Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dsa.h>
102#include <net/dst.h>
103#include <net/dst_metadata.h>
104#include <net/pkt_sched.h>
105#include <net/pkt_cls.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/iw_handler.h>
115#include <asm/current.h>
116#include <linux/audit.h>
117#include <linux/dmaengine.h>
118#include <linux/err.h>
119#include <linux/ctype.h>
120#include <linux/if_arp.h>
121#include <linux/if_vlan.h>
122#include <linux/ip.h>
123#include <net/ip.h>
124#include <net/mpls.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/inetdevice.h>
133#include <linux/cpu_rmap.h>
134#include <linux/static_key.h>
135#include <linux/hashtable.h>
136#include <linux/vmalloc.h>
137#include <linux/if_macvlan.h>
138#include <linux/errqueue.h>
139#include <linux/hrtimer.h>
140#include <linux/netfilter_ingress.h>
141#include <linux/crash_dump.h>
142#include <linux/sctp.h>
143#include <net/udp_tunnel.h>
144#include <linux/net_namespace.h>
145#include <linux/indirect_call_wrapper.h>
146#include <net/devlink.h>
147#include <linux/pm_runtime.h>
148#include <linux/prandom.h>
149
150#include "net-sysfs.h"
151
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171/*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190DEFINE_RWLOCK(dev_base_lock);
191EXPORT_SYMBOL(dev_base_lock);
192
193static DEFINE_MUTEX(ifalias_mutex);
194
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
198static unsigned int napi_gen_id = NR_CPUS;
199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201static DECLARE_RWSEM(devnet_rename_sem);
202
203static inline void dev_base_seq_inc(struct net *net)
204{
205 while (++net->dev_base_seq == 0)
206 ;
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237{
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247}
248
249static struct netdev_name_node *
250netdev_name_node_head_alloc(struct net_device *dev)
251{
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
259}
260
261static void netdev_name_node_free(struct netdev_name_node *name_node)
262{
263 kfree(name_node);
264}
265
266static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268{
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271}
272
273static void netdev_name_node_del(struct netdev_name_node *name_node)
274{
275 hlist_del_rcu(&name_node->hlist);
276}
277
278static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280{
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288}
289
290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292{
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300}
301
302int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303{
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318}
319EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322{
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327}
328
329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330{
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346}
347EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349static void netdev_name_node_alt_flush(struct net_device *dev)
350{
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355}
356
357/* Device list insertion */
358static void list_netdevice(struct net_device *dev)
359{
360 struct net *net = dev_net(dev);
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
370
371 dev_base_seq_inc(net);
372}
373
374/* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
377static void unlist_netdevice(struct net_device *dev)
378{
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
387
388 dev_base_seq_inc(dev_net(dev));
389}
390
391/*
392 * Our notifier list
393 */
394
395static RAW_NOTIFIER_HEAD(netdev_chain);
396
397/*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
401
402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405#ifdef CONFIG_LOCKDEP
406/*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456}
457
458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460{
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466}
467
468static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469{
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476}
477#else
478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480{
481}
482
483static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484{
485}
486#endif
487
488/*******************************************************************************
489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
493
494
495/*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
511static inline struct list_head *ptype_head(const struct packet_type *pt)
512{
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518}
519
520/**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
533void dev_add_pack(struct packet_type *pt)
534{
535 struct list_head *head = ptype_head(pt);
536
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
540}
541EXPORT_SYMBOL(dev_add_pack);
542
543/**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
556void __dev_remove_pack(struct packet_type *pt)
557{
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
560
561 spin_lock(&ptype_lock);
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571out:
572 spin_unlock(&ptype_lock);
573}
574EXPORT_SYMBOL(__dev_remove_pack);
575
576/**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
588void dev_remove_pack(struct packet_type *pt)
589{
590 __dev_remove_pack(pt);
591
592 synchronize_net();
593}
594EXPORT_SYMBOL(dev_remove_pack);
595
596
597/**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
609void dev_add_offload(struct packet_offload *po)
610{
611 struct packet_offload *elem;
612
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
620}
621EXPORT_SYMBOL(dev_add_offload);
622
623/**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
636static void __dev_remove_offload(struct packet_offload *po)
637{
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
641 spin_lock(&offload_lock);
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651out:
652 spin_unlock(&offload_lock);
653}
654
655/**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
667void dev_remove_offload(struct packet_offload *po)
668{
669 __dev_remove_offload(po);
670
671 synchronize_net();
672}
673EXPORT_SYMBOL(dev_remove_offload);
674
675/******************************************************************************
676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
680
681/* Boot time configuration table */
682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684/**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
693static int netdev_boot_setup_add(char *name, struct ifmap *map)
694{
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709}
710
711/**
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
714 *
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
719 */
720int netdev_boot_setup_check(struct net_device *dev)
721{
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
733 }
734 }
735 return 0;
736}
737EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740/**
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
749 */
750unsigned long netdev_boot_base(const char *prefix, int unit)
751{
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769}
770
771/*
772 * Saves at boot time configured settings for any netdevice.
