if the
1162 * consumer probe returns first. Skip them here.
1163 */
1164 if (link->status == DL_STATE_CONSUMER_PROBE ||
1165 link->status == DL_STATE_ACTIVE)
1166 continue;
1167
1168 WARN_ON(link->status != DL_STATE_DORMANT);
1169 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1170
1171 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1172 driver_deferred_probe_add(link->consumer);
1173 }
1174
1175 if (defer_sync_state_count)
1176 __device_links_supplier_defer_sync(dev);
1177 else
1178 __device_links_queue_sync_state(dev, &sync_list);
1179
1180 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1181 struct device *supplier;
1182
1183 if (!(link->flags & DL_FLAG_MANAGED))
1184 continue;
1185
1186 supplier = link->supplier;
1187 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1188 /*
1189 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1190 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1191 * save to drop the managed link completely.
1192 */
1193 device_link_drop_managed(link);
1194 } else {
1195 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1196 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1197 }
1198
1199 /*
1200 * This needs to be done even for the deleted
1201 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1202 * device link that was preventing the supplier from getting a
1203 * sync_state() call.
1204 */
1205 if (defer_sync_state_count)
1206 __device_links_supplier_defer_sync(supplier);
1207 else
1208 __device_links_queue_sync_state(supplier, &sync_list);
1209 }
1210
1211 dev->links.status = DL_DEV_DRIVER_BOUND;
1212
1213 device_links_write_unlock();
1214
1215 device_links_flush_sync_list(&sync_list, dev);
1216}
1217
1218/**
1219 * __device_links_no_driver - Update links of a device without a driver.
1220 * @dev: Device without a drvier.
1221 *
1222 * Delete all non-persistent links from this device to any suppliers.
1223 *
1224 * Persistent links stay around, but their status is changed to "available",
1225 * unless they already are in the "supplier unbind in progress" state in which
1226 * case they need not be updated.
1227 *
1228 * Links without the DL_FLAG_MANAGED flag set are ignored.
1229 */
1230static void __device_links_no_driver(struct device *dev)
1231{
1232 struct device_link *link, *ln;
1233
1234 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1235 if (!(link->flags & DL_FLAG_MANAGED))
1236 continue;
1237
1238 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1239 device_link_drop_managed(link);
1240 continue;
1241 }
1242
1243 if (link->status != DL_STATE_CONSUMER_PROBE &&
1244 link->status != DL_STATE_ACTIVE)
1245 continue;
1246
1247 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1248 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1249 } else {
1250 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1251 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1252 }
1253 }
1254
1255 dev->links.status = DL_DEV_NO_DRIVER;
1256}
1257
1258/**
1259 * device_links_no_driver - Update links after failing driver probe.
1260 * @dev: Device whose driver has just failed to probe.
1261 *
1262 * Clean up leftover links to consumers for @dev and invoke
1263 * %__device_links_no_driver() to update links to suppliers for it as
1264 * appropriate.
1265 *
1266 * Links without the DL_FLAG_MANAGED flag set are ignored.
1267 */
1268void device_links_no_driver(struct device *dev)
1269{
1270 struct device_link *link;
1271
1272 device_links_write_lock();
1273
1274 list_for_each_entry(link, &dev->links.consumers, s_node) {
1275 if (!(link->flags & DL_FLAG_MANAGED))
1276 continue;
1277
1278 /*
1279 * The probe has failed, so if the status of the link is
1280 * "consumer probe" or "active", it must have been added by
1281 * a probing consumer while this device was still probing.
1282 * Change its state to "dormant", as it represents a valid
1283 * relationship, but it is not functionally meaningful.
1284 */
1285 if (link->status == DL_STATE_CONSUMER_PROBE ||
1286 link->status == DL_STATE_ACTIVE)
1287 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1288 }
1289
1290 __device_links_no_driver(dev);
1291
1292 device_links_write_unlock();
1293}
1294
1295/**
1296 * device_links_driver_cleanup - Update links after driver removal.
1297 * @dev: Device whose driver has just gone away.
1298 *
1299 * Update links to consumers for @dev by changing their status to "dormant" and
1300 * invoke %__device_links_no_driver() to update links to suppliers for it as
1301 * appropriate.
1302 *
1303 * Links without the DL_FLAG_MANAGED flag set are ignored.
1304 */
1305void device_links_driver_cleanup(struct device *dev)
1306{
1307 struct device_link *link, *ln;
1308
1309 device_links_write_lock();
1310
1311 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1312 if (!(link->flags & DL_FLAG_MANAGED))
1313 continue;
1314
1315 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1316 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1317
1318 /*
1319 * autoremove the links between this @dev and its consumer
1320 * devices that are not active, i.e. where the link state
1321 * has moved to DL_STATE_SUPPLIER_UNBIND.
1322 */
1323 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1324 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1325 device_link_drop_managed(link);
1326
1327 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1328 }
1329
1330 list_del_init(&dev->links.defer_sync);
1331 __device_links_no_driver(dev);
1332
1333 device_links_write_unlock();
1334}
1335
1336/**
1337 * device_links_busy - Check if there are any busy links to consumers.
1338 * @dev: Device to check.
1339 *
1340 * Check each consumer of the device and return 'true' if its link's status
1341 * is one of "consumer probe" or "active" (meaning that the given consumer is
1342 * probing right now or its driver is present). Otherwise, change the link
1343 * state to "supplier unbind" to prevent the consumer from being probed
1344 * successfully going forward.
1345 *
1346 * Return 'false' if there are no probing or active consumers.
1347 *
1348 * Links without the DL_FLAG_MANAGED flag set are ignored.
1349 */
1350bool device_links_busy(struct device *dev)
1351{
1352 struct device_link *link;
1353 bool ret = false;
1354
1355 device_links_write_lock();
1356
1357 list_for_each_entry(link, &dev->links.consumers, s_node) {
1358 if (!(link->flags & DL_FLAG_MANAGED))
1359 continue;
1360
1361 if (link->status == DL_STATE_CONSUMER_PROBE
1362 || link->status == DL_STATE_ACTIVE) {
1363 ret = true;
1364 break;
1365 }
1366 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1367 }
1368
1369 dev->links.status = DL_DEV_UNBINDING;
1370
1371 device_links_write_unlock();
1372 return ret;
1373}
1374
1375/**
1376 * device_links_unbind_consumers - Force unbind consumers of the given device.
1377 * @dev: Device to unbind the consumers of.
1378 *
1379 * Walk the list of links to consumers for @dev and if any of them is in the
1380 * "consumer probe" state, wait for all device probes in progress to complete
1381 * and start over.
1382 *
1383 * If that's not the case, change the status of the link to "supplier unbind"
1384 * and check if the link was in the "active" state. If so, force the consumer
1385 * driver to unbind and start over (the consumer will not re-probe as we have
1386 * changed the state of the link already).
1387 *
1388 * Links without the DL_FLAG_MANAGED flag set are ignored.
1389 */
1390void device_links_unbind_consumers(struct device *dev)
1391{
1392 struct device_link *link;
1393
1394 start:
1395 device_links_write_lock();
1396
1397 list_for_each_entry(link, &dev->links.consumers, s_node) {
1398 enum device_link_state status;
1399
1400 if (!(link->flags & DL_FLAG_MANAGED) ||
1401 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1402 continue;
1403
1404 status = link->status;
1405 if (status == DL_STATE_CONSUMER_PROBE) {
1406 device_links_write_unlock();
1407
1408 wait_for_device_probe();
1409 goto start;
1410 }
1411 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1412 if (status == DL_STATE_ACTIVE) {
1413 struct device *consumer = link->consumer;
1414
1415 get_device(consumer);
1416
1417 device_links_write_unlock();
1418
1419 device_release_driver_internal(consumer, NULL,
1420 consumer->parent);
1421 put_device(consumer);
1422 goto start;
1423 }
1424 }
1425
1426 device_links_write_unlock();
1427}
1428
1429/**
1430 * device_links_purge - Delete existing links to other devices.
1431 * @dev: Target device.
1432 */
1433static void device_links_purge(struct device *dev)
1434{
1435 struct device_link *link, *ln;
1436
1437 if (dev->class == &devlink_class)
1438 return;
1439
1440 /*
1441 * Delete all of the remaining links from this device to any other
1442 * devices (either consumers or suppliers).
1443 */
1444 device_links_write_lock();
1445
1446 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1447 WARN_ON(link->status == DL_STATE_ACTIVE);
1448 __device_link_del(&link->kref);
1449 }
1450
1451 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1452 WARN_ON(link->status != DL_STATE_DORMANT &&
1453 link->status != DL_STATE_NONE);
1454 __device_link_del(&link->kref);
1455 }
1456
1457 device_links_write_unlock();
1458}
1459
1460static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1461static int __init fw_devlink_setup(char *arg)
1462{
1463 if (!arg)
1464 return -EINVAL;
1465
1466 if (strcmp(arg, "off") == 0) {
1467 fw_devlink_flags = 0;
1468 } else if (strcmp(arg, "permissive") == 0) {
1469 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1470 } else if (strcmp(arg, "on") == 0) {
1471 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1472 } else if (strcmp(arg, "rpm") == 0) {
1473 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1474 DL_FLAG_PM_RUNTIME;
1475 }
1476 return 0;
1477}
1478early_param("fw_devlink", fw_devlink_setup);
1479
1480u32 fw_devlink_get_flags(void)
1481{
1482 return fw_devlink_flags;
1483}
1484
1485static bool fw_devlink_is_permissive(void)
1486{
1487 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1488}
1489
1490static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1491{
1492 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1493 return;
1494
1495 fwnode_call_int_op(fwnode, add_links);
1496 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1497}
1498
1499static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1500{
1501 struct fwnode_handle *child = NULL;
1502
1503 fw_devlink_parse_fwnode(fwnode);
1504
1505 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1506 fw_devlink_parse_fwtree(child);
1507}
1508
1509/**
1510 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1511 * @con - Consumer device for the device link
1512 * @sup_handle - fwnode handle of supplier
1513 *
1514 * This function will try to create a device link between the consumer device
1515 * @con and the supplier device represented by @sup_handle.
1516 *
1517 * The supplier has to be provided as a fwnode because incorrect cycles in
1518 * fwnode links can sometimes cause the supplier device to never be created.
1519 * This function detects such cases and returns an error if it cannot create a
1520 * device link from the consumer to a missing supplier.
1521 *
1522 * Returns,
1523 * 0 on successfully creating a device link
1524 * -EINVAL if the device link cannot be created as expected
1525 * -EAGAIN if the device link cannot be created right now, but it may be
1526 * possible to do that in the future
1527 */
1528static int fw_devlink_create_devlink(struct device *con,
1529 struct fwnode_handle *sup_handle, u32 flags)
1530{
1531 struct device *sup_dev;
1532 int ret = 0;
1533
1534 sup_dev = get_dev_from_fwnode(sup_handle);
1535 if (sup_dev) {
1536 /*
1537 * If this fails, it is due to cycles in device links. Just
1538 * give up on this link and treat it as invalid.
1539 */
1540 if (!device_link_add(con, sup_dev, flags))
1541 ret = -EINVAL;
1542
1543 goto out;
1544 }
1545
1546 /*
1547 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1548 * cycles. So cycle detection isn't necessary and shouldn't be
1549 * done.
1550 */
1551 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1552 return -EAGAIN;
1553
1554 /*
1555 * If we can't find the supplier device from its fwnode, it might be
1556 * due to a cyclic dependency between fwnodes. Some of these cycles can
1557 * be broken by applying logic. Check for these types of cycles and
1558 * break them so that devices in the cycle probe properly.
1559 *
1560 * If the supplier's parent is dependent on the consumer, then
1561 * the consumer-supplier dependency is a false dependency. So,
1562 * treat it as an invalid link.
1563 */
1564 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1565 if (sup_dev && device_is_dependent(con, sup_dev)) {
1566 dev_dbg(con, "Not linking to %pfwP - False link\n",
1567 sup_handle);
1568 ret = -EINVAL;
1569 } else {
1570 /*
1571 * Can't check for cycles or no cycles. So let's try
1572 * again later.
1573 */
1574 ret = -EAGAIN;
1575 }
1576
1577out:
1578 put_device(sup_dev);
1579 return ret;
1580}
1581
1582/**
1583 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1584 * @dev - Device that needs to be linked to its consumers
1585 *
1586 * This function looks at all the consumer fwnodes of @dev and creates device
1587 * links between the consumer device and @dev (supplier).
1588 *
1589 * If the consumer device has not been added yet, then this function creates a
1590 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1591 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1592 * sync_state() callback before the real consumer device gets to be added and
1593 * then probed.
1594 *
1595 * Once device links are created from the real consumer to @dev (supplier), the
1596 * fwnode links are deleted.
