at v5.11-rc7 8977 lines 255 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18#include <linux/stddef.h> 19#include <linux/mm.h> 20#include <linux/highmem.h> 21#include <linux/swap.h> 22#include <linux/interrupt.h> 23#include <linux/pagemap.h> 24#include <linux/jiffies.h> 25#include <linux/memblock.h> 26#include <linux/compiler.h> 27#include <linux/kernel.h> 28#include <linux/kasan.h> 29#include <linux/module.h> 30#include <linux/suspend.h> 31#include <linux/pagevec.h> 32#include <linux/blkdev.h> 33#include <linux/slab.h> 34#include <linux/ratelimit.h> 35#include <linux/oom.h> 36#include <linux/topology.h> 37#include <linux/sysctl.h> 38#include <linux/cpu.h> 39#include <linux/cpuset.h> 40#include <linux/memory_hotplug.h> 41#include <linux/nodemask.h> 42#include <linux/vmalloc.h> 43#include <linux/vmstat.h> 44#include <linux/mempolicy.h> 45#include <linux/memremap.h> 46#include <linux/stop_machine.h> 47#include <linux/random.h> 48#include <linux/sort.h> 49#include <linux/pfn.h> 50#include <linux/backing-dev.h> 51#include <linux/fault-inject.h> 52#include <linux/page-isolation.h> 53#include <linux/debugobjects.h> 54#include <linux/kmemleak.h> 55#include <linux/compaction.h> 56#include <trace/events/kmem.h> 57#include <trace/events/oom.h> 58#include <linux/prefetch.h> 59#include <linux/mm_inline.h> 60#include <linux/mmu_notifier.h> 61#include <linux/migrate.h> 62#include <linux/hugetlb.h> 63#include <linux/sched/rt.h> 64#include <linux/sched/mm.h> 65#include <linux/page_owner.h> 66#include <linux/kthread.h> 67#include <linux/memcontrol.h> 68#include <linux/ftrace.h> 69#include <linux/lockdep.h> 70#include <linux/nmi.h> 71#include <linux/psi.h> 72#include <linux/padata.h> 73#include <linux/khugepaged.h> 74#include <linux/buffer_head.h> 75 76#include <asm/sections.h> 77#include <asm/tlbflush.h> 78#include <asm/div64.h> 79#include "internal.h" 80#include "shuffle.h" 81#include "page_reporting.h" 82 83/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84typedef int __bitwise fpi_t; 85 86/* No special request */ 87#define FPI_NONE ((__force fpi_t)0) 88 89/* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99/* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109#define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112static DEFINE_MUTEX(pcp_batch_high_lock); 113#define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116DEFINE_PER_CPU(int, numa_node); 117EXPORT_PER_CPU_SYMBOL(numa_node); 118#endif 119 120DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122#ifdef CONFIG_HAVE_MEMORYLESS_NODES 123/* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131#endif 132 133/* work_structs for global per-cpu drains */ 134struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137}; 138static DEFINE_MUTEX(pcpu_drain_mutex); 139static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142volatile unsigned long latent_entropy __latent_entropy; 143EXPORT_SYMBOL(latent_entropy); 144#endif 145 146/* 147 * Array of node states. 148 */ 149nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152#ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154#ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156#endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159#endif /* NUMA */ 160}; 161EXPORT_SYMBOL(node_states); 162 163atomic_long_t _totalram_pages __read_mostly; 164EXPORT_SYMBOL(_totalram_pages); 165unsigned long totalreserve_pages __read_mostly; 166unsigned long totalcma_pages __read_mostly; 167 168int percpu_pagelist_fraction; 169gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171EXPORT_SYMBOL(init_on_alloc); 172 173DEFINE_STATIC_KEY_FALSE(init_on_free); 174EXPORT_SYMBOL(init_on_free); 175 176static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178static int __init early_init_on_alloc(char *buf) 179{ 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182} 183early_param("init_on_alloc", early_init_on_alloc); 184 185static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187static int __init early_init_on_free(char *buf) 188{ 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190} 191early_param("init_on_free", early_init_on_free); 192 193/* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201static inline int get_pcppage_migratetype(struct page *page) 202{ 203 return page->index; 204} 205 206static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207{ 208 page->index = migratetype; 209} 210 211#ifdef CONFIG_PM_SLEEP 212/* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222static gfp_t saved_gfp_mask; 223 224void pm_restore_gfp_mask(void) 225{ 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231} 232 233void pm_restrict_gfp_mask(void) 234{ 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239} 240 241bool pm_suspended_storage(void) 242{ 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246} 247#endif /* CONFIG_PM_SLEEP */ 248 249#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250unsigned int pageblock_order __read_mostly; 251#endif 252 253static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256/* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268#ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270#endif 271#ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273#endif 274 [ZONE_NORMAL] = 32, 275#ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277#endif 278 [ZONE_MOVABLE] = 0, 279}; 280 281static char * const zone_names[MAX_NR_ZONES] = { 282#ifdef CONFIG_ZONE_DMA 283 "DMA", 284#endif 285#ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287#endif 288 "Normal", 289#ifdef CONFIG_HIGHMEM 290 "HighMem", 291#endif 292 "Movable", 293#ifdef CONFIG_ZONE_DEVICE 294 "Device", 295#endif 296}; 297 298const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303#ifdef CONFIG_CMA 304 "CMA", 305#endif 306#ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308#endif 309}; 310 311compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314#ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316#endif 317#ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319#endif 320}; 321 322int min_free_kbytes = 1024; 323int user_min_free_kbytes = -1; 324#ifdef CONFIG_DISCONTIGMEM 325/* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334int watermark_boost_factor __read_mostly; 335#else 336int watermark_boost_factor __read_mostly = 15000; 337#endif 338int watermark_scale_factor = 10; 339 340static unsigned long nr_kernel_pages __initdata; 341static unsigned long nr_all_pages __initdata; 342static unsigned long dma_reserve __initdata; 343 344static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346static unsigned long required_kernelcore __initdata; 347static unsigned long required_kernelcore_percent __initdata; 348static unsigned long required_movablecore __initdata; 349static unsigned long required_movablecore_percent __initdata; 350static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351static bool mirrored_kernelcore __meminitdata; 352 353/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354int movable_zone; 355EXPORT_SYMBOL(movable_zone); 356 357#if MAX_NUMNODES > 1 358unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359unsigned int nr_online_nodes __read_mostly = 1; 360EXPORT_SYMBOL(nr_node_ids); 361EXPORT_SYMBOL(nr_online_nodes); 362#endif 363 364int page_group_by_mobility_disabled __read_mostly; 365 366#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367/* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374/* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388{ 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391} 392 393/* Returns true if the struct page for the pfn is uninitialised */ 394static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395{ 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402} 403 404/* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408static bool __meminit 409defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410{ 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 427 return true; 428 /* 429 * We start only with one section of pages, more pages are added as 430 * needed until the rest of deferred pages are initialized. 431 */ 432 nr_initialised++; 433 if ((nr_initialised > PAGES_PER_SECTION) && 434 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 435 NODE_DATA(nid)->first_deferred_pfn = pfn; 436 return true; 437 } 438 return false; 439} 440#else 441#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 442 443static inline bool early_page_uninitialised(unsigned long pfn) 444{ 445 return false; 446} 447 448static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 449{ 450 return false; 451} 452#endif 453 454/* Return a pointer to the bitmap storing bits affecting a block of pages */ 455static inline unsigned long *get_pageblock_bitmap(struct page *page, 456 unsigned long pfn) 457{ 458#ifdef CONFIG_SPARSEMEM 459 return section_to_usemap(__pfn_to_section(pfn)); 460#else 461 return page_zone(page)->pageblock_flags; 462#endif /* CONFIG_SPARSEMEM */ 463} 464 465static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 466{ 467#ifdef CONFIG_SPARSEMEM 468 pfn &= (PAGES_PER_SECTION-1); 469#else 470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 471#endif /* CONFIG_SPARSEMEM */ 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 473} 474 475static __always_inline 476unsigned long __get_pfnblock_flags_mask(struct page *page, 477 unsigned long pfn, 478 unsigned long mask) 479{ 480 unsigned long *bitmap; 481 unsigned long bitidx, word_bitidx; 482 unsigned long word; 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 word = bitmap[word_bitidx]; 490 return (word >> bitidx) & mask; 491} 492 493/** 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 495 * @page: The page within the block of interest 496 * @pfn: The target page frame number 497 * @mask: mask of bits that the caller is interested in 498 * 499 * Return: pageblock_bits flags 500 */ 501unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 502 unsigned long mask) 503{ 504 return __get_pfnblock_flags_mask(page, pfn, mask); 505} 506 507static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 508{ 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 510} 511 512/** 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 514 * @page: The page within the block of interest 515 * @flags: The flags to set 516 * @pfn: The target page frame number 517 * @mask: mask of bits that the caller is interested in 518 */ 519void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 520 unsigned long pfn, 521 unsigned long mask) 522{ 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 mask <<= bitidx; 538 flags <<= bitidx; 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547} 548 549void set_pageblock_migratetype(struct page *page, int migratetype) 550{ 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 556 page_to_pfn(page), MIGRATETYPE_MASK); 557} 558 559#ifdef CONFIG_DEBUG_VM 560static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561{ 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581} 582 583static int page_is_consistent(struct zone *zone, struct page *page) 584{ 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591} 592/* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596{ 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603} 604#else 605static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606{ 607 return 0; 608} 609#endif 610 611static void bad_page(struct page *page, const char *reason) 612{ 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648} 649 650/* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665void free_compound_page(struct page *page) 666{ 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page), FPI_NONE); 669} 670 671void prep_compound_page(struct page *page, unsigned int order) 672{ 673 int i; 674 int nr_pages = 1 << order; 675 676 __SetPageHead(page); 677 for (i = 1; i < nr_pages; i++) { 678 struct page *p = page + i; 679 set_page_count(p, 0); 680 p->mapping = TAIL_MAPPING; 681 set_compound_head(p, page); 682 } 683 684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 685 set_compound_order(page, order); 686 atomic_set(compound_mapcount_ptr(page), -1); 687 if (hpage_pincount_available(page)) 688 atomic_set(compound_pincount_ptr(page), 0); 689} 690 691#ifdef CONFIG_DEBUG_PAGEALLOC 692unsigned int _debug_guardpage_minorder; 693 694bool _debug_pagealloc_enabled_early __read_mostly 695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 696EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 697DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 698EXPORT_SYMBOL(_debug_pagealloc_enabled); 699 700DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 701 702static int __init early_debug_pagealloc(char *buf) 703{ 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 705} 706early_param("debug_pagealloc", early_debug_pagealloc); 707 708static int __init debug_guardpage_minorder_setup(char *buf) 709{ 710 unsigned long res; 711 712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 713 pr_err("Bad debug_guardpage_minorder value\n"); 714 return 0; 715 } 716 _debug_guardpage_minorder = res; 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 718 return 0; 719} 720early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 721 722static inline bool set_page_guard(struct zone *zone, struct page *page, 723 unsigned int order, int migratetype) 724{ 725 if (!debug_guardpage_enabled()) 726 return false; 727 728 if (order >= debug_guardpage_minorder()) 729 return false; 730 731 __SetPageGuard(page); 732 INIT_LIST_HEAD(&page->lru); 733 set_page_private(page, order); 734 /* Guard pages are not available for any usage */ 735 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 736 737 return true; 738} 739 740static inline void clear_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742{ 743 if (!debug_guardpage_enabled()) 744 return; 745 746 __ClearPageGuard(page); 747 748 set_page_private(page, 0); 749 if (!is_migrate_isolate(migratetype)) 750 __mod_zone_freepage_state(zone, (1 << order), migratetype); 751} 752#else 753static inline bool set_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) { return false; } 755static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) {} 757#endif 758 759/* 760 * Enable static keys related to various memory debugging and hardening options. 761 * Some override others, and depend on early params that are evaluated in the 762 * order of appearance. So we need to first gather the full picture of what was 763 * enabled, and then make decisions. 764 */ 765void init_mem_debugging_and_hardening(void) 766{ 767 if (_init_on_alloc_enabled_early) { 768 if (page_poisoning_enabled()) 769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 770 "will take precedence over init_on_alloc\n"); 771 else 772 static_branch_enable(&init_on_alloc); 773 } 774 if (_init_on_free_enabled_early) { 775 if (page_poisoning_enabled()) 776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 777 "will take precedence over init_on_free\n"); 778 else 779 static_branch_enable(&init_on_free); 780 } 781 782#ifdef CONFIG_PAGE_POISONING 783 /* 784 * Page poisoning is debug page alloc for some arches. If 785 * either of those options are enabled, enable poisoning. 786 */ 787 if (page_poisoning_enabled() || 788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 789 debug_pagealloc_enabled())) 790 static_branch_enable(&_page_poisoning_enabled); 791#endif 792 793#ifdef CONFIG_DEBUG_PAGEALLOC 794 if (!debug_pagealloc_enabled()) 795 return; 796 797 static_branch_enable(&_debug_pagealloc_enabled); 798 799 if (!debug_guardpage_minorder()) 800 return; 801 802 static_branch_enable(&_debug_guardpage_enabled); 803#endif 804} 805 806static inline void set_buddy_order(struct page *page, unsigned int order) 807{ 808 set_page_private(page, order); 809 __SetPageBuddy(page); 810} 811 812/* 813 * This function checks whether a page is free && is the buddy 814 * we can coalesce a page and its buddy if 815 * (a) the buddy is not in a hole (check before calling!) && 816 * (b) the buddy is in the buddy system && 817 * (c) a page and its buddy have the same order && 818 * (d) a page and its buddy are in the same zone. 819 * 820 * For recording whether a page is in the buddy system, we set PageBuddy. 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 822 * 823 * For recording page's order, we use page_private(page). 824 */ 825static inline bool page_is_buddy(struct page *page, struct page *buddy, 826 unsigned int order) 827{ 828 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 829 return false; 830 831 if (buddy_order(buddy) != order) 832 return false; 833 834 /* 835 * zone check is done late to avoid uselessly calculating 836 * zone/node ids for pages that could never merge. 837 */ 838 if (page_zone_id(page) != page_zone_id(buddy)) 839 return false; 840 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 842 843 return true; 844} 845 846#ifdef CONFIG_COMPACTION 847static inline struct capture_control *task_capc(struct zone *zone) 848{ 849 struct capture_control *capc = current->capture_control; 850 851 return unlikely(capc) && 852 !(current->flags & PF_KTHREAD) && 853 !capc->page && 854 capc->cc->zone == zone ? capc : NULL; 855} 856 857static inline bool 858compaction_capture(struct capture_control *capc, struct page *page, 859 int order, int migratetype) 860{ 861 if (!capc || order != capc->cc->order) 862 return false; 863 864 /* Do not accidentally pollute CMA or isolated regions*/ 865 if (is_migrate_cma(migratetype) || 866 is_migrate_isolate(migratetype)) 867 return false; 868 869 /* 870 * Do not let lower order allocations polluate a movable pageblock. 871 * This might let an unmovable request use a reclaimable pageblock 872 * and vice-versa but no more than normal fallback logic which can 873 * have trouble finding a high-order free page. 874 */ 875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 876 return false; 877 878 capc->page = page; 879 return true; 880} 881 882#else 883static inline struct capture_control *task_capc(struct zone *zone) 884{ 885 return NULL; 886} 887 888static inline bool 889compaction_capture(struct capture_control *capc, struct page *page, 890 int order, int migratetype) 891{ 892 return false; 893} 894#endif /* CONFIG_COMPACTION */ 895 896/* Used for pages not on another list */ 897static inline void add_to_free_list(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899{ 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904} 905 906/* Used for pages not on another list */ 907static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 908 unsigned int order, int migratetype) 909{ 910 struct free_area *area = &zone->free_area[order]; 911 912 list_add_tail(&page->lru, &area->free_list[migratetype]); 913 area->nr_free++; 914} 915 916/* 917 * Used for pages which are on another list. Move the pages to the tail 918 * of the list - so the moved pages won't immediately be considered for 919 * allocation again (e.g., optimization for memory onlining). 920 */ 921static inline void move_to_free_list(struct page *page, struct zone *zone, 922 unsigned int order, int migratetype) 923{ 924 struct free_area *area = &zone->free_area[order]; 925 926 list_move_tail(&page->lru, &area->free_list[migratetype]); 927} 928 929static inline void del_page_from_free_list(struct page *page, struct zone *zone, 930 unsigned int order) 931{ 932 /* clear reported state and update reported page count */ 933 if (page_reported(page)) 934 __ClearPageReported(page); 935 936 list_del(&page->lru); 937 __ClearPageBuddy(page); 938 set_page_private(page, 0); 939 zone->free_area[order].nr_free--; 940} 941 942/* 943 * If this is not the largest possible page, check if the buddy 944 * of the next-highest order is free. If it is, it's possible 945 * that pages are being freed that will coalesce soon. In case, 946 * that is happening, add the free page to the tail of the list 947 * so it's less likely to be used soon and more likely to be merged 948 * as a higher order page 949 */ 950static inline bool 951buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 952 struct page *page, unsigned int order) 953{ 954 struct page *higher_page, *higher_buddy; 955 unsigned long combined_pfn; 956 957 if (order >= MAX_ORDER - 2) 958 return false; 959 960 if (!pfn_valid_within(buddy_pfn)) 961 return false; 962 963 combined_pfn = buddy_pfn & pfn; 964 higher_page = page + (combined_pfn - pfn); 965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 966 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 967 968 return pfn_valid_within(buddy_pfn) && 969 page_is_buddy(higher_page, higher_buddy, order + 1); 970} 971 972/* 973 * Freeing function for a buddy system allocator. 974 * 975 * The concept of a buddy system is to maintain direct-mapped table 976 * (containing bit values) for memory blocks of various "orders". 977 * The bottom level table contains the map for the smallest allocatable 978 * units of memory (here, pages), and each level above it describes 979 * pairs of units from the levels below, hence, "buddies". 980 * At a high level, all that happens here is marking the table entry 981 * at the bottom level available, and propagating the changes upward 982 * as necessary, plus some accounting needed to play nicely with other 983 * parts of the VM system. 984 * At each level, we keep a list of pages, which are heads of continuous 985 * free pages of length of (1 << order) and marked with PageBuddy. 986 * Page's order is recorded in page_private(page) field. 987 * So when we are allocating or freeing one, we can derive the state of the 988 * other. That is, if we allocate a small block, and both were 989 * free, the remainder of the region must be split into blocks. 990 * If a block is freed, and its buddy is also free, then this 991 * triggers coalescing into a block of larger size. 992 * 993 * -- nyc 994 */ 995 996static inline void __free_one_page(struct page *page, 997 unsigned long pfn, 998 struct zone *zone, unsigned int order, 999 int migratetype, fpi_t fpi_flags) 1000{ 1001 struct capture_control *capc = task_capc(zone); 1002 unsigned long buddy_pfn; 1003 unsigned long combined_pfn; 1004 unsigned int max_order; 1005 struct page *buddy; 1006 bool to_tail; 1007 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1009 1010 VM_BUG_ON(!zone_is_initialized(zone)); 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1012 1013 VM_BUG_ON(migratetype == -1); 1014 if (likely(!is_migrate_isolate(migratetype))) 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1016 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1019 1020continue_merging: 1021 while (order < max_order) { 1022 if (compaction_capture(capc, page, order, migratetype)) { 1023 __mod_zone_freepage_state(zone, -(1 << order), 1024 migratetype); 1025 return; 1026 } 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 1030 if (!pfn_valid_within(buddy_pfn)) 1031 goto done_merging; 1032 if (!page_is_buddy(page, buddy, order)) 1033 goto done_merging; 1034 /* 1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1036 * merge with it and move up one order. 1037 */ 1038 if (page_is_guard(buddy)) 1039 clear_page_guard(zone, buddy, order, migratetype); 1040 else 1041 del_page_from_free_list(buddy, zone, order); 1042 combined_pfn = buddy_pfn & pfn; 1043 page = page + (combined_pfn - pfn); 1044 pfn = combined_pfn; 1045 order++; 1046 } 1047 if (order < MAX_ORDER - 1) { 1048 /* If we are here, it means order is >= pageblock_order. 1049 * We want to prevent merge between freepages on isolate 1050 * pageblock and normal pageblock. Without this, pageblock 1051 * isolation could cause incorrect freepage or CMA accounting. 1052 * 1053 * We don't want to hit this code for the more frequent 1054 * low-order merging. 1055 */ 1056 if (unlikely(has_isolate_pageblock(zone))) { 1057 int buddy_mt; 1058 1059 buddy_pfn = __find_buddy_pfn(pfn, order); 1060 buddy = page + (buddy_pfn - pfn); 1061 buddy_mt = get_pageblock_migratetype(buddy); 1062 1063 if (migratetype != buddy_mt 1064 && (is_migrate_isolate(migratetype) || 1065 is_migrate_isolate(buddy_mt))) 1066 goto done_merging; 1067 } 1068 max_order = order + 1; 1069 goto continue_merging; 1070 } 1071 1072done_merging: 1073 set_buddy_order(page, order); 1074 1075 if (fpi_flags & FPI_TO_TAIL) 1076 to_tail = true; 1077 else if (is_shuffle_order(order)) 1078 to_tail = shuffle_pick_tail(); 1079 else 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1081 1082 if (to_tail) 1083 add_to_free_list_tail(page, zone, order, migratetype); 1084 else 1085 add_to_free_list(page, zone, order, migratetype); 1086 1087 /* Notify page reporting subsystem of freed page */ 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1089 page_reporting_notify_free(order); 1090} 1091 1092/* 1093 * A bad page could be due to a number of fields. Instead of multiple branches, 1094 * try and check multiple fields with one check. The caller must do a detailed 1095 * check if necessary. 1096 */ 1097static inline bool page_expected_state(struct page *page, 1098 unsigned long check_flags) 1099{ 1100 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1101 return false; 1102 1103 if (unlikely((unsigned long)page->mapping | 1104 page_ref_count(page) | 1105#ifdef CONFIG_MEMCG 1106 (unsigned long)page_memcg(page) | 1107#endif 1108 (page->flags & check_flags))) 1109 return false; 1110 1111 return true; 1112} 1113 1114static const char *page_bad_reason(struct page *page, unsigned long flags) 1115{ 1116 const char *bad_reason = NULL; 1117 1118 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1119 bad_reason = "nonzero mapcount"; 1120 if (unlikely(page->mapping != NULL)) 1121 bad_reason = "non-NULL mapping"; 1122 if (unlikely(page_ref_count(page) != 0)) 1123 bad_reason = "nonzero _refcount"; 1124 if (unlikely(page->flags & flags)) { 1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1127 else 1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1129 } 1130#ifdef CONFIG_MEMCG 1131 if (unlikely(page_memcg(page))) 1132 bad_reason = "page still charged to cgroup"; 1133#endif 1134 return bad_reason; 1135} 1136 1137static void check_free_page_bad(struct page *page) 1138{ 1139 bad_page(page, 1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1141} 1142 1143static inline int check_free_page(struct page *page) 1144{ 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1146 return 0; 1147 1148 /* Something has gone sideways, find it */ 1149 check_free_page_bad(page); 1150 return 1; 1151} 1152 1153static int free_tail_pages_check(struct page *head_page, struct page *page) 1154{ 1155 int ret = 1; 1156 1157 /* 1158 * We rely page->lru.next never has bit 0 set, unless the page 1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1160 */ 1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1162 1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1164 ret = 0; 1165 goto out; 1166 } 1167 switch (page - head_page) { 1168 case 1: 1169 /* the first tail page: ->mapping may be compound_mapcount() */ 1170 if (unlikely(compound_mapcount(page))) { 1171 bad_page(page, "nonzero compound_mapcount"); 1172 goto out; 1173 } 1174 break; 1175 case 2: 1176 /* 1177 * the second tail page: ->mapping is 1178 * deferred_list.next -- ignore value. 1179 */ 1180 break; 1181 default: 1182 if (page->mapping != TAIL_MAPPING) { 1183 bad_page(page, "corrupted mapping in tail page"); 1184 goto out; 1185 } 1186 break; 1187 } 1188 if (unlikely(!PageTail(page))) { 1189 bad_page(page, "PageTail not set"); 1190 goto out; 1191 } 1192 if (unlikely(compound_head(page) != head_page)) { 1193 bad_page(page, "compound_head not consistent"); 1194 goto out; 1195 } 1196 ret = 0; 1197out: 1198 page->mapping = NULL; 1199 clear_compound_head(page); 1200 return ret; 1201} 1202 1203static void kernel_init_free_pages(struct page *page, int numpages) 1204{ 1205 int i; 1206 1207 /* s390's use of memset() could override KASAN redzones. */ 1208 kasan_disable_current(); 1209 for (i = 0; i < numpages; i++) { 1210 u8 tag = page_kasan_tag(page + i); 1211 page_kasan_tag_reset(page + i); 1212 clear_highpage(page + i); 1213 page_kasan_tag_set(page + i, tag); 1214 } 1215 kasan_enable_current(); 1216} 1217 1218static __always_inline bool free_pages_prepare(struct page *page, 1219 unsigned int order, bool check_free) 1220{ 1221 int bad = 0; 1222 1223 VM_BUG_ON_PAGE(PageTail(page), page); 1224 1225 trace_mm_page_free(page, order); 1226 1227 if (unlikely(PageHWPoison(page)) && !order) { 1228 /* 1229 * Do not let hwpoison pages hit pcplists/buddy 1230 * Untie memcg state and reset page's owner 1231 */ 1232 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1233 __memcg_kmem_uncharge_page(page, order); 1234 reset_page_owner(page, order); 1235 return false; 1236 } 1237 1238 /* 1239 * Check tail pages before head page information is cleared to 1240 * avoid checking PageCompound for order-0 pages. 1241 */ 1242 if (unlikely(order)) { 1243 bool compound = PageCompound(page); 1244 int i; 1245 1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1247 1248 if (compound) 1249 ClearPageDoubleMap(page); 1250 for (i = 1; i < (1 << order); i++) { 1251 if (compound) 1252 bad += free_tail_pages_check(page, page + i); 1253 if (unlikely(check_free_page(page + i))) { 1254 bad++; 1255 continue; 1256 } 1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1258 } 1259 } 1260 if (PageMappingFlags(page)) 1261 page->mapping = NULL; 1262 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1263 __memcg_kmem_uncharge_page(page, order); 1264 if (check_free) 1265 bad += check_free_page(page); 1266 if (bad) 1267 return false; 1268 1269 page_cpupid_reset_last(page); 1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1271 reset_page_owner(page, order); 1272 1273 if (!PageHighMem(page)) { 1274 debug_check_no_locks_freed(page_address(page), 1275 PAGE_SIZE << order); 1276 debug_check_no_obj_freed(page_address(page), 1277 PAGE_SIZE << order); 1278 } 1279 if (want_init_on_free()) 1280 kernel_init_free_pages(page, 1 << order); 1281 1282 kernel_poison_pages(page, 1 << order); 1283 1284 /* 1285 * arch_free_page() can make the page's contents inaccessible. s390 1286 * does this. So nothing which can access the page's contents should 1287 * happen after this. 1288 */ 1289 arch_free_page(page, order); 1290 1291 debug_pagealloc_unmap_pages(page, 1 << order); 1292 1293 kasan_free_nondeferred_pages(page, order); 1294 1295 return true; 1296} 1297 1298#ifdef CONFIG_DEBUG_VM 1299/* 1300 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1301 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1302 * moved from pcp lists to free lists. 1303 */ 1304static bool free_pcp_prepare(struct page *page) 1305{ 1306 return free_pages_prepare(page, 0, true); 1307} 1308 1309static bool bulkfree_pcp_prepare(struct page *page) 1310{ 1311 if (debug_pagealloc_enabled_static()) 1312 return check_free_page(page); 1313 else 1314 return false; 1315} 1316#else 1317/* 1318 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1319 * moving from pcp lists to free list in order to reduce overhead. With 1320 * debug_pagealloc enabled, they are checked also immediately when being freed 1321 * to the pcp lists. 1322 */ 1323static bool free_pcp_prepare(struct page *page) 1324{ 1325 if (debug_pagealloc_enabled_static()) 1326 return free_pages_prepare(page, 0, true); 1327 else 1328 return free_pages_prepare(page, 0, false); 1329} 1330 1331static bool bulkfree_pcp_prepare(struct page *page) 1332{ 1333 return check_free_page(page); 1334} 1335#endif /* CONFIG_DEBUG_VM */ 1336 1337static inline void prefetch_buddy(struct page *page) 1338{ 1339 unsigned long pfn = page_to_pfn(page); 1340 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1341 struct page *buddy = page + (buddy_pfn - pfn); 1342 1343 prefetch(buddy); 1344} 1345 1346/* 1347 * Frees a number of pages from the PCP lists 1348 * Assumes all pages on list are in same zone, and of same order. 1349 * count is the number of pages to free. 1350 * 1351 * If the zone was previously in an "all pages pinned" state then look to 1352 * see if this freeing clears that state. 1353 * 1354 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1355 * pinned" detection logic. 1356 */ 1357static void free_pcppages_bulk(struct zone *zone, int count, 1358 struct per_cpu_pages *pcp) 1359{ 1360 int migratetype = 0; 1361 int batch_free = 0; 1362 int prefetch_nr = READ_ONCE(pcp->batch); 1363 bool isolated_pageblocks; 1364 struct page *page, *tmp; 1365 LIST_HEAD(head); 1366 1367 /* 1368 * Ensure proper count is passed which otherwise would stuck in the 1369 * below while (list_empty(list)) loop. 1370 */ 1371 count = min(pcp->count, count); 1372 while (count) { 1373 struct list_head *list; 1374 1375 /* 1376 * Remove pages from lists in a round-robin fashion. A 1377 * batch_free count is maintained that is incremented when an 1378 * empty list is encountered. This is so more pages are freed 1379 * off fuller lists instead of spinning excessively around empty 1380 * lists 1381 */ 1382 do { 1383 batch_free++; 1384 if (++migratetype == MIGRATE_PCPTYPES) 1385 migratetype = 0; 1386 list = &pcp->lists[migratetype]; 1387 } while (list_empty(list)); 1388 1389 /* This is the only non-empty list. Free them all. */ 1390 if (batch_free == MIGRATE_PCPTYPES) 1391 batch_free = count; 1392 1393 do { 1394 page = list_last_entry(list, struct page, lru); 1395 /* must delete to avoid corrupting pcp list */ 1396 list_del(&page->lru); 1397 pcp->count--; 1398 1399 if (bulkfree_pcp_prepare(page)) 1400 continue; 1401 1402 list_add_tail(&page->lru, &head); 1403 1404 /* 1405 * We are going to put the page back to the global 1406 * pool, prefetch its buddy to speed up later access 1407 * under zone->lock. It is believed the overhead of 1408 * an additional test and calculating buddy_pfn here 1409 * can be offset by reduced memory latency later. To 1410 * avoid excessive prefetching due to large count, only 1411 * prefetch buddy for the first pcp->batch nr of pages. 