773 */
774int __init netdev_boot_setup(char *str)
775{
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796}
797
798__setup("netdev=", netdev_boot_setup);
799
800/*******************************************************************************
801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
805
806/**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
814int dev_get_iflink(const struct net_device *dev)
815{
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
819 return dev->ifindex;
820}
821EXPORT_SYMBOL(dev_get_iflink);
822
823/**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833{
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846}
847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849/**
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
861struct net_device *__dev_get_by_name(struct net *net, const char *name)
862{
863 struct netdev_name_node *node_name;
864
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
867}
868EXPORT_SYMBOL(__dev_get_by_name);
869
870/**
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
880 */
881
882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883{
884 struct netdev_name_node *node_name;
885
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
888}
889EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891/**
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
903struct net_device *dev_get_by_name(struct net *net, const char *name)
904{
905 struct net_device *dev;
906
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913}
914EXPORT_SYMBOL(dev_get_by_name);
915
916/**
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
928struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929{
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
932
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
936
937 return NULL;
938}
939EXPORT_SYMBOL(__dev_get_by_index);
940
941/**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953{
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962}
963EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966/**
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
977struct net_device *dev_get_by_index(struct net *net, int ifindex)
978{
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
987}
988EXPORT_SYMBOL(dev_get_by_index);
989
990/**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001{
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015/**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1020 */
1021int netdev_get_name(struct net *net, char *name, int ifindex)
1022{
1023 struct net_device *dev;
1024 int ret;
1025
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1028
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1033 }
1034
1035 strcpy(name, dev->name);
1036
1037 ret = 0;
1038out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1042}
1043
1044/**
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1055 *
1056 */
1057
1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1060{
1061 struct net_device *dev;
1062
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1067
1068 return NULL;
1069}
1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073{
1074 struct net_device *dev, *ret = NULL;
1075
1076 rcu_read_lock();
1077 for_each_netdev_rcu(net, dev)
1078 if (dev->type == type) {
1079 dev_hold(dev);
1080 ret = dev;
1081 break;
1082 }
1083 rcu_read_unlock();
1084 return ret;
1085}
1086EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087
1088/**
1089 * __dev_get_by_flags - find any device with given flags
1090 * @net: the applicable net namespace
1091 * @if_flags: IFF_* values
1092 * @mask: bitmask of bits in if_flags to check
1093 *
1094 * Search for any interface with the given flags. Returns NULL if a device
1095 * is not found or a pointer to the device. Must be called inside
1096 * rtnl_lock(), and result refcount is unchanged.
1097 */
1098
1099struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 unsigned short mask)
1101{
1102 struct net_device *dev, *ret;
1103
1104 ASSERT_RTNL();
1105
1106 ret = NULL;
1107 for_each_netdev(net, dev) {
1108 if (((dev->flags ^ if_flags) & mask) == 0) {
1109 ret = dev;
1110 break;
1111 }
1112 }
1113 return ret;
1114}
1115EXPORT_SYMBOL(__dev_get_by_flags);
1116
1117/**
1118 * dev_valid_name - check if name is okay for network device
1119 * @name: name string
1120 *
1121 * Network device names need to be valid file names to
1122 * allow sysfs to work. We also disallow any kind of
1123 * whitespace.
1124 */
1125bool dev_valid_name(const char *name)
1126{
1127 if (*name == '\0')
1128 return false;
1129 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1130 return false;
1131 if (!strcmp(name, ".") || !strcmp(name, ".."))
1132 return false;
1133
1134 while (*name) {
1135 if (*name == '/' || *name == ':' || isspace(*name))
1136 return false;
1137 name++;
1138 }
1139 return true;
1140}
1141EXPORT_SYMBOL(dev_valid_name);
1142
1143/**
1144 * __dev_alloc_name - allocate a name for a device
1145 * @net: network namespace to allocate the device name in
1146 * @name: name format string
1147 * @buf: scratch buffer and result name string
1148 *
1149 * Passed a format string - eg "lt%d" it will try and find a suitable
1150 * id. It scans list of devices to build up a free map, then chooses
1151 * the first empty slot. The caller must hold the dev_base or rtnl lock
1152 * while allocating the name and adding the device in order to avoid
1153 * duplicates.
1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155 * Returns the number of the unit assigned or a negative errno code.