1597 */
1598static void __fw_devlink_link_to_consumers(struct device *dev)
1599{
1600 struct fwnode_handle *fwnode = dev->fwnode;
1601 struct fwnode_link *link, *tmp;
1602
1603 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1604 u32 dl_flags = fw_devlink_get_flags();
1605 struct device *con_dev;
1606 bool own_link = true;
1607 int ret;
1608
1609 con_dev = get_dev_from_fwnode(link->consumer);
1610 /*
1611 * If consumer device is not available yet, make a "proxy"
1612 * SYNC_STATE_ONLY link from the consumer's parent device to
1613 * the supplier device. This is necessary to make sure the
1614 * supplier doesn't get a sync_state() callback before the real
1615 * consumer can create a device link to the supplier.
1616 *
1617 * This proxy link step is needed to handle the case where the
1618 * consumer's parent device is added before the supplier.
1619 */
1620 if (!con_dev) {
1621 con_dev = fwnode_get_next_parent_dev(link->consumer);
1622 /*
1623 * However, if the consumer's parent device is also the
1624 * parent of the supplier, don't create a
1625 * consumer-supplier link from the parent to its child
1626 * device. Such a dependency is impossible.
1627 */
1628 if (con_dev &&
1629 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1630 put_device(con_dev);
1631 con_dev = NULL;
1632 } else {
1633 own_link = false;
1634 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1635 }
1636 }
1637
1638 if (!con_dev)
1639 continue;
1640
1641 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1642 put_device(con_dev);
1643 if (!own_link || ret == -EAGAIN)
1644 continue;
1645
1646 list_del(&link->s_hook);
1647 list_del(&link->c_hook);
1648 kfree(link);
1649 }
1650}
1651
1652/**
1653 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1654 * @dev - The consumer device that needs to be linked to its suppliers
1655 * @fwnode - Root of the fwnode tree that is used to create device links
1656 *
1657 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1658 * @fwnode and creates device links between @dev (consumer) and all the
1659 * supplier devices of the entire fwnode tree at @fwnode.
1660 *
1661 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1662 * and the real suppliers of @dev. Once these device links are created, the
1663 * fwnode links are deleted. When such device links are successfully created,
1664 * this function is called recursively on those supplier devices. This is
1665 * needed to detect and break some invalid cycles in fwnode links. See
1666 * fw_devlink_create_devlink() for more details.
1667 *
1668 * In addition, it also looks at all the suppliers of the entire fwnode tree
1669 * because some of the child devices of @dev that have not been added yet
1670 * (because @dev hasn't probed) might already have their suppliers added to
1671 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1672 * @dev (consumer) and these suppliers to make sure they don't execute their
1673 * sync_state() callbacks before these child devices have a chance to create
1674 * their device links. The fwnode links that correspond to the child devices
1675 * aren't delete because they are needed later to create the device links
1676 * between the real consumer and supplier devices.
1677 */
1678static void __fw_devlink_link_to_suppliers(struct device *dev,
1679 struct fwnode_handle *fwnode)
1680{
1681 bool own_link = (dev->fwnode == fwnode);
1682 struct fwnode_link *link, *tmp;
1683 struct fwnode_handle *child = NULL;
1684 u32 dl_flags;
1685
1686 if (own_link)
1687 dl_flags = fw_devlink_get_flags();
1688 else
1689 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1690
1691 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1692 int ret;
1693 struct device *sup_dev;
1694 struct fwnode_handle *sup = link->supplier;
1695
1696 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1697 if (!own_link || ret == -EAGAIN)
1698 continue;
1699
1700 list_del(&link->s_hook);
1701 list_del(&link->c_hook);
1702 kfree(link);
1703
1704 /* If no device link was created, nothing more to do. */
1705 if (ret)
1706 continue;
1707
1708 /*
1709 * If a device link was successfully created to a supplier, we
1710 * now need to try and link the supplier to all its suppliers.
1711 *
1712 * This is needed to detect and delete false dependencies in
1713 * fwnode links that haven't been converted to a device link
1714 * yet. See comments in fw_devlink_create_devlink() for more
1715 * details on the false dependency.
1716 *
1717 * Without deleting these false dependencies, some devices will
1718 * never probe because they'll keep waiting for their false
1719 * dependency fwnode links to be converted to device links.
1720 */
1721 sup_dev = get_dev_from_fwnode(sup);
1722 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1723 put_device(sup_dev);
1724 }
1725
1726 /*
1727 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1728 * all the descendants. This proxy link step is needed to handle the
1729 * case where the supplier is added before the consumer's parent device
1730 * (@dev).
1731 */
1732 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1733 __fw_devlink_link_to_suppliers(dev, child);
1734}
1735
1736static void fw_devlink_link_device(struct device *dev)
1737{
1738 struct fwnode_handle *fwnode = dev->fwnode;
1739
1740 if (!fw_devlink_flags)
1741 return;
1742
1743 fw_devlink_parse_fwtree(fwnode);
1744
1745 mutex_lock(&fwnode_link_lock);
1746 __fw_devlink_link_to_consumers(dev);
1747 __fw_devlink_link_to_suppliers(dev, fwnode);
1748 mutex_unlock(&fwnode_link_lock);
1749}
1750
1751/* Device links support end. */
1752
1753int (*platform_notify)(struct device *dev) = NULL;
1754int (*platform_notify_remove)(struct device *dev) = NULL;
1755static struct kobject *dev_kobj;
1756struct kobject *sysfs_dev_char_kobj;
1757struct kobject *sysfs_dev_block_kobj;
1758
1759static DEFINE_MUTEX(device_hotplug_lock);
1760
1761void lock_device_hotplug(void)
1762{
1763 mutex_lock(&device_hotplug_lock);
1764}
1765
1766void unlock_device_hotplug(void)
1767{
1768 mutex_unlock(&device_hotplug_lock);
1769}
1770
1771int lock_device_hotplug_sysfs(void)
1772{
1773 if (mutex_trylock(&device_hotplug_lock))
1774 return 0;
1775
1776 /* Avoid busy looping (5 ms of sleep should do). */
1777 msleep(5);
1778 return restart_syscall();
1779}
1780
1781#ifdef CONFIG_BLOCK
1782static inline int device_is_not_partition(struct device *dev)
1783{
1784 return !(dev->type == &part_type);
1785}
1786#else
1787static inline int device_is_not_partition(struct device *dev)
1788{
1789 return 1;
1790}
1791#endif
1792
1793static int
1794device_platform_notify(struct device *dev, enum kobject_action action)
1795{
1796 int ret;
1797
1798 ret = acpi_platform_notify(dev, action);
1799 if (ret)
1800 return ret;
1801
1802 ret = software_node_notify(dev, action);
1803 if (ret)
1804 return ret;
1805
1806 if (platform_notify && action == KOBJ_ADD)
1807 platform_notify(dev);
1808 else if (platform_notify_remove && action == KOBJ_REMOVE)
1809 platform_notify_remove(dev);
1810 return 0;
1811}
1812
1813/**
1814 * dev_driver_string - Return a device's driver name, if at all possible
1815 * @dev: struct device to get the name of
1816 *
1817 * Will return the device's driver's name if it is bound to a device. If
1818 * the device is not bound to a driver, it will return the name of the bus
1819 * it is attached to. If it is not attached to a bus either, an empty
1820 * string will be returned.
1821 */
1822const char *dev_driver_string(const struct device *dev)
1823{
1824 struct device_driver *drv;
1825
1826 /* dev->driver can change to NULL underneath us because of unbinding,
1827 * so be careful about accessing it. dev->bus and dev->class should
1828 * never change once they are set, so they don't need special care.
1829 */
1830 drv = READ_ONCE(dev->driver);
1831 return drv ? drv->name : dev_bus_name(dev);
1832}
1833EXPORT_SYMBOL(dev_driver_string);
1834
1835#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1836
1837static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1838 char *buf)
1839{
1840 struct device_attribute *dev_attr = to_dev_attr(attr);
1841 struct device *dev = kobj_to_dev(kobj);
1842 ssize_t ret = -EIO;
1843
1844 if (dev_attr->show)
1845 ret = dev_attr->show(dev, dev_attr, buf);
1846 if (ret >= (ssize_t)PAGE_SIZE) {
1847 printk("dev_attr_show: %pS returned bad count\n",
1848 dev_attr->show);
1849 }
1850 return ret;
1851}
1852
1853static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1854 const char *buf, size_t count)
1855{
1856 struct device_attribute *dev_attr = to_dev_attr(attr);
1857 struct device *dev = kobj_to_dev(kobj);
1858 ssize_t ret = -EIO;
1859
1860 if (dev_attr->store)
1861 ret = dev_attr->store(dev, dev_attr, buf, count);
1862 return ret;
1863}
1864
1865static const struct sysfs_ops dev_sysfs_ops = {
1866 .show = dev_attr_show,
1867 .store = dev_attr_store,
1868};
1869
1870#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1871
1872ssize_t device_store_ulong(struct device *dev,
1873 struct device_attribute *attr,
1874 const char *buf, size_t size)
1875{
1876 struct dev_ext_attribute *ea = to_ext_attr(attr);
1877 int ret;
1878 unsigned long new;
1879
1880 ret = kstrtoul(buf, 0, &new);
1881 if (ret)
1882 return ret;
1883 *(unsigned long *)(ea->var) = new;
1884 /* Always return full write size even if we didn't consume all */
1885 return size;
1886}
1887EXPORT_SYMBOL_GPL(device_store_ulong);
1888
1889ssize_t device_show_ulong(struct device *dev,
1890 struct device_attribute *attr,
1891 char *buf)
1892{
1893 struct dev_ext_attribute *ea = to_ext_attr(attr);
1894 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
1895}
1896EXPORT_SYMBOL_GPL(device_show_ulong);
1897
1898ssize_t device_store_int(struct device *dev,
1899 struct device_attribute *attr,
1900 const char *buf, size_t size)
1901{
1902 struct dev_ext_attribute *ea = to_ext_attr(attr);
1903 int ret;
1904 long new;
1905
1906 ret = kstrtol(buf, 0, &new);
1907 if (ret)
1908 return ret;
1909
1910 if (new > INT_MAX || new < INT_MIN)
1911 return -EINVAL;
1912 *(int *)(ea->var) = new;
1913 /* Always return full write size even if we didn't consume all */
1914 return size;
1915}
1916EXPORT_SYMBOL_GPL(device_store_int);
1917
1918ssize_t device_show_int(struct device *dev,
1919 struct device_attribute *attr,
1920 char *buf)
1921{
1922 struct dev_ext_attribute *ea = to_ext_attr(attr);
1923
1924 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
1925}
1926EXPORT_SYMBOL_GPL(device_show_int);
1927
1928ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1929 const char *buf, size_t size)
1930{
1931 struct dev_ext_attribute *ea = to_ext_attr(attr);
1932
1933 if (strtobool(buf, ea->var) < 0)
1934 return -EINVAL;
1935
1936 return size;
1937}
1938EXPORT_SYMBOL_GPL(device_store_bool);
1939
1940ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1941 char *buf)
1942{
1943 struct dev_ext_attribute *ea = to_ext_attr(attr);
1944
1945 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
1946}
1947EXPORT_SYMBOL_GPL(device_show_bool);
1948
1949/**
1950 * device_release - free device structure.
1951 * @kobj: device's kobject.
1952 *
1953 * This is called once the reference count for the object
1954 * reaches 0. We forward the call to the device's release
1955 * method, which should handle actually freeing the structure.
1956 */
1957static void device_release(struct kobject *kobj)
1958{
1959 struct device *dev = kobj_to_dev(kobj);
1960 struct device_private *p = dev->p;
1961
1962 /*
1963 * Some platform devices are driven without driver attached
1964 * and managed resources may have been acquired. Make sure
1965 * all resources are released.
1966 *
1967 * Drivers still can add resources into device after device
1968 * is deleted but alive, so release devres here to avoid
1969 * possible memory leak.