1412 */ 1413 if (prefetch_nr) { 1414 prefetch_buddy(page); 1415 prefetch_nr--; 1416 } 1417 } while (--count && --batch_free && !list_empty(list)); 1418 } 1419 1420 spin_lock(&zone->lock); 1421 isolated_pageblocks = has_isolate_pageblock(zone); 1422 1423 /* 1424 * Use safe version since after __free_one_page(), 1425 * page->lru.next will not point to original list. 1426 */ 1427 list_for_each_entry_safe(page, tmp, &head, lru) { 1428 int mt = get_pcppage_migratetype(page); 1429 /* MIGRATE_ISOLATE page should not go to pcplists */ 1430 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1431 /* Pageblock could have been isolated meanwhile */ 1432 if (unlikely(isolated_pageblocks)) 1433 mt = get_pageblock_migratetype(page); 1434 1435 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1436 trace_mm_page_pcpu_drain(page, 0, mt); 1437 } 1438 spin_unlock(&zone->lock); 1439} 1440 1441static void free_one_page(struct zone *zone, 1442 struct page *page, unsigned long pfn, 1443 unsigned int order, 1444 int migratetype, fpi_t fpi_flags) 1445{ 1446 spin_lock(&zone->lock); 1447 if (unlikely(has_isolate_pageblock(zone) || 1448 is_migrate_isolate(migratetype))) { 1449 migratetype = get_pfnblock_migratetype(page, pfn); 1450 } 1451 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1452 spin_unlock(&zone->lock); 1453} 1454 1455static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1456 unsigned long zone, int nid) 1457{ 1458 mm_zero_struct_page(page); 1459 set_page_links(page, zone, nid, pfn); 1460 init_page_count(page); 1461 page_mapcount_reset(page); 1462 page_cpupid_reset_last(page); 1463 page_kasan_tag_reset(page); 1464 1465 INIT_LIST_HEAD(&page->lru); 1466#ifdef WANT_PAGE_VIRTUAL 1467 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1468 if (!is_highmem_idx(zone)) 1469 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1470#endif 1471} 1472 1473#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1474static void __meminit init_reserved_page(unsigned long pfn) 1475{ 1476 pg_data_t *pgdat; 1477 int nid, zid; 1478 1479 if (!early_page_uninitialised(pfn)) 1480 return; 1481 1482 nid = early_pfn_to_nid(pfn); 1483 pgdat = NODE_DATA(nid); 1484 1485 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1486 struct zone *zone = &pgdat->node_zones[zid]; 1487 1488 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1489 break; 1490 } 1491 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1492} 1493#else 1494static inline void init_reserved_page(unsigned long pfn) 1495{ 1496} 1497#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1498 1499/* 1500 * Initialised pages do not have PageReserved set. This function is 1501 * called for each range allocated by the bootmem allocator and 1502 * marks the pages PageReserved. The remaining valid pages are later 1503 * sent to the buddy page allocator. 1504 */ 1505void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1506{ 1507 unsigned long start_pfn = PFN_DOWN(start); 1508 unsigned long end_pfn = PFN_UP(end); 1509 1510 for (; start_pfn < end_pfn; start_pfn++) { 1511 if (pfn_valid(start_pfn)) { 1512 struct page *page = pfn_to_page(start_pfn); 1513 1514 init_reserved_page(start_pfn); 1515 1516 /* Avoid false-positive PageTail() */ 1517 INIT_LIST_HEAD(&page->lru); 1518 1519 /* 1520 * no need for atomic set_bit because the struct 1521 * page is not visible yet so nobody should 1522 * access it yet. 1523 */ 1524 __SetPageReserved(page); 1525 } 1526 } 1527} 1528 1529static void __free_pages_ok(struct page *page, unsigned int order, 1530 fpi_t fpi_flags) 1531{ 1532 unsigned long flags; 1533 int migratetype; 1534 unsigned long pfn = page_to_pfn(page); 1535 1536 if (!free_pages_prepare(page, order, true)) 1537 return; 1538 1539 migratetype = get_pfnblock_migratetype(page, pfn); 1540 local_irq_save(flags); 1541 __count_vm_events(PGFREE, 1 << order); 1542 free_one_page(page_zone(page), page, pfn, order, migratetype, 1543 fpi_flags); 1544 local_irq_restore(flags); 1545} 1546 1547void __free_pages_core(struct page *page, unsigned int order) 1548{ 1549 unsigned int nr_pages = 1 << order; 1550 struct page *p = page; 1551 unsigned int loop; 1552 1553 /* 1554 * When initializing the memmap, __init_single_page() sets the refcount 1555 * of all pages to 1 ("allocated"/"not free"). We have to set the 1556 * refcount of all involved pages to 0. 1557 */ 1558 prefetchw(p); 1559 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1560 prefetchw(p + 1); 1561 __ClearPageReserved(p); 1562 set_page_count(p, 0); 1563 } 1564 __ClearPageReserved(p); 1565 set_page_count(p, 0); 1566 1567 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1568 1569 /* 1570 * Bypass PCP and place fresh pages right to the tail, primarily 1571 * relevant for memory onlining. 1572 */ 1573 __free_pages_ok(page, order, FPI_TO_TAIL); 1574} 1575 1576#ifdef CONFIG_NEED_MULTIPLE_NODES 1577 1578/* 1579 * During memory init memblocks map pfns to nids. The search is expensive and 1580 * this caches recent lookups. The implementation of __early_pfn_to_nid 1581 * treats start/end as pfns. 1582 */ 1583struct mminit_pfnnid_cache { 1584 unsigned long last_start; 1585 unsigned long last_end; 1586 int last_nid; 1587}; 1588 1589static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1590 1591/* 1592 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1593 */ 1594static int __meminit __early_pfn_to_nid(unsigned long pfn, 1595 struct mminit_pfnnid_cache *state) 1596{ 1597 unsigned long start_pfn, end_pfn; 1598 int nid; 1599 1600 if (state->last_start <= pfn && pfn < state->last_end) 1601 return state->last_nid; 1602 1603 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1604 if (nid != NUMA_NO_NODE) { 1605 state->last_start = start_pfn; 1606 state->last_end = end_pfn; 1607 state->last_nid = nid; 1608 } 1609 1610 return nid; 1611} 1612 1613int __meminit early_pfn_to_nid(unsigned long pfn) 1614{ 1615 static DEFINE_SPINLOCK(early_pfn_lock); 1616 int nid; 1617 1618 spin_lock(&early_pfn_lock); 1619 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1620 if (nid < 0) 1621 nid = first_online_node; 1622 spin_unlock(&early_pfn_lock); 1623 1624 return nid; 1625} 1626#endif /* CONFIG_NEED_MULTIPLE_NODES */ 1627 1628void __init memblock_free_pages(struct page *page, unsigned long pfn, 1629 unsigned int order) 1630{ 1631 if (early_page_uninitialised(pfn)) 1632 return; 1633 __free_pages_core(page, order); 1634} 1635 1636/* 1637 * Check that the whole (or subset of) a pageblock given by the interval of 1638 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1639 * with the migration of free compaction scanner. The scanners then need to 1640 * use only pfn_valid_within() check for arches that allow holes within 1641 * pageblocks. 1642 * 1643 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1644 * 1645 * It's possible on some configurations to have a setup like node0 node1 node0 1646 * i.e. it's possible that all pages within a zones range of pages do not 1647 * belong to a single zone. We assume that a border between node0 and node1 1648 * can occur within a single pageblock, but not a node0 node1 node0 1649 * interleaving within a single pageblock. It is therefore sufficient to check 1650 * the first and last page of a pageblock and avoid checking each individual 1651 * page in a pageblock. 1652 */ 1653struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1654 unsigned long end_pfn, struct zone *zone) 1655{ 1656 struct page *start_page; 1657 struct page *end_page; 1658 1659 /* end_pfn is one past the range we are checking */ 1660 end_pfn--; 1661 1662 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1663 return NULL; 1664 1665 start_page = pfn_to_online_page(start_pfn); 1666 if (!start_page) 1667 return NULL; 1668 1669 if (page_zone(start_page) != zone) 1670 return NULL; 1671 1672 end_page = pfn_to_page(end_pfn); 1673 1674 /* This gives a shorter code than deriving page_zone(end_page) */ 1675 if (page_zone_id(start_page) != page_zone_id(end_page)) 1676 return NULL; 1677 1678 return start_page; 1679} 1680 1681void set_zone_contiguous(struct zone *zone) 1682{ 1683 unsigned long block_start_pfn = zone->zone_start_pfn; 1684 unsigned long block_end_pfn; 1685 1686 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1687 for (; block_start_pfn < zone_end_pfn(zone); 1688 block_start_pfn = block_end_pfn, 1689 block_end_pfn += pageblock_nr_pages) { 1690 1691 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1692 1693 if (!__pageblock_pfn_to_page(block_start_pfn, 1694 block_end_pfn, zone)) 1695 return; 1696 cond_resched(); 1697 } 1698 1699 /* We confirm that there is no hole */ 1700 zone->contiguous = true; 1701} 1702 1703void clear_zone_contiguous(struct zone *zone) 1704{ 1705 zone->contiguous = false; 1706} 1707 1708#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1709static void __init deferred_free_range(unsigned long pfn, 1710 unsigned long nr_pages) 1711{ 1712 struct page *page; 1713 unsigned long i; 1714 1715 if (!nr_pages) 1716 return; 1717 1718 page = pfn_to_page(pfn); 1719 1720 /* Free a large naturally-aligned chunk if possible */ 1721 if (nr_pages == pageblock_nr_pages && 1722 (pfn & (pageblock_nr_pages - 1)) == 0) { 1723 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1724 __free_pages_core(page, pageblock_order); 1725 return; 1726 } 1727 1728 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1729 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1730 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1731 __free_pages_core(page, 0); 1732 } 1733} 1734 1735/* Completion tracking for deferred_init_memmap() threads */ 1736static atomic_t pgdat_init_n_undone __initdata; 1737static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1738 1739static inline void __init pgdat_init_report_one_done(void) 1740{ 1741 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1742 complete(&pgdat_init_all_done_comp); 1743} 1744 1745/* 1746 * Returns true if page needs to be initialized or freed to buddy allocator. 1747 * 1748 * First we check if pfn is valid on architectures where it is possible to have 1749 * holes within pageblock_nr_pages. On systems where it is not possible, this 1750 * function is optimized out. 1751 * 1752 * Then, we check if a current large page is valid by only checking the validity 1753 * of the head pfn. 1754 */ 1755static inline bool __init deferred_pfn_valid(unsigned long pfn) 1756{ 1757 if (!pfn_valid_within(pfn)) 1758 return false; 1759 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1760 return false; 1761 return true; 1762} 1763 1764/* 1765 * Free pages to buddy allocator. Try to free aligned pages in 1766 * pageblock_nr_pages sizes. 1767 */ 1768static void __init deferred_free_pages(unsigned long pfn, 1769 unsigned long end_pfn) 1770{ 1771 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1772 unsigned long nr_free = 0; 1773 1774 for (; pfn < end_pfn; pfn++) { 1775 if (!deferred_pfn_valid(pfn)) { 1776 deferred_free_range(pfn - nr_free, nr_free); 1777 nr_free = 0; 1778 } else if (!(pfn & nr_pgmask)) { 1779 deferred_free_range(pfn - nr_free, nr_free); 1780 nr_free = 1; 1781 } else { 1782 nr_free++; 1783 } 1784 } 1785 /* Free the last block of pages to allocator */ 1786 deferred_free_range(pfn - nr_free, nr_free); 1787} 1788 1789/* 1790 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1791 * by performing it only once every pageblock_nr_pages. 1792 * Return number of pages initialized. 1793 */ 1794static unsigned long __init deferred_init_pages(struct zone *zone, 1795 unsigned long pfn, 1796 unsigned long end_pfn) 1797{ 1798 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1799 int nid = zone_to_nid(zone); 1800 unsigned long nr_pages = 0; 1801 int zid = zone_idx(zone); 1802 struct page *page = NULL; 1803 1804 for (; pfn < end_pfn; pfn++) { 1805 if (!deferred_pfn_valid(pfn)) { 1806 page = NULL; 1807 continue; 1808 } else if (!page || !(pfn & nr_pgmask)) { 1809 page = pfn_to_page(pfn); 1810 } else { 1811 page++; 1812 } 1813 __init_single_page(page, pfn, zid, nid); 1814 nr_pages++; 1815 } 1816 return (nr_pages); 1817} 1818 1819/* 1820 * This function is meant to pre-load the iterator for the zone init. 1821 * Specifically it walks through the ranges until we are caught up to the 1822 * first_init_pfn value and exits there. If we never encounter the value we 1823 * return false indicating there are no valid ranges left. 1824 */ 1825static bool __init 1826deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1827 unsigned long *spfn, unsigned long *epfn, 1828 unsigned long first_init_pfn) 1829{ 1830 u64 j; 1831 1832 /* 1833 * Start out by walking through the ranges in this zone that have 1834 * already been initialized. We don't need to do anything with them 1835 * so we just need to flush them out of the system. 1836 */ 1837 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1838 if (*epfn <= first_init_pfn) 1839 continue; 1840 if (*spfn < first_init_pfn) 1841 *spfn = first_init_pfn; 1842 *i = j; 1843 return true; 1844 } 1845 1846 return false; 1847} 1848 1849/* 1850 * Initialize and free pages. We do it in two loops: first we initialize 1851 * struct page, then free to buddy allocator, because while we are 1852 * freeing pages we can access pages that are ahead (computing buddy 1853 * page in __free_one_page()). 1854 * 1855 * In order to try and keep some memory in the cache we have the loop 1856 * broken along max page order boundaries. This way we will not cause 1857 * any issues with the buddy page computation. 1858 */ 1859static unsigned long __init 1860deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1861 unsigned long *end_pfn) 1862{ 1863 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1864 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1865 unsigned long nr_pages = 0; 1866 u64 j = *i; 1867 1868 /* First we loop through and initialize the page values */ 1869 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1870 unsigned long t; 1871 1872 if (mo_pfn <= *start_pfn) 1873 break; 1874 1875 t = min(mo_pfn, *end_pfn); 1876 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1877 1878 if (mo_pfn < *end_pfn) { 1879 *start_pfn = mo_pfn; 1880 break; 1881 } 1882 } 1883 1884 /* Reset values and now loop through freeing pages as needed */ 1885 swap(j, *i); 1886 1887 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1888 unsigned long t; 1889 1890 if (mo_pfn <= spfn) 1891 break; 1892 1893 t = min(mo_pfn, epfn); 1894 deferred_free_pages(spfn, t); 1895 1896 if (mo_pfn <= epfn) 1897 break; 1898 } 1899 1900 return nr_pages; 1901} 1902 1903static void __init 1904deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1905 void *arg) 1906{ 1907 unsigned long spfn, epfn; 1908 struct zone *zone = arg; 1909 u64 i; 1910 1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1912 1913 /* 1914 * Initialize and free pages in MAX_ORDER sized increments so that we 1915 * can avoid introducing any issues with the buddy allocator. 1916 */ 1917 while (spfn < end_pfn) { 1918 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1919 cond_resched(); 1920 } 1921} 1922 1923/* An arch may override for more concurrency. */ 1924__weak int __init 1925deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1926{ 1927 return 1; 1928} 1929 1930/* Initialise remaining memory on a node */ 1931static int __init deferred_init_memmap(void *data) 1932{ 1933 pg_data_t *pgdat = data; 1934 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1935 unsigned long spfn = 0, epfn = 0; 1936 unsigned long first_init_pfn, flags; 1937 unsigned long start = jiffies; 1938 struct zone *zone; 1939 int zid, max_threads; 1940 u64 i; 1941 1942 /* Bind memory initialisation thread to a local node if possible */ 1943 if (!cpumask_empty(cpumask)) 1944 set_cpus_allowed_ptr(current, cpumask); 1945 1946 pgdat_resize_lock(pgdat, &flags); 1947 first_init_pfn = pgdat->first_deferred_pfn; 1948 if (first_init_pfn == ULONG_MAX) { 1949 pgdat_resize_unlock(pgdat, &flags); 1950 pgdat_init_report_one_done(); 1951 return 0; 1952 } 1953 1954 /* Sanity check boundaries */ 1955 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1956 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1957 pgdat->first_deferred_pfn = ULONG_MAX; 1958 1959 /* 1960 * Once we unlock here, the zone cannot be grown anymore, thus if an 1961 * interrupt thread must allocate this early in boot, zone must be 1962 * pre-grown prior to start of deferred page initialization. 1963 */ 1964 pgdat_resize_unlock(pgdat, &flags); 1965 1966 /* Only the highest zone is deferred so find it */ 1967 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1968 zone = pgdat->node_zones + zid; 1969 if (first_init_pfn < zone_end_pfn(zone)) 1970 break; 1971 } 1972 1973 /* If the zone is empty somebody else may have cleared out the zone */ 1974 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1975 first_init_pfn)) 1976 goto zone_empty; 1977 1978 max_threads = deferred_page_init_max_threads(cpumask); 1979 1980 while (spfn < epfn) { 1981 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1982 struct padata_mt_job job = { 1983 .thread_fn = deferred_init_memmap_chunk, 1984 .fn_arg = zone, 1985 .start = spfn, 1986 .size = epfn_align - spfn, 1987 .align = PAGES_PER_SECTION, 1988 .min_chunk = PAGES_PER_SECTION, 1989 .max_threads = max_threads, 1990 }; 1991 1992 padata_do_multithreaded(&job); 1993 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1994 epfn_align); 1995 } 1996zone_empty: 1997 /* Sanity check that the next zone really is unpopulated */ 1998 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1999 2000 pr_info("node %d deferred pages initialised in %ums\n", 2001 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2002 2003 pgdat_init_report_one_done(); 2004 return 0; 2005} 2006 2007/* 2008 * If this zone has deferred pages, try to grow it by initializing enough 2009 * deferred pages to satisfy the allocation specified by order, rounded up to 2010 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2011 * of SECTION_SIZE bytes by initializing struct pages in increments of 2012 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2013 * 2014 * Return true when zone was grown, otherwise return false. We return true even 2015 * when we grow less than requested, to let the caller decide if there are 2016 * enough pages to satisfy the allocation. 2017 * 2018 * Note: We use noinline because this function is needed only during boot, and 2019 * it is called from a __ref function _deferred_grow_zone. This way we are 2020 * making sure that it is not inlined into permanent text section. 2021 */ 2022static noinline bool __init 2023deferred_grow_zone(struct zone *zone, unsigned int order) 2024{ 2025 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2026 pg_data_t *pgdat = zone->zone_pgdat; 2027 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2028 unsigned long spfn, epfn, flags; 2029 unsigned long nr_pages = 0; 2030 u64 i; 2031 2032 /* Only the last zone may have deferred pages */ 2033 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2034 return false; 2035 2036 pgdat_resize_lock(pgdat, &flags); 2037 2038 /* 2039 * If someone grew this zone while we were waiting for spinlock, return 2040 * true, as there might be enough pages already. 2041 */ 2042 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2043 pgdat_resize_unlock(pgdat, &flags); 2044 return true; 2045 } 2046 2047 /* If the zone is empty somebody else may have cleared out the zone */ 2048 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2049 first_deferred_pfn)) { 2050 pgdat->first_deferred_pfn = ULONG_MAX; 2051 pgdat_resize_unlock(pgdat, &flags); 2052 /* Retry only once. */ 2053 return first_deferred_pfn != ULONG_MAX; 2054 } 2055 2056 /* 2057 * Initialize and free pages in MAX_ORDER sized increments so 2058 * that we can avoid introducing any issues with the buddy 2059 * allocator. 2060 */ 2061 while (spfn < epfn) { 2062 /* update our first deferred PFN for this section */ 2063 first_deferred_pfn = spfn; 2064 2065 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2066 touch_nmi_watchdog(); 2067 2068 /* We should only stop along section boundaries */ 2069 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2070 continue; 2071 2072 /* If our quota has been met we can stop here */ 2073 if (nr_pages >= nr_pages_needed) 2074 break; 2075 } 2076 2077 pgdat->first_deferred_pfn = spfn; 2078 pgdat_resize_unlock(pgdat, &flags); 2079 2080 return nr_pages > 0; 2081} 2082 2083/* 2084 * deferred_grow_zone() is __init, but it is called from 2085 * get_page_from_freelist() during early boot until deferred_pages permanently 2086 * disables this call. This is why we have refdata wrapper to avoid warning, 2087 * and to ensure that the function body gets unloaded. 2088 */ 2089static bool __ref 2090_deferred_grow_zone(struct zone *zone, unsigned int order) 2091{ 2092 return deferred_grow_zone(zone, order); 2093} 2094 2095#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2096 2097void __init page_alloc_init_late(void) 2098{ 2099 struct zone *zone; 2100 int nid; 2101 2102#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2103 2104 /* There will be num_node_state(N_MEMORY) threads */ 2105 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2106 for_each_node_state(nid, N_MEMORY) { 2107 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2108 } 2109 2110 /* Block until all are initialised */ 2111 wait_for_completion(&pgdat_init_all_done_comp); 2112 2113 /* 2114 * The number of managed pages has changed due to the initialisation 2115 * so the pcpu batch and high limits needs to be updated or the limits 2116 * will be artificially small. 2117 */ 2118 for_each_populated_zone(zone) 2119 zone_pcp_update(zone); 2120 2121 /* 2122 * We initialized the rest of the deferred pages. Permanently disable 2123 * on-demand struct page initialization. 2124 */ 2125 static_branch_disable(&deferred_pages); 2126 2127 /* Reinit limits that are based on free pages after the kernel is up */ 2128 files_maxfiles_init(); 2129#endif 2130 2131 buffer_init(); 2132 2133 /* Discard memblock private memory */ 2134 memblock_discard(); 2135 2136 for_each_node_state(nid, N_MEMORY) 2137 shuffle_free_memory(NODE_DATA(nid)); 2138 2139 for_each_populated_zone(zone) 2140 set_zone_contiguous(zone); 2141} 2142 2143#ifdef CONFIG_CMA 2144/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2145void __init init_cma_reserved_pageblock(struct page *page) 2146{ 2147 unsigned i = pageblock_nr_pages; 2148 struct page *p = page; 2149 2150 do { 2151 __ClearPageReserved(p); 2152 set_page_count(p, 0); 2153 } while (++p, --i); 2154 2155 set_pageblock_migratetype(page, MIGRATE_CMA); 2156 2157 if (pageblock_order >= MAX_ORDER) { 2158 i = pageblock_nr_pages; 2159 p = page; 2160 do { 2161 set_page_refcounted(p); 2162 __free_pages(p, MAX_ORDER - 1); 2163 p += MAX_ORDER_NR_PAGES; 2164 } while (i -= MAX_ORDER_NR_PAGES); 2165 } else { 2166 set_page_refcounted(page); 2167 __free_pages(page, pageblock_order); 2168 } 2169 2170 adjust_managed_page_count(page, pageblock_nr_pages); 2171} 2172#endif 2173 2174/* 2175 * The order of subdivision here is critical for the IO subsystem. 2176 * Please do not alter this order without good reasons and regression 2177 * testing. Specifically, as large blocks of memory are subdivided, 2178 * the order in which smaller blocks are delivered depends on the order 2179 * they're subdivided in this function. This is the primary factor 2180 * influencing the order in which pages are delivered to the IO 2181 * subsystem according to empirical testing, and this is also justified 2182 * by considering the behavior of a buddy system containing a single 2183 * large block of memory acted on by a series of small allocations. 2184 * This behavior is a critical factor in sglist merging's success. 2185 * 2186 * -- nyc 2187 */ 2188static inline void expand(struct zone *zone, struct page *page, 2189 int low, int high, int migratetype) 2190{ 2191 unsigned long size = 1 << high; 2192 2193 while (high > low) { 2194 high--; 2195 size >>= 1; 2196 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2197 2198 /* 2199 * Mark as guard pages (or page), that will allow to 2200 * merge back to allocator when buddy will be freed. 2201 * Corresponding page table entries will not be touched, 2202 * pages will stay not present in virtual address space 2203 */ 2204 if (set_page_guard(zone, &page[size], high, migratetype)) 2205 continue; 2206 2207 add_to_free_list(&page[size], zone, high, migratetype); 2208 set_buddy_order(&page[size], high); 2209 } 2210} 2211 2212static void check_new_page_bad(struct page *page) 2213{ 2214 if (unlikely(page->flags & __PG_HWPOISON)) { 2215 /* Don't complain about hwpoisoned pages */ 2216 page_mapcount_reset(page); /* remove PageBuddy */ 2217 return; 2218 } 2219 2220 bad_page(page, 2221 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2222} 2223 2224/* 2225 * This page is about to be returned from the page allocator 2226 */ 2227static inline int check_new_page(struct page *page) 2228{ 2229 if (likely(page_expected_state(page, 2230 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2231 return 0; 2232 2233 check_new_page_bad(page); 2234 return 1; 2235} 2236 2237#ifdef CONFIG_DEBUG_VM 2238/* 2239 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2240 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2241 * also checked when pcp lists are refilled from the free lists. 2242 */ 2243static inline bool check_pcp_refill(struct page *page) 2244{ 2245 if (debug_pagealloc_enabled_static()) 2246 return check_new_page(page); 2247 else 2248 return false; 2249} 2250 2251static inline bool check_new_pcp(struct page *page) 2252{ 2253 return check_new_page(page); 2254} 2255#else 2256/* 2257 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2258 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2259 * enabled, they are also checked when being allocated from the pcp lists. 2260 */ 2261static inline bool check_pcp_refill(struct page *page) 2262{ 2263 return check_new_page(page); 2264} 2265static inline bool check_new_pcp(struct page *page) 2266{ 2267 if (debug_pagealloc_enabled_static()) 2268 return check_new_page(page); 2269 else 2270 return false; 2271} 2272#endif /* CONFIG_DEBUG_VM */ 2273 2274static bool check_new_pages(struct page *page, unsigned int order) 2275{ 2276 int i; 2277 for (i = 0; i < (1 << order); i++) { 2278 struct page *p = page + i; 2279 2280 if (unlikely(check_new_page(p))) 2281 return true; 2282 } 2283 2284 return false; 2285} 2286 2287inline void post_alloc_hook(struct page *page, unsigned int order, 2288 gfp_t gfp_flags) 2289{ 2290 set_page_private(page, 0); 2291 set_page_refcounted(page); 2292 2293 arch_alloc_page(page, order); 2294 debug_pagealloc_map_pages(page, 1 << order); 2295 kasan_alloc_pages(page, order); 2296 kernel_unpoison_pages(page, 1 << order); 2297 set_page_owner(page, order, gfp_flags); 2298 2299 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2300 kernel_init_free_pages(page, 1 << order); 2301} 2302 2303static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2304 unsigned int alloc_flags) 2305{ 2306 post_alloc_hook(page, order, gfp_flags); 2307 2308 if (order && (gfp_flags & __GFP_COMP)) 2309 prep_compound_page(page, order); 2310 2311 /* 2312 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2313 * allocate the page. The expectation is that the caller is taking 2314 * steps that will free more memory. The caller should avoid the page 2315 * being used for !PFMEMALLOC purposes. 2316 */ 2317 if (alloc_flags & ALLOC_NO_WATERMARKS) 2318 set_page_pfmemalloc(page); 2319 else 2320 clear_page_pfmemalloc(page); 2321} 2322 2323/* 2324 * Go through the free lists for the given migratetype and remove 2325 * the smallest available page from the freelists 2326 */ 2327static __always_inline 2328struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2329 int migratetype) 2330{ 2331 unsigned int current_order; 2332 struct free_area *area; 2333 struct page *page; 2334 2335 /* Find a page of the appropriate size in the preferred list */ 2336 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2337 area = &(zone->free_area[current_order]); 2338 page = get_page_from_free_area(area, migratetype); 2339 if (!page) 2340 continue; 2341 del_page_from_free_list(page, zone, current_order); 2342 expand(zone, page, order, current_order, migratetype); 2343 set_pcppage_migratetype(page, migratetype); 2344 return page; 2345 } 2346 2347 return NULL; 2348} 2349 2350 2351/* 2352 * This array describes the order lists are fallen back to when 2353 * the free lists for the desirable migrate type are depleted 2354 */ 2355static int fallbacks[MIGRATE_TYPES][3] = { 2356 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2357 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2358 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2359#ifdef CONFIG_CMA 2360 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2361#endif 2362#ifdef CONFIG_MEMORY_ISOLATION 2363 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2364#endif 2365}; 2366 2367#ifdef CONFIG_CMA 2368static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2369 unsigned int order) 2370{ 2371 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2372} 2373#else 2374static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2375 unsigned int order) { return NULL; } 2376#endif 2377 2378/* 2379 * Move the free pages in a range to the freelist tail of the requested type. 2380 * Note that start_page and end_pages are not aligned on a pageblock 2381 * boundary. If alignment is required, use move_freepages_block() 2382 */ 2383static int move_freepages(struct zone *zone, 2384 struct page *start_page, struct page *end_page, 2385 int migratetype, int *num_movable) 2386{ 2387 struct page *page; 2388 unsigned int order; 2389 int pages_moved = 0; 2390 2391 for (page = start_page; page <= end_page;) { 2392 if (!pfn_valid_within(page_to_pfn(page))) { 2393 page++; 2394 continue; 2395 } 2396 2397 if (!PageBuddy(page)) { 2398 /* 2399 * We assume that pages that could be isolated for 2400 * migration are movable. But we don't actually try 2401 * isolating, as that would be expensive. 2402 */ 2403 if (num_movable && 2404 (PageLRU(page) || __PageMovable(page))) 2405 (*num_movable)++; 2406 2407 page++; 2408 continue; 2409 } 2410 2411 /* Make sure we are not inadvertently changing nodes */ 2412 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2413 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2414 2415 order = buddy_order(page); 2416 move_to_free_list(page, zone, order, migratetype); 2417 page += 1 << order; 2418 pages_moved += 1 << order; 2419 } 2420 2421 return pages_moved; 2422} 2423 2424int move_freepages_block(struct zone *zone, struct page *page, 2425 int migratetype, int *num_movable) 2426{ 2427 unsigned long start_pfn, end_pfn; 2428 struct page *start_page, *end_page; 2429 2430 if (num_movable) 2431 *num_movable = 0; 2432 2433 start_pfn = page_to_pfn(page); 2434 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2435 start_page = pfn_to_page(start_pfn); 2436 end_page = start_page + pageblock_nr_pages - 1; 2437 end_pfn = start_pfn + pageblock_nr_pages - 1; 2438 2439 /* Do not cross zone boundaries */ 2440 if (!zone_spans_pfn(zone, start_pfn)) 2441 start_page = page; 2442 if (!zone_spans_pfn(zone, end_pfn)) 2443 return 0; 2444 2445 return move_freepages(zone, start_page, end_page, migratetype, 2446 num_movable); 2447} 2448 2449static void change_pageblock_range(struct page *pageblock_page, 2450 int start_order, int migratetype) 2451{ 2452 int nr_pageblocks = 1 << (start_order - pageblock_order); 2453 2454 while (nr_pageblocks--) { 2455 set_pageblock_migratetype(pageblock_page, migratetype); 2456 pageblock_page += pageblock_nr_pages; 2457 } 2458} 2459 2460/* 2461 * When we are falling back to another migratetype during allocation, try to 2462 * steal extra free pages from the same pageblocks to satisfy further 2463 * allocations, instead of polluting multiple pageblocks. 2464 * 2465 * If we are stealing a relatively large buddy page, it is likely there will 2466 * be more free pages in the pageblock, so try to steal them all. For 2467 * reclaimable and unmovable allocations, we steal regardless of page size, 2468 * as fragmentation caused by those allocations polluting movable pageblocks 2469 * is worse than movable allocations stealing from unmovable and reclaimable 2470 * pageblocks. 2471 */ 2472static bool can_steal_fallback(unsigned int order, int start_mt) 2473{ 2474 /* 2475 * Leaving this order check is intended, although there is 2476 * relaxed order check in next check. The reason is that 2477 * we can actually steal whole pageblock if this condition met, 2478 * but, below check doesn't guarantee it and that is just heuristic 2479 * so could be changed anytime. 2480 */ 2481 if (order >= pageblock_order) 2482 return true; 2483 2484 if (order >= pageblock_order / 2 || 2485 start_mt == MIGRATE_RECLAIMABLE || 2486 start_mt == MIGRATE_UNMOVABLE || 2487 page_group_by_mobility_disabled) 2488 return true; 2489 2490 return false; 2491} 2492 2493static inline bool boost_watermark(struct zone *zone) 2494{ 2495 unsigned long max_boost; 2496 2497 if (!watermark_boost_factor) 2498 return false; 2499 /* 2500 * Don't bother in zones that are unlikely to produce results. 2501 * On small machines, including kdump capture kernels running 2502 * in a small area, boosting the watermark can cause an out of 2503 * memory situation immediately. 2504 */ 2505 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2506 return false; 2507 2508 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2509 watermark_boost_factor, 10000); 2510 2511 /* 2512 * high watermark may be uninitialised if fragmentation occurs 2513 * very early in boot so do not boost. We do not fall 2514 * through and boost by pageblock_nr_pages as failing 2515 * allocations that early means that reclaim is not going 2516 * to help and it may even be impossible to reclaim the 2517 * boosted watermark resulting in a hang. 2518 */ 2519 if (!max_boost) 2520 return false; 2521 2522 max_boost = max(pageblock_nr_pages, max_boost); 2523 2524 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2525 max_boost); 2526 2527 return true; 2528} 2529 2530/* 2531 * This function implements actual steal behaviour. If order is large enough, 2532 * we can steal whole pageblock. If not, we first move freepages in this 2533 * pageblock to our migratetype and determine how many already-allocated pages 2534 * are there in the pageblock with a compatible migratetype. If at least half 2535 * of pages are free or compatible, we can change migratetype of the pageblock 2536 * itself, so pages freed in the future will be put on the correct free list. 2537 */ 2538static void steal_suitable_fallback(struct zone *zone, struct page *page, 2539 unsigned int alloc_flags, int start_type, bool whole_block) 2540{ 2541 unsigned int current_order = buddy_order(page); 2542 int free_pages, movable_pages, alike_pages; 2543 int old_block_type; 2544 2545 old_block_type = get_pageblock_migratetype(page); 2546 2547 /* 2548 * This can happen due to races and we want to prevent broken 2549 * highatomic accounting. 2550 */ 2551 if (is_migrate_highatomic(old_block_type)) 2552 goto single_page; 2553 2554 /* Take ownership for orders >= pageblock_order */ 2555 if (current_order >= pageblock_order) { 2556 change_pageblock_range(page, current_order, start_type); 2557 goto single_page; 2558 } 2559 2560 /* 2561 * Boost watermarks to increase reclaim pressure to reduce the 2562 * likelihood of future fallbacks. Wake kswapd now as the node 2563 * may be balanced overall and kswapd will not wake naturally. 2564 */ 2565 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2566 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2567 2568 /* We are not allowed to try stealing from the whole block */ 2569 if (!whole_block) 2570 goto single_page; 2571 2572 free_pages = move_freepages_block(zone, page, start_type, 2573 &movable_pages); 2574 /* 2575 * Determine how many pages are compatible with our allocation. 2576 * For movable allocation, it's the number of movable pages which 2577 * we just obtained. For other types it's a bit more tricky. 2578 */ 2579 if (start_type == MIGRATE_MOVABLE) { 2580 alike_pages = movable_pages; 2581 } else { 2582 /* 2583 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2584 * to MOVABLE pageblock, consider all non-movable pages as 2585 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2586 * vice versa, be conservative since we can't distinguish the 2587 * exact migratetype of non-movable pages. 2588 */ 2589 if (old_block_type == MIGRATE_MOVABLE) 2590 alike_pages = pageblock_nr_pages 2591 - (free_pages + movable_pages); 2592 else 2593 alike_pages = 0; 2594 } 2595 2596 /* moving whole block can fail due to zone boundary conditions */ 2597 if (!free_pages) 2598 goto single_page; 2599 2600 /* 2601 * If a sufficient number of pages in the block are either free or of 2602 * comparable migratability as our allocation, claim the whole block. 2603 */ 2604 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2605 page_group_by_mobility_disabled) 2606 set_pageblock_migratetype(page, start_type); 2607 2608 return; 2609 2610single_page: 2611 move_to_free_list(page, zone, current_order, start_type); 2612} 2613 2614/* 2615 * Check whether there is a suitable fallback freepage with requested order. 2616 * If only_stealable is true, this function returns fallback_mt only if 2617 * we can steal other freepages all together. This would help to reduce 2618 * fragmentation due to mixed migratetype pages in one pageblock. 2619 */ 2620int find_suitable_fallback(struct free_area *area, unsigned int order, 2621 int migratetype, bool only_stealable, bool *can_steal) 2622{ 2623 int i; 2624 int fallback_mt; 2625 2626 if (area->nr_free == 0) 2627 return -1; 2628 2629 *can_steal = false; 2630 for (i = 0;; i++) { 2631 fallback_mt = fallbacks[migratetype][i]; 2632 if (fallback_mt == MIGRATE_TYPES) 2633 break; 2634 2635 if (free_area_empty(area, fallback_mt)) 2636 continue; 2637 2638 if (can_steal_fallback(order, migratetype)) 2639 *can_steal = true; 2640 2641 if (!only_stealable) 2642 return fallback_mt; 2643 2644 if (*can_steal) 2645 return fallback_mt; 2646 } 2647 2648 return -1; 2649} 2650 2651/* 2652 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2653 * there are no empty page blocks that contain a page with a suitable order 2654 */ 2655static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2656 unsigned int alloc_order) 2657{ 2658 int mt; 2659 unsigned long max_managed, flags; 2660 2661 /* 2662 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2663 * Check is race-prone but harmless. 2664 */ 2665 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2666 if (zone->nr_reserved_highatomic >= max_managed) 2667 return; 2668 2669 spin_lock_irqsave(&zone->lock, flags); 2670 2671 /* Recheck the nr_reserved_highatomic limit under the lock */ 2672 if (zone->nr_reserved_highatomic >= max_managed) 2673 goto out_unlock; 2674 2675 /* Yoink! */ 2676 mt = get_pageblock_migratetype(page); 2677 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2678 && !is_migrate_cma(mt)) { 2679 zone->nr_reserved_highatomic += pageblock_nr_pages; 2680 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2681 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2682 } 2683 2684out_unlock: 2685 spin_unlock_irqrestore(&zone->lock, flags); 2686} 2687 2688/* 2689 * Used when an allocation is about to fail under memory pressure. This 2690 * potentially hurts the reliability of high-order allocations when under 2691 * intense memory pressure but failed atomic allocations should be easier 2692 * to recover from than an OOM. 2693 * 2694 * If @force is true, try to unreserve a pageblock even though highatomic 2695 * pageblock is exhausted. 2696 */ 2697static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2698 bool force) 2699{ 2700 struct zonelist *zonelist = ac->zonelist; 2701 unsigned long flags; 2702 struct zoneref *z; 2703 struct zone *zone; 2704 struct page *page; 2705 int order; 2706 bool ret; 2707 2708 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2709 ac->nodemask) { 2710 /* 2711 * Preserve at least one pageblock unless memory pressure 2712 * is really high. 2713 */ 2714 if (!force && zone->nr_reserved_highatomic <= 2715 pageblock_nr_pages) 2716 continue; 2717 2718 spin_lock_irqsave(&zone->lock, flags); 2719 for (order = 0; order < MAX_ORDER; order++) { 2720 struct free_area *area = &(zone->free_area[order]); 2721 2722 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2723 if (!page) 2724 continue; 2725 2726 /* 2727 * In page freeing path, migratetype change is racy so 2728 * we can counter several free pages in a pageblock 2729 * in this loop althoug we changed the pageblock type 2730 * from highatomic to ac->migratetype. So we should 2731 * adjust the count once. 2732 */ 2733 if (is_migrate_highatomic_page(page)) { 2734 /* 2735 * It should never happen but changes to 2736 * locking could inadvertently allow a per-cpu 2737 * drain to add pages to MIGRATE_HIGHATOMIC 2738 * while unreserving so be safe and watch for 2739 * underflows. 2740 */ 2741 zone->nr_reserved_highatomic -= min( 2742 pageblock_nr_pages, 2743 zone->nr_reserved_highatomic); 2744 } 2745 2746 /* 2747 * Convert to ac->migratetype and avoid the normal 2748 * pageblock stealing heuristics. Minimally, the caller 2749 * is doing the work and needs the pages. More 2750 * importantly, if the block was always converted to 2751 * MIGRATE_UNMOVABLE or another type then the number 2752 * of pageblocks that cannot be completely freed 2753 * may increase. 2754 */ 2755 set_pageblock_migratetype(page, ac->migratetype); 2756 ret = move_freepages_block(zone, page, ac->migratetype, 2757 NULL); 2758 if (ret) { 2759 spin_unlock_irqrestore(&zone->lock, flags); 2760 return ret; 2761 } 2762 } 2763 spin_unlock_irqrestore(&zone->lock, flags); 2764 } 2765 2766 return false; 2767} 2768 2769/* 2770 * Try finding a free buddy page on the fallback list and put it on the free 2771 * list of requested migratetype, possibly along with other pages from the same 2772 * block, depending on fragmentation avoidance heuristics. Returns true if 2773 * fallback was found so that __rmqueue_smallest() can grab it. 2774 * 2775 * The use of signed ints for order and current_order is a deliberate 2776 * deviation from the rest of this file, to make the for loop 2777 * condition simpler. 2778 */ 2779static __always_inline bool 2780__rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2781 unsigned int alloc_flags) 2782{ 2783 struct free_area *area; 2784 int current_order; 2785 int min_order = order; 2786 struct page *page; 2787 int fallback_mt; 2788 bool can_steal; 2789 2790 /* 2791 * Do not steal pages from freelists belonging to other pageblocks 2792 * i.e. orders < pageblock_order. If there are no local zones free, 2793 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2794 */ 2795 if (alloc_flags & ALLOC_NOFRAGMENT) 2796 min_order = pageblock_order; 2797 2798 /* 2799 * Find the largest available free page in the other list. This roughly 2800 * approximates finding the pageblock with the most free pages, which 2801 * would be too costly to do exactly. 2802 */ 2803 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2804 --current_order) { 2805 area = &(zone->free_area[current_order]); 2806 fallback_mt = find_suitable_fallback(area, current_order, 2807 start_migratetype, false, &can_steal); 2808 if (fallback_mt == -1) 2809 continue; 2810 2811 /* 2812 * We cannot steal all free pages from the pageblock and the 2813 * requested migratetype is movable. In that case it's better to 2814 * steal and split the smallest available page instead of the 2815 * largest available page, because even if the next movable 2816 * allocation falls back into a different pageblock than this 2817 * one, it won't cause permanent fragmentation. 2818 */ 2819 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2820 && current_order > order) 2821 goto find_smallest; 2822 2823 goto do_steal; 2824 } 2825 2826 return false; 2827 2828find_smallest: 2829 for (current_order = order; current_order < MAX_ORDER; 2830 current_order++) { 2831 area = &(zone->free_area[current_order]); 2832 fallback_mt = find_suitable_fallback(area, current_order, 2833 start_migratetype, false, &can_steal); 2834 if (fallback_mt != -1) 2835 break; 2836 } 2837 2838 /* 2839 * This should not happen - we already found a suitable fallback 2840 * when looking for the largest page. 2841 */ 2842 VM_BUG_ON(current_order == MAX_ORDER); 2843 2844do_steal: 2845 page = get_page_from_free_area(area, fallback_mt); 2846 2847 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2848 can_steal); 2849 2850 trace_mm_page_alloc_extfrag(page, order, current_order, 2851 start_migratetype, fallback_mt); 2852 2853 return true; 2854 2855} 2856 2857/* 2858 * Do the hard work of removing an element from the buddy allocator. 2859 * Call me with the zone->lock already held. 2860 */ 2861static __always_inline struct page * 2862__rmqueue(struct zone *zone, unsigned int order, int migratetype, 2863 unsigned int alloc_flags) 2864{ 2865 struct page *page; 2866 2867 if (IS_ENABLED(CONFIG_CMA)) { 2868 /* 2869 * Balance movable allocations between regular and CMA areas by 2870 * allocating from CMA when over half of the zone's free memory 2871 * is in the CMA area. 2872 */ 2873 if (alloc_flags & ALLOC_CMA && 2874 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2875 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2876 page = __rmqueue_cma_fallback(zone, order); 2877 if (page) 2878 goto out; 2879 } 2880 } 2881retry: 2882 page = __rmqueue_smallest(zone, order, migratetype); 2883 if (unlikely(!page)) { 2884 if (alloc_flags & ALLOC_CMA) 2885 page = __rmqueue_cma_fallback(zone, order); 2886 2887 if (!page && __rmqueue_fallback(zone, order, migratetype, 2888 alloc_flags)) 2889 goto retry; 2890 } 2891out: 2892 if (page) 2893 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2894 return page; 2895} 2896 2897/* 2898 * Obtain a specified number of elements from the buddy allocator, all under 2899 * a single hold of the lock, for efficiency. Add them to the supplied list. 2900 * Returns the number of new pages which were placed at *list. 2901 */ 2902static int rmqueue_bulk(struct zone *zone, unsigned int order, 2903 unsigned long count, struct list_head *list, 2904 int migratetype, unsigned int alloc_flags) 2905{ 2906 int i, alloced = 0; 2907 2908 spin_lock(&zone->lock); 2909 for (i = 0; i < count; ++i) { 2910 struct page *page = __rmqueue(zone, order, migratetype, 2911 alloc_flags); 2912 if (unlikely(page == NULL)) 2913 break; 2914 2915 if (unlikely(check_pcp_refill(page))) 2916 continue; 2917 2918 /* 2919 * Split buddy pages returned by expand() are received here in 2920 * physical page order. The page is added to the tail of 2921 * caller's list. From the callers perspective, the linked list 2922 * is ordered by page number under some conditions. This is 2923 * useful for IO devices that can forward direction from the 2924 * head, thus also in the physical page order. This is useful 2925 * for IO devices that can merge IO requests if the physical 2926 * pages are ordered properly. 2927 */ 2928 list_add_tail(&page->lru, list); 2929 alloced++; 2930 if (is_migrate_cma(get_pcppage_migratetype(page))) 2931 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2932 -(1 << order)); 2933 } 2934 2935 /* 2936 * i pages were removed from the buddy list even if some leak due 2937 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2938 * on i. Do not confuse with 'alloced' which is the number of 2939 * pages added to the pcp list. 2940 */ 2941 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2942 spin_unlock(&zone->lock); 2943 return alloced; 2944} 2945 2946#ifdef CONFIG_NUMA 2947/* 2948 * Called from the vmstat counter updater to drain pagesets of this 2949 * currently executing processor on remote nodes after they have 2950 * expired. 2951 * 2952 * Note that this function must be called with the thread pinned to 2953 * a single processor. 2954 */ 2955void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2956{ 2957 unsigned long flags; 2958 int to_drain, batch; 2959 2960 local_irq_save(flags); 2961 batch = READ_ONCE(pcp->batch); 2962 to_drain = min(pcp->count, batch); 2963 if (to_drain > 0) 2964 free_pcppages_bulk(zone, to_drain, pcp); 2965 local_irq_restore(flags); 2966} 2967#endif 2968 2969/* 2970 * Drain pcplists of the indicated processor and zone. 2971 * 2972 * The processor must either be the current processor and the 2973 * thread pinned to the current processor or a processor that 2974 * is not online. 2975 */ 2976static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2977{ 2978 unsigned long flags; 2979 struct per_cpu_pageset *pset; 2980 struct per_cpu_pages *pcp; 2981 2982 local_irq_save(flags); 2983 pset = per_cpu_ptr(zone->pageset, cpu); 2984 2985 pcp = &pset->pcp; 2986 if (pcp->count) 2987 free_pcppages_bulk(zone, pcp->count, pcp); 2988 local_irq_restore(flags); 2989} 2990 2991/* 2992 * Drain pcplists of all zones on the indicated processor. 2993 * 2994 * The processor must either be the current processor and the 2995 * thread pinned to the current processor or a processor that 2996 * is not online. 2997 */ 2998static void drain_pages(unsigned int cpu) 2999{ 3000 struct zone *zone; 3001 3002 for_each_populated_zone(zone) { 3003 drain_pages_zone(cpu, zone); 3004 } 3005} 3006 3007/* 3008 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3009 * 3010 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3011 * the single zone's pages. 3012 */ 3013void drain_local_pages(struct zone *zone) 3014{ 3015 int cpu = smp_processor_id(); 3016 3017 if (zone) 3018 drain_pages_zone(cpu, zone); 3019 else 3020 drain_pages(cpu); 3021} 3022 3023static void drain_local_pages_wq(struct work_struct *work) 3024{ 3025 struct pcpu_drain *drain; 3026 3027 drain = container_of(work, struct pcpu_drain, work); 3028 3029 /* 3030 * drain_all_pages doesn't use proper cpu hotplug protection so 3031 * we can race with cpu offline when the WQ can move this from 3032 * a cpu pinned worker to an unbound one. We can operate on a different 3033 * cpu which is allright but we also have to make sure to not move to 3034 * a different one. 3035 */ 3036 preempt_disable(); 3037 drain_local_pages(drain->zone); 3038 preempt_enable(); 3039} 3040 3041/* 3042 * The implementation of drain_all_pages(), exposing an extra parameter to 3043 * drain on all cpus. 3044 * 3045 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3046 * not empty. The check for non-emptiness can however race with a free to 3047 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3048 * that need the guarantee that every CPU has drained can disable the 3049 * optimizing racy check. 3050 */ 3051static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3052{ 3053 int cpu; 3054 3055 /* 3056 * Allocate in the BSS so we wont require allocation in 3057 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3058 */ 3059 static cpumask_t cpus_with_pcps; 3060 3061 /* 3062 * Make sure nobody triggers this path before mm_percpu_wq is fully 3063 * initialized. 3064 */ 3065 if (WARN_ON_ONCE(!mm_percpu_wq)) 3066 return; 3067 3068 /* 3069 * Do not drain if one is already in progress unless it's specific to 3070 * a zone. Such callers are primarily CMA and memory hotplug and need 3071 * the drain to be complete when the call returns. 3072 */ 3073 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3074 if (!zone) 3075 return; 3076 mutex_lock(&pcpu_drain_mutex); 3077 } 3078 3079 /* 3080 * We don't care about racing with CPU hotplug event 3081 * as offline notification will cause the notified 3082 * cpu to drain that CPU pcps and on_each_cpu_mask 3083 * disables preemption as part of its processing 3084 */ 3085 for_each_online_cpu(cpu) { 3086 struct per_cpu_pageset *pcp; 3087 struct zone *z; 3088 bool has_pcps = false; 3089 3090 if (force_all_cpus) { 3091 /* 3092 * The pcp.count check is racy, some callers need a 3093 * guarantee that no cpu is missed. 3094 */ 3095 has_pcps = true; 3096 } else if (zone) { 3097 pcp = per_cpu_ptr(zone->pageset, cpu); 3098 if (pcp->pcp.count) 3099 has_pcps = true; 3100 } else { 3101 for_each_populated_zone(z) { 3102 pcp = per_cpu_ptr(z->pageset, cpu); 3103 if (pcp->pcp.count) { 3104 has_pcps = true; 3105 break; 3106 } 3107 } 3108 } 3109 3110 if (has_pcps) 3111 cpumask_set_cpu(cpu, &cpus_with_pcps); 3112 else 3113 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3114 } 3115 3116 for_each_cpu(cpu, &cpus_with_pcps) { 3117 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3118 3119 drain->zone = zone; 3120 INIT_WORK(&drain->work, drain_local_pages_wq); 3121 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3122 } 3123 for_each_cpu(cpu, &cpus_with_pcps) 3124 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3125 3126 mutex_unlock(&pcpu_drain_mutex); 3127} 3128 3129/* 3130 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3131 * 3132 * When zone parameter is non-NULL, spill just the single zone's pages. 3133 * 3134 * Note that this can be extremely slow as the draining happens in a workqueue. 3135 */ 3136void drain_all_pages(struct zone *zone) 3137{ 3138 __drain_all_pages(zone, false); 3139} 3140 3141#ifdef CONFIG_HIBERNATION 3142 3143/* 3144 * Touch the watchdog for every WD_PAGE_COUNT pages. 3145 */ 3146#define WD_PAGE_COUNT (128*1024) 3147 3148void mark_free_pages(struct zone *zone) 3149{ 3150 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3151 unsigned long flags; 3152 unsigned int order, t; 3153 struct page *page; 3154 3155 if (zone_is_empty(zone)) 3156 return; 3157 3158 spin_lock_irqsave(&zone->lock, flags); 3159 3160 max_zone_pfn = zone_end_pfn(zone); 3161 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3162 if (pfn_valid(pfn)) { 3163 page = pfn_to_page(pfn); 3164 3165 if (!--page_count) { 3166 touch_nmi_watchdog(); 3167 page_count = WD_PAGE_COUNT; 3168 } 3169 3170 if (page_zone(page) != zone) 3171 continue; 3172 3173 if (!swsusp_page_is_forbidden(page)) 3174 swsusp_unset_page_free(page); 3175 } 3176 3177 for_each_migratetype_order(order, t) { 3178 list_for_each_entry(page, 3179 &zone->free_area[order].free_list[t], lru) { 3180 unsigned long i; 3181 3182 pfn = page_to_pfn(page); 3183 for (i = 0; i < (1UL << order); i++) { 3184 if (!--page_count) { 3185 touch_nmi_watchdog(); 3186 page_count = WD_PAGE_COUNT; 3187 } 3188 swsusp_set_page_free(pfn_to_page(pfn + i)); 3189 } 3190 } 3191 } 3192 spin_unlock_irqrestore(&zone->lock, flags); 3193} 3194#endif /* CONFIG_PM */ 3195 3196static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3197{ 3198 int migratetype; 3199 3200 if (!free_pcp_prepare(page)) 3201 return false; 3202 3203 migratetype = get_pfnblock_migratetype(page, pfn); 3204 set_pcppage_migratetype(page, migratetype); 3205 return true; 3206} 3207 3208static void free_unref_page_commit(struct page *page, unsigned long pfn) 3209{ 3210 struct zone *zone = page_zone(page); 3211 struct per_cpu_pages *pcp; 3212 int migratetype; 3213 3214 migratetype = get_pcppage_migratetype(page); 3215 __count_vm_event(PGFREE); 3216 3217 /* 3218 * We only track unmovable, reclaimable and movable on pcp lists. 3219 * Free ISOLATE pages back to the allocator because they are being 3220 * offlined but treat HIGHATOMIC as movable pages so we can get those 3221 * areas back if necessary. Otherwise, we may have to free 3222 * excessively into the page allocator 3223 */ 3224 if (migratetype >= MIGRATE_PCPTYPES) { 3225 if (unlikely(is_migrate_isolate(migratetype))) { 3226 free_one_page(zone, page, pfn, 0, migratetype, 3227 FPI_NONE); 3228 return; 3229 } 3230 migratetype = MIGRATE_MOVABLE; 3231 } 3232 3233 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3234 list_add(&page->lru, &pcp->lists[migratetype]); 3235 pcp->count++; 3236 if (pcp->count >= READ_ONCE(pcp->high)) 3237 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3238} 3239 3240/* 3241 * Free a 0-order page 3242 */ 3243void free_unref_page(struct page *page) 3244{ 3245 unsigned long flags; 3246 unsigned long pfn = page_to_pfn(page); 3247 3248 if (!free_unref_page_prepare(page, pfn)) 3249 return; 3250 3251 local_irq_save(flags); 3252 free_unref_page_commit(page, pfn); 3253 local_irq_restore(flags); 3254} 3255 3256/* 3257 * Free a list of 0-order pages 3258 */ 3259void free_unref_page_list(struct list_head *list) 3260{ 3261 struct page *page, *next; 3262 unsigned long flags, pfn; 3263 int batch_count = 0; 3264 3265 /* Prepare pages for freeing */ 3266 list_for_each_entry_safe(page, next, list, lru) { 3267 pfn = page_to_pfn(page); 3268 if (!free_unref_page_prepare(page, pfn)) 3269 list_del(&page->lru); 3270 set_page_private(page, pfn); 3271 } 3272 3273 local_irq_save(flags); 3274 list_for_each_entry_safe(page, next, list, lru) { 3275 unsigned long pfn = page_private(page); 3276 3277 set_page_private(page, 0); 3278 trace_mm_page_free_batched(page); 3279 free_unref_page_commit(page, pfn); 3280 3281 /* 3282 * Guard against excessive IRQ disabled times when we get 3283 * a large list of pages to free. 3284 */ 3285 if (++batch_count == SWAP_CLUSTER_MAX) { 3286 local_irq_restore(flags); 3287 batch_count = 0; 3288 local_irq_save(flags); 3289 } 3290 } 3291 local_irq_restore(flags); 3292} 3293 3294/* 3295 * split_page takes a non-compound higher-order page, and splits it into 3296 * n (1<<order) sub-pages: page[0..n] 3297 * Each sub-page must be freed individually. 3298 * 3299 * Note: this is probably too low level an operation for use in drivers. 3300 * Please consult with lkml before using this in your driver. 3301 */ 3302void split_page(struct page *page, unsigned int order) 3303{ 3304 int i; 3305 3306 VM_BUG_ON_PAGE(PageCompound(page), page); 3307 VM_BUG_ON_PAGE(!page_count(page), page); 3308 3309 for (i = 1; i < (1 << order); i++) 3310 set_page_refcounted(page + i); 3311 split_page_owner(page, 1 << order); 3312} 3313EXPORT_SYMBOL_GPL(split_page); 3314 3315int __isolate_free_page(struct page *page, unsigned int order) 3316{ 3317 unsigned long watermark; 3318 struct zone *zone; 3319 int mt; 3320 3321 BUG_ON(!PageBuddy(page)); 3322 3323 zone = page_zone(page); 3324 mt = get_pageblock_migratetype(page); 3325 3326 if (!is_migrate_isolate(mt)) { 3327 /* 3328 * Obey watermarks as if the page was being allocated. We can 3329 * emulate a high-order watermark check with a raised order-0 3330 * watermark, because we already know our high-order page 3331 * exists. 3332 */ 3333 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3334 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3335 return 0; 3336 3337 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3338 } 3339 3340 /* Remove page from free list */ 3341 3342 del_page_from_free_list(page, zone, order); 3343 3344 /* 3345 * Set the pageblock if the isolated page is at least half of a 3346 * pageblock 3347 */ 3348 if (order >= pageblock_order - 1) { 3349 struct page *endpage = page + (1 << order) - 1; 3350 for (; page < endpage; page += pageblock_nr_pages) { 3351 int mt = get_pageblock_migratetype(page); 3352 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3353 && !is_migrate_highatomic(mt)) 3354 set_pageblock_migratetype(page, 3355 MIGRATE_MOVABLE); 3356 } 3357 } 3358 3359 3360 return 1UL << order; 3361} 3362 3363/** 3364 * __putback_isolated_page - Return a now-isolated page back where we got it 3365 * @page: Page that was isolated 3366 * @order: Order of the isolated page 3367 * @mt: The page's pageblock's migratetype 3368 * 3369 * This function is meant to return a page pulled from the free lists via 3370 * __isolate_free_page back to the free lists they were pulled from. 3371 */ 3372void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3373{ 3374 struct zone *zone = page_zone(page); 3375 3376 /* zone lock should be held when this function is called */ 3377 lockdep_assert_held(&zone->lock); 3378 3379 /* Return isolated page to tail of freelist. */ 3380 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3381 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3382} 3383 3384/* 3385 * Update NUMA hit/miss statistics 3386 * 3387 * Must be called with interrupts disabled. 3388 */ 3389static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3390{ 3391#ifdef CONFIG_NUMA 3392 enum numa_stat_item local_stat = NUMA_LOCAL; 3393 3394 /* skip numa counters update if numa stats is disabled */ 3395 if (!static_branch_likely(&vm_numa_stat_key)) 3396 return; 3397 3398 if (zone_to_nid(z) != numa_node_id()) 3399 local_stat = NUMA_OTHER; 3400 3401 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3402 __inc_numa_state(z, NUMA_HIT); 3403 else { 3404 __inc_numa_state(z, NUMA_MISS); 3405 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3406 } 3407 __inc_numa_state(z, local_stat); 3408#endif 3409} 3410 3411/* Remove page from the per-cpu list, caller must protect the list */ 3412static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3413 unsigned int alloc_flags, 3414 struct per_cpu_pages *pcp, 3415 struct list_head *list) 3416{ 3417 struct page *page; 3418 3419 do { 3420 if (list_empty(list)) { 3421 pcp->count += rmqueue_bulk(zone, 0, 3422 READ_ONCE(pcp->batch), list, 3423 migratetype, alloc_flags); 3424 if (unlikely(list_empty(list))) 3425 return NULL; 3426 } 3427 3428 page = list_first_entry(list, struct page, lru); 3429 list_del(&page->lru); 3430 pcp->count--; 3431 } while (check_new_pcp(page)); 3432 3433 return page; 3434} 3435 3436/* Lock and remove page from the per-cpu list */ 3437static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3438 struct zone *zone, gfp_t gfp_flags, 3439 int migratetype, unsigned int alloc_flags) 3440{ 3441 struct per_cpu_pages *pcp; 3442 struct list_head *list; 3443 struct page *page; 3444 unsigned long flags; 3445 3446 local_irq_save(flags); 3447 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3448 list = &pcp->lists[migratetype]; 3449 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3450 if (page) { 3451 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3452 zone_statistics(preferred_zone, zone); 3453 } 3454 local_irq_restore(flags); 3455 return page; 3456} 3457 3458/* 3459 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3460 */ 3461static inline 3462struct page *rmqueue(struct zone *preferred_zone, 3463 struct zone *zone, unsigned int order, 3464 gfp_t gfp_flags, unsigned int alloc_flags, 3465 int migratetype) 3466{ 3467 unsigned long flags; 3468 struct page *page; 3469 3470 if (likely(order == 0)) { 3471 /* 3472 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3473 * we need to skip it when CMA area isn't allowed. 3474 */ 3475 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3476 migratetype != MIGRATE_MOVABLE) { 3477 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3478 migratetype, alloc_flags); 3479 goto out; 3480 } 3481 } 3482 3483 /* 3484 * We most definitely don't want callers attempting to 3485 * allocate greater than order-1 page units with __GFP_NOFAIL. 3486 */ 3487 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3488 spin_lock_irqsave(&zone->lock, flags); 3489 3490 do { 3491 page = NULL; 3492 /* 3493 * order-0 request can reach here when the pcplist is skipped 3494 * due to non-CMA allocation context. HIGHATOMIC area is 3495 * reserved for high-order atomic allocation, so order-0 3496 * request should skip it. 3497 */ 3498 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3499 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3500 if (page) 3501 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3502 } 3503 if (!page) 3504 page = __rmqueue(zone, order, migratetype, alloc_flags); 3505 } while (page && check_new_pages(page, order)); 3506 spin_unlock(&zone->lock); 3507 if (!page) 3508 goto failed; 3509 __mod_zone_freepage_state(zone, -(1 << order), 3510 get_pcppage_migratetype(page)); 3511 3512 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3513 zone_statistics(preferred_zone, zone); 3514 local_irq_restore(flags); 3515 3516out: 3517 /* Separate test+clear to avoid unnecessary atomics */ 3518 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3519 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3520 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3521 } 3522 3523 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3524 return page; 3525 3526failed: 3527 local_irq_restore(flags); 3528 return NULL; 3529} 3530 3531#ifdef CONFIG_FAIL_PAGE_ALLOC 3532 3533static struct { 3534 struct fault_attr attr; 3535 3536 bool ignore_gfp_highmem; 3537 bool ignore_gfp_reclaim; 3538 u32 min_order; 3539} fail_page_alloc = { 3540 .attr = FAULT_ATTR_INITIALIZER, 3541 .ignore_gfp_reclaim = true, 3542 .ignore_gfp_highmem = true, 3543 .min_order = 1, 3544}; 3545 3546static int __init setup_fail_page_alloc(char *str) 3547{ 3548 return setup_fault_attr(&fail_page_alloc.attr, str); 3549} 3550__setup("fail_page_alloc=", setup_fail_page_alloc); 3551 3552static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3553{ 3554 if (order < fail_page_alloc.min_order) 3555 return false; 3556 if (gfp_mask & __GFP_NOFAIL) 3557 return false; 3558 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3559 return false; 3560 if (fail_page_alloc.ignore_gfp_reclaim && 3561 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3562 return false; 3563 3564 return should_fail(&fail_page_alloc.attr, 1 << order); 3565} 3566 3567#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3568 3569static int __init fail_page_alloc_debugfs(void) 3570{ 3571 umode_t mode = S_IFREG | 0600; 3572 struct dentry *dir; 3573 3574 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3575 &fail_page_alloc.attr); 3576 3577 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3578 &fail_page_alloc.ignore_gfp_reclaim); 3579 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3580 &fail_page_alloc.ignore_gfp_highmem); 3581 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3582 3583 return 0; 3584} 3585 3586late_initcall(fail_page_alloc_debugfs); 3587 3588#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3589 3590#else /* CONFIG_FAIL_PAGE_ALLOC */ 3591 3592static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3593{ 3594 return false; 3595} 3596 3597#endif /* CONFIG_FAIL_PAGE_ALLOC */ 3598 3599noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3600{ 3601 return __should_fail_alloc_page(gfp_mask, order); 3602} 3603ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3604 3605static inline long __zone_watermark_unusable_free(struct zone *z, 3606 unsigned int order, unsigned int alloc_flags) 3607{ 3608 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3609 long unusable_free = (1 << order) - 1; 3610 3611 /* 3612 * If the caller does not have rights to ALLOC_HARDER then subtract 3613 * the high-atomic reserves. This will over-estimate the size of the 3614 * atomic reserve but it avoids a search. 