1970 */
1971 devres_release_all(dev);
1972
1973 kfree(dev->dma_range_map);
1974
1975 if (dev->release)
1976 dev->release(dev);
1977 else if (dev->type && dev->type->release)
1978 dev->type->release(dev);
1979 else if (dev->class && dev->class->dev_release)
1980 dev->class->dev_release(dev);
1981 else
1982 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1983 dev_name(dev));
1984 kfree(p);
1985}
1986
1987static const void *device_namespace(struct kobject *kobj)
1988{
1989 struct device *dev = kobj_to_dev(kobj);
1990 const void *ns = NULL;
1991
1992 if (dev->class && dev->class->ns_type)
1993 ns = dev->class->namespace(dev);
1994
1995 return ns;
1996}
1997
1998static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1999{
2000 struct device *dev = kobj_to_dev(kobj);
2001
2002 if (dev->class && dev->class->get_ownership)
2003 dev->class->get_ownership(dev, uid, gid);
2004}
2005
2006static struct kobj_type device_ktype = {
2007 .release = device_release,
2008 .sysfs_ops = &dev_sysfs_ops,
2009 .namespace = device_namespace,
2010 .get_ownership = device_get_ownership,
2011};
2012
2013
2014static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2015{
2016 struct kobj_type *ktype = get_ktype(kobj);
2017
2018 if (ktype == &device_ktype) {
2019 struct device *dev = kobj_to_dev(kobj);
2020 if (dev->bus)
2021 return 1;
2022 if (dev->class)
2023 return 1;
2024 }
2025 return 0;
2026}
2027
2028static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2029{
2030 struct device *dev = kobj_to_dev(kobj);
2031
2032 if (dev->bus)
2033 return dev->bus->name;
2034 if (dev->class)
2035 return dev->class->name;
2036 return NULL;
2037}
2038
2039static int dev_uevent(struct kset *kset, struct kobject *kobj,
2040 struct kobj_uevent_env *env)
2041{
2042 struct device *dev = kobj_to_dev(kobj);
2043 int retval = 0;
2044
2045 /* add device node properties if present */
2046 if (MAJOR(dev->devt)) {
2047 const char *tmp;
2048 const char *name;
2049 umode_t mode = 0;
2050 kuid_t uid = GLOBAL_ROOT_UID;
2051 kgid_t gid = GLOBAL_ROOT_GID;
2052
2053 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2054 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2055 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2056 if (name) {
2057 add_uevent_var(env, "DEVNAME=%s", name);
2058 if (mode)
2059 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2060 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2061 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2062 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2063 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2064 kfree(tmp);
2065 }
2066 }
2067
2068 if (dev->type && dev->type->name)
2069 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2070
2071 if (dev->driver)
2072 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2073
2074 /* Add common DT information about the device */
2075 of_device_uevent(dev, env);
2076
2077 /* have the bus specific function add its stuff */
2078 if (dev->bus && dev->bus->uevent) {
2079 retval = dev->bus->uevent(dev, env);
2080 if (retval)
2081 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2082 dev_name(dev), __func__, retval);
2083 }
2084
2085 /* have the class specific function add its stuff */
2086 if (dev->class && dev->class->dev_uevent) {
2087 retval = dev->class->dev_uevent(dev, env);
2088 if (retval)
2089 pr_debug("device: '%s': %s: class uevent() "
2090 "returned %d\n", dev_name(dev),
2091 __func__, retval);
2092 }
2093
2094 /* have the device type specific function add its stuff */
2095 if (dev->type && dev->type->uevent) {
2096 retval = dev->type->uevent(dev, env);
2097 if (retval)
2098 pr_debug("device: '%s': %s: dev_type uevent() "
2099 "returned %d\n", dev_name(dev),
2100 __func__, retval);
2101 }
2102
2103 return retval;
2104}
2105
2106static const struct kset_uevent_ops device_uevent_ops = {
2107 .filter = dev_uevent_filter,
2108 .name = dev_uevent_name,
2109 .uevent = dev_uevent,
2110};
2111
2112static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2113 char *buf)
2114{
2115 struct kobject *top_kobj;
2116 struct kset *kset;
2117 struct kobj_uevent_env *env = NULL;
2118 int i;
2119 int len = 0;
2120 int retval;
2121
2122 /* search the kset, the device belongs to */
2123 top_kobj = &dev->kobj;
2124 while (!top_kobj->kset && top_kobj->parent)
2125 top_kobj = top_kobj->parent;
2126 if (!top_kobj->kset)
2127 goto out;
2128
2129 kset = top_kobj->kset;
2130 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2131 goto out;
2132
2133 /* respect filter */
2134 if (kset->uevent_ops && kset->uevent_ops->filter)
2135 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2136 goto out;
2137
2138 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2139 if (!env)
2140 return -ENOMEM;
2141
2142 /* let the kset specific function add its keys */
2143 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2144 if (retval)
2145 goto out;
2146
2147 /* copy keys to file */
2148 for (i = 0; i < env->envp_idx; i++)
2149 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2150out:
2151 kfree(env);
2152 return len;
2153}
2154
2155static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2156 const char *buf, size_t count)
2157{
2158 int rc;
2159
2160 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2161
2162 if (rc) {
2163 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2164 return rc;
2165 }
2166
2167 return count;
2168}
2169static DEVICE_ATTR_RW(uevent);
2170
2171static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2172 char *buf)
2173{
2174 bool val;
2175
2176 device_lock(dev);
2177 val = !dev->offline;
2178 device_unlock(dev);
2179 return sysfs_emit(buf, "%u\n", val);
2180}
2181
2182static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2183 const char *buf, size_t count)
2184{
2185 bool val;
2186 int ret;
2187
2188 ret = strtobool(buf, &val);
2189 if (ret < 0)
2190 return ret;
2191
2192 ret = lock_device_hotplug_sysfs();
2193 if (ret)
2194 return ret;
2195
2196 ret = val ? device_online(dev) : device_offline(dev);
2197 unlock_device_hotplug();
2198 return ret < 0 ? ret : count;
2199}
2200static DEVICE_ATTR_RW(online);
2201
2202int device_add_groups(struct device *dev, const struct attribute_group **groups)
2203{
2204 return sysfs_create_groups(&dev->kobj, groups);
2205}
2206EXPORT_SYMBOL_GPL(device_add_groups);
2207
2208void device_remove_groups(struct device *dev,
2209 const struct attribute_group **groups)
2210{
2211 sysfs_remove_groups(&dev->kobj, groups);
2212}
2213EXPORT_SYMBOL_GPL(device_remove_groups);
2214
2215union device_attr_group_devres {
2216 const struct attribute_group *group;
2217 const struct attribute_group **groups;
2218};
2219
2220static int devm_attr_group_match(struct device *dev, void *res, void *data)
2221{
2222 return ((union device_attr_group_devres *)res)->group == data;
2223}
2224
2225static void devm_attr_group_remove(struct device *dev, void *res)
2226{
2227 union device_attr_group_devres *devres = res;
2228 const struct attribute_group *group = devres->group;
2229
2230 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2231 sysfs_remove_group(&dev->kobj, group);
2232}
2233
2234static void devm_attr_groups_remove(struct device *dev, void *res)
2235{
2236 union device_attr_group_devres *devres = res;
2237 const struct attribute_group **groups = devres->groups;
2238
2239 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2240 sysfs_remove_groups(&dev->kobj, groups);
2241}
2242
2243/**
2244 * devm_device_add_group - given a device, create a managed attribute group
2245 * @dev: The device to create the group for
2246 * @grp: The attribute group to create
2247 *
2248 * This function creates a group for the first time. It will explicitly
2249 * warn and error if any of the attribute files being created already exist.
2250 *
2251 * Returns 0 on success or error code on failure.
2252 */
2253int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2254{
2255 union device_attr_group_devres *devres;
2256 int error;
2257
2258 devres = devres_alloc(devm_attr_group_remove,
2259 sizeof(*devres), GFP_KERNEL);
2260 if (!devres)
2261 return -ENOMEM;
2262
2263 error = sysfs_create_group(&dev->kobj, grp);
2264 if (error) {
2265 devres_free(devres);
2266 return error;
2267 }
2268
2269 devres->group = grp;
2270 devres_add(dev, devres);
2271 return 0;
2272}
2273EXPORT_SYMBOL_GPL(devm_device_add_group);
2274
2275/**
2276 * devm_device_remove_group: remove a managed group from a device
2277 * @dev: device to remove the group from
2278 * @grp: group to remove
2279 *
2280 * This function removes a group of attributes from a device. The attributes
2281 * previously have to have been created for this group, otherwise it will fail.
2282 */
2283void devm_device_remove_group(struct device *dev,
2284 const struct attribute_group *grp)
2285{
2286 WARN_ON(devres_release(dev, devm_attr_group_remove,
2287 devm_attr_group_match,
2288 /* cast away const */ (void *)grp));
2289}
2290EXPORT_SYMBOL_GPL(devm_device_remove_group);
2291
2292/**
2293 * devm_device_add_groups - create a bunch of managed attribute groups
2294 * @dev: The device to create the group for
2295 * @groups: The attribute groups to create, NULL terminated
2296 *
2297 * This function creates a bunch of managed attribute groups. If an error
2298 * occurs when creating a group, all previously created groups will be
2299 * removed, unwinding everything back to the original state when this
2300 * function was called. It will explicitly warn and error if any of the
2301 * attribute files being created already exist.
2302 *
2303 * Returns 0 on success or error code from sysfs_create_group on failure.
2304 */
2305int devm_device_add_groups(struct device *dev,
2306 const struct attribute_group **groups)
2307{
2308 union device_attr_group_devres *devres;
2309 int error;
2310
2311 devres = devres_alloc(devm_attr_groups_remove,
2312 sizeof(*devres), GFP_KERNEL);
2313 if (!devres)
2314 return -ENOMEM;
2315
2316 error = sysfs_create_groups(&dev->kobj, groups);
2317 if (error) {
2318 devres_free(devres);
2319 return error;
2320 }
2321
2322 devres->groups = groups;
2323 devres_add(dev, devres);
2324 return 0;
2325}
2326EXPORT_SYMBOL_GPL(devm_device_add_groups);
2327
2328/**
2329 * devm_device_remove_groups - remove a list of managed groups
2330 *
2331 * @dev: The device for the groups to be removed from
2332 * @groups: NULL terminated list of groups to be removed
2333 *
2334 * If groups is not NULL, remove the specified groups from the device.
2335 */
2336void devm_device_remove_groups(struct device *dev,
2337 const struct attribute_group **groups)
2338{
2339 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2340 devm_attr_group_match,
2341 /* cast away const */ (void *)groups));
2342}
2343EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2344
2345static int device_add_attrs(struct device *dev)
2346{
2347 struct class *class = dev->class;
2348 const struct device_type *type = dev->type;
2349 int error;
2350
2351 if (class) {
2352 error = device_add_groups(dev, class->dev_groups);
2353 if (error)
2354 return error;
2355 }
2356
2357 if (type) {
2358 error = device_add_groups(dev, type->groups);
2359 if (error)
2360 goto err_remove_class_groups;
2361 }
2362
2363 error = device_add_groups(dev, dev->groups);
2364 if (error)
2365 goto err_remove_type_groups;
2366
2367 if (device_supports_offline(dev) && !dev->offline_disabled) {
2368 error = device_create_file(dev, &dev_attr_online);
2369 if (error)
2370 goto err_remove_dev_groups;
2371 }
2372
2373 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2374 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2375 if (error)
2376 goto err_remove_dev_online;
2377 }
2378
2379 return 0;
2380
2381 err_remove_dev_online:
2382 device_remove_file(dev, &dev_attr_online);
2383 err_remove_dev_groups:
2384 device_remove_groups(dev, dev->groups);
2385 err_remove_type_groups:
2386 if (type)
2387 device_remove_groups(dev, type->groups);
2388 err_remove_class_groups:
2389 if (class)
2390 device_remove_groups(dev, class->dev_groups);
2391
2392 return error;
2393}
2394
2395static void device_remove_attrs(struct device *dev)
2396{
2397 struct class *class = dev->class;
2398 const struct device_type *type = dev->type;
2399
2400 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2401 device_remove_file(dev, &dev_attr_online);
2402 device_remove_groups(dev, dev->groups);
2403
2404 if (type)
2405 device_remove_groups(dev, type->groups);
2406
2407 if (class)
2408 device_remove_groups(dev, class->dev_groups);
2409}
2410
2411static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2412 char *buf)
2413{
2414 return print_dev_t(buf, dev->devt);
2415}
2416static DEVICE_ATTR_RO(dev);
2417
2418/* /sys/devices/ */
2419struct kset *devices_kset;
2420
2421/**
2422 * devices_kset_move_before - Move device in the devices_kset's list.
2423 * @deva: Device to move.
2424 * @devb: Device @deva should come before.
2425 */
2426static void devices_kset_move_before(struct device *deva, struct device *devb)
2427{
2428 if (!devices_kset)
2429 return;
2430 pr_debug("devices_kset: Moving %s before %s\n",
2431 dev_name(deva), dev_name(devb));
2432 spin_lock(&devices_kset->list_lock);
2433 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2434 spin_unlock(&devices_kset->list_lock);
2435}
2436
2437/**
2438 * devices_kset_move_after - Move device in the devices_kset's list.
2439 * @deva: Device to move
2440 * @devb: Device @deva should come after.
2441 */
2442static void devices_kset_move_after(struct device *deva, struct device *devb)
2443{
2444 if (!devices_kset)
2445 return;
2446 pr_debug("devices_kset: Moving %s after %s\n",
2447 dev_name(deva), dev_name(devb));
2448 spin_lock(&devices_kset->list_lock);
2449 list_move(&deva->kobj.entry, &devb->kobj.entry);
2450 spin_unlock(&devices_kset->list_lock);
2451}
2452
2453/**
2454 * devices_kset_move_last - move the device to the end of devices_kset's list.
2455 * @dev: device to move
2456 */
2457void devices_kset_move_last(struct device *dev)
2458{
2459 if (!devices_kset)
2460 return;
2461 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2462 spin_lock(&devices_kset->list_lock);
2463 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2464 spin_unlock(&devices_kset->list_lock);
2465}
2466
2467/**
2468 * device_create_file - create sysfs attribute file for device.
2469 * @dev: device.
2470 * @attr: device attribute descriptor.
2471 */
2472int device_create_file(struct device *dev,
2473 const struct device_attribute *attr)
2474{
2475 int error = 0;
2476
2477 if (dev) {
2478 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2479 "Attribute %s: write permission without 'store'\n",
2480 attr->attr.name);
2481 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2482 "Attribute %s: read permission without 'show'\n",
2483 attr->attr.name);
2484 error = sysfs_create_file(&dev->kobj, &attr->attr);
2485 }
2486
2487 return error;
2488}
2489EXPORT_SYMBOL_GPL(device_create_file);
2490
2491/**
2492 * device_remove_file - remove sysfs attribute file.
2493 * @dev: device.
2494 * @attr: device attribute descriptor.
2495 */
2496void device_remove_file(struct device *dev,
2497 const struct device_attribute *attr)
2498{
2499 if (dev)
2500 sysfs_remove_file(&dev->kobj, &attr->attr);
2501}
2502EXPORT_SYMBOL_GPL(device_remove_file);
2503
2504/**
2505 * device_remove_file_self - remove sysfs attribute file from its own method.
2506 * @dev: device.
2507 * @attr: device attribute descriptor.
2508 *
2509 * See kernfs_remove_self() for details.
2510 */
2511bool device_remove_file_self(struct device *dev,
2512 const struct device_attribute *attr)
2513{
2514 if (dev)
2515 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2516 else
2517 return false;
2518}
2519EXPORT_SYMBOL_GPL(device_remove_file_self);
2520
2521/**
2522 * device_create_bin_file - create sysfs binary attribute file for device.
2523 * @dev: device.
2524 * @attr: device binary attribute descriptor.
2525 */
2526int device_create_bin_file(struct device *dev,
2527 const struct bin_attribute *attr)
2528{
2529 int error = -EINVAL;
2530 if (dev)
2531 error = sysfs_create_bin_file(&dev->kobj, attr);
2532 return error;
2533}
2534EXPORT_SYMBOL_GPL(device_create_bin_file);
2535
2536/**
2537 * device_remove_bin_file - remove sysfs binary attribute file
2538 * @dev: device.
2539 * @attr: device binary attribute descriptor.
2540 */
2541void device_remove_bin_file(struct device *dev,
2542 const struct bin_attribute *attr)
2543{
2544 if (dev)
2545 sysfs_remove_bin_file(&dev->kobj, attr);
2546}
2547EXPORT_SYMBOL_GPL(device_remove_bin_file);
2548
2549static void klist_children_get(struct klist_node *n)
2550{
2551 struct device_private *p = to_device_private_parent(n);
2552 struct device *dev = p->device;
2553
2554 get_device(dev);
2555}
2556
2557static void klist_children_put(struct klist_node *n)
2558{
2559 struct device_private *p = to_device_private_parent(n);
2560 struct device *dev = p->device;
2561
2562 put_device(dev);
2563}
2564
2565/**
2566 * device_initialize - init device structure.
2567 * @dev: device.
2568 *
2569 * This prepares the device for use by other layers by initializing
2570 * its fields.
2571 * It is the first half of device_register(), if called by
2572 * that function, though it can also be called separately, so one
2573 * may use @dev's fields. In particular, get_device()/put_device()
2574 * may be used for reference counting of @dev after calling this
2575 * function.
2576 *
2577 * All fields in @dev must be initialized by the caller to 0, except
2578 * for those explicitly set to some other value. The simplest
2579 * approach is to use kzalloc() to allocate the structure containing
2580 * @dev.
2581 *
2582 * NOTE: Use put_device() to give up your reference instead of freeing
2583 * @dev directly once you have called this function.
2584 */
2585void device_initialize(struct device *dev)
2586{
2587 dev->kobj.kset = devices_kset;
2588 kobject_init(&dev->kobj, &device_ktype);
2589 INIT_LIST_HEAD(&dev->dma_pools);
2590 mutex_init(&dev->mutex);
2591#ifdef CONFIG_PROVE_LOCKING
2592 mutex_init(&dev->lockdep_mutex);
2593#endif
2594 lockdep_set_novalidate_class(&dev->mutex);
2595 spin_lock_init(&dev->devres_lock);
2596 INIT_LIST_HEAD(&dev->devres_head);
2597 device_pm_init(dev);
2598 set_dev_node(dev, -1);
2599#ifdef CONFIG_GENERIC_MSI_IRQ
2600 INIT_LIST_HEAD(&dev->msi_list);
2601#endif
2602 INIT_LIST_HEAD(&dev->links.consumers);
2603 INIT_LIST_HEAD(&dev->links.suppliers);
2604 INIT_LIST_HEAD(&dev->links.defer_sync);
2605 dev->links.status = DL_DEV_NO_DRIVER;
2606}
2607EXPORT_SYMBOL_GPL(device_initialize);
2608
2609struct kobject *virtual_device_parent(struct device *dev)
2610{
2611 static struct kobject *virtual_dir = NULL;
2612
2613 if (!virtual_dir)
2614 virtual_dir = kobject_create_and_add("virtual",
2615 &devices_kset->kobj);
2616
2617 return virtual_dir;
2618}
2619
2620struct class_dir {
2621 struct kobject kobj;
2622 struct class *class;
2623};
2624
2625#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2626
2627static void class_dir_release(struct kobject *kobj)
2628{
2629 struct class_dir *dir = to_class_dir(kobj);
2630 kfree(dir);
2631}
2632
2633static const
2634struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2635{
2636 struct class_dir *dir = to_class_dir(kobj);
2637 return dir->class->ns_type;
2638}
2639
2640static struct kobj_type class_dir_ktype = {
2641 .release = class_dir_release,
2642 .sysfs_ops = &kobj_sysfs_ops,
2643 .child_ns_type = class_dir_child_ns_type
2644};
2645
2646static struct kobject *
2647class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2648{
2649 struct class_dir *dir;
2650 int retval;
2651
2652 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2653 if (!dir)
2654 return ERR_PTR(-ENOMEM);
2655
2656 dir->class = class;
2657 kobject_init(&dir->kobj, &class_dir_ktype);
2658
2659 dir->kobj.kset = &class->p->glue_dirs;
2660
2661 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2662 if (retval < 0) {
2663 kobject_put(&dir->kobj);
2664 return ERR_PTR(retval);
2665 }
2666 return &dir->kobj;
2667}
2668
2669static DEFINE_MUTEX(gdp_mutex);
2670
2671static struct kobject *get_device_parent(struct device *dev,
2672 struct device *parent)
2673{
2674 if (dev->class) {
2675 struct kobject *kobj = NULL;
2676 struct kobject *parent_kobj;
2677 struct kobject *k;
2678
2679#ifdef CONFIG_BLOCK
2680 /* block disks show up in /sys/block */
2681 if (sysfs_deprecated && dev->class == &block_class) {
2682 if (parent && parent->class == &block_class)
2683 return &parent->kobj;
2684 return &block_class.p->subsys.kobj;
2685 }
2686#endif
2687
2688 /*
2689 * If we have no parent, we live in "virtual".
2690 * Class-devices with a non class-device as parent, live
2691 * in a "glue" directory to prevent namespace collisions.
2692 */
2693 if (parent == NULL)
2694 parent_kobj = virtual_device_parent(dev);
2695 else if (parent->class && !dev->class->ns_type)
2696 return &parent->kobj;
2697 else
2698 parent_kobj = &parent->kobj;
2699
2700 mutex_lock(&gdp_mutex);
2701
2702 /* find our class-directory at the parent and reference it */
2703 spin_lock(&dev->class->p->glue_dirs.list_lock);
2704 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2705 if (k->parent == parent_kobj) {
2706 kobj = kobject_get(k);
2707 break;
2708 }
2709 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2710 if (kobj) {
2711 mutex_unlock(&gdp_mutex);
2712 return kobj;
2713 }
2714
2715 /* or create a new class-directory at the parent device */
2716 k = class_dir_create_and_add(dev->class, parent_kobj);
2717 /* do not emit an uevent for this simple "glue" directory */
2718 mutex_unlock(&gdp_mutex);
2719 return k;
2720 }
2721
2722 /* subsystems can specify a default root directory for their devices */
2723 if (!parent && dev->bus && dev->bus->dev_root)
2724 return &dev->bus->dev_root->kobj;
2725
2726 if (parent)
2727 return &parent->kobj;
2728 return NULL;
2729}
2730
2731static inline bool live_in_glue_dir(struct kobject *kobj,
2732 struct device *dev)
2733{
2734 if (!kobj || !dev->class ||
2735 kobj->kset != &dev->class->p->glue_dirs)
2736 return false;
2737 return true;
2738}
2739
2740static inline struct kobject *get_glue_dir(struct device *dev)
2741{
2742 return dev->kobj.parent;
2743}
2744
2745/*
2746 * make sure cleaning up dir as the last step, we need to make
2747 * sure .release handler of kobject is run with holding the
2748 * global lock
2749 */
2750static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2751{
2752 unsigned int ref;
2753
2754 /* see if we live in a "glue" directory */
2755 if (!live_in_glue_dir(glue_dir, dev))
2756 return;
2757
2758 mutex_lock(&gdp_mutex);
2759 /**
2760 * There is a race condition between removing glue directory
2761 * and adding a new device under the glue directory.
2762 *
2763 * CPU1: CPU2:
2764 *
2765 * device_add()
2766 * get_device_parent()
2767 * class_dir_create_and_add()
2768 * kobject_add_internal()
2769 * create_dir() // create glue_dir
2770 *
2771 * device_add()
2772 * get_device_parent()
2773 * kobject_get() // get glue_dir
2774 *
2775 * device_del()
2776 * cleanup_glue_dir()
2777 * kobject_del(glue_dir)
2778 *
2779 * kobject_add()
2780 * kobject_add_internal()
2781 * create_dir() // in glue_dir
2782 * sysfs_create_dir_ns()
2783 * kernfs_create_dir_ns(sd)
2784 *
2785 * sysfs_remove_dir() // glue_dir->sd=NULL
2786 * sysfs_put() // free glue_dir->sd
2787 *
2788 * // sd is freed
2789 * kernfs_new_node(sd)
2790 * kernfs_get(glue_dir)
2791 * kernfs_add_one()
2792 * kernfs_put()
2793 *
2794 * Before CPU1 remove last child device under glue dir, if CPU2 add
2795 * a new device under glue dir, the glue_dir kobject reference count
2796 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2797 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2798 * and sysfs_put(). This result in glue_dir->sd is freed.
2799 *
2800 * Then the CPU2 will see a stale "empty" but still potentially used
2801 * glue dir around in kernfs_new_node().
2802 *
2803 * In order to avoid this happening, we also should make sure that
2804 * kernfs_node for glue_dir is released in CPU1 only when refcount
2805 * for glue_dir kobj is 1.
2806 */
2807 ref = kref_read(&glue_dir->kref);
2808 if (!kobject_has_children(glue_dir) && !--ref)
2809 kobject_del(glue_dir);
2810 kobject_put(glue_dir);
2811 mutex_unlock(&gdp_mutex);
2812}
2813
2814static int device_add_class_symlinks(struct device *dev)
2815{
2816 struct device_node *of_node = dev_of_node(dev);
2817 int error;
2818
2819 if (of_node) {
2820 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2821 if (error)
2822 dev_warn(dev, "Error %d creating of_node link\n",error);
2823 /* An error here doesn't warrant bringing down the device */
2824 }
2825
2826 if (!dev->class)
2827 return 0;
2828
2829 error = sysfs_create_link(&dev->kobj,
2830 &dev->class->p->subsys.kobj,
2831 "subsystem");
2832 if (error)
2833 goto out_devnode;
2834
2835 if (dev->parent && device_is_not_partition(dev)) {
2836 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2837 "device");
2838 if (error)
2839 goto out_subsys;
2840 }
2841
2842#ifdef CONFIG_BLOCK
2843 /* /sys/block has directories and does not need symlinks */
2844 if (sysfs_deprecated && dev->class == &block_class)
2845 return 0;
2846#endif
2847
2848 /* link in the class directory pointing to the device */
2849 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2850 &dev->kobj, dev_name(dev));
2851 if (error)
2852 goto out_device;
2853
2854 return 0;
2855
2856out_device:
2857 sysfs_remove_link(&dev->kobj, "device");
2858
2859out_subsys:
2860 sysfs_remove_link(&dev->kobj, "subsystem");
2861out_devnode:
2862 sysfs_remove_link(&dev->kobj, "of_node");
2863 return error;
2864}
2865
2866static void device_remove_class_symlinks(struct device *dev)
2867{
2868 if (dev_of_node(dev))
2869 sysfs_remove_link(&dev->kobj, "of_node");
2870
2871 if (!dev->class)
2872 return;
2873
2874 if (dev->parent && device_is_not_partition(dev))
2875 sysfs_remove_link(&dev->kobj, "device");
2876 sysfs_remove_link(&dev->kobj, "subsystem");
2877#ifdef CONFIG_BLOCK
2878 if (sysfs_deprecated && dev->class == &block_class)
2879 return;
2880#endif
2881 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2882}
2883
2884/**
2885 * dev_set_name - set a device name
2886 * @dev: device
2887 * @fmt: format string for the device's name
2888 */
2889int dev_set_name(struct device *dev, const char *fmt, ...)