3615 */ 3616 if (likely(!alloc_harder)) 3617 unusable_free += z->nr_reserved_highatomic; 3618 3619#ifdef CONFIG_CMA 3620 /* If allocation can't use CMA areas don't use free CMA pages */ 3621 if (!(alloc_flags & ALLOC_CMA)) 3622 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3623#endif 3624 3625 return unusable_free; 3626} 3627 3628/* 3629 * Return true if free base pages are above 'mark'. For high-order checks it 3630 * will return true of the order-0 watermark is reached and there is at least 3631 * one free page of a suitable size. Checking now avoids taking the zone lock 3632 * to check in the allocation paths if no pages are free. 3633 */ 3634bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3635 int highest_zoneidx, unsigned int alloc_flags, 3636 long free_pages) 3637{ 3638 long min = mark; 3639 int o; 3640 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3641 3642 /* free_pages may go negative - that's OK */ 3643 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3644 3645 if (alloc_flags & ALLOC_HIGH) 3646 min -= min / 2; 3647 3648 if (unlikely(alloc_harder)) { 3649 /* 3650 * OOM victims can try even harder than normal ALLOC_HARDER 3651 * users on the grounds that it's definitely going to be in 3652 * the exit path shortly and free memory. Any allocation it 3653 * makes during the free path will be small and short-lived. 3654 */ 3655 if (alloc_flags & ALLOC_OOM) 3656 min -= min / 2; 3657 else 3658 min -= min / 4; 3659 } 3660 3661 /* 3662 * Check watermarks for an order-0 allocation request. If these 3663 * are not met, then a high-order request also cannot go ahead 3664 * even if a suitable page happened to be free. 3665 */ 3666 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3667 return false; 3668 3669 /* If this is an order-0 request then the watermark is fine */ 3670 if (!order) 3671 return true; 3672 3673 /* For a high-order request, check at least one suitable page is free */ 3674 for (o = order; o < MAX_ORDER; o++) { 3675 struct free_area *area = &z->free_area[o]; 3676 int mt; 3677 3678 if (!area->nr_free) 3679 continue; 3680 3681 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3682 if (!free_area_empty(area, mt)) 3683 return true; 3684 } 3685 3686#ifdef CONFIG_CMA 3687 if ((alloc_flags & ALLOC_CMA) && 3688 !free_area_empty(area, MIGRATE_CMA)) { 3689 return true; 3690 } 3691#endif 3692 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3693 return true; 3694 } 3695 return false; 3696} 3697 3698bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3699 int highest_zoneidx, unsigned int alloc_flags) 3700{ 3701 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3702 zone_page_state(z, NR_FREE_PAGES)); 3703} 3704 3705static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3706 unsigned long mark, int highest_zoneidx, 3707 unsigned int alloc_flags, gfp_t gfp_mask) 3708{ 3709 long free_pages; 3710 3711 free_pages = zone_page_state(z, NR_FREE_PAGES); 3712 3713 /* 3714 * Fast check for order-0 only. If this fails then the reserves 3715 * need to be calculated. 3716 */ 3717 if (!order) { 3718 long fast_free; 3719 3720 fast_free = free_pages; 3721 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3722 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3723 return true; 3724 } 3725 3726 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3727 free_pages)) 3728 return true; 3729 /* 3730 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3731 * when checking the min watermark. The min watermark is the 3732 * point where boosting is ignored so that kswapd is woken up 3733 * when below the low watermark. 3734 */ 3735 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3736 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3737 mark = z->_watermark[WMARK_MIN]; 3738 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3739 alloc_flags, free_pages); 3740 } 3741 3742 return false; 3743} 3744 3745bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3746 unsigned long mark, int highest_zoneidx) 3747{ 3748 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3749 3750 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3751 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3752 3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3754 free_pages); 3755} 3756 3757#ifdef CONFIG_NUMA 3758static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3759{ 3760 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3761 node_reclaim_distance; 3762} 3763#else /* CONFIG_NUMA */ 3764static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3765{ 3766 return true; 3767} 3768#endif /* CONFIG_NUMA */ 3769 3770/* 3771 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3772 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3773 * premature use of a lower zone may cause lowmem pressure problems that 3774 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3775 * probably too small. It only makes sense to spread allocations to avoid 3776 * fragmentation between the Normal and DMA32 zones. 3777 */ 3778static inline unsigned int 3779alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3780{ 3781 unsigned int alloc_flags; 3782 3783 /* 3784 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3785 * to save a branch. 3786 */ 3787 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3788 3789#ifdef CONFIG_ZONE_DMA32 3790 if (!zone) 3791 return alloc_flags; 3792 3793 if (zone_idx(zone) != ZONE_NORMAL) 3794 return alloc_flags; 3795 3796 /* 3797 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3798 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3799 * on UMA that if Normal is populated then so is DMA32. 3800 */ 3801 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3802 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3803 return alloc_flags; 3804 3805 alloc_flags |= ALLOC_NOFRAGMENT; 3806#endif /* CONFIG_ZONE_DMA32 */ 3807 return alloc_flags; 3808} 3809 3810static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3811 unsigned int alloc_flags) 3812{ 3813#ifdef CONFIG_CMA 3814 unsigned int pflags = current->flags; 3815 3816 if (!(pflags & PF_MEMALLOC_NOCMA) && 3817 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3818 alloc_flags |= ALLOC_CMA; 3819 3820#endif 3821 return alloc_flags; 3822} 3823 3824/* 3825 * get_page_from_freelist goes through the zonelist trying to allocate 3826 * a page. 3827 */ 3828static struct page * 3829get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3830 const struct alloc_context *ac) 3831{ 3832 struct zoneref *z; 3833 struct zone *zone; 3834 struct pglist_data *last_pgdat_dirty_limit = NULL; 3835 bool no_fallback; 3836 3837retry: 3838 /* 3839 * Scan zonelist, looking for a zone with enough free. 3840 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3841 */ 3842 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3843 z = ac->preferred_zoneref; 3844 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3845 ac->nodemask) { 3846 struct page *page; 3847 unsigned long mark; 3848 3849 if (cpusets_enabled() && 3850 (alloc_flags & ALLOC_CPUSET) && 3851 !__cpuset_zone_allowed(zone, gfp_mask)) 3852 continue; 3853 /* 3854 * When allocating a page cache page for writing, we 3855 * want to get it from a node that is within its dirty 3856 * limit, such that no single node holds more than its 3857 * proportional share of globally allowed dirty pages. 3858 * The dirty limits take into account the node's 3859 * lowmem reserves and high watermark so that kswapd 3860 * should be able to balance it without having to 3861 * write pages from its LRU list. 3862 * 3863 * XXX: For now, allow allocations to potentially 3864 * exceed the per-node dirty limit in the slowpath 3865 * (spread_dirty_pages unset) before going into reclaim, 3866 * which is important when on a NUMA setup the allowed 3867 * nodes are together not big enough to reach the 3868 * global limit. The proper fix for these situations 3869 * will require awareness of nodes in the 3870 * dirty-throttling and the flusher threads. 3871 */ 3872 if (ac->spread_dirty_pages) { 3873 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3874 continue; 3875 3876 if (!node_dirty_ok(zone->zone_pgdat)) { 3877 last_pgdat_dirty_limit = zone->zone_pgdat; 3878 continue; 3879 } 3880 } 3881 3882 if (no_fallback && nr_online_nodes > 1 && 3883 zone != ac->preferred_zoneref->zone) { 3884 int local_nid; 3885 3886 /* 3887 * If moving to a remote node, retry but allow 3888 * fragmenting fallbacks. Locality is more important 3889 * than fragmentation avoidance. 3890 */ 3891 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3892 if (zone_to_nid(zone) != local_nid) { 3893 alloc_flags &= ~ALLOC_NOFRAGMENT; 3894 goto retry; 3895 } 3896 } 3897 3898 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3899 if (!zone_watermark_fast(zone, order, mark, 3900 ac->highest_zoneidx, alloc_flags, 3901 gfp_mask)) { 3902 int ret; 3903 3904#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3905 /* 3906 * Watermark failed for this zone, but see if we can 3907 * grow this zone if it contains deferred pages. 3908 */ 3909 if (static_branch_unlikely(&deferred_pages)) { 3910 if (_deferred_grow_zone(zone, order)) 3911 goto try_this_zone; 3912 } 3913#endif 3914 /* Checked here to keep the fast path fast */ 3915 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3916 if (alloc_flags & ALLOC_NO_WATERMARKS) 3917 goto try_this_zone; 3918 3919 if (node_reclaim_mode == 0 || 3920 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3921 continue; 3922 3923 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3924 switch (ret) { 3925 case NODE_RECLAIM_NOSCAN: 3926 /* did not scan */ 3927 continue; 3928 case NODE_RECLAIM_FULL: 3929 /* scanned but unreclaimable */ 3930 continue; 3931 default: 3932 /* did we reclaim enough */ 3933 if (zone_watermark_ok(zone, order, mark, 3934 ac->highest_zoneidx, alloc_flags)) 3935 goto try_this_zone; 3936 3937 continue; 3938 } 3939 } 3940 3941try_this_zone: 3942 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3943 gfp_mask, alloc_flags, ac->migratetype); 3944 if (page) { 3945 prep_new_page(page, order, gfp_mask, alloc_flags); 3946 3947 /* 3948 * If this is a high-order atomic allocation then check 3949 * if the pageblock should be reserved for the future 3950 */ 3951 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3952 reserve_highatomic_pageblock(page, zone, order); 3953 3954 return page; 3955 } else { 3956#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3957 /* Try again if zone has deferred pages */ 3958 if (static_branch_unlikely(&deferred_pages)) { 3959 if (_deferred_grow_zone(zone, order)) 3960 goto try_this_zone; 3961 } 3962#endif 3963 } 3964 } 3965 3966 /* 3967 * It's possible on a UMA machine to get through all zones that are 3968 * fragmented. If avoiding fragmentation, reset and try again. 3969 */ 3970 if (no_fallback) { 3971 alloc_flags &= ~ALLOC_NOFRAGMENT; 3972 goto retry; 3973 } 3974 3975 return NULL; 3976} 3977 3978static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3979{ 3980 unsigned int filter = SHOW_MEM_FILTER_NODES; 3981 3982 /* 3983 * This documents exceptions given to allocations in certain 3984 * contexts that are allowed to allocate outside current's set 3985 * of allowed nodes. 3986 */ 3987 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3988 if (tsk_is_oom_victim(current) || 3989 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3990 filter &= ~SHOW_MEM_FILTER_NODES; 3991 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3992 filter &= ~SHOW_MEM_FILTER_NODES; 3993 3994 show_mem(filter, nodemask); 3995} 3996 3997void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3998{ 3999 struct va_format vaf; 4000 va_list args; 4001 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4002 4003 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4004 return; 4005 4006 va_start(args, fmt); 4007 vaf.fmt = fmt; 4008 vaf.va = &args; 4009 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4010 current->comm, &vaf, gfp_mask, &gfp_mask, 4011 nodemask_pr_args(nodemask)); 4012 va_end(args); 4013 4014 cpuset_print_current_mems_allowed(); 4015 pr_cont("\n"); 4016 dump_stack(); 4017 warn_alloc_show_mem(gfp_mask, nodemask); 4018} 4019 4020static inline struct page * 4021__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4022 unsigned int alloc_flags, 4023 const struct alloc_context *ac) 4024{ 4025 struct page *page; 4026 4027 page = get_page_from_freelist(gfp_mask, order, 4028 alloc_flags|ALLOC_CPUSET, ac); 4029 /* 4030 * fallback to ignore cpuset restriction if our nodes 4031 * are depleted 4032 */ 4033 if (!page) 4034 page = get_page_from_freelist(gfp_mask, order, 4035 alloc_flags, ac); 4036 4037 return page; 4038} 4039 4040static inline struct page * 4041__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4042 const struct alloc_context *ac, unsigned long *did_some_progress) 4043{ 4044 struct oom_control oc = { 4045 .zonelist = ac->zonelist, 4046 .nodemask = ac->nodemask, 4047 .memcg = NULL, 4048 .gfp_mask = gfp_mask, 4049 .order = order, 4050 }; 4051 struct page *page; 4052 4053 *did_some_progress = 0; 4054 4055 /* 4056 * Acquire the oom lock. If that fails, somebody else is 4057 * making progress for us. 4058 */ 4059 if (!mutex_trylock(&oom_lock)) { 4060 *did_some_progress = 1; 4061 schedule_timeout_uninterruptible(1); 4062 return NULL; 4063 } 4064 4065 /* 4066 * Go through the zonelist yet one more time, keep very high watermark 4067 * here, this is only to catch a parallel oom killing, we must fail if 4068 * we're still under heavy pressure. But make sure that this reclaim 4069 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4070 * allocation which will never fail due to oom_lock already held. 4071 */ 4072 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4073 ~__GFP_DIRECT_RECLAIM, order, 4074 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4075 if (page) 4076 goto out; 4077 4078 /* Coredumps can quickly deplete all memory reserves */ 4079 if (current->flags & PF_DUMPCORE) 4080 goto out; 4081 /* The OOM killer will not help higher order allocs */ 4082 if (order > PAGE_ALLOC_COSTLY_ORDER) 4083 goto out; 4084 /* 4085 * We have already exhausted all our reclaim opportunities without any 4086 * success so it is time to admit defeat. We will skip the OOM killer 4087 * because it is very likely that the caller has a more reasonable 4088 * fallback than shooting a random task. 4089 * 4090 * The OOM killer may not free memory on a specific node. 4091 */ 4092 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4093 goto out; 4094 /* The OOM killer does not needlessly kill tasks for lowmem */ 4095 if (ac->highest_zoneidx < ZONE_NORMAL) 4096 goto out; 4097 if (pm_suspended_storage()) 4098 goto out; 4099 /* 4100 * XXX: GFP_NOFS allocations should rather fail than rely on 4101 * other request to make a forward progress. 4102 * We are in an unfortunate situation where out_of_memory cannot 4103 * do much for this context but let's try it to at least get 4104 * access to memory reserved if the current task is killed (see 4105 * out_of_memory). Once filesystems are ready to handle allocation 4106 * failures more gracefully we should just bail out here. 4107 */ 4108 4109 /* Exhausted what can be done so it's blame time */ 4110 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4111 *did_some_progress = 1; 4112 4113 /* 4114 * Help non-failing allocations by giving them access to memory 4115 * reserves 4116 */ 4117 if (gfp_mask & __GFP_NOFAIL) 4118 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4119 ALLOC_NO_WATERMARKS, ac); 4120 } 4121out: 4122 mutex_unlock(&oom_lock); 4123 return page; 4124} 4125 4126/* 4127 * Maximum number of compaction retries wit a progress before OOM 4128 * killer is consider as the only way to move forward. 4129 */ 4130#define MAX_COMPACT_RETRIES 16 4131 4132#ifdef CONFIG_COMPACTION 4133/* Try memory compaction for high-order allocations before reclaim */ 4134static struct page * 4135__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4136 unsigned int alloc_flags, const struct alloc_context *ac, 4137 enum compact_priority prio, enum compact_result *compact_result) 4138{ 4139 struct page *page = NULL; 4140 unsigned long pflags; 4141 unsigned int noreclaim_flag; 4142 4143 if (!order) 4144 return NULL; 4145 4146 psi_memstall_enter(&pflags); 4147 noreclaim_flag = memalloc_noreclaim_save(); 4148 4149 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4150 prio, &page); 4151 4152 memalloc_noreclaim_restore(noreclaim_flag); 4153 psi_memstall_leave(&pflags); 4154 4155 /* 4156 * At least in one zone compaction wasn't deferred or skipped, so let's 4157 * count a compaction stall 4158 */ 4159 count_vm_event(COMPACTSTALL); 4160 4161 /* Prep a captured page if available */ 4162 if (page) 4163 prep_new_page(page, order, gfp_mask, alloc_flags); 4164 4165 /* Try get a page from the freelist if available */ 4166 if (!page) 4167 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4168 4169 if (page) { 4170 struct zone *zone = page_zone(page); 4171 4172 zone->compact_blockskip_flush = false; 4173 compaction_defer_reset(zone, order, true); 4174 count_vm_event(COMPACTSUCCESS); 4175 return page; 4176 } 4177 4178 /* 4179 * It's bad if compaction run occurs and fails. The most likely reason 4180 * is that pages exist, but not enough to satisfy watermarks. 4181 */ 4182 count_vm_event(COMPACTFAIL); 4183 4184 cond_resched(); 4185 4186 return NULL; 4187} 4188 4189static inline bool 4190should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4191 enum compact_result compact_result, 4192 enum compact_priority *compact_priority, 4193 int *compaction_retries) 4194{ 4195 int max_retries = MAX_COMPACT_RETRIES; 4196 int min_priority; 4197 bool ret = false; 4198 int retries = *compaction_retries; 4199 enum compact_priority priority = *compact_priority; 4200 4201 if (!order) 4202 return false; 4203 4204 if (compaction_made_progress(compact_result)) 4205 (*compaction_retries)++; 4206 4207 /* 4208 * compaction considers all the zone as desperately out of memory 4209 * so it doesn't really make much sense to retry except when the 4210 * failure could be caused by insufficient priority 4211 */ 4212 if (compaction_failed(compact_result)) 4213 goto check_priority; 4214 4215 /* 4216 * compaction was skipped because there are not enough order-0 pages 4217 * to work with, so we retry only if it looks like reclaim can help. 4218 */ 4219 if (compaction_needs_reclaim(compact_result)) { 4220 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4221 goto out; 4222 } 4223 4224 /* 4225 * make sure the compaction wasn't deferred or didn't bail out early 4226 * due to locks contention before we declare that we should give up. 4227 * But the next retry should use a higher priority if allowed, so 4228 * we don't just keep bailing out endlessly. 4229 */ 4230 if (compaction_withdrawn(compact_result)) { 4231 goto check_priority; 4232 } 4233 4234 /* 4235 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4236 * costly ones because they are de facto nofail and invoke OOM 4237 * killer to move on while costly can fail and users are ready 4238 * to cope with that. 1/4 retries is rather arbitrary but we 4239 * would need much more detailed feedback from compaction to 4240 * make a better decision. 4241 */ 4242 if (order > PAGE_ALLOC_COSTLY_ORDER) 4243 max_retries /= 4; 4244 if (*compaction_retries <= max_retries) { 4245 ret = true; 4246 goto out; 4247 } 4248 4249 /* 4250 * Make sure there are attempts at the highest priority if we exhausted 4251 * all retries or failed at the lower priorities. 4252 */ 4253check_priority: 4254 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4255 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4256 4257 if (*compact_priority > min_priority) { 4258 (*compact_priority)--; 4259 *compaction_retries = 0; 4260 ret = true; 4261 } 4262out: 4263 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4264 return ret; 4265} 4266#else 4267static inline struct page * 4268__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4269 unsigned int alloc_flags, const struct alloc_context *ac, 4270 enum compact_priority prio, enum compact_result *compact_result) 4271{ 4272 *compact_result = COMPACT_SKIPPED; 4273 return NULL; 4274} 4275 4276static inline bool 4277should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4278 enum compact_result compact_result, 4279 enum compact_priority *compact_priority, 4280 int *compaction_retries) 4281{ 4282 struct zone *zone; 4283 struct zoneref *z; 4284 4285 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4286 return false; 4287 4288 /* 4289 * There are setups with compaction disabled which would prefer to loop 4290 * inside the allocator rather than hit the oom killer prematurely. 4291 * Let's give them a good hope and keep retrying while the order-0 4292 * watermarks are OK. 4293 */ 4294 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4295 ac->highest_zoneidx, ac->nodemask) { 4296 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4297 ac->highest_zoneidx, alloc_flags)) 4298 return true; 4299 } 4300 return false; 4301} 4302#endif /* CONFIG_COMPACTION */ 4303 4304#ifdef CONFIG_LOCKDEP 4305static struct lockdep_map __fs_reclaim_map = 4306 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4307 4308static bool __need_reclaim(gfp_t gfp_mask) 4309{ 4310 /* no reclaim without waiting on it */ 4311 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4312 return false; 4313 4314 /* this guy won't enter reclaim */ 4315 if (current->flags & PF_MEMALLOC) 4316 return false; 4317 4318 if (gfp_mask & __GFP_NOLOCKDEP) 4319 return false; 4320 4321 return true; 4322} 4323 4324void __fs_reclaim_acquire(void) 4325{ 4326 lock_map_acquire(&__fs_reclaim_map); 4327} 4328 4329void __fs_reclaim_release(void) 4330{ 4331 lock_map_release(&__fs_reclaim_map); 4332} 4333 4334void fs_reclaim_acquire(gfp_t gfp_mask) 4335{ 4336 gfp_mask = current_gfp_context(gfp_mask); 4337 4338 if (__need_reclaim(gfp_mask)) { 4339 if (gfp_mask & __GFP_FS) 4340 __fs_reclaim_acquire(); 4341 4342#ifdef CONFIG_MMU_NOTIFIER 4343 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4344 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4345#endif 4346 4347 } 4348} 4349EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4350 4351void fs_reclaim_release(gfp_t gfp_mask) 4352{ 4353 gfp_mask = current_gfp_context(gfp_mask); 4354 4355 if (__need_reclaim(gfp_mask)) { 4356 if (gfp_mask & __GFP_FS) 4357 __fs_reclaim_release(); 4358 } 4359} 4360EXPORT_SYMBOL_GPL(fs_reclaim_release); 4361#endif 4362 4363/* Perform direct synchronous page reclaim */ 4364static unsigned long 4365__perform_reclaim(gfp_t gfp_mask, unsigned int order, 4366 const struct alloc_context *ac) 4367{ 4368 unsigned int noreclaim_flag; 4369 unsigned long pflags, progress; 4370 4371 cond_resched(); 4372 4373 /* We now go into synchronous reclaim */ 4374 cpuset_memory_pressure_bump(); 4375 psi_memstall_enter(&pflags); 4376 fs_reclaim_acquire(gfp_mask); 4377 noreclaim_flag = memalloc_noreclaim_save(); 4378 4379 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4380 ac->nodemask); 4381 4382 memalloc_noreclaim_restore(noreclaim_flag); 4383 fs_reclaim_release(gfp_mask); 4384 psi_memstall_leave(&pflags); 4385 4386 cond_resched(); 4387 4388 return progress; 4389} 4390 4391/* The really slow allocator path where we enter direct reclaim */ 4392static inline struct page * 4393__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4394 unsigned int alloc_flags, const struct alloc_context *ac, 4395 unsigned long *did_some_progress) 4396{ 4397 struct page *page = NULL; 4398 bool drained = false; 4399 4400 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4401 if (unlikely(!(*did_some_progress))) 4402 return NULL; 4403 4404retry: 4405 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4406 4407 /* 4408 * If an allocation failed after direct reclaim, it could be because 4409 * pages are pinned on the per-cpu lists or in high alloc reserves. 4410 * Shrink them and try again 4411 */ 4412 if (!page && !drained) { 4413 unreserve_highatomic_pageblock(ac, false); 4414 drain_all_pages(NULL); 4415 drained = true; 4416 goto retry; 4417 } 4418 4419 return page; 4420} 4421 4422static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4423 const struct alloc_context *ac) 4424{ 4425 struct zoneref *z; 4426 struct zone *zone; 4427 pg_data_t *last_pgdat = NULL; 4428 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4429 4430 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4431 ac->nodemask) { 4432 if (last_pgdat != zone->zone_pgdat) 4433 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4434 last_pgdat = zone->zone_pgdat; 4435 } 4436} 4437 4438static inline unsigned int 4439gfp_to_alloc_flags(gfp_t gfp_mask) 4440{ 4441 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4442 4443 /* 4444 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4445 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4446 * to save two branches. 4447 */ 4448 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4449 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4450 4451 /* 4452 * The caller may dip into page reserves a bit more if the caller 4453 * cannot run direct reclaim, or if the caller has realtime scheduling 4454 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4455 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4456 */ 4457 alloc_flags |= (__force int) 4458 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4459 4460 if (gfp_mask & __GFP_ATOMIC) { 4461 /* 4462 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4463 * if it can't schedule. 4464 */ 4465 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4466 alloc_flags |= ALLOC_HARDER; 4467 /* 4468 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4469 * comment for __cpuset_node_allowed(). 4470 */ 4471 alloc_flags &= ~ALLOC_CPUSET; 4472 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4473 alloc_flags |= ALLOC_HARDER; 4474 4475 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4476 4477 return alloc_flags; 4478} 4479 4480static bool oom_reserves_allowed(struct task_struct *tsk) 4481{ 4482 if (!tsk_is_oom_victim(tsk)) 4483 return false; 4484 4485 /* 4486 * !MMU doesn't have oom reaper so give access to memory reserves 4487 * only to the thread with TIF_MEMDIE set 4488 */ 4489 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4490 return false; 4491 4492 return true; 4493} 4494 4495/* 4496 * Distinguish requests which really need access to full memory 4497 * reserves from oom victims which can live with a portion of it 4498 */ 4499static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4500{ 4501 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4502 return 0; 4503 if (gfp_mask & __GFP_MEMALLOC) 4504 return ALLOC_NO_WATERMARKS; 4505 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4506 return ALLOC_NO_WATERMARKS; 4507 if (!in_interrupt()) { 4508 if (current->flags & PF_MEMALLOC) 4509 return ALLOC_NO_WATERMARKS; 4510 else if (oom_reserves_allowed(current)) 4511 return ALLOC_OOM; 4512 } 4513 4514 return 0; 4515} 4516 4517bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4518{ 4519 return !!__gfp_pfmemalloc_flags(gfp_mask); 4520} 4521 4522/* 4523 * Checks whether it makes sense to retry the reclaim to make a forward progress 4524 * for the given allocation request. 4525 * 4526 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4527 * without success, or when we couldn't even meet the watermark if we 4528 * reclaimed all remaining pages on the LRU lists. 4529 * 4530 * Returns true if a retry is viable or false to enter the oom path. 4531 */ 4532static inline bool 4533should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4534 struct alloc_context *ac, int alloc_flags, 4535 bool did_some_progress, int *no_progress_loops) 4536{ 4537 struct zone *zone; 4538 struct zoneref *z; 4539 bool ret = false; 4540 4541 /* 4542 * Costly allocations might have made a progress but this doesn't mean 4543 * their order will become available due to high fragmentation so 4544 * always increment the no progress counter for them 4545 */ 4546 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4547 *no_progress_loops = 0; 4548 else 4549 (*no_progress_loops)++; 4550 4551 /* 4552 * Make sure we converge to OOM if we cannot make any progress 4553 * several times in the row. 4554 */ 4555 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4556 /* Before OOM, exhaust highatomic_reserve */ 4557 return unreserve_highatomic_pageblock(ac, true); 4558 } 4559 4560 /* 4561 * Keep reclaiming pages while there is a chance this will lead 4562 * somewhere. If none of the target zones can satisfy our allocation 4563 * request even if all reclaimable pages are considered then we are 4564 * screwed and have to go OOM. 4565 */ 4566 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4567 ac->highest_zoneidx, ac->nodemask) { 4568 unsigned long available; 4569 unsigned long reclaimable; 4570 unsigned long min_wmark = min_wmark_pages(zone); 4571 bool wmark; 4572 4573 available = reclaimable = zone_reclaimable_pages(zone); 4574 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4575 4576 /* 4577 * Would the allocation succeed if we reclaimed all 4578 * reclaimable pages? 4579 */ 4580 wmark = __zone_watermark_ok(zone, order, min_wmark, 4581 ac->highest_zoneidx, alloc_flags, available); 4582 trace_reclaim_retry_zone(z, order, reclaimable, 4583 available, min_wmark, *no_progress_loops, wmark); 4584 if (wmark) { 4585 /* 4586 * If we didn't make any progress and have a lot of 4587 * dirty + writeback pages then we should wait for 4588 * an IO to complete to slow down the reclaim and 4589 * prevent from pre mature OOM 4590 */ 4591 if (!did_some_progress) { 4592 unsigned long write_pending; 4593 4594 write_pending = zone_page_state_snapshot(zone, 4595 NR_ZONE_WRITE_PENDING); 4596 4597 if (2 * write_pending > reclaimable) { 4598 congestion_wait(BLK_RW_ASYNC, HZ/10); 4599 return true; 4600 } 4601 } 4602 4603 ret = true; 4604 goto out; 4605 } 4606 } 4607 4608out: 4609 /* 4610 * Memory allocation/reclaim might be called from a WQ context and the 4611 * current implementation of the WQ concurrency control doesn't 4612 * recognize that a particular WQ is congested if the worker thread is 4613 * looping without ever sleeping. Therefore we have to do a short sleep 4614 * here rather than calling cond_resched(). 4615 */ 4616 if (current->flags & PF_WQ_WORKER) 4617 schedule_timeout_uninterruptible(1); 4618 else 4619 cond_resched(); 4620 return ret; 4621} 4622 4623static inline bool 4624check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4625{ 4626 /* 4627 * It's possible that cpuset's mems_allowed and the nodemask from 4628 * mempolicy don't intersect. This should be normally dealt with by 4629 * policy_nodemask(), but it's possible to race with cpuset update in 4630 * such a way the check therein was true, and then it became false 4631 * before we got our cpuset_mems_cookie here. 4632 * This assumes that for all allocations, ac->nodemask can come only 4633 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4634 * when it does not intersect with the cpuset restrictions) or the 4635 * caller can deal with a violated nodemask. 4636 */ 4637 if (cpusets_enabled() && ac->nodemask && 4638 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4639 ac->nodemask = NULL; 4640 return true; 4641 } 4642 4643 /* 4644 * When updating a task's mems_allowed or mempolicy nodemask, it is 4645 * possible to race with parallel threads in such a way that our 4646 * allocation can fail while the mask is being updated. If we are about 4647 * to fail, check if the cpuset changed during allocation and if so, 4648 * retry. 4649 */ 4650 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4651 return true; 4652 4653 return false; 4654} 4655 4656static inline struct page * 4657__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4658 struct alloc_context *ac) 4659{ 4660 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4661 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4662 struct page *page = NULL; 4663 unsigned int alloc_flags; 4664 unsigned long did_some_progress; 4665 enum compact_priority compact_priority; 4666 enum compact_result compact_result; 4667 int compaction_retries; 4668 int no_progress_loops; 4669 unsigned int cpuset_mems_cookie; 4670 int reserve_flags; 4671 4672 /* 4673 * We also sanity check to catch abuse of atomic reserves being used by 4674 * callers that are not in atomic context. 4675 */ 4676 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4677 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4678 gfp_mask &= ~__GFP_ATOMIC; 4679 4680retry_cpuset: 4681 compaction_retries = 0; 4682 no_progress_loops = 0; 4683 compact_priority = DEF_COMPACT_PRIORITY; 4684 cpuset_mems_cookie = read_mems_allowed_begin(); 4685 4686 /* 4687 * The fast path uses conservative alloc_flags to succeed only until 4688 * kswapd needs to be woken up, and to avoid the cost of setting up 4689 * alloc_flags precisely. So we do that now. 4690 */ 4691 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4692 4693 /* 4694 * We need to recalculate the starting point for the zonelist iterator 4695 * because we might have used different nodemask in the fast path, or 4696 * there was a cpuset modification and we are retrying - otherwise we 4697 * could end up iterating over non-eligible zones endlessly. 