2890{
2891 va_list vargs;
2892 int err;
2893
2894 va_start(vargs, fmt);
2895 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2896 va_end(vargs);
2897 return err;
2898}
2899EXPORT_SYMBOL_GPL(dev_set_name);
2900
2901/**
2902 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2903 * @dev: device
2904 *
2905 * By default we select char/ for new entries. Setting class->dev_obj
2906 * to NULL prevents an entry from being created. class->dev_kobj must
2907 * be set (or cleared) before any devices are registered to the class
2908 * otherwise device_create_sys_dev_entry() and
2909 * device_remove_sys_dev_entry() will disagree about the presence of
2910 * the link.
2911 */
2912static struct kobject *device_to_dev_kobj(struct device *dev)
2913{
2914 struct kobject *kobj;
2915
2916 if (dev->class)
2917 kobj = dev->class->dev_kobj;
2918 else
2919 kobj = sysfs_dev_char_kobj;
2920
2921 return kobj;
2922}
2923
2924static int device_create_sys_dev_entry(struct device *dev)
2925{
2926 struct kobject *kobj = device_to_dev_kobj(dev);
2927 int error = 0;
2928 char devt_str[15];
2929
2930 if (kobj) {
2931 format_dev_t(devt_str, dev->devt);
2932 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2933 }
2934
2935 return error;
2936}
2937
2938static void device_remove_sys_dev_entry(struct device *dev)
2939{
2940 struct kobject *kobj = device_to_dev_kobj(dev);
2941 char devt_str[15];
2942
2943 if (kobj) {
2944 format_dev_t(devt_str, dev->devt);
2945 sysfs_remove_link(kobj, devt_str);
2946 }
2947}
2948
2949static int device_private_init(struct device *dev)
2950{
2951 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2952 if (!dev->p)
2953 return -ENOMEM;
2954 dev->p->device = dev;
2955 klist_init(&dev->p->klist_children, klist_children_get,
2956 klist_children_put);
2957 INIT_LIST_HEAD(&dev->p->deferred_probe);
2958 return 0;
2959}
2960
2961/**
2962 * device_add - add device to device hierarchy.
2963 * @dev: device.
2964 *
2965 * This is part 2 of device_register(), though may be called
2966 * separately _iff_ device_initialize() has been called separately.
2967 *
2968 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2969 * to the global and sibling lists for the device, then
2970 * adds it to the other relevant subsystems of the driver model.
2971 *
2972 * Do not call this routine or device_register() more than once for
2973 * any device structure. The driver model core is not designed to work
2974 * with devices that get unregistered and then spring back to life.
2975 * (Among other things, it's very hard to guarantee that all references
2976 * to the previous incarnation of @dev have been dropped.) Allocate
2977 * and register a fresh new struct device instead.
2978 *
2979 * NOTE: _Never_ directly free @dev after calling this function, even
2980 * if it returned an error! Always use put_device() to give up your
2981 * reference instead.
2982 *
2983 * Rule of thumb is: if device_add() succeeds, you should call
2984 * device_del() when you want to get rid of it. If device_add() has
2985 * *not* succeeded, use *only* put_device() to drop the reference
2986 * count.
2987 */
2988int device_add(struct device *dev)
2989{
2990 struct device *parent;
2991 struct kobject *kobj;
2992 struct class_interface *class_intf;
2993 int error = -EINVAL;
2994 struct kobject *glue_dir = NULL;
2995
2996 dev = get_device(dev);
2997 if (!dev)
2998 goto done;
2999
3000 if (!dev->p) {
3001 error = device_private_init(dev);
3002 if (error)
3003 goto done;
3004 }
3005
3006 /*
3007 * for statically allocated devices, which should all be converted
3008 * some day, we need to initialize the name. We prevent reading back
3009 * the name, and force the use of dev_name()
3010 */
3011 if (dev->init_name) {
3012 dev_set_name(dev, "%s", dev->init_name);
3013 dev->init_name = NULL;
3014 }
3015
3016 /* subsystems can specify simple device enumeration */
3017 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3018 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3019
3020 if (!dev_name(dev)) {
3021 error = -EINVAL;
3022 goto name_error;
3023 }
3024
3025 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3026
3027 parent = get_device(dev->parent);
3028 kobj = get_device_parent(dev, parent);
3029 if (IS_ERR(kobj)) {
3030 error = PTR_ERR(kobj);
3031 goto parent_error;
3032 }
3033 if (kobj)
3034 dev->kobj.parent = kobj;
3035
3036 /* use parent numa_node */
3037 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3038 set_dev_node(dev, dev_to_node(parent));
3039
3040 /* first, register with generic layer. */
3041 /* we require the name to be set before, and pass NULL */
3042 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3043 if (error) {
3044 glue_dir = get_glue_dir(dev);
3045 goto Error;
3046 }
3047
3048 /* notify platform of device entry */
3049 error = device_platform_notify(dev, KOBJ_ADD);
3050 if (error)
3051 goto platform_error;
3052
3053 error = device_create_file(dev, &dev_attr_uevent);
3054 if (error)
3055 goto attrError;
3056
3057 error = device_add_class_symlinks(dev);
3058 if (error)
3059 goto SymlinkError;
3060 error = device_add_attrs(dev);
3061 if (error)
3062 goto AttrsError;
3063 error = bus_add_device(dev);
3064 if (error)
3065 goto BusError;
3066 error = dpm_sysfs_add(dev);
3067 if (error)
3068 goto DPMError;
3069 device_pm_add(dev);
3070
3071 if (MAJOR(dev->devt)) {
3072 error = device_create_file(dev, &dev_attr_dev);
3073 if (error)
3074 goto DevAttrError;
3075
3076 error = device_create_sys_dev_entry(dev);
3077 if (error)
3078 goto SysEntryError;
3079
3080 devtmpfs_create_node(dev);
3081 }
3082
3083 /* Notify clients of device addition. This call must come
3084 * after dpm_sysfs_add() and before kobject_uevent().
3085 */
3086 if (dev->bus)
3087 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3088 BUS_NOTIFY_ADD_DEVICE, dev);
3089
3090 kobject_uevent(&dev->kobj, KOBJ_ADD);
3091
3092 /*
3093 * Check if any of the other devices (consumers) have been waiting for
3094 * this device (supplier) to be added so that they can create a device
3095 * link to it.
3096 *
3097 * This needs to happen after device_pm_add() because device_link_add()
3098 * requires the supplier be registered before it's called.
3099 *
3100 * But this also needs to happen before bus_probe_device() to make sure
3101 * waiting consumers can link to it before the driver is bound to the
3102 * device and the driver sync_state callback is called for this device.
3103 */
3104 if (dev->fwnode && !dev->fwnode->dev) {
3105 dev->fwnode->dev = dev;
3106 fw_devlink_link_device(dev);
3107 }
3108
3109 bus_probe_device(dev);
3110 if (parent)
3111 klist_add_tail(&dev->p->knode_parent,
3112 &parent->p->klist_children);
3113
3114 if (dev->class) {
3115 mutex_lock(&dev->class->p->mutex);
3116 /* tie the class to the device */
3117 klist_add_tail(&dev->p->knode_class,
3118 &dev->class->p->klist_devices);
3119
3120 /* notify any interfaces that the device is here */
3121 list_for_each_entry(class_intf,
3122 &dev->class->p->interfaces, node)
3123 if (class_intf->add_dev)
3124 class_intf->add_dev(dev, class_intf);
3125 mutex_unlock(&dev->class->p->mutex);
3126 }
3127done:
3128 put_device(dev);
3129 return error;
3130 SysEntryError:
3131 if (MAJOR(dev->devt))
3132 device_remove_file(dev, &dev_attr_dev);
3133 DevAttrError:
3134 device_pm_remove(dev);
3135 dpm_sysfs_remove(dev);
3136 DPMError:
3137 bus_remove_device(dev);
3138 BusError:
3139 device_remove_attrs(dev);
3140 AttrsError:
3141 device_remove_class_symlinks(dev);
3142 SymlinkError:
3143 device_remove_file(dev, &dev_attr_uevent);
3144 attrError:
3145 device_platform_notify(dev, KOBJ_REMOVE);
3146platform_error:
3147 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3148 glue_dir = get_glue_dir(dev);
3149 kobject_del(&dev->kobj);
3150 Error:
3151 cleanup_glue_dir(dev, glue_dir);
3152parent_error:
3153 put_device(parent);
3154name_error:
3155 kfree(dev->p);
3156 dev->p = NULL;
3157 goto done;
3158}
3159EXPORT_SYMBOL_GPL(device_add);
3160
3161/**
3162 * device_register - register a device with the system.
3163 * @dev: pointer to the device structure
3164 *
3165 * This happens in two clean steps - initialize the device
3166 * and add it to the system. The two steps can be called
3167 * separately, but this is the easiest and most common.
3168 * I.e. you should only call the two helpers separately if
3169 * have a clearly defined need to use and refcount the device
3170 * before it is added to the hierarchy.
3171 *
3172 * For more information, see the kerneldoc for device_initialize()
3173 * and device_add().
3174 *
3175 * NOTE: _Never_ directly free @dev after calling this function, even
3176 * if it returned an error! Always use put_device() to give up the
3177 * reference initialized in this function instead.
3178 */
3179int device_register(struct device *dev)
3180{
3181 device_initialize(dev);
3182 return device_add(dev);
3183}
3184EXPORT_SYMBOL_GPL(device_register);
3185
3186/**
3187 * get_device - increment reference count for device.
3188 * @dev: device.
3189 *
3190 * This simply forwards the call to kobject_get(), though
3191 * we do take care to provide for the case that we get a NULL
3192 * pointer passed in.
3193 */
3194struct device *get_device(struct device *dev)
3195{
3196 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3197}
3198EXPORT_SYMBOL_GPL(get_device);
3199
3200/**
3201 * put_device - decrement reference count.
3202 * @dev: device in question.
3203 */
3204void put_device(struct device *dev)
3205{
3206 /* might_sleep(); */
3207 if (dev)
3208 kobject_put(&dev->kobj);
3209}
3210EXPORT_SYMBOL_GPL(put_device);
3211
3212bool kill_device(struct device *dev)
3213{
3214 /*
3215 * Require the device lock and set the "dead" flag to guarantee that
3216 * the update behavior is consistent with the other bitfields near
3217 * it and that we cannot have an asynchronous probe routine trying
3218 * to run while we are tearing out the bus/class/sysfs from
3219 * underneath the device.
3220 */
3221 lockdep_assert_held(&dev->mutex);
3222
3223 if (dev->p->dead)
3224 return false;
3225 dev->p->dead = true;
3226 return true;
3227}
3228EXPORT_SYMBOL_GPL(kill_device);
3229
3230/**
3231 * device_del - delete device from system.
3232 * @dev: device.
3233 *
3234 * This is the first part of the device unregistration
3235 * sequence. This removes the device from the lists we control
3236 * from here, has it removed from the other driver model
3237 * subsystems it was added to in device_add(), and removes it
3238 * from the kobject hierarchy.
3239 *
3240 * NOTE: this should be called manually _iff_ device_add() was
3241 * also called manually.
3242 */
3243void device_del(struct device *dev)
3244{
3245 struct device *parent = dev->parent;
3246 struct kobject *glue_dir = NULL;
3247 struct class_interface *class_intf;
3248 unsigned int noio_flag;
3249
3250 device_lock(dev);
3251 kill_device(dev);
3252 device_unlock(dev);
3253
3254 if (dev->fwnode && dev->fwnode->dev == dev)
3255 dev->fwnode->dev = NULL;
3256
3257 /* Notify clients of device removal. This call must come
3258 * before dpm_sysfs_remove().