4698 */ 4699 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4700 ac->highest_zoneidx, ac->nodemask); 4701 if (!ac->preferred_zoneref->zone) 4702 goto nopage; 4703 4704 if (alloc_flags & ALLOC_KSWAPD) 4705 wake_all_kswapds(order, gfp_mask, ac); 4706 4707 /* 4708 * The adjusted alloc_flags might result in immediate success, so try 4709 * that first 4710 */ 4711 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4712 if (page) 4713 goto got_pg; 4714 4715 /* 4716 * For costly allocations, try direct compaction first, as it's likely 4717 * that we have enough base pages and don't need to reclaim. For non- 4718 * movable high-order allocations, do that as well, as compaction will 4719 * try prevent permanent fragmentation by migrating from blocks of the 4720 * same migratetype. 4721 * Don't try this for allocations that are allowed to ignore 4722 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4723 */ 4724 if (can_direct_reclaim && 4725 (costly_order || 4726 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4727 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4728 page = __alloc_pages_direct_compact(gfp_mask, order, 4729 alloc_flags, ac, 4730 INIT_COMPACT_PRIORITY, 4731 &compact_result); 4732 if (page) 4733 goto got_pg; 4734 4735 /* 4736 * Checks for costly allocations with __GFP_NORETRY, which 4737 * includes some THP page fault allocations 4738 */ 4739 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4740 /* 4741 * If allocating entire pageblock(s) and compaction 4742 * failed because all zones are below low watermarks 4743 * or is prohibited because it recently failed at this 4744 * order, fail immediately unless the allocator has 4745 * requested compaction and reclaim retry. 4746 * 4747 * Reclaim is 4748 * - potentially very expensive because zones are far 4749 * below their low watermarks or this is part of very 4750 * bursty high order allocations, 4751 * - not guaranteed to help because isolate_freepages() 4752 * may not iterate over freed pages as part of its 4753 * linear scan, and 4754 * - unlikely to make entire pageblocks free on its 4755 * own. 4756 */ 4757 if (compact_result == COMPACT_SKIPPED || 4758 compact_result == COMPACT_DEFERRED) 4759 goto nopage; 4760 4761 /* 4762 * Looks like reclaim/compaction is worth trying, but 4763 * sync compaction could be very expensive, so keep 4764 * using async compaction. 4765 */ 4766 compact_priority = INIT_COMPACT_PRIORITY; 4767 } 4768 } 4769 4770retry: 4771 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4772 if (alloc_flags & ALLOC_KSWAPD) 4773 wake_all_kswapds(order, gfp_mask, ac); 4774 4775 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4776 if (reserve_flags) 4777 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4778 4779 /* 4780 * Reset the nodemask and zonelist iterators if memory policies can be 4781 * ignored. These allocations are high priority and system rather than 4782 * user oriented. 4783 */ 4784 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4785 ac->nodemask = NULL; 4786 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4787 ac->highest_zoneidx, ac->nodemask); 4788 } 4789 4790 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4791 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4792 if (page) 4793 goto got_pg; 4794 4795 /* Caller is not willing to reclaim, we can't balance anything */ 4796 if (!can_direct_reclaim) 4797 goto nopage; 4798 4799 /* Avoid recursion of direct reclaim */ 4800 if (current->flags & PF_MEMALLOC) 4801 goto nopage; 4802 4803 /* Try direct reclaim and then allocating */ 4804 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4805 &did_some_progress); 4806 if (page) 4807 goto got_pg; 4808 4809 /* Try direct compaction and then allocating */ 4810 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4811 compact_priority, &compact_result); 4812 if (page) 4813 goto got_pg; 4814 4815 /* Do not loop if specifically requested */ 4816 if (gfp_mask & __GFP_NORETRY) 4817 goto nopage; 4818 4819 /* 4820 * Do not retry costly high order allocations unless they are 4821 * __GFP_RETRY_MAYFAIL 4822 */ 4823 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4824 goto nopage; 4825 4826 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4827 did_some_progress > 0, &no_progress_loops)) 4828 goto retry; 4829 4830 /* 4831 * It doesn't make any sense to retry for the compaction if the order-0 4832 * reclaim is not able to make any progress because the current 4833 * implementation of the compaction depends on the sufficient amount 4834 * of free memory (see __compaction_suitable) 4835 */ 4836 if (did_some_progress > 0 && 4837 should_compact_retry(ac, order, alloc_flags, 4838 compact_result, &compact_priority, 4839 &compaction_retries)) 4840 goto retry; 4841 4842 4843 /* Deal with possible cpuset update races before we start OOM killing */ 4844 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4845 goto retry_cpuset; 4846 4847 /* Reclaim has failed us, start killing things */ 4848 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4849 if (page) 4850 goto got_pg; 4851 4852 /* Avoid allocations with no watermarks from looping endlessly */ 4853 if (tsk_is_oom_victim(current) && 4854 (alloc_flags & ALLOC_OOM || 4855 (gfp_mask & __GFP_NOMEMALLOC))) 4856 goto nopage; 4857 4858 /* Retry as long as the OOM killer is making progress */ 4859 if (did_some_progress) { 4860 no_progress_loops = 0; 4861 goto retry; 4862 } 4863 4864nopage: 4865 /* Deal with possible cpuset update races before we fail */ 4866 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4867 goto retry_cpuset; 4868 4869 /* 4870 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4871 * we always retry 4872 */ 4873 if (gfp_mask & __GFP_NOFAIL) { 4874 /* 4875 * All existing users of the __GFP_NOFAIL are blockable, so warn 4876 * of any new users that actually require GFP_NOWAIT 4877 */ 4878 if (WARN_ON_ONCE(!can_direct_reclaim)) 4879 goto fail; 4880 4881 /* 4882 * PF_MEMALLOC request from this context is rather bizarre 4883 * because we cannot reclaim anything and only can loop waiting 4884 * for somebody to do a work for us 4885 */ 4886 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4887 4888 /* 4889 * non failing costly orders are a hard requirement which we 4890 * are not prepared for much so let's warn about these users 4891 * so that we can identify them and convert them to something 4892 * else. 4893 */ 4894 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4895 4896 /* 4897 * Help non-failing allocations by giving them access to memory 4898 * reserves but do not use ALLOC_NO_WATERMARKS because this 4899 * could deplete whole memory reserves which would just make 4900 * the situation worse 4901 */ 4902 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4903 if (page) 4904 goto got_pg; 4905 4906 cond_resched(); 4907 goto retry; 4908 } 4909fail: 4910 warn_alloc(gfp_mask, ac->nodemask, 4911 "page allocation failure: order:%u", order); 4912got_pg: 4913 return page; 4914} 4915 4916static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4917 int preferred_nid, nodemask_t *nodemask, 4918 struct alloc_context *ac, gfp_t *alloc_mask, 4919 unsigned int *alloc_flags) 4920{ 4921 ac->highest_zoneidx = gfp_zone(gfp_mask); 4922 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4923 ac->nodemask = nodemask; 4924 ac->migratetype = gfp_migratetype(gfp_mask); 4925 4926 if (cpusets_enabled()) { 4927 *alloc_mask |= __GFP_HARDWALL; 4928 /* 4929 * When we are in the interrupt context, it is irrelevant 4930 * to the current task context. It means that any node ok. 4931 */ 4932 if (!in_interrupt() && !ac->nodemask) 4933 ac->nodemask = &cpuset_current_mems_allowed; 4934 else 4935 *alloc_flags |= ALLOC_CPUSET; 4936 } 4937 4938 fs_reclaim_acquire(gfp_mask); 4939 fs_reclaim_release(gfp_mask); 4940 4941 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4942 4943 if (should_fail_alloc_page(gfp_mask, order)) 4944 return false; 4945 4946 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4947 4948 /* Dirty zone balancing only done in the fast path */ 4949 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4950 4951 /* 4952 * The preferred zone is used for statistics but crucially it is 4953 * also used as the starting point for the zonelist iterator. It 4954 * may get reset for allocations that ignore memory policies. 4955 */ 4956 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4957 ac->highest_zoneidx, ac->nodemask); 4958 4959 return true; 4960} 4961 4962/* 4963 * This is the 'heart' of the zoned buddy allocator. 4964 */ 4965struct page * 4966__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4967 nodemask_t *nodemask) 4968{ 4969 struct page *page; 4970 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4971 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4972 struct alloc_context ac = { }; 4973 4974 /* 4975 * There are several places where we assume that the order value is sane 4976 * so bail out early if the request is out of bound. 4977 */ 4978 if (unlikely(order >= MAX_ORDER)) { 4979 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4980 return NULL; 4981 } 4982 4983 gfp_mask &= gfp_allowed_mask; 4984 alloc_mask = gfp_mask; 4985 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4986 return NULL; 4987 4988 /* 4989 * Forbid the first pass from falling back to types that fragment 4990 * memory until all local zones are considered. 4991 */ 4992 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4993 4994 /* First allocation attempt */ 4995 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4996 if (likely(page)) 4997 goto out; 4998 4999 /* 5000 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5001 * resp. GFP_NOIO which has to be inherited for all allocation requests 5002 * from a particular context which has been marked by 5003 * memalloc_no{fs,io}_{save,restore}. 5004 */ 5005 alloc_mask = current_gfp_context(gfp_mask); 5006 ac.spread_dirty_pages = false; 5007 5008 /* 5009 * Restore the original nodemask if it was potentially replaced with 5010 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5011 */ 5012 ac.nodemask = nodemask; 5013 5014 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5015 5016out: 5017 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5018 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5019 __free_pages(page, order); 5020 page = NULL; 5021 } 5022 5023 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5024 5025 return page; 5026} 5027EXPORT_SYMBOL(__alloc_pages_nodemask); 5028 5029/* 5030 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5031 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5032 * you need to access high mem. 5033 */ 5034unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5035{ 5036 struct page *page; 5037 5038 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5039 if (!page) 5040 return 0; 5041 return (unsigned long) page_address(page); 5042} 5043EXPORT_SYMBOL(__get_free_pages); 5044 5045unsigned long get_zeroed_page(gfp_t gfp_mask) 5046{ 5047 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5048} 5049EXPORT_SYMBOL(get_zeroed_page); 5050 5051static inline void free_the_page(struct page *page, unsigned int order) 5052{ 5053 if (order == 0) /* Via pcp? */ 5054 free_unref_page(page); 5055 else 5056 __free_pages_ok(page, order, FPI_NONE); 5057} 5058 5059/** 5060 * __free_pages - Free pages allocated with alloc_pages(). 5061 * @page: The page pointer returned from alloc_pages(). 5062 * @order: The order of the allocation. 5063 * 5064 * This function can free multi-page allocations that are not compound 5065 * pages. It does not check that the @order passed in matches that of 5066 * the allocation, so it is easy to leak memory. Freeing more memory 5067 * than was allocated will probably emit a warning. 5068 * 5069 * If the last reference to this page is speculative, it will be released 5070 * by put_page() which only frees the first page of a non-compound 5071 * allocation. To prevent the remaining pages from being leaked, we free 5072 * the subsequent pages here. If you want to use the page's reference 5073 * count to decide when to free the allocation, you should allocate a 5074 * compound page, and use put_page() instead of __free_pages(). 5075 * 5076 * Context: May be called in interrupt context or while holding a normal 5077 * spinlock, but not in NMI context or while holding a raw spinlock. 5078 */ 5079void __free_pages(struct page *page, unsigned int order) 5080{ 5081 if (put_page_testzero(page)) 5082 free_the_page(page, order); 5083 else if (!PageHead(page)) 5084 while (order-- > 0) 5085 free_the_page(page + (1 << order), order); 5086} 5087EXPORT_SYMBOL(__free_pages); 5088 5089void free_pages(unsigned long addr, unsigned int order) 5090{ 5091 if (addr != 0) { 5092 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5093 __free_pages(virt_to_page((void *)addr), order); 5094 } 5095} 5096 5097EXPORT_SYMBOL(free_pages); 5098 5099/* 5100 * Page Fragment: 5101 * An arbitrary-length arbitrary-offset area of memory which resides 5102 * within a 0 or higher order page. Multiple fragments within that page 5103 * are individually refcounted, in the page's reference counter. 5104 * 5105 * The page_frag functions below provide a simple allocation framework for 5106 * page fragments. This is used by the network stack and network device 5107 * drivers to provide a backing region of memory for use as either an 5108 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5109 */ 5110static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5111 gfp_t gfp_mask) 5112{ 5113 struct page *page = NULL; 5114 gfp_t gfp = gfp_mask; 5115 5116#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5117 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5118 __GFP_NOMEMALLOC; 5119 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5120 PAGE_FRAG_CACHE_MAX_ORDER); 5121 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5122#endif 5123 if (unlikely(!page)) 5124 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5125 5126 nc->va = page ? page_address(page) : NULL; 5127 5128 return page; 5129} 5130 5131void __page_frag_cache_drain(struct page *page, unsigned int count) 5132{ 5133 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5134 5135 if (page_ref_sub_and_test(page, count)) 5136 free_the_page(page, compound_order(page)); 5137} 5138EXPORT_SYMBOL(__page_frag_cache_drain); 5139 5140void *page_frag_alloc(struct page_frag_cache *nc, 5141 unsigned int fragsz, gfp_t gfp_mask) 5142{ 5143 unsigned int size = PAGE_SIZE; 5144 struct page *page; 5145 int offset; 5146 5147 if (unlikely(!nc->va)) { 5148refill: 5149 page = __page_frag_cache_refill(nc, gfp_mask); 5150 if (!page) 5151 return NULL; 5152 5153#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5154 /* if size can vary use size else just use PAGE_SIZE */ 5155 size = nc->size; 5156#endif 5157 /* Even if we own the page, we do not use atomic_set(). 5158 * This would break get_page_unless_zero() users. 5159 */ 5160 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5161 5162 /* reset page count bias and offset to start of new frag */ 5163 nc->pfmemalloc = page_is_pfmemalloc(page); 5164 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5165 nc->offset = size; 5166 } 5167 5168 offset = nc->offset - fragsz; 5169 if (unlikely(offset < 0)) { 5170 page = virt_to_page(nc->va); 5171 5172 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5173 goto refill; 5174 5175 if (unlikely(nc->pfmemalloc)) { 5176 free_the_page(page, compound_order(page)); 5177 goto refill; 5178 } 5179 5180#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5181 /* if size can vary use size else just use PAGE_SIZE */ 5182 size = nc->size; 5183#endif 5184 /* OK, page count is 0, we can safely set it */ 5185 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5186 5187 /* reset page count bias and offset to start of new frag */ 5188 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5189 offset = size - fragsz; 5190 } 5191 5192 nc->pagecnt_bias--; 5193 nc->offset = offset; 5194 5195 return nc->va + offset; 5196} 5197EXPORT_SYMBOL(page_frag_alloc); 5198 5199/* 5200 * Frees a page fragment allocated out of either a compound or order 0 page. 5201 */ 5202void page_frag_free(void *addr) 5203{ 5204 struct page *page = virt_to_head_page(addr); 5205 5206 if (unlikely(put_page_testzero(page))) 5207 free_the_page(page, compound_order(page)); 5208} 5209EXPORT_SYMBOL(page_frag_free); 5210 5211static void *make_alloc_exact(unsigned long addr, unsigned int order, 5212 size_t size) 5213{ 5214 if (addr) { 5215 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5216 unsigned long used = addr + PAGE_ALIGN(size); 5217 5218 split_page(virt_to_page((void *)addr), order); 5219 while (used < alloc_end) { 5220 free_page(used); 5221 used += PAGE_SIZE; 5222 } 5223 } 5224 return (void *)addr; 5225} 5226 5227/** 5228 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5229 * @size: the number of bytes to allocate 5230 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5231 * 5232 * This function is similar to alloc_pages(), except that it allocates the 5233 * minimum number of pages to satisfy the request. alloc_pages() can only 5234 * allocate memory in power-of-two pages. 5235 * 5236 * This function is also limited by MAX_ORDER. 5237 * 5238 * Memory allocated by this function must be released by free_pages_exact(). 5239 * 5240 * Return: pointer to the allocated area or %NULL in case of error. 5241 */ 5242void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5243{ 5244 unsigned int order = get_order(size); 5245 unsigned long addr; 5246 5247 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5248 gfp_mask &= ~__GFP_COMP; 5249 5250 addr = __get_free_pages(gfp_mask, order); 5251 return make_alloc_exact(addr, order, size); 5252} 5253EXPORT_SYMBOL(alloc_pages_exact); 5254 5255/** 5256 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5257 * pages on a node. 5258 * @nid: the preferred node ID where memory should be allocated 5259 * @size: the number of bytes to allocate 5260 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5261 * 5262 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5263 * back. 5264 * 5265 * Return: pointer to the allocated area or %NULL in case of error. 5266 */ 5267void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5268{ 5269 unsigned int order = get_order(size); 5270 struct page *p; 5271 5272 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5273 gfp_mask &= ~__GFP_COMP; 5274 5275 p = alloc_pages_node(nid, gfp_mask, order); 5276 if (!p) 5277 return NULL; 5278 return make_alloc_exact((unsigned long)page_address(p), order, size); 5279} 5280 5281/** 5282 * free_pages_exact - release memory allocated via alloc_pages_exact() 5283 * @virt: the value returned by alloc_pages_exact. 5284 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5285 * 5286 * Release the memory allocated by a previous call to alloc_pages_exact. 5287 */ 5288void free_pages_exact(void *virt, size_t size) 5289{ 5290 unsigned long addr = (unsigned long)virt; 5291 unsigned long end = addr + PAGE_ALIGN(size); 5292 5293 while (addr < end) { 5294 free_page(addr); 5295 addr += PAGE_SIZE; 5296 } 5297} 5298EXPORT_SYMBOL(free_pages_exact); 5299 5300/** 5301 * nr_free_zone_pages - count number of pages beyond high watermark 5302 * @offset: The zone index of the highest zone 5303 * 5304 * nr_free_zone_pages() counts the number of pages which are beyond the 5305 * high watermark within all zones at or below a given zone index. For each 5306 * zone, the number of pages is calculated as: 5307 * 5308 * nr_free_zone_pages = managed_pages - high_pages 5309 * 5310 * Return: number of pages beyond high watermark. 5311 */ 5312static unsigned long nr_free_zone_pages(int offset) 5313{ 5314 struct zoneref *z; 5315 struct zone *zone; 5316 5317 /* Just pick one node, since fallback list is circular */ 5318 unsigned long sum = 0; 5319 5320 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5321 5322 for_each_zone_zonelist(zone, z, zonelist, offset) { 5323 unsigned long size = zone_managed_pages(zone); 5324 unsigned long high = high_wmark_pages(zone); 5325 if (size > high) 5326 sum += size - high; 5327 } 5328 5329 return sum; 5330} 5331 5332/** 5333 * nr_free_buffer_pages - count number of pages beyond high watermark 5334 * 5335 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5336 * watermark within ZONE_DMA and ZONE_NORMAL. 5337 * 5338 * Return: number of pages beyond high watermark within ZONE_DMA and 5339 * ZONE_NORMAL. 5340 */ 5341unsigned long nr_free_buffer_pages(void) 5342{ 5343 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5344} 5345EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5346 5347static inline void show_node(struct zone *zone) 5348{ 5349 if (IS_ENABLED(CONFIG_NUMA)) 5350 printk("Node %d ", zone_to_nid(zone)); 5351} 5352 5353long si_mem_available(void) 5354{ 5355 long available; 5356 unsigned long pagecache; 5357 unsigned long wmark_low = 0; 5358 unsigned long pages[NR_LRU_LISTS]; 5359 unsigned long reclaimable; 5360 struct zone *zone; 5361 int lru; 5362 5363 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5364 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5365 5366 for_each_zone(zone) 5367 wmark_low += low_wmark_pages(zone); 5368 5369 /* 5370 * Estimate the amount of memory available for userspace allocations, 5371 * without causing swapping. 5372 */ 5373 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5374 5375 /* 5376 * Not all the page cache can be freed, otherwise the system will 5377 * start swapping. Assume at least half of the page cache, or the 5378 * low watermark worth of cache, needs to stay. 5379 */ 5380 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5381 pagecache -= min(pagecache / 2, wmark_low); 5382 available += pagecache; 5383 5384 /* 5385 * Part of the reclaimable slab and other kernel memory consists of 5386 * items that are in use, and cannot be freed. Cap this estimate at the 5387 * low watermark. 5388 */ 5389 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5390 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5391 available += reclaimable - min(reclaimable / 2, wmark_low); 5392 5393 if (available < 0) 5394 available = 0; 5395 return available; 5396} 5397EXPORT_SYMBOL_GPL(si_mem_available); 5398 5399void si_meminfo(struct sysinfo *val) 5400{ 5401 val->totalram = totalram_pages(); 5402 val->sharedram = global_node_page_state(NR_SHMEM); 5403 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5404 val->bufferram = nr_blockdev_pages(); 5405 val->totalhigh = totalhigh_pages(); 5406 val->freehigh = nr_free_highpages(); 5407 val->mem_unit = PAGE_SIZE; 5408} 5409 5410EXPORT_SYMBOL(si_meminfo); 5411 5412#ifdef CONFIG_NUMA 5413void si_meminfo_node(struct sysinfo *val, int nid) 5414{ 5415 int zone_type; /* needs to be signed */ 5416 unsigned long managed_pages = 0; 5417 unsigned long managed_highpages = 0; 5418 unsigned long free_highpages = 0; 5419 pg_data_t *pgdat = NODE_DATA(nid); 5420 5421 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5422 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5423 val->totalram = managed_pages; 5424 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5425 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5426#ifdef CONFIG_HIGHMEM 5427 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5428 struct zone *zone = &pgdat->node_zones[zone_type]; 5429 5430 if (is_highmem(zone)) { 5431 managed_highpages += zone_managed_pages(zone); 5432 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5433 } 5434 } 5435 val->totalhigh = managed_highpages; 5436 val->freehigh = free_highpages; 5437#else 5438 val->totalhigh = managed_highpages; 5439 val->freehigh = free_highpages; 5440#endif 5441 val->mem_unit = PAGE_SIZE; 5442} 5443#endif 5444 5445/* 5446 * Determine whether the node should be displayed or not, depending on whether 5447 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5448 */ 5449static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5450{ 5451 if (!(flags & SHOW_MEM_FILTER_NODES)) 5452 return false; 5453 5454 /* 5455 * no node mask - aka implicit memory numa policy. Do not bother with 5456 * the synchronization - read_mems_allowed_begin - because we do not 5457 * have to be precise here. 5458 */ 5459 if (!nodemask) 5460 nodemask = &cpuset_current_mems_allowed; 5461 5462 return !node_isset(nid, *nodemask); 5463} 5464 5465#define K(x) ((x) << (PAGE_SHIFT-10)) 5466 5467static void show_migration_types(unsigned char type) 5468{ 5469 static const char types[MIGRATE_TYPES] = { 5470 [MIGRATE_UNMOVABLE] = 'U', 5471 [MIGRATE_MOVABLE] = 'M', 5472 [MIGRATE_RECLAIMABLE] = 'E', 5473 [MIGRATE_HIGHATOMIC] = 'H', 5474#ifdef CONFIG_CMA 5475 [MIGRATE_CMA] = 'C', 5476#endif 5477#ifdef CONFIG_MEMORY_ISOLATION 5478 [MIGRATE_ISOLATE] = 'I', 5479#endif 5480 }; 5481 char tmp[MIGRATE_TYPES + 1]; 5482 char *p = tmp; 5483 int i; 5484 5485 for (i = 0; i < MIGRATE_TYPES; i++) { 5486 if (type & (1 << i)) 5487 *p++ = types[i]; 5488 } 5489 5490 *p = '\0'; 5491 printk(KERN_CONT "(%s) ", tmp); 5492} 5493 5494/* 5495 * Show free area list (used inside shift_scroll-lock stuff) 5496 * We also calculate the percentage fragmentation. We do this by counting the 5497 * memory on each free list with the exception of the first item on the list. 5498 * 5499 * Bits in @filter: 5500 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5501 * cpuset. 5502 */ 5503void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5504{ 5505 unsigned long free_pcp = 0; 5506 int cpu; 5507 struct zone *zone; 5508 pg_data_t *pgdat; 5509 5510 for_each_populated_zone(zone) { 5511 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5512 continue; 5513 5514 for_each_online_cpu(cpu) 5515 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5516 } 5517 5518 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5519 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5520 " unevictable:%lu dirty:%lu writeback:%lu\n" 5521 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5522 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5523 " free:%lu free_pcp:%lu free_cma:%lu\n", 5524 global_node_page_state(NR_ACTIVE_ANON), 5525 global_node_page_state(NR_INACTIVE_ANON), 5526 global_node_page_state(NR_ISOLATED_ANON), 5527 global_node_page_state(NR_ACTIVE_FILE), 5528 global_node_page_state(NR_INACTIVE_FILE), 5529 global_node_page_state(NR_ISOLATED_FILE), 5530 global_node_page_state(NR_UNEVICTABLE), 5531 global_node_page_state(NR_FILE_DIRTY), 5532 global_node_page_state(NR_WRITEBACK), 5533 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5534 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5535 global_node_page_state(NR_FILE_MAPPED), 5536 global_node_page_state(NR_SHMEM), 5537 global_node_page_state(NR_PAGETABLE), 5538 global_zone_page_state(NR_BOUNCE), 5539 global_zone_page_state(NR_FREE_PAGES), 5540 free_pcp, 5541 global_zone_page_state(NR_FREE_CMA_PAGES)); 5542 5543 for_each_online_pgdat(pgdat) { 5544 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5545 continue; 5546 5547 printk("Node %d" 5548 " active_anon:%lukB" 5549 " inactive_anon:%lukB" 5550 " active_file:%lukB" 5551 " inactive_file:%lukB" 5552 " unevictable:%lukB" 5553 " isolated(anon):%lukB" 5554 " isolated(file):%lukB" 5555 " mapped:%lukB" 5556 " dirty:%lukB" 5557 " writeback:%lukB" 5558 " shmem:%lukB" 5559#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5560 " shmem_thp: %lukB" 5561 " shmem_pmdmapped: %lukB" 5562 " anon_thp: %lukB" 5563#endif 5564 " writeback_tmp:%lukB" 5565 " kernel_stack:%lukB" 5566#ifdef CONFIG_SHADOW_CALL_STACK 5567 " shadow_call_stack:%lukB" 5568#endif 5569 " pagetables:%lukB" 5570 " all_unreclaimable? %s" 5571 "\n", 5572 pgdat->node_id, 5573 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5574 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5575 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5576 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5577 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5578 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5579 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5580 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5581 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5582 K(node_page_state(pgdat, NR_WRITEBACK)), 5583 K(node_page_state(pgdat, NR_SHMEM)), 5584#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5585 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5586 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5587 * HPAGE_PMD_NR), 5588 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5589#endif 5590 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5591 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5592#ifdef CONFIG_SHADOW_CALL_STACK 5593 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5594#endif 5595 K(node_page_state(pgdat, NR_PAGETABLE)), 5596 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5597 "yes" : "no"); 5598 } 5599 5600 for_each_populated_zone(zone) { 5601 int i; 5602 5603 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5604 continue; 5605 5606 free_pcp = 0; 5607 for_each_online_cpu(cpu) 5608 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5609 5610 show_node(zone); 5611 printk(KERN_CONT 5612 "%s" 5613 " free:%lukB" 5614 " min:%lukB" 5615 " low:%lukB" 5616 " high:%lukB" 5617 " reserved_highatomic:%luKB" 5618 " active_anon:%lukB" 5619 " inactive_anon:%lukB" 5620 " active_file:%lukB" 5621 " inactive_file:%lukB" 5622 " unevictable:%lukB" 5623 " writepending:%lukB" 5624 " present:%lukB" 5625 " managed:%lukB" 5626 " mlocked:%lukB" 5627 " bounce:%lukB" 5628 " free_pcp:%lukB" 5629 " local_pcp:%ukB" 5630 " free_cma:%lukB" 5631 "\n", 5632 zone->name, 5633 K(zone_page_state(zone, NR_FREE_PAGES)), 5634 K(min_wmark_pages(zone)), 5635 K(low_wmark_pages(zone)), 5636 K(high_wmark_pages(zone)), 5637 K(zone->nr_reserved_highatomic), 5638 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5639 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5640 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5641 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5642 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5643 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5644 K(zone->present_pages), 5645 K(zone_managed_pages(zone)), 5646 K(zone_page_state(zone, NR_MLOCK)), 5647 K(zone_page_state(zone, NR_BOUNCE)), 5648 K(free_pcp), 5649 K(this_cpu_read(zone->pageset->pcp.count)), 5650 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5651 printk("lowmem_reserve[]:"); 5652 for (i = 0; i < MAX_NR_ZONES; i++) 5653 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5654 printk(KERN_CONT "\n"); 5655 } 5656 5657 for_each_populated_zone(zone) { 5658 unsigned int order; 5659 unsigned long nr[MAX_ORDER], flags, total = 0; 5660 unsigned char types[MAX_ORDER]; 5661 5662 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5663 continue; 5664 show_node(zone); 5665 printk(KERN_CONT "%s: ", zone->name); 5666 5667 spin_lock_irqsave(&zone->lock, flags); 5668 for (order = 0; order < MAX_ORDER; order++) { 5669 struct free_area *area = &zone->free_area[order]; 5670 int type; 5671 5672 nr[order] = area->nr_free; 5673 total += nr[order] << order; 5674 5675 types[order] = 0; 5676 for (type = 0; type < MIGRATE_TYPES; type++) { 5677 if (!free_area_empty(area, type)) 5678 types[order] |= 1 << type; 5679 } 5680 } 5681 spin_unlock_irqrestore(&zone->lock, flags); 5682 for (order = 0; order < MAX_ORDER; order++) { 5683 printk(KERN_CONT "%lu*%lukB ", 5684 nr[order], K(1UL) << order); 5685 if (nr[order]) 5686 show_migration_types(types[order]); 5687 } 5688 printk(KERN_CONT "= %lukB\n", K(total)); 5689 } 5690 5691 hugetlb_show_meminfo(); 5692 5693 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5694 5695 show_swap_cache_info(); 5696} 5697 5698static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5699{ 5700 zoneref->zone = zone; 5701 zoneref->zone_idx = zone_idx(zone); 5702} 5703 5704/* 5705 * Builds allocation fallback zone lists. 5706 * 5707 * Add all populated zones of a node to the zonelist. 5708 */ 5709static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5710{ 5711 struct zone *zone; 5712 enum zone_type zone_type = MAX_NR_ZONES; 5713 int nr_zones = 0; 5714 5715 do { 5716 zone_type--; 5717 zone = pgdat->node_zones + zone_type; 5718 if (managed_zone(zone)) { 5719 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5720 check_highest_zone(zone_type); 5721 } 5722 } while (zone_type); 5723 5724 return nr_zones; 5725} 5726 5727#ifdef CONFIG_NUMA 5728 5729static int __parse_numa_zonelist_order(char *s) 5730{ 5731 /* 5732 * We used to support different zonlists modes but they turned 5733 * out to be just not useful. Let's keep the warning in place 5734 * if somebody still use the cmd line parameter so that we do 5735 * not fail it silently 5736 */ 5737 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5738 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5739 return -EINVAL; 5740 } 5741 return 0; 5742} 5743 5744char numa_zonelist_order[] = "Node"; 5745 5746/* 5747 * sysctl handler for numa_zonelist_order 5748 */ 5749int numa_zonelist_order_handler(struct ctl_table *table, int write, 5750 void *buffer, size_t *length, loff_t *ppos) 5751{ 5752 if (write) 5753 return __parse_numa_zonelist_order(buffer); 5754 return proc_dostring(table, write, buffer, length, ppos); 5755} 5756 5757 5758#define MAX_NODE_LOAD (nr_online_nodes) 5759static int node_load[MAX_NUMNODES]; 5760 5761/** 5762 * find_next_best_node - find the next node that should appear in a given node's fallback list 5763 * @node: node whose fallback list we're appending 5764 * @used_node_mask: nodemask_t of already used nodes 5765 * 5766 * We use a number of factors to determine which is the next node that should 5767 * appear on a given node's fallback list. The node should not have appeared 5768 * already in @node's fallback list, and it should be the next closest node 5769 * according to the distance array (which contains arbitrary distance values 5770 * from each node to each node in the system), and should also prefer nodes 5771 * with no CPUs, since presumably they'll have very little allocation pressure 5772 * on them otherwise. 5773 * 5774 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5775 */ 5776static int find_next_best_node(int node, nodemask_t *used_node_mask) 5777{ 5778 int n, val; 5779 int min_val = INT_MAX; 5780 int best_node = NUMA_NO_NODE; 5781 5782 /* Use the local node if we haven't already */ 5783 if (!node_isset(node, *used_node_mask)) { 5784 node_set(node, *used_node_mask); 5785 return node; 5786 } 5787 5788 for_each_node_state(n, N_MEMORY) { 5789 5790 /* Don't want a node to appear more than once */ 5791 if (node_isset(n, *used_node_mask)) 5792 continue; 5793 5794 /* Use the distance array to find the distance */ 5795 val = node_distance(node, n); 5796 5797 /* Penalize nodes under us ("prefer the next node") */ 5798 val += (n < node); 5799 5800 /* Give preference to headless and unused nodes */ 5801 if (!cpumask_empty(cpumask_of_node(n))) 5802 val += PENALTY_FOR_NODE_WITH_CPUS; 5803 5804 /* Slight preference for less loaded node */ 5805 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5806 val += node_load[n]; 5807 5808 if (val < min_val) { 5809 min_val = val; 5810 best_node = n; 5811 } 5812 } 5813 5814 if (best_node >= 0) 5815 node_set(best_node, *used_node_mask); 5816 5817 return best_node; 5818} 5819 5820 5821/* 5822 * Build zonelists ordered by node and zones within node. 5823 * This results in maximum locality--normal zone overflows into local 5824 * DMA zone, if any--but risks exhausting DMA zone. 5825 */ 5826static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5827 unsigned nr_nodes) 5828{ 5829 struct zoneref *zonerefs; 5830 int i; 5831 5832 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5833 5834 for (i = 0; i < nr_nodes; i++) { 5835 int nr_zones; 5836 5837 pg_data_t *node = NODE_DATA(node_order[i]); 5838 5839 nr_zones = build_zonerefs_node(node, zonerefs); 5840 zonerefs += nr_zones; 5841 } 5842 zonerefs->zone = NULL; 5843 zonerefs->zone_idx = 0; 5844} 5845 5846/* 5847 * Build gfp_thisnode zonelists 5848 */ 5849static void build_thisnode_zonelists(pg_data_t *pgdat) 5850{ 5851 struct zoneref *zonerefs; 5852 int nr_zones; 5853 5854 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5855 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5856 zonerefs += nr_zones; 5857 zonerefs->zone = NULL; 5858 zonerefs->zone_idx = 0; 5859} 5860 5861/* 5862 * Build zonelists ordered by zone and nodes within zones. 5863 * This results in conserving DMA zone[s] until all Normal memory is 5864 * exhausted, but results in overflowing to remote node while memory 5865 * may still exist in local DMA zone. 5866 */ 5867 5868static void build_zonelists(pg_data_t *pgdat) 5869{ 5870 static int node_order[MAX_NUMNODES]; 5871 int node, load, nr_nodes = 0; 5872 nodemask_t used_mask = NODE_MASK_NONE; 5873 int local_node, prev_node; 5874 5875 /* NUMA-aware ordering of nodes */ 5876 local_node = pgdat->node_id; 5877 load = nr_online_nodes; 5878 prev_node = local_node; 5879 5880 memset(node_order, 0, sizeof(node_order)); 5881 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5882 /* 5883 * We don't want to pressure a particular node. 5884 * So adding penalty to the first node in same 5885 * distance group to make it round-robin. 5886 */ 5887 if (node_distance(local_node, node) != 5888 node_distance(local_node, prev_node)) 5889 node_load[node] = load; 5890 5891 node_order[nr_nodes++] = node; 5892 prev_node = node; 5893 load--; 5894 } 5895 5896 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5897 build_thisnode_zonelists(pgdat); 5898} 5899 5900#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5901/* 5902 * Return node id of node used for "local" allocations. 5903 * I.e., first node id of first zone in arg node's generic zonelist. 5904 * Used for initializing percpu 'numa_mem', which is used primarily 5905 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5906 */ 5907int local_memory_node(int node) 5908{ 5909 struct zoneref *z; 5910 5911 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5912 gfp_zone(GFP_KERNEL), 5913 NULL); 5914 return zone_to_nid(z->zone); 5915} 5916#endif 5917 5918static void setup_min_unmapped_ratio(void); 5919static void setup_min_slab_ratio(void); 5920#else /* CONFIG_NUMA */ 5921 5922static void build_zonelists(pg_data_t *pgdat) 5923{ 5924 int node, local_node; 5925 struct zoneref *zonerefs; 5926 int nr_zones; 5927 5928 local_node = pgdat->node_id; 5929 5930 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5931 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5932 zonerefs += nr_zones; 5933 5934 /* 5935 * Now we build the zonelist so that it contains the zones 5936 * of all the other nodes. 5937 * We don't want to pressure a particular node, so when 5938 * building the zones for node N, we make sure that the 5939 * zones coming right after the local ones are those from 5940 * node N+1 (modulo N) 5941 */ 5942 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5943 if (!node_online(node)) 5944 continue; 5945 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5946 zonerefs += nr_zones; 5947 } 5948 for (node = 0; node < local_node; node++) { 5949 if (!node_online(node)) 5950 continue; 5951 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5952 zonerefs += nr_zones; 5953 } 5954 5955 zonerefs->zone = NULL; 5956 zonerefs->zone_idx = 0; 5957} 5958 5959#endif /* CONFIG_NUMA */ 5960 5961/* 5962 * Boot pageset table. One per cpu which is going to be used for all 5963 * zones and all nodes. The parameters will be set in such a way 5964 * that an item put on a list will immediately be handed over to 5965 * the buddy list. This is safe since pageset manipulation is done 5966 * with interrupts disabled. 5967 * 5968 * The boot_pagesets must be kept even after bootup is complete for 5969 * unused processors and/or zones. They do play a role for bootstrapping 5970 * hotplugged processors. 5971 * 5972 * zoneinfo_show() and maybe other functions do 5973 * not check if the processor is online before following the pageset pointer. 5974 * Other parts of the kernel may not check if the zone is available. 5975 */ 5976static void pageset_init(struct per_cpu_pageset *p); 5977/* These effectively disable the pcplists in the boot pageset completely */ 5978#define BOOT_PAGESET_HIGH 0 5979#define BOOT_PAGESET_BATCH 1 5980static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5981static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5982 5983static void __build_all_zonelists(void *data) 5984{ 5985 int nid; 5986 int __maybe_unused cpu; 5987 pg_data_t *self = data; 5988 static DEFINE_SPINLOCK(lock); 5989 5990 spin_lock(&lock); 5991 5992#ifdef CONFIG_NUMA 5993 memset(node_load, 0, sizeof(node_load)); 5994#endif 5995 5996 /* 5997 * This node is hotadded and no memory is yet present. So just 5998 * building zonelists is fine - no need to touch other nodes. 5999 */ 6000 if (self && !node_online(self->node_id)) { 6001 build_zonelists(self); 6002 } else { 6003 for_each_online_node(nid) { 6004 pg_data_t *pgdat = NODE_DATA(nid); 6005 6006 build_zonelists(pgdat); 6007 } 6008 6009#ifdef CONFIG_HAVE_MEMORYLESS_NODES 6010 /* 6011 * We now know the "local memory node" for each node-- 6012 * i.e., the node of the first zone in the generic zonelist. 6013 * Set up numa_mem percpu variable for on-line cpus. During 6014 * boot, only the boot cpu should be on-line; we'll init the 6015 * secondary cpus' numa_mem as they come on-line. During 6016 * node/memory hotplug, we'll fixup all on-line cpus. 6017 */ 6018 for_each_online_cpu(cpu) 6019 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6020#endif 6021 } 6022 6023 spin_unlock(&lock); 6024} 6025 6026static noinline void __init 6027build_all_zonelists_init(void) 6028{ 6029 int cpu; 6030 6031 __build_all_zonelists(NULL); 6032 6033 /* 6034 * Initialize the boot_pagesets that are going to be used 6035 * for bootstrapping processors. The real pagesets for 6036 * each zone will be allocated later when the per cpu 6037 * allocator is available. 6038 * 6039 * boot_pagesets are used also for bootstrapping offline 6040 * cpus if the system is already booted because the pagesets 6041 * are needed to initialize allocators on a specific cpu too. 6042 * F.e. the percpu allocator needs the page allocator which 6043 * needs the percpu allocator in order to allocate its pagesets 6044 * (a chicken-egg dilemma). 6045 */ 6046 for_each_possible_cpu(cpu) 6047 pageset_init(&per_cpu(boot_pageset, cpu)); 6048 6049 mminit_verify_zonelist(); 6050 cpuset_init_current_mems_allowed(); 6051} 6052 6053/* 6054 * unless system_state == SYSTEM_BOOTING. 6055 * 6056 * __ref due to call of __init annotated helper build_all_zonelists_init 6057 * [protected by SYSTEM_BOOTING]. 6058 */ 6059void __ref build_all_zonelists(pg_data_t *pgdat) 6060{ 6061 unsigned long vm_total_pages; 6062 6063 if (system_state == SYSTEM_BOOTING) { 6064 build_all_zonelists_init(); 6065 } else { 6066 __build_all_zonelists(pgdat); 6067 /* cpuset refresh routine should be here */ 6068 } 6069 /* Get the number of free pages beyond high watermark in all zones. */ 6070 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6071 /* 6072 * Disable grouping by mobility if the number of pages in the 6073 * system is too low to allow the mechanism to work. It would be 6074 * more accurate, but expensive to check per-zone. This check is 6075 * made on memory-hotadd so a system can start with mobility 6076 * disabled and enable it later 6077 */ 6078 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6079 page_group_by_mobility_disabled = 1; 6080 else 6081 page_group_by_mobility_disabled = 0; 6082 6083 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6084 nr_online_nodes, 6085 page_group_by_mobility_disabled ? "off" : "on", 6086 vm_total_pages); 6087#ifdef CONFIG_NUMA 6088 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6089#endif 6090} 6091 6092/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6093static bool __meminit 6094overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6095{ 6096 static struct memblock_region *r; 6097 6098 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6099 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6100 for_each_mem_region(r) { 6101 if (*pfn < memblock_region_memory_end_pfn(r)) 6102 break; 6103 } 6104 } 6105 if (*pfn >= memblock_region_memory_base_pfn(r) && 6106 memblock_is_mirror(r)) { 6107 *pfn = memblock_region_memory_end_pfn(r); 6108 return true; 6109 } 6110 } 6111 return false; 6112} 6113 6114/* 6115 * Initially all pages are reserved - free ones are freed 6116 * up by memblock_free_all() once the early boot process is 6117 * done. Non-atomic initialization, single-pass. 6118 * 6119 * All aligned pageblocks are initialized to the specified migratetype 6120 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6121 * zone stats (e.g., nr_isolate_pageblock) are touched. 6122 */ 6123void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6124 unsigned long start_pfn, unsigned long zone_end_pfn, 6125 enum meminit_context context, 6126 struct vmem_altmap *altmap, int migratetype) 6127{ 6128 unsigned long pfn, end_pfn = start_pfn + size; 6129 struct page *page; 6130 6131 if (highest_memmap_pfn < end_pfn - 1) 6132 highest_memmap_pfn = end_pfn - 1; 6133 6134#ifdef CONFIG_ZONE_DEVICE 6135 /* 6136 * Honor reservation requested by the driver for this ZONE_DEVICE 6137 * memory. We limit the total number of pages to initialize to just 6138 * those that might contain the memory mapping. We will defer the 6139 * ZONE_DEVICE page initialization until after we have released 6140 * the hotplug lock. 6141 */ 6142 if (zone == ZONE_DEVICE) { 6143 if (!altmap) 6144 return; 6145 6146 if (start_pfn == altmap->base_pfn) 6147 start_pfn += altmap->reserve; 6148 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6149 } 6150#endif 6151 6152 for (pfn = start_pfn; pfn < end_pfn; ) { 6153 /* 6154 * There can be holes in boot-time mem_map[]s handed to this 6155 * function. They do not exist on hotplugged memory. 6156 */ 6157 if (context == MEMINIT_EARLY) { 6158 if (overlap_memmap_init(zone, &pfn)) 6159 continue; 6160 if (defer_init(nid, pfn, zone_end_pfn)) 6161 break; 6162 } 6163 6164 page = pfn_to_page(pfn); 6165 __init_single_page(page, pfn, zone, nid); 6166 if (context == MEMINIT_HOTPLUG) 6167 __SetPageReserved(page); 6168 6169 /* 6170 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6171 * such that unmovable allocations won't be scattered all 6172 * over the place during system boot. 6173 */ 6174 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6175 set_pageblock_migratetype(page, migratetype); 6176 cond_resched(); 6177 } 6178 pfn++; 6179 } 6180} 6181 6182#ifdef CONFIG_ZONE_DEVICE 6183void __ref memmap_init_zone_device(struct zone *zone, 6184 unsigned long start_pfn, 6185 unsigned long nr_pages, 6186 struct dev_pagemap *pgmap) 6187{ 6188 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6189 struct pglist_data *pgdat = zone->zone_pgdat; 6190 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6191 unsigned long zone_idx = zone_idx(zone); 6192 unsigned long start = jiffies; 6193 int nid = pgdat->node_id; 6194 6195 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6196 return; 6197 6198 /* 6199 * The call to memmap_init_zone should have already taken care 6200 * of the pages reserved for the memmap, so we can just jump to 6201 * the end of that region and start processing the device pages. 6202 */ 6203 if (altmap) { 6204 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6205 nr_pages = end_pfn - start_pfn; 6206 } 6207 6208 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6209 struct page *page = pfn_to_page(pfn); 6210 6211 __init_single_page(page, pfn, zone_idx, nid); 6212 6213 /* 6214 * Mark page reserved as it will need to wait for onlining 6215 * phase for it to be fully associated with a zone. 6216 * 6217 * We can use the non-atomic __set_bit operation for setting 6218 * the flag as we are still initializing the pages. 6219 */ 6220 __SetPageReserved(page); 6221 6222 /* 6223 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6224 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6225 * ever freed or placed on a driver-private list. 6226 */ 6227 page->pgmap = pgmap; 6228 page->zone_device_data = NULL; 6229 6230 /* 6231 * Mark the block movable so that blocks are reserved for 6232 * movable at startup. This will force kernel allocations 6233 * to reserve their blocks rather than leaking throughout 6234 * the address space during boot when many long-lived 6235 * kernel allocations are made. 6236 * 6237 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6238 * because this is done early in section_activate() 6239 */ 6240 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6241 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6242 cond_resched(); 6243 } 6244 } 6245 6246 pr_info("%s initialised %lu pages in %ums\n", __func__, 6247 nr_pages, jiffies_to_msecs(jiffies - start)); 6248} 6249 6250#endif 6251static void __meminit zone_init_free_lists(struct zone *zone) 6252{ 6253 unsigned int order, t; 6254 for_each_migratetype_order(order, t) { 6255 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6256 zone->free_area[order].nr_free = 0; 6257 } 6258} 6259 6260void __meminit __weak memmap_init(unsigned long size, int nid, 6261 unsigned long zone, 6262 unsigned long range_start_pfn) 6263{ 6264 unsigned long start_pfn, end_pfn; 6265 unsigned long range_end_pfn = range_start_pfn + size; 6266 int i; 6267 6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6269 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6270 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6271 6272 if (end_pfn > start_pfn) { 6273 size = end_pfn - start_pfn; 6274 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn, 6275 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6276 } 6277 } 6278} 6279 6280static int zone_batchsize(struct zone *zone) 6281{ 6282#ifdef CONFIG_MMU 6283 int batch; 6284 6285 /* 6286 * The per-cpu-pages pools are set to around 1000th of the 6287 * size of the zone. 6288 */ 6289 batch = zone_managed_pages(zone) / 1024; 6290 /* But no more than a meg. */ 6291 if (batch * PAGE_SIZE > 1024 * 1024) 6292 batch = (1024 * 1024) / PAGE_SIZE; 6293 batch /= 4; /* We effectively *= 4 below */ 6294 if (batch < 1) 6295 batch = 1; 6296 6297 /* 6298 * Clamp the batch to a 2^n - 1 value. Having a power 6299 * of 2 value was found to be more likely to have 6300 * suboptimal cache aliasing properties in some cases. 6301 * 6302 * For example if 2 tasks are alternately allocating 6303 * batches of pages, one task can end up with a lot 6304 * of pages of one half of the possible page colors 6305 * and the other with pages of the other colors. 6306 */ 6307 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6308 6309 return batch; 6310 6311#else 6312 /* The deferral and batching of frees should be suppressed under NOMMU 6313 * conditions. 6314 * 6315 * The problem is that NOMMU needs to be able to allocate large chunks 6316 * of contiguous memory as there's no hardware page translation to 6317 * assemble apparent contiguous memory from discontiguous pages. 6318 * 6319 * Queueing large contiguous runs of pages for batching, however, 6320 * causes the pages to actually be freed in smaller chunks. As there 6321 * can be a significant delay between the individual batches being 6322 * recycled, this leads to the once large chunks of space being 6323 * fragmented and becoming unavailable for high-order allocations. 6324 */ 6325 return 0; 6326#endif 6327} 6328 6329/* 6330 * pcp->high and pcp->batch values are related and generally batch is lower 6331 * than high. They are also related to pcp->count such that count is lower 6332 * than high, and as soon as it reaches high, the pcplist is flushed. 6333 * 6334 * However, guaranteeing these relations at all times would require e.g. write 6335 * barriers here but also careful usage of read barriers at the read side, and 6336 * thus be prone to error and bad for performance. Thus the update only prevents 6337 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6338 * can cope with those fields changing asynchronously, and fully trust only the 6339 * pcp->count field on the local CPU with interrupts disabled. 6340 * 6341 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6342 * outside of boot time (or some other assurance that no concurrent updaters 6343 * exist). 6344 */ 6345static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6346 unsigned long batch) 6347{ 6348 WRITE_ONCE(pcp->batch, batch); 6349 WRITE_ONCE(pcp->high, high); 6350} 6351 6352static void pageset_init(struct per_cpu_pageset *p) 6353{ 6354 struct per_cpu_pages *pcp; 6355 int migratetype; 6356 6357 memset(p, 0, sizeof(*p)); 6358 6359 pcp = &p->pcp; 6360 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6361 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6362 6363 /* 6364 * Set batch and high values safe for a boot pageset. A true percpu 6365 * pageset's initialization will update them subsequently. Here we don't 6366 * need to be as careful as pageset_update() as nobody can access the 6367 * pageset yet. 6368 */ 6369 pcp->high = BOOT_PAGESET_HIGH; 6370 pcp->batch = BOOT_PAGESET_BATCH; 6371} 6372 6373static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6374 unsigned long batch) 6375{ 6376 struct per_cpu_pageset *p; 6377 int cpu; 6378 6379 for_each_possible_cpu(cpu) { 6380 p = per_cpu_ptr(zone->pageset, cpu); 6381 pageset_update(&p->pcp, high, batch); 6382 } 6383} 6384 6385/* 6386 * Calculate and set new high and batch values for all per-cpu pagesets of a 6387 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6388 */ 6389static void zone_set_pageset_high_and_batch(struct zone *zone) 6390{ 6391 unsigned long new_high, new_batch; 6392 6393 if (percpu_pagelist_fraction) { 6394 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6395 new_batch = max(1UL, new_high / 4); 6396 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6397 new_batch = PAGE_SHIFT * 8; 6398 } else { 6399 new_batch = zone_batchsize(zone); 6400 new_high = 6 * new_batch; 6401 new_batch = max(1UL, 1 * new_batch); 6402 } 6403 6404 if (zone->pageset_high == new_high && 6405 zone->pageset_batch == new_batch) 6406 return; 6407 6408 zone->pageset_high = new_high; 6409 zone->pageset_batch = new_batch; 6410 6411 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6412} 6413 6414void __meminit setup_zone_pageset(struct zone *zone) 6415{ 6416 struct per_cpu_pageset *p; 6417 int cpu; 6418 6419 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6420 for_each_possible_cpu(cpu) { 6421 p = per_cpu_ptr(zone->pageset, cpu); 6422 pageset_init(p); 6423 } 6424 6425 zone_set_pageset_high_and_batch(zone); 6426} 6427 6428/* 6429 * Allocate per cpu pagesets and initialize them. 6430 * Before this call only boot pagesets were available. 6431 */ 6432void __init setup_per_cpu_pageset(void) 6433{ 6434 struct pglist_data *pgdat; 6435 struct zone *zone; 6436 int __maybe_unused cpu; 6437 6438 for_each_populated_zone(zone) 6439 setup_zone_pageset(zone); 6440 6441#ifdef CONFIG_NUMA 6442 /* 6443 * Unpopulated zones continue using the boot pagesets. 6444 * The numa stats for these pagesets need to be reset. 6445 * Otherwise, they will end up skewing the stats of 6446 * the nodes these zones are associated with. 6447 */ 6448 for_each_possible_cpu(cpu) { 6449 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6450 memset(pcp->vm_numa_stat_diff, 0, 6451 sizeof(pcp->vm_numa_stat_diff)); 6452 } 6453#endif 6454 6455 for_each_online_pgdat(pgdat) 6456 pgdat->per_cpu_nodestats = 6457 alloc_percpu(struct per_cpu_nodestat); 6458} 6459 6460static __meminit void zone_pcp_init(struct zone *zone) 6461{ 6462 /* 6463 * per cpu subsystem is not up at this point. The following code 6464 * relies on the ability of the linker to provide the 6465 * offset of a (static) per cpu variable into the per cpu area. 6466 */ 6467 zone->pageset = &boot_pageset; 6468 zone->pageset_high = BOOT_PAGESET_HIGH; 6469 zone->pageset_batch = BOOT_PAGESET_BATCH; 6470 6471 if (populated_zone(zone)) 6472 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6473 zone->name, zone->present_pages, 6474 zone_batchsize(zone)); 6475} 6476 6477void __meminit init_currently_empty_zone(struct zone *zone, 6478 unsigned long zone_start_pfn, 6479 unsigned long size) 6480{ 6481 struct pglist_data *pgdat = zone->zone_pgdat; 6482 int zone_idx = zone_idx(zone) + 1; 6483 6484 if (zone_idx > pgdat->nr_zones) 6485 pgdat->nr_zones = zone_idx; 6486 6487 zone->zone_start_pfn = zone_start_pfn; 6488 6489 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6490 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6491 pgdat->node_id, 6492 (unsigned long)zone_idx(zone), 6493 zone_start_pfn, (zone_start_pfn + size)); 6494 6495 zone_init_free_lists(zone); 6496 zone->initialized = 1; 6497} 6498 6499/** 6500 * get_pfn_range_for_nid - Return the start and end page frames for a node 6501 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6502 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6503 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6504 * 6505 * It returns the start and end page frame of a node based on information 6506 * provided by memblock_set_node(). If called for a node 6507 * with no available memory, a warning is printed and the start and end 6508 * PFNs will be 0. 6509 */ 6510void __init get_pfn_range_for_nid(unsigned int nid, 6511 unsigned long *start_pfn, unsigned long *end_pfn) 6512{ 6513 unsigned long this_start_pfn, this_end_pfn; 6514 int i; 6515 6516 *start_pfn = -1UL; 6517 *end_pfn = 0; 6518 6519 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6520 *start_pfn = min(*start_pfn, this_start_pfn); 6521 *end_pfn = max(*end_pfn, this_end_pfn); 6522 } 6523 6524 if (*start_pfn == -1UL) 6525 *start_pfn = 0; 6526} 6527 6528/* 6529 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6530 * assumption is made that zones within a node are ordered in monotonic 6531 * increasing memory addresses so that the "highest" populated zone is used 6532 */ 6533static void __init find_usable_zone_for_movable(void) 6534{ 6535 int zone_index; 6536 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6537 if (zone_index == ZONE_MOVABLE) 6538 continue; 6539 6540 if (arch_zone_highest_possible_pfn[zone_index] > 6541 arch_zone_lowest_possible_pfn[zone_index]) 6542 break; 6543 } 6544 6545 VM_BUG_ON(zone_index == -1); 6546 movable_zone = zone_index; 6547} 6548 6549/* 6550 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6551 * because it is sized independent of architecture. Unlike the other zones, 6552 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6553 * in each node depending on the size of each node and how evenly kernelcore 6554 * is distributed. This helper function adjusts the zone ranges 6555 * provided by the architecture for a given node by using the end of the 6556 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6557 * zones within a node are in order of monotonic increases memory addresses 6558 */ 6559static void __init adjust_zone_range_for_zone_movable(int nid, 6560 unsigned long zone_type, 6561 unsigned long node_start_pfn, 6562 unsigned long node_end_pfn, 6563 unsigned long *zone_start_pfn, 6564 unsigned long *zone_end_pfn) 6565{ 6566 /* Only adjust if ZONE_MOVABLE is on this node */ 6567 if (zone_movable_pfn[nid]) { 6568 /* Size ZONE_MOVABLE */ 6569 if (zone_type == ZONE_MOVABLE) { 6570 *zone_start_pfn = zone_movable_pfn[nid]; 6571 *zone_end_pfn = min(node_end_pfn, 6572 arch_zone_highest_possible_pfn[movable_zone]); 6573 6574 /* Adjust for ZONE_MOVABLE starting within this range */ 6575 } else if (!mirrored_kernelcore && 6576 *zone_start_pfn < zone_movable_pfn[nid] && 6577 *zone_end_pfn > zone_movable_pfn[nid]) { 6578 *zone_end_pfn = zone_movable_pfn[nid]; 6579 6580 /* Check if this whole range is within ZONE_MOVABLE */ 6581 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6582 *zone_start_pfn = *zone_end_pfn; 6583 } 6584} 6585 6586/* 6587 * Return the number of pages a zone spans in a node, including holes 6588 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6589 */ 6590static unsigned long __init zone_spanned_pages_in_node(int nid, 6591 unsigned long zone_type, 6592 unsigned long node_start_pfn, 6593 unsigned long node_end_pfn, 6594 unsigned long *zone_start_pfn, 6595 unsigned long *zone_end_pfn) 6596{ 6597 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6598 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6599 /* When hotadd a new node from cpu_up(), the node should be empty */ 6600 if (!node_start_pfn && !node_end_pfn) 6601 return 0; 6602 6603 /* Get the start and end of the zone */ 6604 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6605 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6606 adjust_zone_range_for_zone_movable(nid, zone_type, 6607 node_start_pfn, node_end_pfn, 6608 zone_start_pfn, zone_end_pfn); 6609 6610 /* Check that this node has pages within the zone's required range */ 6611 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6612 return 0; 6613 6614 /* Move the zone boundaries inside the node if necessary */ 6615 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6616 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6617 6618 /* Return the spanned pages */ 6619 return *zone_end_pfn - *zone_start_pfn; 6620} 6621 6622/* 6623 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6624 * then all holes in the requested range will be accounted for. 6625 */ 6626unsigned long __init __absent_pages_in_range(int nid, 6627 unsigned long range_start_pfn, 6628 unsigned long range_end_pfn) 6629{ 6630 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6631 unsigned long start_pfn, end_pfn; 6632 int i; 6633 6634 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6635 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6636 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6637 nr_absent -= end_pfn - start_pfn; 6638 } 6639 return nr_absent; 6640} 6641 6642/** 6643 * absent_pages_in_range - Return number of page frames in holes within a range 6644 * @start_pfn: The start PFN to start searching for holes 6645 * @end_pfn: The end PFN to stop searching for holes 6646 * 6647 * Return: the number of pages frames in memory holes within a range. 6648 */ 6649unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6650 unsigned long end_pfn) 6651{ 6652 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6653} 6654 6655/* Return the number of page frames in holes in a zone on a node */ 6656static unsigned long __init zone_absent_pages_in_node(int nid, 6657 unsigned long zone_type, 6658 unsigned long node_start_pfn, 6659 unsigned long node_end_pfn) 6660{ 6661 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6662 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6663 unsigned long zone_start_pfn, zone_end_pfn; 6664 unsigned long nr_absent; 6665 6666 /* When hotadd a new node from cpu_up(), the node should be empty */ 6667 if (!node_start_pfn && !node_end_pfn) 6668 return 0; 6669 6670 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6671 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6672 6673 adjust_zone_range_for_zone_movable(nid, zone_type, 6674 node_start_pfn, node_end_pfn, 6675 &zone_start_pfn, &zone_end_pfn); 6676 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6677 6678 /* 6679 * ZONE_MOVABLE handling. 6680 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6681 * and vice versa. 6682 */ 6683 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6684 unsigned long start_pfn, end_pfn; 6685 struct memblock_region *r; 6686 6687 for_each_mem_region(r) { 6688 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6689 zone_start_pfn, zone_end_pfn); 6690 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6691 zone_start_pfn, zone_end_pfn); 6692 6693 if (zone_type == ZONE_MOVABLE && 6694 memblock_is_mirror(r)) 6695 nr_absent += end_pfn - start_pfn; 6696 6697 if (zone_type == ZONE_NORMAL && 6698 !memblock_is_mirror(r)) 6699 nr_absent += end_pfn - start_pfn; 6700 } 6701 } 6702 6703 return nr_absent; 6704} 6705 6706static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6707 unsigned long node_start_pfn, 6708 unsigned long node_end_pfn) 6709{ 6710 unsigned long realtotalpages = 0, totalpages = 0; 6711 enum zone_type i; 6712 6713 for (i = 0; i < MAX_NR_ZONES; i++) { 6714 struct zone *zone = pgdat->node_zones + i; 6715 unsigned long zone_start_pfn, zone_end_pfn; 6716 unsigned long spanned, absent; 6717 unsigned long size, real_size; 6718 6719 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6720 node_start_pfn, 6721 node_end_pfn, 6722 &zone_start_pfn, 6723 &zone_end_pfn); 6724 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6725 node_start_pfn, 6726 node_end_pfn); 6727 6728 size = spanned; 6729 real_size = size - absent; 6730 6731 if (size) 6732 zone->zone_start_pfn = zone_start_pfn; 6733 else 6734 zone->zone_start_pfn = 0; 6735 zone->spanned_pages = size; 6736 zone->present_pages = real_size; 6737 6738 totalpages += size; 6739 realtotalpages += real_size; 6740 } 6741 6742 pgdat->node_spanned_pages = totalpages; 6743 pgdat->node_present_pages = realtotalpages; 6744 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6745 realtotalpages); 6746} 6747 6748#ifndef CONFIG_SPARSEMEM 6749/* 6750 * Calculate the size of the zone->blockflags rounded to an unsigned long 6751 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6752 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6753 * round what is now in bits to nearest long in bits, then return it in 6754 * bytes. 6755 */ 6756static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6757{ 6758 unsigned long usemapsize; 6759 6760 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6761 usemapsize = roundup(zonesize, pageblock_nr_pages); 6762 usemapsize = usemapsize >> pageblock_order; 6763 usemapsize *= NR_PAGEBLOCK_BITS; 6764 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6765 6766 return usemapsize / 8; 6767} 6768 6769static void __ref setup_usemap(struct pglist_data *pgdat, 6770 struct zone *zone, 6771 unsigned long zone_start_pfn, 6772 unsigned long zonesize) 6773{ 6774 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6775 zone->pageblock_flags = NULL; 6776 if (usemapsize) { 6777 zone->pageblock_flags = 6778 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6779 pgdat->node_id); 6780 if (!zone->pageblock_flags) 6781 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6782 usemapsize, zone->name, pgdat->node_id); 6783 } 6784} 6785#else 6786static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6787 unsigned long zone_start_pfn, unsigned long zonesize) {} 6788#endif /* CONFIG_SPARSEMEM */ 6789 6790#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6791 6792/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6793void __init set_pageblock_order(void) 6794{ 6795 unsigned int order; 6796 6797 /* Check that pageblock_nr_pages has not already been setup */ 6798 if (pageblock_order) 6799 return; 6800 6801 if (HPAGE_SHIFT > PAGE_SHIFT) 6802 order = HUGETLB_PAGE_ORDER; 6803 else 6804 order = MAX_ORDER - 1; 6805 6806 /* 6807 * Assume the largest contiguous order of interest is a huge page. 6808 * This value may be variable depending on boot parameters on IA64 and 6809 * powerpc. 