3259 */
3260 noio_flag = memalloc_noio_save();
3261 if (dev->bus)
3262 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3263 BUS_NOTIFY_DEL_DEVICE, dev);
3264
3265 dpm_sysfs_remove(dev);
3266 if (parent)
3267 klist_del(&dev->p->knode_parent);
3268 if (MAJOR(dev->devt)) {
3269 devtmpfs_delete_node(dev);
3270 device_remove_sys_dev_entry(dev);
3271 device_remove_file(dev, &dev_attr_dev);
3272 }
3273 if (dev->class) {
3274 device_remove_class_symlinks(dev);
3275
3276 mutex_lock(&dev->class->p->mutex);
3277 /* notify any interfaces that the device is now gone */
3278 list_for_each_entry(class_intf,
3279 &dev->class->p->interfaces, node)
3280 if (class_intf->remove_dev)
3281 class_intf->remove_dev(dev, class_intf);
3282 /* remove the device from the class list */
3283 klist_del(&dev->p->knode_class);
3284 mutex_unlock(&dev->class->p->mutex);
3285 }
3286 device_remove_file(dev, &dev_attr_uevent);
3287 device_remove_attrs(dev);
3288 bus_remove_device(dev);
3289 device_pm_remove(dev);
3290 driver_deferred_probe_del(dev);
3291 device_platform_notify(dev, KOBJ_REMOVE);
3292 device_remove_properties(dev);
3293 device_links_purge(dev);
3294
3295 if (dev->bus)
3296 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3297 BUS_NOTIFY_REMOVED_DEVICE, dev);
3298 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3299 glue_dir = get_glue_dir(dev);
3300 kobject_del(&dev->kobj);
3301 cleanup_glue_dir(dev, glue_dir);
3302 memalloc_noio_restore(noio_flag);
3303 put_device(parent);
3304}
3305EXPORT_SYMBOL_GPL(device_del);
3306
3307/**
3308 * device_unregister - unregister device from system.
3309 * @dev: device going away.
3310 *
3311 * We do this in two parts, like we do device_register(). First,
3312 * we remove it from all the subsystems with device_del(), then
3313 * we decrement the reference count via put_device(). If that
3314 * is the final reference count, the device will be cleaned up
3315 * via device_release() above. Otherwise, the structure will
3316 * stick around until the final reference to the device is dropped.
3317 */
3318void device_unregister(struct device *dev)
3319{
3320 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3321 device_del(dev);
3322 put_device(dev);
3323}
3324EXPORT_SYMBOL_GPL(device_unregister);
3325
3326static struct device *prev_device(struct klist_iter *i)
3327{
3328 struct klist_node *n = klist_prev(i);
3329 struct device *dev = NULL;
3330 struct device_private *p;
3331
3332 if (n) {
3333 p = to_device_private_parent(n);
3334 dev = p->device;
3335 }
3336 return dev;
3337}
3338
3339static struct device *next_device(struct klist_iter *i)
3340{
3341 struct klist_node *n = klist_next(i);
3342 struct device *dev = NULL;
3343 struct device_private *p;
3344
3345 if (n) {
3346 p = to_device_private_parent(n);
3347 dev = p->device;
3348 }
3349 return dev;
3350}
3351
3352/**
3353 * device_get_devnode - path of device node file
3354 * @dev: device
3355 * @mode: returned file access mode
3356 * @uid: returned file owner
3357 * @gid: returned file group
3358 * @tmp: possibly allocated string
3359 *
3360 * Return the relative path of a possible device node.
3361 * Non-default names may need to allocate a memory to compose
3362 * a name. This memory is returned in tmp and needs to be
3363 * freed by the caller.
3364 */
3365const char *device_get_devnode(struct device *dev,
3366 umode_t *mode, kuid_t *uid, kgid_t *gid,
3367 const char **tmp)
3368{
3369 char *s;
3370
3371 *tmp = NULL;
3372
3373 /* the device type may provide a specific name */
3374 if (dev->type && dev->type->devnode)
3375 *tmp = dev->type->devnode(dev, mode, uid, gid);
3376 if (*tmp)
3377 return *tmp;
3378
3379 /* the class may provide a specific name */
3380 if (dev->class && dev->class->devnode)
3381 *tmp = dev->class->devnode(dev, mode);
3382 if (*tmp)
3383 return *tmp;
3384
3385 /* return name without allocation, tmp == NULL */
3386 if (strchr(dev_name(dev), '!') == NULL)
3387 return dev_name(dev);
3388
3389 /* replace '!' in the name with '/' */
3390 s = kstrdup(dev_name(dev), GFP_KERNEL);
3391 if (!s)
3392 return NULL;
3393 strreplace(s, '!', '/');
3394 return *tmp = s;
3395}
3396
3397/**
3398 * device_for_each_child - device child iterator.
3399 * @parent: parent struct device.
3400 * @fn: function to be called for each device.
3401 * @data: data for the callback.
3402 *
3403 * Iterate over @parent's child devices, and call @fn for each,
3404 * passing it @data.
3405 *
3406 * We check the return of @fn each time. If it returns anything
3407 * other than 0, we break out and return that value.
3408 */
3409int device_for_each_child(struct device *parent, void *data,
3410 int (*fn)(struct device *dev, void *data))
3411{
3412 struct klist_iter i;
3413 struct device *child;
3414 int error = 0;
3415
3416 if (!parent->p)
3417 return 0;
3418
3419 klist_iter_init(&parent->p->klist_children, &i);
3420 while (!error && (child = next_device(&i)))
3421 error = fn(child, data);
3422 klist_iter_exit(&i);
3423 return error;
3424}
3425EXPORT_SYMBOL_GPL(device_for_each_child);
3426
3427/**
3428 * device_for_each_child_reverse - device child iterator in reversed order.
3429 * @parent: parent struct device.
3430 * @fn: function to be called for each device.
3431 * @data: data for the callback.
3432 *
3433 * Iterate over @parent's child devices, and call @fn for each,
3434 * passing it @data.
3435 *
3436 * We check the return of @fn each time. If it returns anything
3437 * other than 0, we break out and return that value.
3438 */
3439int device_for_each_child_reverse(struct device *parent, void *data,
3440 int (*fn)(struct device *dev, void *data))
3441{
3442 struct klist_iter i;
3443 struct device *child;
3444 int error = 0;
3445
3446 if (!parent->p)
3447 return 0;
3448
3449 klist_iter_init(&parent->p->klist_children, &i);
3450 while ((child = prev_device(&i)) && !error)
3451 error = fn(child, data);
3452 klist_iter_exit(&i);
3453 return error;
3454}
3455EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3456
3457/**
3458 * device_find_child - device iterator for locating a particular device.
3459 * @parent: parent struct device
3460 * @match: Callback function to check device
3461 * @data: Data to pass to match function
3462 *
3463 * This is similar to the device_for_each_child() function above, but it
3464 * returns a reference to a device that is 'found' for later use, as
3465 * determined by the @match callback.
3466 *
3467 * The callback should return 0 if the device doesn't match and non-zero
3468 * if it does. If the callback returns non-zero and a reference to the
3469 * current device can be obtained, this function will return to the caller
3470 * and not iterate over any more devices.
3471 *
3472 * NOTE: you will need to drop the reference with put_device() after use.
3473 */
3474struct device *device_find_child(struct device *parent, void *data,
3475 int (*match)(struct device *dev, void *data))
3476{
3477 struct klist_iter i;
3478 struct device *child;
3479
3480 if (!parent)
3481 return NULL;
3482
3483 klist_iter_init(&parent->p->klist_children, &i);
3484 while ((child = next_device(&i)))
3485 if (match(child, data) && get_device(child))
3486 break;
3487 klist_iter_exit(&i);
3488 return child;
3489}
3490EXPORT_SYMBOL_GPL(device_find_child);
3491
3492/**
3493 * device_find_child_by_name - device iterator for locating a child device.
3494 * @parent: parent struct device
3495 * @name: name of the child device
3496 *
3497 * This is similar to the device_find_child() function above, but it
3498 * returns a reference to a device that has the name @name.
3499 *
3500 * NOTE: you will need to drop the reference with put_device() after use.
3501 */
3502struct device *device_find_child_by_name(struct device *parent,
3503 const char *name)
3504{
3505 struct klist_iter i;
3506 struct device *child;
3507
3508 if (!parent)
3509 return NULL;
3510
3511 klist_iter_init(&parent->p->klist_children, &i);
3512 while ((child = next_device(&i)))
3513 if (sysfs_streq(dev_name(child), name) && get_device(child))
3514 break;
3515 klist_iter_exit(&i);
3516 return child;
3517}
3518EXPORT_SYMBOL_GPL(device_find_child_by_name);
3519
3520int __init devices_init(void)
3521{
3522 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3523 if (!devices_kset)
3524 return -ENOMEM;
3525 dev_kobj = kobject_create_and_add("dev", NULL);
3526 if (!dev_kobj)
3527 goto dev_kobj_err;
3528 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3529 if (!sysfs_dev_block_kobj)
3530 goto block_kobj_err;
3531 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3532 if (!sysfs_dev_char_kobj)
3533 goto char_kobj_err;
3534
3535 return 0;
3536
3537 char_kobj_err:
3538 kobject_put(sysfs_dev_block_kobj);
3539 block_kobj_err:
3540 kobject_put(dev_kobj);
3541 dev_kobj_err:
3542 kset_unregister(devices_kset);
3543 return -ENOMEM;
3544}
3545
3546static int device_check_offline(struct device *dev, void *not_used)
3547{
3548 int ret;
3549
3550 ret = device_for_each_child(dev, NULL, device_check_offline);
3551 if (ret)
3552 return ret;
3553
3554 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3555}
3556
3557/**
3558 * device_offline - Prepare the device for hot-removal.
3559 * @dev: Device to be put offline.
3560 *
3561 * Execute the device bus type's .offline() callback, if present, to prepare
3562 * the device for a subsequent hot-removal. If that succeeds, the device must
3563 * not be used until either it is removed or its bus type's .online() callback
3564 * is executed.
3565 *
3566 * Call under device_hotplug_lock.
3567 */
3568int device_offline(struct device *dev)
3569{
3570 int ret;
3571
3572 if (dev->offline_disabled)
3573 return -EPERM;
3574
3575 ret = device_for_each_child(dev, NULL, device_check_offline);
3576 if (ret)
3577 return ret;
3578
3579 device_lock(dev);
3580 if (device_supports_offline(dev)) {
3581 if (dev->offline) {
3582 ret = 1;
3583 } else {
3584 ret = dev->bus->offline(dev);
3585 if (!ret) {
3586 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3587 dev->offline = true;
3588 }
3589 }
3590 }
3591 device_unlock(dev);
3592
3593 return ret;
3594}
3595
3596/**
3597 * device_online - Put the device back online after successful device_offline().
3598 * @dev: Device to be put back online.
3599 *
3600 * If device_offline() has been successfully executed for @dev, but the device
3601 * has not been removed subsequently, execute its bus type's .online() callback
3602 * to indicate that the device can be used again.
3603 *
3604 * Call under device_hotplug_lock.
3605 */
3606int device_online(struct device *dev)
3607{
3608 int ret = 0;
3609
3610 device_lock(dev);
3611 if (device_supports_offline(dev)) {
3612 if (dev->offline) {
3613 ret = dev->bus->online(dev);
3614 if (!ret) {
3615 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3616 dev->offline = false;
3617 }
3618 } else {
3619 ret = 1;
3620 }
3621 }
3622 device_unlock(dev);
3623
3624 return ret;
3625}
3626
3627struct root_device {
3628 struct device dev;
3629 struct module *owner;
3630};
3631
3632static inline struct root_device *to_root_device(struct device *d)
3633{
3634 return container_of(d, struct root_device, dev);
3635}
3636
3637static void root_device_release(struct device *dev)
3638{
3639 kfree(to_root_device(dev));
3640}
3641
3642/**
3643 * __root_device_register - allocate and register a root device
3644 * @name: root device name
3645 * @owner: owner module of the root device, usually THIS_MODULE
3646 *
3647 * This function allocates a root device and registers it
3648 * using device_register(). In order to free the returned
3649 * device, use root_device_unregister().
3650 *
3651 * Root devices are dummy devices which allow other devices
3652 * to be grouped under /sys/devices. Use this function to
3653 * allocate a root device and then use it as the parent of
3654 * any device which should appear under /sys/devices/{name}
3655 *
3656 * The /sys/devices/{name} directory will also contain a
3657 * 'module' symlink which points to the @owner directory
3658 * in sysfs.
3659 *
3660 * Returns &struct device pointer on success, or ERR_PTR() on error.
3661 *
3662 * Note: You probably want to use root_device_register().
3663 */
3664struct device *__root_device_register(const char *name, struct module *owner)
3665{
3666 struct root_device *root;
3667 int err = -ENOMEM;
3668
3669 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3670 if (!root)
3671 return ERR_PTR(err);
3672
3673 err = dev_set_name(&root->dev, "%s", name);
3674 if (err) {
3675 kfree(root);
3676 return ERR_PTR(err);
3677 }
3678
3679 root->dev.release = root_device_release;
3680
3681 err = device_register(&root->dev);
3682 if (err) {
3683 put_device(&root->dev);
3684 return ERR_PTR(err);
3685 }
3686
3687#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3688 if (owner) {
3689 struct module_kobject *mk = &owner->mkobj;
3690
3691 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3692 if (err) {
3693 device_unregister(&root->dev);
3694 return ERR_PTR(err);
3695 }
3696 root->owner = owner;
3697 }
3698#endif
3699
3700 return &root->dev;
3701}
3702EXPORT_SYMBOL_GPL(__root_device_register);
3703
3704/**
3705 * root_device_unregister - unregister and free a root device
3706 * @dev: device going away
3707 *
3708 * This function unregisters and cleans up a device that was created by
3709 * root_device_register().