6810 */ 6811 pageblock_order = order; 6812} 6813#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6814 6815/* 6816 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6817 * is unused as pageblock_order is set at compile-time. See 6818 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6819 * the kernel config 6820 */ 6821void __init set_pageblock_order(void) 6822{ 6823} 6824 6825#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6826 6827static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6828 unsigned long present_pages) 6829{ 6830 unsigned long pages = spanned_pages; 6831 6832 /* 6833 * Provide a more accurate estimation if there are holes within 6834 * the zone and SPARSEMEM is in use. If there are holes within the 6835 * zone, each populated memory region may cost us one or two extra 6836 * memmap pages due to alignment because memmap pages for each 6837 * populated regions may not be naturally aligned on page boundary. 6838 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6839 */ 6840 if (spanned_pages > present_pages + (present_pages >> 4) && 6841 IS_ENABLED(CONFIG_SPARSEMEM)) 6842 pages = present_pages; 6843 6844 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6845} 6846 6847#ifdef CONFIG_TRANSPARENT_HUGEPAGE 6848static void pgdat_init_split_queue(struct pglist_data *pgdat) 6849{ 6850 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6851 6852 spin_lock_init(&ds_queue->split_queue_lock); 6853 INIT_LIST_HEAD(&ds_queue->split_queue); 6854 ds_queue->split_queue_len = 0; 6855} 6856#else 6857static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6858#endif 6859 6860#ifdef CONFIG_COMPACTION 6861static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6862{ 6863 init_waitqueue_head(&pgdat->kcompactd_wait); 6864} 6865#else 6866static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6867#endif 6868 6869static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6870{ 6871 pgdat_resize_init(pgdat); 6872 6873 pgdat_init_split_queue(pgdat); 6874 pgdat_init_kcompactd(pgdat); 6875 6876 init_waitqueue_head(&pgdat->kswapd_wait); 6877 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6878 6879 pgdat_page_ext_init(pgdat); 6880 lruvec_init(&pgdat->__lruvec); 6881} 6882 6883static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6884 unsigned long remaining_pages) 6885{ 6886 atomic_long_set(&zone->managed_pages, remaining_pages); 6887 zone_set_nid(zone, nid); 6888 zone->name = zone_names[idx]; 6889 zone->zone_pgdat = NODE_DATA(nid); 6890 spin_lock_init(&zone->lock); 6891 zone_seqlock_init(zone); 6892 zone_pcp_init(zone); 6893} 6894 6895/* 6896 * Set up the zone data structures 6897 * - init pgdat internals 6898 * - init all zones belonging to this node 6899 * 6900 * NOTE: this function is only called during memory hotplug 6901 */ 6902#ifdef CONFIG_MEMORY_HOTPLUG 6903void __ref free_area_init_core_hotplug(int nid) 6904{ 6905 enum zone_type z; 6906 pg_data_t *pgdat = NODE_DATA(nid); 6907 6908 pgdat_init_internals(pgdat); 6909 for (z = 0; z < MAX_NR_ZONES; z++) 6910 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6911} 6912#endif 6913 6914/* 6915 * Set up the zone data structures: 6916 * - mark all pages reserved 6917 * - mark all memory queues empty 6918 * - clear the memory bitmaps 6919 * 6920 * NOTE: pgdat should get zeroed by caller. 6921 * NOTE: this function is only called during early init. 6922 */ 6923static void __init free_area_init_core(struct pglist_data *pgdat) 6924{ 6925 enum zone_type j; 6926 int nid = pgdat->node_id; 6927 6928 pgdat_init_internals(pgdat); 6929 pgdat->per_cpu_nodestats = &boot_nodestats; 6930 6931 for (j = 0; j < MAX_NR_ZONES; j++) { 6932 struct zone *zone = pgdat->node_zones + j; 6933 unsigned long size, freesize, memmap_pages; 6934 unsigned long zone_start_pfn = zone->zone_start_pfn; 6935 6936 size = zone->spanned_pages; 6937 freesize = zone->present_pages; 6938 6939 /* 6940 * Adjust freesize so that it accounts for how much memory 6941 * is used by this zone for memmap. This affects the watermark 6942 * and per-cpu initialisations 6943 */ 6944 memmap_pages = calc_memmap_size(size, freesize); 6945 if (!is_highmem_idx(j)) { 6946 if (freesize >= memmap_pages) { 6947 freesize -= memmap_pages; 6948 if (memmap_pages) 6949 printk(KERN_DEBUG 6950 " %s zone: %lu pages used for memmap\n", 6951 zone_names[j], memmap_pages); 6952 } else 6953 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6954 zone_names[j], memmap_pages, freesize); 6955 } 6956 6957 /* Account for reserved pages */ 6958 if (j == 0 && freesize > dma_reserve) { 6959 freesize -= dma_reserve; 6960 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6961 zone_names[0], dma_reserve); 6962 } 6963 6964 if (!is_highmem_idx(j)) 6965 nr_kernel_pages += freesize; 6966 /* Charge for highmem memmap if there are enough kernel pages */ 6967 else if (nr_kernel_pages > memmap_pages * 2) 6968 nr_kernel_pages -= memmap_pages; 6969 nr_all_pages += freesize; 6970 6971 /* 6972 * Set an approximate value for lowmem here, it will be adjusted 6973 * when the bootmem allocator frees pages into the buddy system. 6974 * And all highmem pages will be managed by the buddy system. 6975 */ 6976 zone_init_internals(zone, j, nid, freesize); 6977 6978 if (!size) 6979 continue; 6980 6981 set_pageblock_order(); 6982 setup_usemap(pgdat, zone, zone_start_pfn, size); 6983 init_currently_empty_zone(zone, zone_start_pfn, size); 6984 memmap_init(size, nid, j, zone_start_pfn); 6985 } 6986} 6987 6988#ifdef CONFIG_FLAT_NODE_MEM_MAP 6989static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6990{ 6991 unsigned long __maybe_unused start = 0; 6992 unsigned long __maybe_unused offset = 0; 6993 6994 /* Skip empty nodes */ 6995 if (!pgdat->node_spanned_pages) 6996 return; 6997 6998 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6999 offset = pgdat->node_start_pfn - start; 7000 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7001 if (!pgdat->node_mem_map) { 7002 unsigned long size, end; 7003 struct page *map; 7004 7005 /* 7006 * The zone's endpoints aren't required to be MAX_ORDER 7007 * aligned but the node_mem_map endpoints must be in order 7008 * for the buddy allocator to function correctly. 7009 */ 7010 end = pgdat_end_pfn(pgdat); 7011 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7012 size = (end - start) * sizeof(struct page); 7013 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7014 pgdat->node_id); 7015 if (!map) 7016 panic("Failed to allocate %ld bytes for node %d memory map\n", 7017 size, pgdat->node_id); 7018 pgdat->node_mem_map = map + offset; 7019 } 7020 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7021 __func__, pgdat->node_id, (unsigned long)pgdat, 7022 (unsigned long)pgdat->node_mem_map); 7023#ifndef CONFIG_NEED_MULTIPLE_NODES 7024 /* 7025 * With no DISCONTIG, the global mem_map is just set as node 0's 7026 */ 7027 if (pgdat == NODE_DATA(0)) { 7028 mem_map = NODE_DATA(0)->node_mem_map; 7029 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7030 mem_map -= offset; 7031 } 7032#endif 7033} 7034#else 7035static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7036#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7037 7038#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7039static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7040{ 7041 pgdat->first_deferred_pfn = ULONG_MAX; 7042} 7043#else 7044static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7045#endif 7046 7047static void __init free_area_init_node(int nid) 7048{ 7049 pg_data_t *pgdat = NODE_DATA(nid); 7050 unsigned long start_pfn = 0; 7051 unsigned long end_pfn = 0; 7052 7053 /* pg_data_t should be reset to zero when it's allocated */ 7054 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7055 7056 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7057 7058 pgdat->node_id = nid; 7059 pgdat->node_start_pfn = start_pfn; 7060 pgdat->per_cpu_nodestats = NULL; 7061 7062 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7063 (u64)start_pfn << PAGE_SHIFT, 7064 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7065 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7066 7067 alloc_node_mem_map(pgdat); 7068 pgdat_set_deferred_range(pgdat); 7069 7070 free_area_init_core(pgdat); 7071} 7072 7073void __init free_area_init_memoryless_node(int nid) 7074{ 7075 free_area_init_node(nid); 7076} 7077 7078#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7079/* 7080 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7081 * PageReserved(). Return the number of struct pages that were initialized. 7082 */ 7083static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7084{ 7085 unsigned long pfn; 7086 u64 pgcnt = 0; 7087 7088 for (pfn = spfn; pfn < epfn; pfn++) { 7089 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7090 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7091 + pageblock_nr_pages - 1; 7092 continue; 7093 } 7094 /* 7095 * Use a fake node/zone (0) for now. Some of these pages 7096 * (in memblock.reserved but not in memblock.memory) will 7097 * get re-initialized via reserve_bootmem_region() later. 7098 */ 7099 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7100 __SetPageReserved(pfn_to_page(pfn)); 7101 pgcnt++; 7102 } 7103 7104 return pgcnt; 7105} 7106 7107/* 7108 * Only struct pages that are backed by physical memory are zeroed and 7109 * initialized by going through __init_single_page(). But, there are some 7110 * struct pages which are reserved in memblock allocator and their fields 7111 * may be accessed (for example page_to_pfn() on some configuration accesses 7112 * flags). We must explicitly initialize those struct pages. 7113 * 7114 * This function also addresses a similar issue where struct pages are left 7115 * uninitialized because the physical address range is not covered by 7116 * memblock.memory or memblock.reserved. That could happen when memblock 7117 * layout is manually configured via memmap=, or when the highest physical 7118 * address (max_pfn) does not end on a section boundary. 7119 */ 7120static void __init init_unavailable_mem(void) 7121{ 7122 phys_addr_t start, end; 7123 u64 i, pgcnt; 7124 phys_addr_t next = 0; 7125 7126 /* 7127 * Loop through unavailable ranges not covered by memblock.memory. 7128 */ 7129 pgcnt = 0; 7130 for_each_mem_range(i, &start, &end) { 7131 if (next < start) 7132 pgcnt += init_unavailable_range(PFN_DOWN(next), 7133 PFN_UP(start)); 7134 next = end; 7135 } 7136 7137 /* 7138 * Early sections always have a fully populated memmap for the whole 7139 * section - see pfn_valid(). If the last section has holes at the 7140 * end and that section is marked "online", the memmap will be 7141 * considered initialized. Make sure that memmap has a well defined 7142 * state. 7143 */ 7144 pgcnt += init_unavailable_range(PFN_DOWN(next), 7145 round_up(max_pfn, PAGES_PER_SECTION)); 7146 7147 /* 7148 * Struct pages that do not have backing memory. This could be because 7149 * firmware is using some of this memory, or for some other reasons. 7150 */ 7151 if (pgcnt) 7152 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7153} 7154#else 7155static inline void __init init_unavailable_mem(void) 7156{ 7157} 7158#endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7159 7160#if MAX_NUMNODES > 1 7161/* 7162 * Figure out the number of possible node ids. 7163 */ 7164void __init setup_nr_node_ids(void) 7165{ 7166 unsigned int highest; 7167 7168 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7169 nr_node_ids = highest + 1; 7170} 7171#endif 7172 7173/** 7174 * node_map_pfn_alignment - determine the maximum internode alignment 7175 * 7176 * This function should be called after node map is populated and sorted. 7177 * It calculates the maximum power of two alignment which can distinguish 7178 * all the nodes. 7179 * 7180 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7181 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7182 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7183 * shifted, 1GiB is enough and this function will indicate so. 7184 * 7185 * This is used to test whether pfn -> nid mapping of the chosen memory 7186 * model has fine enough granularity to avoid incorrect mapping for the 7187 * populated node map. 7188 * 7189 * Return: the determined alignment in pfn's. 0 if there is no alignment 7190 * requirement (single node). 7191 */ 7192unsigned long __init node_map_pfn_alignment(void) 7193{ 7194 unsigned long accl_mask = 0, last_end = 0; 7195 unsigned long start, end, mask; 7196 int last_nid = NUMA_NO_NODE; 7197 int i, nid; 7198 7199 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7200 if (!start || last_nid < 0 || last_nid == nid) { 7201 last_nid = nid; 7202 last_end = end; 7203 continue; 7204 } 7205 7206 /* 7207 * Start with a mask granular enough to pin-point to the 7208 * start pfn and tick off bits one-by-one until it becomes 7209 * too coarse to separate the current node from the last. 7210 */ 7211 mask = ~((1 << __ffs(start)) - 1); 7212 while (mask && last_end <= (start & (mask << 1))) 7213 mask <<= 1; 7214 7215 /* accumulate all internode masks */ 7216 accl_mask |= mask; 7217 } 7218 7219 /* convert mask to number of pages */ 7220 return ~accl_mask + 1; 7221} 7222 7223/** 7224 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7225 * 7226 * Return: the minimum PFN based on information provided via 7227 * memblock_set_node(). 7228 */ 7229unsigned long __init find_min_pfn_with_active_regions(void) 7230{ 7231 return PHYS_PFN(memblock_start_of_DRAM()); 7232} 7233 7234/* 7235 * early_calculate_totalpages() 7236 * Sum pages in active regions for movable zone. 7237 * Populate N_MEMORY for calculating usable_nodes. 7238 */ 7239static unsigned long __init early_calculate_totalpages(void) 7240{ 7241 unsigned long totalpages = 0; 7242 unsigned long start_pfn, end_pfn; 7243 int i, nid; 7244 7245 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7246 unsigned long pages = end_pfn - start_pfn; 7247 7248 totalpages += pages; 7249 if (pages) 7250 node_set_state(nid, N_MEMORY); 7251 } 7252 return totalpages; 7253} 7254 7255/* 7256 * Find the PFN the Movable zone begins in each node. Kernel memory 7257 * is spread evenly between nodes as long as the nodes have enough 7258 * memory. When they don't, some nodes will have more kernelcore than 7259 * others 7260 */ 7261static void __init find_zone_movable_pfns_for_nodes(void) 7262{ 7263 int i, nid; 7264 unsigned long usable_startpfn; 7265 unsigned long kernelcore_node, kernelcore_remaining; 7266 /* save the state before borrow the nodemask */ 7267 nodemask_t saved_node_state = node_states[N_MEMORY]; 7268 unsigned long totalpages = early_calculate_totalpages(); 7269 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7270 struct memblock_region *r; 7271 7272 /* Need to find movable_zone earlier when movable_node is specified. */ 7273 find_usable_zone_for_movable(); 7274 7275 /* 7276 * If movable_node is specified, ignore kernelcore and movablecore 7277 * options. 7278 */ 7279 if (movable_node_is_enabled()) { 7280 for_each_mem_region(r) { 7281 if (!memblock_is_hotpluggable(r)) 7282 continue; 7283 7284 nid = memblock_get_region_node(r); 7285 7286 usable_startpfn = PFN_DOWN(r->base); 7287 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7288 min(usable_startpfn, zone_movable_pfn[nid]) : 7289 usable_startpfn; 7290 } 7291 7292 goto out2; 7293 } 7294 7295 /* 7296 * If kernelcore=mirror is specified, ignore movablecore option 7297 */ 7298 if (mirrored_kernelcore) { 7299 bool mem_below_4gb_not_mirrored = false; 7300 7301 for_each_mem_region(r) { 7302 if (memblock_is_mirror(r)) 7303 continue; 7304 7305 nid = memblock_get_region_node(r); 7306 7307 usable_startpfn = memblock_region_memory_base_pfn(r); 7308 7309 if (usable_startpfn < 0x100000) { 7310 mem_below_4gb_not_mirrored = true; 7311 continue; 7312 } 7313 7314 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7315 min(usable_startpfn, zone_movable_pfn[nid]) : 7316 usable_startpfn; 7317 } 7318 7319 if (mem_below_4gb_not_mirrored) 7320 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7321 7322 goto out2; 7323 } 7324 7325 /* 7326 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7327 * amount of necessary memory. 7328 */ 7329 if (required_kernelcore_percent) 7330 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7331 10000UL; 7332 if (required_movablecore_percent) 7333 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7334 10000UL; 7335 7336 /* 7337 * If movablecore= was specified, calculate what size of 7338 * kernelcore that corresponds so that memory usable for 7339 * any allocation type is evenly spread. If both kernelcore 7340 * and movablecore are specified, then the value of kernelcore 7341 * will be used for required_kernelcore if it's greater than 7342 * what movablecore would have allowed. 7343 */ 7344 if (required_movablecore) { 7345 unsigned long corepages; 7346 7347 /* 7348 * Round-up so that ZONE_MOVABLE is at least as large as what 7349 * was requested by the user 7350 */ 7351 required_movablecore = 7352 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7353 required_movablecore = min(totalpages, required_movablecore); 7354 corepages = totalpages - required_movablecore; 7355 7356 required_kernelcore = max(required_kernelcore, corepages); 7357 } 7358 7359 /* 7360 * If kernelcore was not specified or kernelcore size is larger 7361 * than totalpages, there is no ZONE_MOVABLE. 7362 */ 7363 if (!required_kernelcore || required_kernelcore >= totalpages) 7364 goto out; 7365 7366 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7367 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7368 7369restart: 7370 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7371 kernelcore_node = required_kernelcore / usable_nodes; 7372 for_each_node_state(nid, N_MEMORY) { 7373 unsigned long start_pfn, end_pfn; 7374 7375 /* 7376 * Recalculate kernelcore_node if the division per node 7377 * now exceeds what is necessary to satisfy the requested 7378 * amount of memory for the kernel 7379 */ 7380 if (required_kernelcore < kernelcore_node) 7381 kernelcore_node = required_kernelcore / usable_nodes; 7382 7383 /* 7384 * As the map is walked, we track how much memory is usable 7385 * by the kernel using kernelcore_remaining. When it is 7386 * 0, the rest of the node is usable by ZONE_MOVABLE 7387 */ 7388 kernelcore_remaining = kernelcore_node; 7389 7390 /* Go through each range of PFNs within this node */ 7391 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7392 unsigned long size_pages; 7393 7394 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7395 if (start_pfn >= end_pfn) 7396 continue; 7397 7398 /* Account for what is only usable for kernelcore */ 7399 if (start_pfn < usable_startpfn) { 7400 unsigned long kernel_pages; 7401 kernel_pages = min(end_pfn, usable_startpfn) 7402 - start_pfn; 7403 7404 kernelcore_remaining -= min(kernel_pages, 7405 kernelcore_remaining); 7406 required_kernelcore -= min(kernel_pages, 7407 required_kernelcore); 7408 7409 /* Continue if range is now fully accounted */ 7410 if (end_pfn <= usable_startpfn) { 7411 7412 /* 7413 * Push zone_movable_pfn to the end so 7414 * that if we have to rebalance 7415 * kernelcore across nodes, we will 7416 * not double account here 7417 */ 7418 zone_movable_pfn[nid] = end_pfn; 7419 continue; 7420 } 7421 start_pfn = usable_startpfn; 7422 } 7423 7424 /* 7425 * The usable PFN range for ZONE_MOVABLE is from 7426 * start_pfn->end_pfn. Calculate size_pages as the 7427 * number of pages used as kernelcore 7428 */ 7429 size_pages = end_pfn - start_pfn; 7430 if (size_pages > kernelcore_remaining) 7431 size_pages = kernelcore_remaining; 7432 zone_movable_pfn[nid] = start_pfn + size_pages; 7433 7434 /* 7435 * Some kernelcore has been met, update counts and 7436 * break if the kernelcore for this node has been 7437 * satisfied 7438 */ 7439 required_kernelcore -= min(required_kernelcore, 7440 size_pages); 7441 kernelcore_remaining -= size_pages; 7442 if (!kernelcore_remaining) 7443 break; 7444 } 7445 } 7446 7447 /* 7448 * If there is still required_kernelcore, we do another pass with one 7449 * less node in the count. This will push zone_movable_pfn[nid] further 7450 * along on the nodes that still have memory until kernelcore is 7451 * satisfied 7452 */ 7453 usable_nodes--; 7454 if (usable_nodes && required_kernelcore > usable_nodes) 7455 goto restart; 7456 7457out2: 7458 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7459 for (nid = 0; nid < MAX_NUMNODES; nid++) 7460 zone_movable_pfn[nid] = 7461 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7462 7463out: 7464 /* restore the node_state */ 7465 node_states[N_MEMORY] = saved_node_state; 7466} 7467 7468/* Any regular or high memory on that node ? */ 7469static void check_for_memory(pg_data_t *pgdat, int nid) 7470{ 7471 enum zone_type zone_type; 7472 7473 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7474 struct zone *zone = &pgdat->node_zones[zone_type]; 7475 if (populated_zone(zone)) { 7476 if (IS_ENABLED(CONFIG_HIGHMEM)) 7477 node_set_state(nid, N_HIGH_MEMORY); 7478 if (zone_type <= ZONE_NORMAL) 7479 node_set_state(nid, N_NORMAL_MEMORY); 7480 break; 7481 } 7482 } 7483} 7484 7485/* 7486 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7487 * such cases we allow max_zone_pfn sorted in the descending order 7488 */ 7489bool __weak arch_has_descending_max_zone_pfns(void) 7490{ 7491 return false; 7492} 7493 7494/** 7495 * free_area_init - Initialise all pg_data_t and zone data 7496 * @max_zone_pfn: an array of max PFNs for each zone 7497 * 7498 * This will call free_area_init_node() for each active node in the system. 7499 * Using the page ranges provided by memblock_set_node(), the size of each 7500 * zone in each node and their holes is calculated. If the maximum PFN 7501 * between two adjacent zones match, it is assumed that the zone is empty. 7502 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7503 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7504 * starts where the previous one ended. For example, ZONE_DMA32 starts 7505 * at arch_max_dma_pfn. 7506 */ 7507void __init free_area_init(unsigned long *max_zone_pfn) 7508{ 7509 unsigned long start_pfn, end_pfn; 7510 int i, nid, zone; 7511 bool descending; 7512 7513 /* Record where the zone boundaries are */ 7514 memset(arch_zone_lowest_possible_pfn, 0, 7515 sizeof(arch_zone_lowest_possible_pfn)); 7516 memset(arch_zone_highest_possible_pfn, 0, 7517 sizeof(arch_zone_highest_possible_pfn)); 7518 7519 start_pfn = find_min_pfn_with_active_regions(); 7520 descending = arch_has_descending_max_zone_pfns(); 7521 7522 for (i = 0; i < MAX_NR_ZONES; i++) { 7523 if (descending) 7524 zone = MAX_NR_ZONES - i - 1; 7525 else 7526 zone = i; 7527 7528 if (zone == ZONE_MOVABLE) 7529 continue; 7530 7531 end_pfn = max(max_zone_pfn[zone], start_pfn); 7532 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7533 arch_zone_highest_possible_pfn[zone] = end_pfn; 7534 7535 start_pfn = end_pfn; 7536 } 7537 7538 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7539 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7540 find_zone_movable_pfns_for_nodes(); 7541 7542 /* Print out the zone ranges */ 7543 pr_info("Zone ranges:\n"); 7544 for (i = 0; i < MAX_NR_ZONES; i++) { 7545 if (i == ZONE_MOVABLE) 7546 continue; 7547 pr_info(" %-8s ", zone_names[i]); 7548 if (arch_zone_lowest_possible_pfn[i] == 7549 arch_zone_highest_possible_pfn[i]) 7550 pr_cont("empty\n"); 7551 else 7552 pr_cont("[mem %#018Lx-%#018Lx]\n", 7553 (u64)arch_zone_lowest_possible_pfn[i] 7554 << PAGE_SHIFT, 7555 ((u64)arch_zone_highest_possible_pfn[i] 7556 << PAGE_SHIFT) - 1); 7557 } 7558 7559 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7560 pr_info("Movable zone start for each node\n"); 7561 for (i = 0; i < MAX_NUMNODES; i++) { 7562 if (zone_movable_pfn[i]) 7563 pr_info(" Node %d: %#018Lx\n", i, 7564 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7565 } 7566 7567 /* 7568 * Print out the early node map, and initialize the 7569 * subsection-map relative to active online memory ranges to 7570 * enable future "sub-section" extensions of the memory map. 7571 */ 7572 pr_info("Early memory node ranges\n"); 7573 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7574 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7575 (u64)start_pfn << PAGE_SHIFT, 7576 ((u64)end_pfn << PAGE_SHIFT) - 1); 7577 subsection_map_init(start_pfn, end_pfn - start_pfn); 7578 } 7579 7580 /* Initialise every node */ 7581 mminit_verify_pageflags_layout(); 7582 setup_nr_node_ids(); 7583 init_unavailable_mem(); 7584 for_each_online_node(nid) { 7585 pg_data_t *pgdat = NODE_DATA(nid); 7586 free_area_init_node(nid); 7587 7588 /* Any memory on that node */ 7589 if (pgdat->node_present_pages) 7590 node_set_state(nid, N_MEMORY); 7591 check_for_memory(pgdat, nid); 7592 } 7593} 7594 7595static int __init cmdline_parse_core(char *p, unsigned long *core, 7596 unsigned long *percent) 7597{ 7598 unsigned long long coremem; 7599 char *endptr; 7600 7601 if (!p) 7602 return -EINVAL; 7603 7604 /* Value may be a percentage of total memory, otherwise bytes */ 7605 coremem = simple_strtoull(p, &endptr, 0); 7606 if (*endptr == '%') { 7607 /* Paranoid check for percent values greater than 100 */ 7608 WARN_ON(coremem > 100); 7609 7610 *percent = coremem; 7611 } else { 7612 coremem = memparse(p, &p); 7613 /* Paranoid check that UL is enough for the coremem value */ 7614 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7615 7616 *core = coremem >> PAGE_SHIFT; 7617 *percent = 0UL; 7618 } 7619 return 0; 7620} 7621 7622/* 7623 * kernelcore=size sets the amount of memory for use for allocations that 7624 * cannot be reclaimed or migrated. 7625 */ 7626static int __init cmdline_parse_kernelcore(char *p) 7627{ 7628 /* parse kernelcore=mirror */ 7629 if (parse_option_str(p, "mirror")) { 7630 mirrored_kernelcore = true; 7631 return 0; 7632 } 7633 7634 return cmdline_parse_core(p, &required_kernelcore, 7635 &required_kernelcore_percent); 7636} 7637 7638/* 7639 * movablecore=size sets the amount of memory for use for allocations that 7640 * can be reclaimed or migrated. 7641 */ 7642static int __init cmdline_parse_movablecore(char *p) 7643{ 7644 return cmdline_parse_core(p, &required_movablecore, 7645 &required_movablecore_percent); 7646} 7647 7648early_param("kernelcore", cmdline_parse_kernelcore); 7649early_param("movablecore", cmdline_parse_movablecore); 7650 7651void adjust_managed_page_count(struct page *page, long count) 7652{ 7653 atomic_long_add(count, &page_zone(page)->managed_pages); 7654 totalram_pages_add(count); 7655#ifdef CONFIG_HIGHMEM 7656 if (PageHighMem(page)) 7657 totalhigh_pages_add(count); 7658#endif 7659} 7660EXPORT_SYMBOL(adjust_managed_page_count); 7661 7662unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7663{ 7664 void *pos; 7665 unsigned long pages = 0; 7666 7667 start = (void *)PAGE_ALIGN((unsigned long)start); 7668 end = (void *)((unsigned long)end & PAGE_MASK); 7669 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7670 struct page *page = virt_to_page(pos); 7671 void *direct_map_addr; 7672 7673 /* 7674 * 'direct_map_addr' might be different from 'pos' 7675 * because some architectures' virt_to_page() 7676 * work with aliases. Getting the direct map 7677 * address ensures that we get a _writeable_ 7678 * alias for the memset(). 7679 */ 7680 direct_map_addr = page_address(page); 7681 /* 7682 * Perform a kasan-unchecked memset() since this memory 7683 * has not been initialized. 7684 */ 7685 direct_map_addr = kasan_reset_tag(direct_map_addr); 7686 if ((unsigned int)poison <= 0xFF) 7687 memset(direct_map_addr, poison, PAGE_SIZE); 7688 7689 free_reserved_page(page); 7690 } 7691 7692 if (pages && s) 7693 pr_info("Freeing %s memory: %ldK\n", 7694 s, pages << (PAGE_SHIFT - 10)); 7695 7696 return pages; 7697} 7698 7699#ifdef CONFIG_HIGHMEM 7700void free_highmem_page(struct page *page) 7701{ 7702 __free_reserved_page(page); 7703 totalram_pages_inc(); 7704 atomic_long_inc(&page_zone(page)->managed_pages); 7705 totalhigh_pages_inc(); 7706} 7707#endif 7708 7709 7710void __init mem_init_print_info(const char *str) 7711{ 7712 unsigned long physpages, codesize, datasize, rosize, bss_size; 7713 unsigned long init_code_size, init_data_size; 7714 7715 physpages = get_num_physpages(); 7716 codesize = _etext - _stext; 7717 datasize = _edata - _sdata; 7718 rosize = __end_rodata - __start_rodata; 7719 bss_size = __bss_stop - __bss_start; 7720 init_data_size = __init_end - __init_begin; 7721 init_code_size = _einittext - _sinittext; 7722 7723 /* 7724 * Detect special cases and adjust section sizes accordingly: 7725 * 1) .init.* may be embedded into .data sections 7726 * 2) .init.text.* may be out of [__init_begin, __init_end], 7727 * please refer to arch/tile/kernel/vmlinux.lds.S. 7728 * 3) .rodata.* may be embedded into .text or .data sections. 7729 */ 7730#define adj_init_size(start, end, size, pos, adj) \ 7731 do { \ 7732 if (start <= pos && pos < end && size > adj) \ 7733 size -= adj; \ 7734 } while (0) 7735 7736 adj_init_size(__init_begin, __init_end, init_data_size, 7737 _sinittext, init_code_size); 7738 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7739 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7740 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7741 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7742 7743#undef adj_init_size 7744 7745 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7746#ifdef CONFIG_HIGHMEM 7747 ", %luK highmem" 7748#endif 7749 "%s%s)\n", 7750 nr_free_pages() << (PAGE_SHIFT - 10), 7751 physpages << (PAGE_SHIFT - 10), 7752 codesize >> 10, datasize >> 10, rosize >> 10, 7753 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7754 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7755 totalcma_pages << (PAGE_SHIFT - 10), 7756#ifdef CONFIG_HIGHMEM 7757 totalhigh_pages() << (PAGE_SHIFT - 10), 7758#endif 7759 str ? ", " : "", str ? str : ""); 7760} 7761 7762/** 7763 * set_dma_reserve - set the specified number of pages reserved in the first zone 7764 * @new_dma_reserve: The number of pages to mark reserved 7765 * 7766 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7767 * In the DMA zone, a significant percentage may be consumed by kernel image 7768 * and other unfreeable allocations which can skew the watermarks badly. This 7769 * function may optionally be used to account for unfreeable pages in the 7770 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7771 * smaller per-cpu batchsize. 7772 */ 7773void __init set_dma_reserve(unsigned long new_dma_reserve) 7774{ 7775 dma_reserve = new_dma_reserve; 7776} 7777 7778static int page_alloc_cpu_dead(unsigned int cpu) 7779{ 7780 7781 lru_add_drain_cpu(cpu); 7782 drain_pages(cpu); 7783 7784 /* 7785 * Spill the event counters of the dead processor 7786 * into the current processors event counters. 7787 * This artificially elevates the count of the current 7788 * processor. 7789 */ 7790 vm_events_fold_cpu(cpu); 7791 7792 /* 7793 * Zero the differential counters of the dead processor 7794 * so that the vm statistics are consistent. 7795 * 7796 * This is only okay since the processor is dead and cannot 7797 * race with what we are doing. 7798 */ 7799 cpu_vm_stats_fold(cpu); 7800 return 0; 7801} 7802 7803#ifdef CONFIG_NUMA 7804int hashdist = HASHDIST_DEFAULT; 7805 7806static int __init set_hashdist(char *str) 7807{ 7808 if (!str) 7809 return 0; 7810 hashdist = simple_strtoul(str, &str, 0); 7811 return 1; 7812} 7813__setup("hashdist=", set_hashdist); 7814#endif 7815 7816void __init page_alloc_init(void) 7817{ 7818 int ret; 7819 7820#ifdef CONFIG_NUMA 7821 if (num_node_state(N_MEMORY) == 1) 7822 hashdist = 0; 7823#endif 7824 7825 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7826 "mm/page_alloc:dead", NULL, 7827 page_alloc_cpu_dead); 7828 WARN_ON(ret < 0); 7829} 7830 7831/* 7832 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7833 * or min_free_kbytes changes. 7834 */ 7835static void calculate_totalreserve_pages(void) 7836{ 7837 struct pglist_data *pgdat; 7838 unsigned long reserve_pages = 0; 7839 enum zone_type i, j; 7840 7841 for_each_online_pgdat(pgdat) { 7842 7843 pgdat->totalreserve_pages = 0; 7844 7845 for (i = 0; i < MAX_NR_ZONES; i++) { 7846 struct zone *zone = pgdat->node_zones + i; 7847 long max = 0; 7848 unsigned long managed_pages = zone_managed_pages(zone); 7849 7850 /* Find valid and maximum lowmem_reserve in the zone */ 7851 for (j = i; j < MAX_NR_ZONES; j++) { 7852 if (zone->lowmem_reserve[j] > max) 7853 max = zone->lowmem_reserve[j]; 7854 } 7855 7856 /* we treat the high watermark as reserved pages. */ 7857 max += high_wmark_pages(zone); 7858 7859 if (max > managed_pages) 7860 max = managed_pages; 7861 7862 pgdat->totalreserve_pages += max; 7863 7864 reserve_pages += max; 7865 } 7866 } 7867 totalreserve_pages = reserve_pages; 7868} 7869 7870/* 7871 * setup_per_zone_lowmem_reserve - called whenever 7872 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7873 * has a correct pages reserved value, so an adequate number of 7874 * pages are left in the zone after a successful __alloc_pages(). 