3710 */
3711void root_device_unregister(struct device *dev)
3712{
3713 struct root_device *root = to_root_device(dev);
3714
3715 if (root->owner)
3716 sysfs_remove_link(&root->dev.kobj, "module");
3717
3718 device_unregister(dev);
3719}
3720EXPORT_SYMBOL_GPL(root_device_unregister);
3721
3722
3723static void device_create_release(struct device *dev)
3724{
3725 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3726 kfree(dev);
3727}
3728
3729static __printf(6, 0) struct device *
3730device_create_groups_vargs(struct class *class, struct device *parent,
3731 dev_t devt, void *drvdata,
3732 const struct attribute_group **groups,
3733 const char *fmt, va_list args)
3734{
3735 struct device *dev = NULL;
3736 int retval = -ENODEV;
3737
3738 if (class == NULL || IS_ERR(class))
3739 goto error;
3740
3741 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3742 if (!dev) {
3743 retval = -ENOMEM;
3744 goto error;
3745 }
3746
3747 device_initialize(dev);
3748 dev->devt = devt;
3749 dev->class = class;
3750 dev->parent = parent;
3751 dev->groups = groups;
3752 dev->release = device_create_release;
3753 dev_set_drvdata(dev, drvdata);
3754
3755 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3756 if (retval)
3757 goto error;
3758
3759 retval = device_add(dev);
3760 if (retval)
3761 goto error;
3762
3763 return dev;
3764
3765error:
3766 put_device(dev);
3767 return ERR_PTR(retval);
3768}
3769
3770/**
3771 * device_create - creates a device and registers it with sysfs
3772 * @class: pointer to the struct class that this device should be registered to
3773 * @parent: pointer to the parent struct device of this new device, if any
3774 * @devt: the dev_t for the char device to be added
3775 * @drvdata: the data to be added to the device for callbacks
3776 * @fmt: string for the device's name
3777 *
3778 * This function can be used by char device classes. A struct device
3779 * will be created in sysfs, registered to the specified class.
3780 *
3781 * A "dev" file will be created, showing the dev_t for the device, if
3782 * the dev_t is not 0,0.
3783 * If a pointer to a parent struct device is passed in, the newly created
3784 * struct device will be a child of that device in sysfs.
3785 * The pointer to the struct device will be returned from the call.
3786 * Any further sysfs files that might be required can be created using this
3787 * pointer.
3788 *
3789 * Returns &struct device pointer on success, or ERR_PTR() on error.
3790 *
3791 * Note: the struct class passed to this function must have previously
3792 * been created with a call to class_create().
3793 */
3794struct device *device_create(struct class *class, struct device *parent,
3795 dev_t devt, void *drvdata, const char *fmt, ...)
3796{
3797 va_list vargs;
3798 struct device *dev;
3799
3800 va_start(vargs, fmt);
3801 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3802 fmt, vargs);
3803 va_end(vargs);
3804 return dev;
3805}
3806EXPORT_SYMBOL_GPL(device_create);
3807
3808/**
3809 * device_create_with_groups - creates a device and registers it with sysfs
3810 * @class: pointer to the struct class that this device should be registered to
3811 * @parent: pointer to the parent struct device of this new device, if any
3812 * @devt: the dev_t for the char device to be added
3813 * @drvdata: the data to be added to the device for callbacks
3814 * @groups: NULL-terminated list of attribute groups to be created
3815 * @fmt: string for the device's name
3816 *
3817 * This function can be used by char device classes. A struct device
3818 * will be created in sysfs, registered to the specified class.
3819 * Additional attributes specified in the groups parameter will also
3820 * be created automatically.
3821 *
3822 * A "dev" file will be created, showing the dev_t for the device, if
3823 * the dev_t is not 0,0.
3824 * If a pointer to a parent struct device is passed in, the newly created
3825 * struct device will be a child of that device in sysfs.
3826 * The pointer to the struct device will be returned from the call.
3827 * Any further sysfs files that might be required can be created using this
3828 * pointer.
3829 *
3830 * Returns &struct device pointer on success, or ERR_PTR() on error.
3831 *
3832 * Note: the struct class passed to this function must have previously
3833 * been created with a call to class_create().
3834 */
3835struct device *device_create_with_groups(struct class *class,
3836 struct device *parent, dev_t devt,
3837 void *drvdata,
3838 const struct attribute_group **groups,
3839 const char *fmt, ...)
3840{
3841 va_list vargs;
3842 struct device *dev;
3843
3844 va_start(vargs, fmt);
3845 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3846 fmt, vargs);
3847 va_end(vargs);
3848 return dev;
3849}
3850EXPORT_SYMBOL_GPL(device_create_with_groups);
3851
3852/**
3853 * device_destroy - removes a device that was created with device_create()
3854 * @class: pointer to the struct class that this device was registered with
3855 * @devt: the dev_t of the device that was previously registered
3856 *
3857 * This call unregisters and cleans up a device that was created with a
3858 * call to device_create().
3859 */
3860void device_destroy(struct class *class, dev_t devt)
3861{
3862 struct device *dev;
3863
3864 dev = class_find_device_by_devt(class, devt);
3865 if (dev) {
3866 put_device(dev);
3867 device_unregister(dev);
3868 }
3869}
3870EXPORT_SYMBOL_GPL(device_destroy);
3871
3872/**
3873 * device_rename - renames a device
3874 * @dev: the pointer to the struct device to be renamed
3875 * @new_name: the new name of the device
3876 *
3877 * It is the responsibility of the caller to provide mutual
3878 * exclusion between two different calls of device_rename
3879 * on the same device to ensure that new_name is valid and
3880 * won't conflict with other devices.
3881 *
3882 * Note: Don't call this function. Currently, the networking layer calls this
3883 * function, but that will change. The following text from Kay Sievers offers
3884 * some insight:
3885 *
3886 * Renaming devices is racy at many levels, symlinks and other stuff are not
3887 * replaced atomically, and you get a "move" uevent, but it's not easy to
3888 * connect the event to the old and new device. Device nodes are not renamed at
3889 * all, there isn't even support for that in the kernel now.
3890 *
3891 * In the meantime, during renaming, your target name might be taken by another
3892 * driver, creating conflicts. Or the old name is taken directly after you
3893 * renamed it -- then you get events for the same DEVPATH, before you even see
3894 * the "move" event. It's just a mess, and nothing new should ever rely on
3895 * kernel device renaming. Besides that, it's not even implemented now for
3896 * other things than (driver-core wise very simple) network devices.
3897 *
3898 * We are currently about to change network renaming in udev to completely
3899 * disallow renaming of devices in the same namespace as the kernel uses,
3900 * because we can't solve the problems properly, that arise with swapping names
3901 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3902 * be allowed to some other name than eth[0-9]*, for the aforementioned
3903 * reasons.
3904 *
3905 * Make up a "real" name in the driver before you register anything, or add
3906 * some other attributes for userspace to find the device, or use udev to add
3907 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3908 * don't even want to get into that and try to implement the missing pieces in
3909 * the core. We really have other pieces to fix in the driver core mess. :)
3910 */
3911int device_rename(struct device *dev, const char *new_name)
3912{
3913 struct kobject *kobj = &dev->kobj;
3914 char *old_device_name = NULL;
3915 int error;
3916
3917 dev = get_device(dev);
3918 if (!dev)
3919 return -EINVAL;
3920
3921 dev_dbg(dev, "renaming to %s\n", new_name);
3922
3923 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3924 if (!old_device_name) {
3925 error = -ENOMEM;
3926 goto out;
3927 }
3928
3929 if (dev->class) {
3930 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3931 kobj, old_device_name,
3932 new_name, kobject_namespace(kobj));
3933 if (error)
3934 goto out;
3935 }
3936
3937 error = kobject_rename(kobj, new_name);
3938 if (error)
3939 goto out;
3940
3941out:
3942 put_device(dev);
3943
3944 kfree(old_device_name);
3945
3946 return error;
3947}
3948EXPORT_SYMBOL_GPL(device_rename);
3949
3950static int device_move_class_links(struct device *dev,
3951 struct device *old_parent,
3952 struct device *new_parent)
3953{
3954 int error = 0;
3955
3956 if (old_parent)
3957 sysfs_remove_link(&dev->kobj, "device");
3958 if (new_parent)
3959 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3960 "device");
3961 return error;
3962}
3963
3964/**
3965 * device_move - moves a device to a new parent
3966 * @dev: the pointer to the struct device to be moved
3967 * @new_parent: the new parent of the device (can be NULL)
3968 * @dpm_order: how to reorder the dpm_list
3969 */
3970int device_move(struct device *dev, struct device *new_parent,
3971 enum dpm_order dpm_order)
3972{
3973 int error;
3974 struct device *old_parent;
3975 struct kobject *new_parent_kobj;
3976
3977 dev = get_device(dev);
3978 if (!dev)
3979 return -EINVAL;
3980
3981 device_pm_lock();
3982 new_parent = get_device(new_parent);
3983 new_parent_kobj = get_device_parent(dev, new_parent);
3984 if (IS_ERR(new_parent_kobj)) {
3985 error = PTR_ERR(new_parent_kobj);
3986 put_device(new_parent);
3987 goto out;
3988 }
3989
3990 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3991 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3992 error = kobject_move(&dev->kobj, new_parent_kobj);
3993 if (error) {
3994 cleanup_glue_dir(dev, new_parent_kobj);
3995 put_device(new_parent);
3996 goto out;
3997 }
3998 old_parent = dev->parent;
3999 dev->parent = new_parent;
4000 if (old_parent)
4001 klist_remove(&dev->p->knode_parent);
4002 if (new_parent) {
4003 klist_add_tail(&dev->p->knode_parent,
4004 &new_parent->p->klist_children);
4005 set_dev_node(dev, dev_to_node(new_parent));
4006 }
4007
4008 if (dev->class) {
4009 error = device_move_class_links(dev, old_parent, new_parent);
4010 if (error) {
4011 /* We ignore errors on cleanup since we're hosed anyway... */
4012 device_move_class_links(dev, new_parent, old_parent);
4013 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4014 if (new_parent)
4015 klist_remove(&dev->p->knode_parent);
4016 dev->parent = old_parent;
4017 if (old_parent) {
4018 klist_add_tail(&dev->p->knode_parent,
4019 &old_parent->p->klist_children);
4020 set_dev_node(dev, dev_to_node(old_parent));
4021 }
4022 }
4023 cleanup_glue_dir(dev, new_parent_kobj);
4024 put_device(new_parent);
4025 goto out;
4026 }
4027 }
4028 switch (dpm_order) {
4029 case DPM_ORDER_NONE:
4030 break;
4031 case DPM_ORDER_DEV_AFTER_PARENT:
4032 device_pm_move_after(dev, new_parent);
4033 devices_kset_move_after(dev, new_parent);
4034 break;
4035 case DPM_ORDER_PARENT_BEFORE_DEV:
4036 device_pm_move_before(new_parent, dev);
4037 devices_kset_move_before(new_parent, dev);
4038 break;
4039 case DPM_ORDER_DEV_LAST:
4040 device_pm_move_last(dev);
4041 devices_kset_move_last(dev);
4042 break;
4043 }
4044
4045 put_device(old_parent);
4046out:
4047 device_pm_unlock();
4048 put_device(dev);
4049 return error;
4050}
4051EXPORT_SYMBOL_GPL(device_move);
4052
4053static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4054 kgid_t kgid)
4055{
4056 struct kobject *kobj = &dev->kobj;
4057 struct class *class = dev->class;
4058 const struct device_type *type = dev->type;
4059 int error;
4060
4061 if (class) {
4062 /*
4063 * Change the device groups of the device class for @dev to
4064 * @kuid/@kgid.
4065 */
4066 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4067 kgid);
4068 if (error)
4069 return error;
4070 }
4071
4072 if (type) {
4073 /*
4074 * Change the device groups of the device type for @dev to
4075 * @kuid/@kgid.
4076 */
4077 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4078 kgid);
4079 if (error)
4080 return error;
4081 }
4082
4083 /* Change the device groups of @dev to @kuid/@kgid. */
4084 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4085 if (error)
4086 return error;
4087
4088 if (device_supports_offline(dev) && !dev->offline_disabled) {
4089 /* Change online device attributes of @dev to @kuid/@kgid. */
4090 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4091 kuid, kgid);
4092 if (error)
4093 return error;
4094 }
4095
4096 return 0;
4097}
4098
4099/**
4100 * device_change_owner - change the owner of an existing device.
4101 * @dev: device.
4102 * @kuid: new owner's kuid
4103 * @kgid: new owner's kgid
4104 *
4105 * This changes the owner of @dev and its corresponding sysfs entries to
4106 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4107 * core.
4108 *
4109 * Returns 0 on success or error code on failure.
4110 */
4111int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4112{
4113 int error;
4114 struct kobject *kobj = &dev->kobj;
4115
4116 dev = get_device(dev);
4117 if (!dev)
4118 return -EINVAL;
4119
4120 /*
4121 * Change the kobject and the default attributes and groups of the
4122 * ktype associated with it to @kuid/@kgid.
4123 */
4124 error = sysfs_change_owner(kobj, kuid, kgid);
4125 if (error)
4126 goto out;
4127
4128 /*
4129 * Change the uevent file for @dev to the new owner. The uevent file
4130 * was created in a separate step when @dev got added and we mirror
4131 * that step here.
4132 */
4133 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4134 kgid);
4135 if (error)
4136 goto out;
4137
4138 /*
4139 * Change the device groups, the device groups associated with the
4140 * device class, and the groups associated with the device type of @dev
4141 * to @kuid/@kgid.
4142 */
4143 error = device_attrs_change_owner(dev, kuid, kgid);
4144 if (error)
4145 goto out;
4146
4147 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4148 if (error)
4149 goto out;
4150
4151#ifdef CONFIG_BLOCK
4152 if (sysfs_deprecated && dev->class == &block_class)
4153 goto out;
4154#endif
4155
4156 /*
4157 * Change the owner of the symlink located in the class directory of
4158 * the device class associated with @dev which points to the actual
4159 * directory entry for @dev to @kuid/@kgid. This ensures that the
4160 * symlink shows the same permissions as its target.
4161 */
4162 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4163 dev_name(dev), kuid, kgid);
4164 if (error)
4165 goto out;
4166
4167out:
4168 put_device(dev);
4169 return error;
4170}
4171EXPORT_SYMBOL_GPL(device_change_owner);
4172
4173/**
4174 * device_shutdown - call ->shutdown() on each device to shutdown.
4175 */
4176void device_shutdown(void)
4177{
4178 struct device *dev, *parent;
4179
4180 wait_for_device_probe();
4181 device_block_probing();
4182
4183 cpufreq_suspend();
4184
4185 spin_lock(&devices_kset->list_lock);
4186 /*
4187 * Walk the devices list backward, shutting down each in turn.
4188 * Beware that device unplug events may also start pulling
4189 * devices offline, even as the system is shutting down.
4190 */
4191 while (!list_empty(&devices_kset->list)) {
4192 dev = list_entry(devices_kset->list.prev, struct device,
4193 kobj.entry);
4194
4195 /*
4196 * hold reference count of device's parent to
4197 * prevent it from being freed because parent's
4198 * lock is to be held
4199 */
4200 parent = get_device(dev->parent);
4201 get_device(dev);
4202 /*
4203 * Make sure the device is off the kset list, in the
4204 * event that dev->*->shutdown() doesn't remove it.
4205 */
4206 list_del_init(&dev->kobj.entry);
4207 spin_unlock(&devices_kset->list_lock);
4208
4209 /* hold lock to avoid race with probe/release */
4210 if (parent)
4211 device_lock(parent);
4212 device_lock(dev);
4213
4214 /* Don't allow any more runtime suspends */
4215 pm_runtime_get_noresume(dev);
4216 pm_runtime_barrier(dev);
4217
4218 if (dev->class && dev->class->shutdown_pre) {
4219 if (initcall_debug)
4220 dev_info(dev, "shutdown_pre\n");
4221 dev->class->shutdown_pre(dev);
4222 }
4223 if (dev->bus && dev->bus->shutdown) {
4224 if (initcall_debug)
4225 dev_info(dev, "shutdown\n");
4226 dev->bus->shutdown(dev);
4227 } else if (dev->driver && dev->driver->shutdown) {
4228 if (initcall_debug)
4229 dev_info(dev, "shutdown\n");
4230 dev->driver->shutdown(dev);
4231 }
4232
4233 device_unlock(dev);
4234 if (parent)
4235 device_unlock(parent);
4236
4237 put_device(dev);
4238 put_device(parent);
4239
4240 spin_lock(&devices_kset->list_lock);
4241 }
4242 spin_unlock(&devices_kset->list_lock);
4243}
4244
4245/*
4246 * Device logging functions
4247 */
4248
4249#ifdef CONFIG_PRINTK
4250static void
4251set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4252{
4253 const char *subsys;
4254
4255 memset(dev_info, 0, sizeof(*dev_info));
4256
4257 if (dev->class)
4258 subsys = dev->class->name;
4259 else if (dev->bus)
4260 subsys = dev->bus->name;
4261 else
4262 return;
4263
4264 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4265
4266 /*
4267 * Add device identifier DEVICE=:
4268 * b12:8 block dev_t
4269 * c127:3 char dev_t
4270 * n8 netdev ifindex
4271 * +sound:card0 subsystem:devname
4272 */
4273 if (MAJOR(dev->devt)) {
4274 char c;
4275
4276 if (strcmp(subsys, "block") == 0)
4277 c = 'b';
4278 else
4279 c = 'c';
4280
4281 snprintf(dev_info->device, sizeof(dev_info->device),
4282 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4283 } else if (strcmp(subsys, "net") == 0) {
4284 struct net_device *net = to_net_dev(dev);
4285
4286 snprintf(dev_info->device, sizeof(dev_info->device),
4287 "n%u", net->ifindex);
4288 } else {
4289 snprintf(dev_info->device, sizeof(dev_info->device),
4290 "+%s:%s", subsys, dev_name(dev));
4291 }
4292}
4293
4294int dev_vprintk_emit(int level, const struct device *dev,
4295 const char *fmt, va_list args)
4296{
4297 struct dev_printk_info dev_info;
4298
4299 set_dev_info(dev, &dev_info);
4300
4301 return vprintk_emit(0, level, &dev_info, fmt, args);
4302}
4303EXPORT_SYMBOL(dev_vprintk_emit);
4304
4305int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4306{
4307 va_list args;
4308 int r;
4309
4310 va_start(args, fmt);
4311
4312 r = dev_vprintk_emit(level, dev, fmt, args);
4313
4314 va_end(args);
4315
4316 return r;
4317}
4318EXPORT_SYMBOL(dev_printk_emit);
4319
4320static void __dev_printk(const char *level, const struct device *dev,
4321 struct va_format *vaf)
4322{
4323 if (dev)
4324 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4325 dev_driver_string(dev), dev_name(dev), vaf);
4326 else
4327 printk("%s(NULL device *): %pV", level, vaf);
4328}
4329
4330void dev_printk(const char *level, const struct device *dev,
4331 const char *fmt, ...)
4332{
4333 struct va_format vaf;
4334 va_list args;
4335
4336 va_start(args, fmt);
4337
4338 vaf.fmt = fmt;
4339 vaf.va = &args;
4340
4341 __dev_printk(level, dev, &vaf);
4342
4343 va_end(args);
4344}
4345EXPORT_SYMBOL(dev_printk);
4346
4347#define define_dev_printk_level(func, kern_level) \
4348void func(const struct device *dev, const char *fmt, ...) \
4349{ \
4350 struct va_format vaf; \
4351 va_list args; \
4352 \
4353 va_start(args, fmt); \
4354 \
4355 vaf.fmt = fmt; \
4356 vaf.va = &args; \
4357 \
4358 __dev_printk(kern_level, dev, &vaf); \
4359 \
4360 va_end(args); \
4361} \
4362EXPORT_SYMBOL(func);
4363
4364define_dev_printk_level(_dev_emerg, KERN_EMERG);
4365define_dev_printk_level(_dev_alert, KERN_ALERT);
4366define_dev_printk_level(_dev_crit, KERN_CRIT);
4367define_dev_printk_level(_dev_err, KERN_ERR);
4368define_dev_printk_level(_dev_warn, KERN_WARNING);
4369define_dev_printk_level(_dev_notice, KERN_NOTICE);
4370define_dev_printk_level(_dev_info, KERN_INFO);
4371
4372#endif
4373
4374/**
4375 * dev_err_probe - probe error check and log helper
4376 * @dev: the pointer to the struct device
4377 * @err: error value to test
4378 * @fmt: printf-style format string
4379 * @...: arguments as specified in the format string
4380 *
4381 * This helper implements common pattern present in probe functions for error
4382 * checking: print debug or error message depending if the error value is
4383 * -EPROBE_DEFER and propagate error upwards.
4384 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4385 * checked later by reading devices_deferred debugfs attribute.
4386 * It replaces code sequence::
4387 *
4388 * if (err != -EPROBE_DEFER)
4389 * dev_err(dev, ...);
4390 * else
4391 * dev_dbg(dev, ...);
4392 * return err;
4393 *
4394 * with::
4395 *
4396 * return dev_err_probe(dev, err, ...);
4397 *
4398 * Returns @err.
4399 *
4400 */
4401int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4402{
4403 struct va_format vaf;
4404 va_list args;
4405
4406 va_start(args, fmt);
4407 vaf.fmt = fmt;
4408 vaf.va = &args;
4409
4410 if (err != -EPROBE_DEFER) {
4411 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4412 } else {
4413 device_set_deferred_probe_reason(dev, &vaf);
4414 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4415 }
4416
4417 va_end(args);
4418
4419 return err;
4420}
4421EXPORT_SYMBOL_GPL(dev_err_probe);
4422
4423static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4424{
4425 return fwnode && !IS_ERR(fwnode->secondary);
4426}
4427
4428/**
4429 * set_primary_fwnode - Change the primary firmware node of a given device.
4430 * @dev: Device to handle.
4431 * @fwnode: New primary firmware node of the device.
4432 *
4433 * Set the device's firmware node pointer to @fwnode, but if a secondary
4434 * firmware node of the device is present, preserve it.
4435 *
4436 * Valid fwnode cases are:
4437 * - primary --> secondary --> -ENODEV
4438 * - primary --> NULL
4439 * - secondary --> -ENODEV
4440 * - NULL
4441 */
4442void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4443{
4444 struct device *parent = dev->parent;
4445 struct fwnode_handle *fn = dev->fwnode;
4446
4447 if (fwnode) {
4448 if (fwnode_is_primary(fn))
4449 fn = fn->secondary;
4450
4451 if (fn) {
4452 WARN_ON(fwnode->secondary);
4453 fwnode->secondary = fn;
4454 }
4455 dev->fwnode = fwnode;
4456 } else {
4457 if (fwnode_is_primary(fn)) {
4458 dev->fwnode = fn->secondary;
4459 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4460 if (!(parent && fn == parent->fwnode))
4461 fn->secondary = NULL;
4462 } else {
4463 dev->fwnode = NULL;
4464 }
4465 }
4466}
4467EXPORT_SYMBOL_GPL(set_primary_fwnode);
4468
4469/**
4470 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4471 * @dev: Device to handle.
4472 * @fwnode: New secondary firmware node of the device.
4473 *
4474 * If a primary firmware node of the device is present, set its secondary
4475 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4476 * @fwnode.
4477 */
4478void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4479{
4480 if (fwnode)
4481 fwnode->secondary = ERR_PTR(-ENODEV);
4482
4483 if (fwnode_is_primary(dev->fwnode))
4484 dev->fwnode->secondary = fwnode;
4485 else
4486 dev->fwnode = fwnode;
4487}
4488EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4489
4490/**
4491 * device_set_of_node_from_dev - reuse device-tree node of another device
4492 * @dev: device whose device-tree node is being set
4493 * @dev2: device whose device-tree node is being reused
4494 *
4495 * Takes another reference to the new device-tree node after first dropping
4496 * any reference held to the old node.
4497 */
4498void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4499{
4500 of_node_put(dev->of_node);
4501 dev->of_node = of_node_get(dev2->of_node);
4502 dev->of_node_reused = true;
4503}
4504EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4505
4506int device_match_name(struct device *dev, const void *name)
4507{
4508 return sysfs_streq(dev_name(dev), name);
4509}
4510EXPORT_SYMBOL_GPL(device_match_name);
4511
4512int device_match_of_node(struct device *dev, const void *np)
4513{
4514 return dev->of_node == np;
4515}
4516EXPORT_SYMBOL_GPL(device_match_of_node);
4517
4518int device_match_fwnode(struct device *dev, const void *fwnode)
4519{
4520 return dev_fwnode(dev) == fwnode;
4521}
4522EXPORT_SYMBOL_GPL(device_match_fwnode);
4523
4524int device_match_devt(struct device *dev, const void *pdevt)
4525{
4526 return dev->devt == *(dev_t *)pdevt;
4527}
4528EXPORT_SYMBOL_GPL(device_match_devt);
4529
4530int device_match_acpi_dev(struct device *dev, const void *adev)
4531{
4532 return ACPI_COMPANION(dev) == adev;
4533}
4534EXPORT_SYMBOL(device_match_acpi_dev);
4535
4536int device_match_any(struct device *dev, const void *unused)
4537{
4538 return 1;
4539}
4540EXPORT_SYMBOL_GPL(device_match_any);