7875 */ 7876static void setup_per_zone_lowmem_reserve(void) 7877{ 7878 struct pglist_data *pgdat; 7879 enum zone_type i, j; 7880 7881 for_each_online_pgdat(pgdat) { 7882 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7883 struct zone *zone = &pgdat->node_zones[i]; 7884 int ratio = sysctl_lowmem_reserve_ratio[i]; 7885 bool clear = !ratio || !zone_managed_pages(zone); 7886 unsigned long managed_pages = 0; 7887 7888 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7889 if (clear) { 7890 zone->lowmem_reserve[j] = 0; 7891 } else { 7892 struct zone *upper_zone = &pgdat->node_zones[j]; 7893 7894 managed_pages += zone_managed_pages(upper_zone); 7895 zone->lowmem_reserve[j] = managed_pages / ratio; 7896 } 7897 } 7898 } 7899 } 7900 7901 /* update totalreserve_pages */ 7902 calculate_totalreserve_pages(); 7903} 7904 7905static void __setup_per_zone_wmarks(void) 7906{ 7907 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7908 unsigned long lowmem_pages = 0; 7909 struct zone *zone; 7910 unsigned long flags; 7911 7912 /* Calculate total number of !ZONE_HIGHMEM pages */ 7913 for_each_zone(zone) { 7914 if (!is_highmem(zone)) 7915 lowmem_pages += zone_managed_pages(zone); 7916 } 7917 7918 for_each_zone(zone) { 7919 u64 tmp; 7920 7921 spin_lock_irqsave(&zone->lock, flags); 7922 tmp = (u64)pages_min * zone_managed_pages(zone); 7923 do_div(tmp, lowmem_pages); 7924 if (is_highmem(zone)) { 7925 /* 7926 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7927 * need highmem pages, so cap pages_min to a small 7928 * value here. 7929 * 7930 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7931 * deltas control async page reclaim, and so should 7932 * not be capped for highmem. 7933 */ 7934 unsigned long min_pages; 7935 7936 min_pages = zone_managed_pages(zone) / 1024; 7937 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7938 zone->_watermark[WMARK_MIN] = min_pages; 7939 } else { 7940 /* 7941 * If it's a lowmem zone, reserve a number of pages 7942 * proportionate to the zone's size. 7943 */ 7944 zone->_watermark[WMARK_MIN] = tmp; 7945 } 7946 7947 /* 7948 * Set the kswapd watermarks distance according to the 7949 * scale factor in proportion to available memory, but 7950 * ensure a minimum size on small systems. 7951 */ 7952 tmp = max_t(u64, tmp >> 2, 7953 mult_frac(zone_managed_pages(zone), 7954 watermark_scale_factor, 10000)); 7955 7956 zone->watermark_boost = 0; 7957 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7958 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7959 7960 spin_unlock_irqrestore(&zone->lock, flags); 7961 } 7962 7963 /* update totalreserve_pages */ 7964 calculate_totalreserve_pages(); 7965} 7966 7967/** 7968 * setup_per_zone_wmarks - called when min_free_kbytes changes 7969 * or when memory is hot-{added|removed} 7970 * 7971 * Ensures that the watermark[min,low,high] values for each zone are set 7972 * correctly with respect to min_free_kbytes. 7973 */ 7974void setup_per_zone_wmarks(void) 7975{ 7976 static DEFINE_SPINLOCK(lock); 7977 7978 spin_lock(&lock); 7979 __setup_per_zone_wmarks(); 7980 spin_unlock(&lock); 7981} 7982 7983/* 7984 * Initialise min_free_kbytes. 7985 * 7986 * For small machines we want it small (128k min). For large machines 7987 * we want it large (256MB max). But it is not linear, because network 7988 * bandwidth does not increase linearly with machine size. We use 7989 * 7990 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7991 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7992 * 7993 * which yields 7994 * 7995 * 16MB: 512k 7996 * 32MB: 724k 7997 * 64MB: 1024k 7998 * 128MB: 1448k 7999 * 256MB: 2048k 8000 * 512MB: 2896k 8001 * 1024MB: 4096k 8002 * 2048MB: 5792k 8003 * 4096MB: 8192k 8004 * 8192MB: 11584k 8005 * 16384MB: 16384k 8006 */ 8007int __meminit init_per_zone_wmark_min(void) 8008{ 8009 unsigned long lowmem_kbytes; 8010 int new_min_free_kbytes; 8011 8012 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8013 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8014 8015 if (new_min_free_kbytes > user_min_free_kbytes) { 8016 min_free_kbytes = new_min_free_kbytes; 8017 if (min_free_kbytes < 128) 8018 min_free_kbytes = 128; 8019 if (min_free_kbytes > 262144) 8020 min_free_kbytes = 262144; 8021 } else { 8022 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8023 new_min_free_kbytes, user_min_free_kbytes); 8024 } 8025 setup_per_zone_wmarks(); 8026 refresh_zone_stat_thresholds(); 8027 setup_per_zone_lowmem_reserve(); 8028 8029#ifdef CONFIG_NUMA 8030 setup_min_unmapped_ratio(); 8031 setup_min_slab_ratio(); 8032#endif 8033 8034 khugepaged_min_free_kbytes_update(); 8035 8036 return 0; 8037} 8038postcore_initcall(init_per_zone_wmark_min) 8039 8040/* 8041 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8042 * that we can call two helper functions whenever min_free_kbytes 8043 * changes. 8044 */ 8045int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8046 void *buffer, size_t *length, loff_t *ppos) 8047{ 8048 int rc; 8049 8050 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8051 if (rc) 8052 return rc; 8053 8054 if (write) { 8055 user_min_free_kbytes = min_free_kbytes; 8056 setup_per_zone_wmarks(); 8057 } 8058 return 0; 8059} 8060 8061int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8062 void *buffer, size_t *length, loff_t *ppos) 8063{ 8064 int rc; 8065 8066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8067 if (rc) 8068 return rc; 8069 8070 if (write) 8071 setup_per_zone_wmarks(); 8072 8073 return 0; 8074} 8075 8076#ifdef CONFIG_NUMA 8077static void setup_min_unmapped_ratio(void) 8078{ 8079 pg_data_t *pgdat; 8080 struct zone *zone; 8081 8082 for_each_online_pgdat(pgdat) 8083 pgdat->min_unmapped_pages = 0; 8084 8085 for_each_zone(zone) 8086 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8087 sysctl_min_unmapped_ratio) / 100; 8088} 8089 8090 8091int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8092 void *buffer, size_t *length, loff_t *ppos) 8093{ 8094 int rc; 8095 8096 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8097 if (rc) 8098 return rc; 8099 8100 setup_min_unmapped_ratio(); 8101 8102 return 0; 8103} 8104 8105static void setup_min_slab_ratio(void) 8106{ 8107 pg_data_t *pgdat; 8108 struct zone *zone; 8109 8110 for_each_online_pgdat(pgdat) 8111 pgdat->min_slab_pages = 0; 8112 8113 for_each_zone(zone) 8114 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8115 sysctl_min_slab_ratio) / 100; 8116} 8117 8118int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8119 void *buffer, size_t *length, loff_t *ppos) 8120{ 8121 int rc; 8122 8123 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8124 if (rc) 8125 return rc; 8126 8127 setup_min_slab_ratio(); 8128 8129 return 0; 8130} 8131#endif 8132 8133/* 8134 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8135 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8136 * whenever sysctl_lowmem_reserve_ratio changes. 8137 * 8138 * The reserve ratio obviously has absolutely no relation with the 8139 * minimum watermarks. The lowmem reserve ratio can only make sense 8140 * if in function of the boot time zone sizes. 8141 */ 8142int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8143 void *buffer, size_t *length, loff_t *ppos) 8144{ 8145 int i; 8146 8147 proc_dointvec_minmax(table, write, buffer, length, ppos); 8148 8149 for (i = 0; i < MAX_NR_ZONES; i++) { 8150 if (sysctl_lowmem_reserve_ratio[i] < 1) 8151 sysctl_lowmem_reserve_ratio[i] = 0; 8152 } 8153 8154 setup_per_zone_lowmem_reserve(); 8155 return 0; 8156} 8157 8158/* 8159 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8160 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8161 * pagelist can have before it gets flushed back to buddy allocator. 8162 */ 8163int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8164 void *buffer, size_t *length, loff_t *ppos) 8165{ 8166 struct zone *zone; 8167 int old_percpu_pagelist_fraction; 8168 int ret; 8169 8170 mutex_lock(&pcp_batch_high_lock); 8171 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8172 8173 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8174 if (!write || ret < 0) 8175 goto out; 8176 8177 /* Sanity checking to avoid pcp imbalance */ 8178 if (percpu_pagelist_fraction && 8179 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8180 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8181 ret = -EINVAL; 8182 goto out; 8183 } 8184 8185 /* No change? */ 8186 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8187 goto out; 8188 8189 for_each_populated_zone(zone) 8190 zone_set_pageset_high_and_batch(zone); 8191out: 8192 mutex_unlock(&pcp_batch_high_lock); 8193 return ret; 8194} 8195 8196#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8197/* 8198 * Returns the number of pages that arch has reserved but 8199 * is not known to alloc_large_system_hash(). 8200 */ 8201static unsigned long __init arch_reserved_kernel_pages(void) 8202{ 8203 return 0; 8204} 8205#endif 8206 8207/* 8208 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8209 * machines. As memory size is increased the scale is also increased but at 8210 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8211 * quadruples the scale is increased by one, which means the size of hash table 8212 * only doubles, instead of quadrupling as well. 8213 * Because 32-bit systems cannot have large physical memory, where this scaling 8214 * makes sense, it is disabled on such platforms. 8215 */ 8216#if __BITS_PER_LONG > 32 8217#define ADAPT_SCALE_BASE (64ul << 30) 8218#define ADAPT_SCALE_SHIFT 2 8219#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8220#endif 8221 8222/* 8223 * allocate a large system hash table from bootmem 8224 * - it is assumed that the hash table must contain an exact power-of-2 8225 * quantity of entries 8226 * - limit is the number of hash buckets, not the total allocation size 8227 */ 8228void *__init alloc_large_system_hash(const char *tablename, 8229 unsigned long bucketsize, 8230 unsigned long numentries, 8231 int scale, 8232 int flags, 8233 unsigned int *_hash_shift, 8234 unsigned int *_hash_mask, 8235 unsigned long low_limit, 8236 unsigned long high_limit) 8237{ 8238 unsigned long long max = high_limit; 8239 unsigned long log2qty, size; 8240 void *table = NULL; 8241 gfp_t gfp_flags; 8242 bool virt; 8243 8244 /* allow the kernel cmdline to have a say */ 8245 if (!numentries) { 8246 /* round applicable memory size up to nearest megabyte */ 8247 numentries = nr_kernel_pages; 8248 numentries -= arch_reserved_kernel_pages(); 8249 8250 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8251 if (PAGE_SHIFT < 20) 8252 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8253 8254#if __BITS_PER_LONG > 32 8255 if (!high_limit) { 8256 unsigned long adapt; 8257 8258 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8259 adapt <<= ADAPT_SCALE_SHIFT) 8260 scale++; 8261 } 8262#endif 8263 8264 /* limit to 1 bucket per 2^scale bytes of low memory */ 8265 if (scale > PAGE_SHIFT) 8266 numentries >>= (scale - PAGE_SHIFT); 8267 else 8268 numentries <<= (PAGE_SHIFT - scale); 8269 8270 /* Make sure we've got at least a 0-order allocation.. */ 8271 if (unlikely(flags & HASH_SMALL)) { 8272 /* Makes no sense without HASH_EARLY */ 8273 WARN_ON(!(flags & HASH_EARLY)); 8274 if (!(numentries >> *_hash_shift)) { 8275 numentries = 1UL << *_hash_shift; 8276 BUG_ON(!numentries); 8277 } 8278 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8279 numentries = PAGE_SIZE / bucketsize; 8280 } 8281 numentries = roundup_pow_of_two(numentries); 8282 8283 /* limit allocation size to 1/16 total memory by default */ 8284 if (max == 0) { 8285 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8286 do_div(max, bucketsize); 8287 } 8288 max = min(max, 0x80000000ULL); 8289 8290 if (numentries < low_limit) 8291 numentries = low_limit; 8292 if (numentries > max) 8293 numentries = max; 8294 8295 log2qty = ilog2(numentries); 8296 8297 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8298 do { 8299 virt = false; 8300 size = bucketsize << log2qty; 8301 if (flags & HASH_EARLY) { 8302 if (flags & HASH_ZERO) 8303 table = memblock_alloc(size, SMP_CACHE_BYTES); 8304 else 8305 table = memblock_alloc_raw(size, 8306 SMP_CACHE_BYTES); 8307 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8308 table = __vmalloc(size, gfp_flags); 8309 virt = true; 8310 } else { 8311 /* 8312 * If bucketsize is not a power-of-two, we may free 8313 * some pages at the end of hash table which 8314 * alloc_pages_exact() automatically does 8315 */ 8316 table = alloc_pages_exact(size, gfp_flags); 8317 kmemleak_alloc(table, size, 1, gfp_flags); 8318 } 8319 } while (!table && size > PAGE_SIZE && --log2qty); 8320 8321 if (!table) 8322 panic("Failed to allocate %s hash table\n", tablename); 8323 8324 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8325 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8326 virt ? "vmalloc" : "linear"); 8327 8328 if (_hash_shift) 8329 *_hash_shift = log2qty; 8330 if (_hash_mask) 8331 *_hash_mask = (1 << log2qty) - 1; 8332 8333 return table; 8334} 8335 8336/* 8337 * This function checks whether pageblock includes unmovable pages or not. 8338 * 8339 * PageLRU check without isolation or lru_lock could race so that 8340 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8341 * check without lock_page also may miss some movable non-lru pages at 8342 * race condition. So you can't expect this function should be exact. 8343 * 8344 * Returns a page without holding a reference. If the caller wants to 8345 * dereference that page (e.g., dumping), it has to make sure that it 8346 * cannot get removed (e.g., via memory unplug) concurrently. 8347 * 8348 */ 8349struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8350 int migratetype, int flags) 8351{ 8352 unsigned long iter = 0; 8353 unsigned long pfn = page_to_pfn(page); 8354 unsigned long offset = pfn % pageblock_nr_pages; 8355 8356 if (is_migrate_cma_page(page)) { 8357 /* 8358 * CMA allocations (alloc_contig_range) really need to mark 8359 * isolate CMA pageblocks even when they are not movable in fact 8360 * so consider them movable here. 8361 */ 8362 if (is_migrate_cma(migratetype)) 8363 return NULL; 8364 8365 return page; 8366 } 8367 8368 for (; iter < pageblock_nr_pages - offset; iter++) { 8369 if (!pfn_valid_within(pfn + iter)) 8370 continue; 8371 8372 page = pfn_to_page(pfn + iter); 8373 8374 /* 8375 * Both, bootmem allocations and memory holes are marked 8376 * PG_reserved and are unmovable. We can even have unmovable 8377 * allocations inside ZONE_MOVABLE, for example when 8378 * specifying "movablecore". 8379 */ 8380 if (PageReserved(page)) 8381 return page; 8382 8383 /* 8384 * If the zone is movable and we have ruled out all reserved 8385 * pages then it should be reasonably safe to assume the rest 8386 * is movable. 8387 */ 8388 if (zone_idx(zone) == ZONE_MOVABLE) 8389 continue; 8390 8391 /* 8392 * Hugepages are not in LRU lists, but they're movable. 8393 * THPs are on the LRU, but need to be counted as #small pages. 8394 * We need not scan over tail pages because we don't 8395 * handle each tail page individually in migration. 8396 */ 8397 if (PageHuge(page) || PageTransCompound(page)) { 8398 struct page *head = compound_head(page); 8399 unsigned int skip_pages; 8400 8401 if (PageHuge(page)) { 8402 if (!hugepage_migration_supported(page_hstate(head))) 8403 return page; 8404 } else if (!PageLRU(head) && !__PageMovable(head)) { 8405 return page; 8406 } 8407 8408 skip_pages = compound_nr(head) - (page - head); 8409 iter += skip_pages - 1; 8410 continue; 8411 } 8412 8413 /* 8414 * We can't use page_count without pin a page 8415 * because another CPU can free compound page. 8416 * This check already skips compound tails of THP 8417 * because their page->_refcount is zero at all time. 8418 */ 8419 if (!page_ref_count(page)) { 8420 if (PageBuddy(page)) 8421 iter += (1 << buddy_order(page)) - 1; 8422 continue; 8423 } 8424 8425 /* 8426 * The HWPoisoned page may be not in buddy system, and 8427 * page_count() is not 0. 8428 */ 8429 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8430 continue; 8431 8432 /* 8433 * We treat all PageOffline() pages as movable when offlining 8434 * to give drivers a chance to decrement their reference count 8435 * in MEM_GOING_OFFLINE in order to indicate that these pages 8436 * can be offlined as there are no direct references anymore. 8437 * For actually unmovable PageOffline() where the driver does 8438 * not support this, we will fail later when trying to actually 8439 * move these pages that still have a reference count > 0. 8440 * (false negatives in this function only) 8441 */ 8442 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8443 continue; 8444 8445 if (__PageMovable(page) || PageLRU(page)) 8446 continue; 8447 8448 /* 8449 * If there are RECLAIMABLE pages, we need to check 8450 * it. But now, memory offline itself doesn't call 8451 * shrink_node_slabs() and it still to be fixed. 8452 */ 8453 return page; 8454 } 8455 return NULL; 8456} 8457 8458#ifdef CONFIG_CONTIG_ALLOC 8459static unsigned long pfn_max_align_down(unsigned long pfn) 8460{ 8461 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8462 pageblock_nr_pages) - 1); 8463} 8464 8465static unsigned long pfn_max_align_up(unsigned long pfn) 8466{ 8467 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8468 pageblock_nr_pages)); 8469} 8470 8471/* [start, end) must belong to a single zone. */ 8472static int __alloc_contig_migrate_range(struct compact_control *cc, 8473 unsigned long start, unsigned long end) 8474{ 8475 /* This function is based on compact_zone() from compaction.c. */ 8476 unsigned int nr_reclaimed; 8477 unsigned long pfn = start; 8478 unsigned int tries = 0; 8479 int ret = 0; 8480 struct migration_target_control mtc = { 8481 .nid = zone_to_nid(cc->zone), 8482 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8483 }; 8484 8485 migrate_prep(); 8486 8487 while (pfn < end || !list_empty(&cc->migratepages)) { 8488 if (fatal_signal_pending(current)) { 8489 ret = -EINTR; 8490 break; 8491 } 8492 8493 if (list_empty(&cc->migratepages)) { 8494 cc->nr_migratepages = 0; 8495 pfn = isolate_migratepages_range(cc, pfn, end); 8496 if (!pfn) { 8497 ret = -EINTR; 8498 break; 8499 } 8500 tries = 0; 8501 } else if (++tries == 5) { 8502 ret = ret < 0 ? ret : -EBUSY; 8503 break; 8504 } 8505 8506 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8507 &cc->migratepages); 8508 cc->nr_migratepages -= nr_reclaimed; 8509 8510 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8511 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8512 } 8513 if (ret < 0) { 8514 putback_movable_pages(&cc->migratepages); 8515 return ret; 8516 } 8517 return 0; 8518} 8519 8520/** 8521 * alloc_contig_range() -- tries to allocate given range of pages 8522 * @start: start PFN to allocate 8523 * @end: one-past-the-last PFN to allocate 8524 * @migratetype: migratetype of the underlaying pageblocks (either 8525 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8526 * in range must have the same migratetype and it must 8527 * be either of the two. 8528 * @gfp_mask: GFP mask to use during compaction 8529 * 8530 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8531 * aligned. The PFN range must belong to a single zone. 8532 * 8533 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8534 * pageblocks in the range. Once isolated, the pageblocks should not 8535 * be modified by others. 8536 * 8537 * Return: zero on success or negative error code. On success all 8538 * pages which PFN is in [start, end) are allocated for the caller and 8539 * need to be freed with free_contig_range(). 8540 */ 8541int alloc_contig_range(unsigned long start, unsigned long end, 8542 unsigned migratetype, gfp_t gfp_mask) 8543{ 8544 unsigned long outer_start, outer_end; 8545 unsigned int order; 8546 int ret = 0; 8547 8548 struct compact_control cc = { 8549 .nr_migratepages = 0, 8550 .order = -1, 8551 .zone = page_zone(pfn_to_page(start)), 8552 .mode = MIGRATE_SYNC, 8553 .ignore_skip_hint = true, 8554 .no_set_skip_hint = true, 8555 .gfp_mask = current_gfp_context(gfp_mask), 8556 .alloc_contig = true, 8557 }; 8558 INIT_LIST_HEAD(&cc.migratepages); 8559 8560 /* 8561 * What we do here is we mark all pageblocks in range as 8562 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8563 * have different sizes, and due to the way page allocator 8564 * work, we align the range to biggest of the two pages so 8565 * that page allocator won't try to merge buddies from 8566 * different pageblocks and change MIGRATE_ISOLATE to some 8567 * other migration type. 8568 * 8569 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8570 * migrate the pages from an unaligned range (ie. pages that 8571 * we are interested in). This will put all the pages in 8572 * range back to page allocator as MIGRATE_ISOLATE. 8573 * 8574 * When this is done, we take the pages in range from page 8575 * allocator removing them from the buddy system. This way 8576 * page allocator will never consider using them. 8577 * 8578 * This lets us mark the pageblocks back as 8579 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8580 * aligned range but not in the unaligned, original range are 8581 * put back to page allocator so that buddy can use them. 8582 */ 8583 8584 ret = start_isolate_page_range(pfn_max_align_down(start), 8585 pfn_max_align_up(end), migratetype, 0); 8586 if (ret) 8587 return ret; 8588 8589 drain_all_pages(cc.zone); 8590 8591 /* 8592 * In case of -EBUSY, we'd like to know which page causes problem. 8593 * So, just fall through. test_pages_isolated() has a tracepoint 8594 * which will report the busy page. 8595 * 8596 * It is possible that busy pages could become available before 8597 * the call to test_pages_isolated, and the range will actually be 8598 * allocated. So, if we fall through be sure to clear ret so that 8599 * -EBUSY is not accidentally used or returned to caller. 8600 */ 8601 ret = __alloc_contig_migrate_range(&cc, start, end); 8602 if (ret && ret != -EBUSY) 8603 goto done; 8604 ret =0; 8605 8606 /* 8607 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8608 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8609 * more, all pages in [start, end) are free in page allocator. 8610 * What we are going to do is to allocate all pages from 8611 * [start, end) (that is remove them from page allocator). 8612 * 8613 * The only problem is that pages at the beginning and at the 8614 * end of interesting range may be not aligned with pages that 8615 * page allocator holds, ie. they can be part of higher order 8616 * pages. Because of this, we reserve the bigger range and 8617 * once this is done free the pages we are not interested in. 8618 * 8619 * We don't have to hold zone->lock here because the pages are 8620 * isolated thus they won't get removed from buddy. 8621 */ 8622 8623 lru_add_drain_all(); 8624 8625 order = 0; 8626 outer_start = start; 8627 while (!PageBuddy(pfn_to_page(outer_start))) { 8628 if (++order >= MAX_ORDER) { 8629 outer_start = start; 8630 break; 8631 } 8632 outer_start &= ~0UL << order; 8633 } 8634 8635 if (outer_start != start) { 8636 order = buddy_order(pfn_to_page(outer_start)); 8637 8638 /* 8639 * outer_start page could be small order buddy page and 8640 * it doesn't include start page. Adjust outer_start 8641 * in this case to report failed page properly 8642 * on tracepoint in test_pages_isolated() 8643 */ 8644 if (outer_start + (1UL << order) <= start) 8645 outer_start = start; 8646 } 8647 8648 /* Make sure the range is really isolated. */ 8649 if (test_pages_isolated(outer_start, end, 0)) { 8650 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8651 __func__, outer_start, end); 8652 ret = -EBUSY; 8653 goto done; 8654 } 8655 8656 /* Grab isolated pages from freelists. */ 8657 outer_end = isolate_freepages_range(&cc, outer_start, end); 8658 if (!outer_end) { 8659 ret = -EBUSY; 8660 goto done; 8661 } 8662 8663 /* Free head and tail (if any) */ 8664 if (start != outer_start) 8665 free_contig_range(outer_start, start - outer_start); 8666 if (end != outer_end) 8667 free_contig_range(end, outer_end - end); 8668 8669done: 8670 undo_isolate_page_range(pfn_max_align_down(start), 8671 pfn_max_align_up(end), migratetype); 8672 return ret; 8673} 8674EXPORT_SYMBOL(alloc_contig_range); 8675 8676static int __alloc_contig_pages(unsigned long start_pfn, 8677 unsigned long nr_pages, gfp_t gfp_mask) 8678{ 8679 unsigned long end_pfn = start_pfn + nr_pages; 8680 8681 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8682 gfp_mask); 8683} 8684 8685static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8686 unsigned long nr_pages) 8687{ 8688 unsigned long i, end_pfn = start_pfn + nr_pages; 8689 struct page *page; 8690 8691 for (i = start_pfn; i < end_pfn; i++) { 8692 page = pfn_to_online_page(i); 8693 if (!page) 8694 return false; 8695 8696 if (page_zone(page) != z) 8697 return false; 8698 8699 if (PageReserved(page)) 8700 return false; 8701 8702 if (page_count(page) > 0) 8703 return false; 8704 8705 if (PageHuge(page)) 8706 return false; 8707 } 8708 return true; 8709} 8710 8711static bool zone_spans_last_pfn(const struct zone *zone, 8712 unsigned long start_pfn, unsigned long nr_pages) 8713{ 8714 unsigned long last_pfn = start_pfn + nr_pages - 1; 8715 8716 return zone_spans_pfn(zone, last_pfn); 8717} 8718 8719/** 8720 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8721 * @nr_pages: Number of contiguous pages to allocate 8722 * @gfp_mask: GFP mask to limit search and used during compaction 8723 * @nid: Target node 8724 * @nodemask: Mask for other possible nodes 8725 * 8726 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8727 * on an applicable zonelist to find a contiguous pfn range which can then be 8728 * tried for allocation with alloc_contig_range(). This routine is intended 8729 * for allocation requests which can not be fulfilled with the buddy allocator. 8730 * 8731 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8732 * power of two then the alignment is guaranteed to be to the given nr_pages 8733 * (e.g. 1GB request would be aligned to 1GB). 8734 * 8735 * Allocated pages can be freed with free_contig_range() or by manually calling 8736 * __free_page() on each allocated page. 8737 * 8738 * Return: pointer to contiguous pages on success, or NULL if not successful. 8739 */ 8740struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8741 int nid, nodemask_t *nodemask) 8742{ 8743 unsigned long ret, pfn, flags; 8744 struct zonelist *zonelist; 8745 struct zone *zone; 8746 struct zoneref *z; 8747 8748 zonelist = node_zonelist(nid, gfp_mask); 8749 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8750 gfp_zone(gfp_mask), nodemask) { 8751 spin_lock_irqsave(&zone->lock, flags); 8752 8753 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8754 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8755 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8756 /* 8757 * We release the zone lock here because 8758 * alloc_contig_range() will also lock the zone 8759 * at some point. If there's an allocation 8760 * spinning on this lock, it may win the race 8761 * and cause alloc_contig_range() to fail... 8762 */ 8763 spin_unlock_irqrestore(&zone->lock, flags); 8764 ret = __alloc_contig_pages(pfn, nr_pages, 8765 gfp_mask); 8766 if (!ret) 8767 return pfn_to_page(pfn); 8768 spin_lock_irqsave(&zone->lock, flags); 8769 } 8770 pfn += nr_pages; 8771 } 8772 spin_unlock_irqrestore(&zone->lock, flags); 8773 } 8774 return NULL; 8775} 8776#endif /* CONFIG_CONTIG_ALLOC */ 8777 8778void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8779{ 8780 unsigned int count = 0; 8781 8782 for (; nr_pages--; pfn++) { 8783 struct page *page = pfn_to_page(pfn); 8784 8785 count += page_count(page) != 1; 8786 __free_page(page); 8787 } 8788 WARN(count != 0, "%d pages are still in use!\n", count); 8789} 8790EXPORT_SYMBOL(free_contig_range); 8791 8792/* 8793 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8794 * page high values need to be recalulated. 8795 */ 8796void __meminit zone_pcp_update(struct zone *zone) 8797{ 8798 mutex_lock(&pcp_batch_high_lock); 8799 zone_set_pageset_high_and_batch(zone); 8800 mutex_unlock(&pcp_batch_high_lock); 8801} 8802 8803/* 8804 * Effectively disable pcplists for the zone by setting the high limit to 0 8805 * and draining all cpus. A concurrent page freeing on another CPU that's about 8806 * to put the page on pcplist will either finish before the drain and the page 8807 * will be drained, or observe the new high limit and skip the pcplist. 8808 * 8809 * Must be paired with a call to zone_pcp_enable(). 8810 */ 8811void zone_pcp_disable(struct zone *zone) 8812{ 8813 mutex_lock(&pcp_batch_high_lock); 8814 __zone_set_pageset_high_and_batch(zone, 0, 1); 8815 __drain_all_pages(zone, true); 8816} 8817 8818void zone_pcp_enable(struct zone *zone) 8819{ 8820 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8821 mutex_unlock(&pcp_batch_high_lock); 8822} 8823 8824void zone_pcp_reset(struct zone *zone) 8825{ 8826 unsigned long flags; 8827 int cpu; 8828 struct per_cpu_pageset *pset; 8829 8830 /* avoid races with drain_pages() */ 8831 local_irq_save(flags); 8832 if (zone->pageset != &boot_pageset) { 8833 for_each_online_cpu(cpu) { 8834 pset = per_cpu_ptr(zone->pageset, cpu); 8835 drain_zonestat(zone, pset); 8836 } 8837 free_percpu(zone->pageset); 8838 zone->pageset = &boot_pageset; 8839 } 8840 local_irq_restore(flags); 8841} 8842 8843#ifdef CONFIG_MEMORY_HOTREMOVE 8844/* 8845 * All pages in the range must be in a single zone, must not contain holes, 8846 * must span full sections, and must be isolated before calling this function. 8847 */ 8848void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8849{ 8850 unsigned long pfn = start_pfn; 8851 struct page *page; 8852 struct zone *zone; 8853 unsigned int order; 8854 unsigned long flags; 8855 8856 offline_mem_sections(pfn, end_pfn); 8857 zone = page_zone(pfn_to_page(pfn)); 8858 spin_lock_irqsave(&zone->lock, flags); 8859 while (pfn < end_pfn) { 8860 page = pfn_to_page(pfn); 8861 /* 8862 * The HWPoisoned page may be not in buddy system, and 8863 * page_count() is not 0. 8864 */ 8865 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8866 pfn++; 8867 continue; 8868 } 8869 /* 8870 * At this point all remaining PageOffline() pages have a 8871 * reference count of 0 and can simply be skipped. 8872 */ 8873 if (PageOffline(page)) { 8874 BUG_ON(page_count(page)); 8875 BUG_ON(PageBuddy(page)); 8876 pfn++; 8877 continue; 8878 } 8879 8880 BUG_ON(page_count(page)); 8881 BUG_ON(!PageBuddy(page)); 8882 order = buddy_order(page); 8883 del_page_from_free_list(page, zone, order); 8884 pfn += (1 << order); 8885 } 8886 spin_unlock_irqrestore(&zone->lock, flags); 8887} 8888#endif 8889 8890bool is_free_buddy_page(struct page *page) 8891{ 8892 struct zone *zone = page_zone(page); 8893 unsigned long pfn = page_to_pfn(page); 8894 unsigned long flags; 8895 unsigned int order; 8896 8897 spin_lock_irqsave(&zone->lock, flags); 8898 for (order = 0; order < MAX_ORDER; order++) { 8899 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8900 8901 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8902 break; 8903 } 8904 spin_unlock_irqrestore(&zone->lock, flags); 8905 8906 return order < MAX_ORDER; 8907} 8908 8909#ifdef CONFIG_MEMORY_FAILURE 8910/* 8911 * Break down a higher-order page in sub-pages, and keep our target out of 8912 * buddy allocator. 8913 */ 8914static void break_down_buddy_pages(struct zone *zone, struct page *page, 8915 struct page *target, int low, int high, 8916 int migratetype) 8917{ 8918 unsigned long size = 1 << high; 8919 struct page *current_buddy, *next_page; 8920 8921 while (high > low) { 8922 high--; 8923 size >>= 1; 8924 8925 if (target >= &page[size]) { 8926 next_page = page + size; 8927 current_buddy = page; 8928 } else { 8929 next_page = page; 8930 current_buddy = page + size; 8931 } 8932 8933 if (set_page_guard(zone, current_buddy, high, migratetype)) 8934 continue; 8935 8936 if (current_buddy != target) { 8937 add_to_free_list(current_buddy, zone, high, migratetype); 8938 set_buddy_order(current_buddy, high); 8939 page = next_page; 8940 } 8941 } 8942} 8943 8944/* 8945 * Take a page that will be marked as poisoned off the buddy allocator. 8946 */ 8947bool take_page_off_buddy(struct page *page) 8948{ 8949 struct zone *zone = page_zone(page); 8950 unsigned long pfn = page_to_pfn(page); 8951 unsigned long flags; 8952 unsigned int order; 8953 bool ret = false; 8954 8955 spin_lock_irqsave(&zone->lock, flags); 8956 for (order = 0; order < MAX_ORDER; order++) { 8957 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8958 int page_order = buddy_order(page_head); 8959 8960 if (PageBuddy(page_head) && page_order >= order) { 8961 unsigned long pfn_head = page_to_pfn(page_head); 8962 int migratetype = get_pfnblock_migratetype(page_head, 8963 pfn_head); 8964 8965 del_page_from_free_list(page_head, zone, page_order); 8966 break_down_buddy_pages(zone, page_head, page, 0, 8967 page_order, migratetype); 8968 ret = true; 8969 break; 8970 } 8971 if (page_count(page_head) > 0) 8972 break; 8973 } 8974 spin_unlock_irqrestore(&zone->lock, flags); 8975 return ret; 8976} 8977#endif