1156 */
1157
1158static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1159{
1160 int i = 0;
1161 const char *p;
1162 const int max_netdevices = 8*PAGE_SIZE;
1163 unsigned long *inuse;
1164 struct net_device *d;
1165
1166 if (!dev_valid_name(name))
1167 return -EINVAL;
1168
1169 p = strchr(name, '%');
1170 if (p) {
1171 /*
1172 * Verify the string as this thing may have come from
1173 * the user. There must be either one "%d" and no other "%"
1174 * characters.
1175 */
1176 if (p[1] != 'd' || strchr(p + 2, '%'))
1177 return -EINVAL;
1178
1179 /* Use one page as a bit array of possible slots */
1180 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1181 if (!inuse)
1182 return -ENOMEM;
1183
1184 for_each_netdev(net, d) {
1185 if (!sscanf(d->name, name, &i))
1186 continue;
1187 if (i < 0 || i >= max_netdevices)
1188 continue;
1189
1190 /* avoid cases where sscanf is not exact inverse of printf */
1191 snprintf(buf, IFNAMSIZ, name, i);
1192 if (!strncmp(buf, d->name, IFNAMSIZ))
1193 set_bit(i, inuse);
1194 }
1195
1196 i = find_first_zero_bit(inuse, max_netdevices);
1197 free_page((unsigned long) inuse);
1198 }
1199
1200 snprintf(buf, IFNAMSIZ, name, i);
1201 if (!__dev_get_by_name(net, buf))
1202 return i;
1203
1204 /* It is possible to run out of possible slots
1205 * when the name is long and there isn't enough space left
1206 * for the digits, or if all bits are used.
1207 */
1208 return -ENFILE;
1209}
1210
1211static int dev_alloc_name_ns(struct net *net,
1212 struct net_device *dev,
1213 const char *name)
1214{
1215 char buf[IFNAMSIZ];
1216 int ret;
1217
1218 BUG_ON(!net);
1219 ret = __dev_alloc_name(net, name, buf);
1220 if (ret >= 0)
1221 strlcpy(dev->name, buf, IFNAMSIZ);
1222 return ret;
1223}
1224
1225/**
1226 * dev_alloc_name - allocate a name for a device
1227 * @dev: device
1228 * @name: name format string
1229 *
1230 * Passed a format string - eg "lt%d" it will try and find a suitable
1231 * id. It scans list of devices to build up a free map, then chooses
1232 * the first empty slot. The caller must hold the dev_base or rtnl lock
1233 * while allocating the name and adding the device in order to avoid
1234 * duplicates.
1235 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236 * Returns the number of the unit assigned or a negative errno code.
1237 */
1238
1239int dev_alloc_name(struct net_device *dev, const char *name)
1240{
1241 return dev_alloc_name_ns(dev_net(dev), dev, name);
1242}
1243EXPORT_SYMBOL(dev_alloc_name);
1244
1245static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 const char *name)
1247{
1248 BUG_ON(!net);
1249
1250 if (!dev_valid_name(name))
1251 return -EINVAL;
1252
1253 if (strchr(name, '%'))
1254 return dev_alloc_name_ns(net, dev, name);
1255 else if (__dev_get_by_name(net, name))
1256 return -EEXIST;
1257 else if (dev->name != name)
1258 strlcpy(dev->name, name, IFNAMSIZ);
1259
1260 return 0;
1261}
1262
1263/**
1264 * dev_change_name - change name of a device
1265 * @dev: device
1266 * @newname: name (or format string) must be at least IFNAMSIZ
1267 *
1268 * Change name of a device, can pass format strings "eth%d".
1269 * for wildcarding.
1270 */
1271int dev_change_name(struct net_device *dev, const char *newname)
1272{
1273 unsigned char old_assign_type;
1274 char oldname[IFNAMSIZ];
1275 int err = 0;
1276 int ret;
1277 struct net *net;
1278
1279 ASSERT_RTNL();
1280 BUG_ON(!dev_net(dev));
1281
1282 net = dev_net(dev);
1283
1284 /* Some auto-enslaved devices e.g. failover slaves are
1285 * special, as userspace might rename the device after
1286 * the interface had been brought up and running since
1287 * the point kernel initiated auto-enslavement. Allow
1288 * live name change even when these slave devices are
1289 * up and running.
1290 *
1291 * Typically, users of these auto-enslaving devices
1292 * don't actually care about slave name change, as
1293 * they are supposed to operate on master interface
1294 * directly.
1295 */
1296 if (dev->flags & IFF_UP &&
1297 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1298 return -EBUSY;
1299
1300 down_write(&devnet_rename_sem);
1301
1302 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1303 up_write(&devnet_rename_sem);
1304 return 0;
1305 }
1306
1307 memcpy(oldname, dev->name, IFNAMSIZ);
1308
1309 err = dev_get_valid_name(net, dev, newname);
1310 if (err < 0) {
1311 up_write(&devnet_rename_sem);
1312 return err;
1313 }
1314
1315 if (oldname[0] && !strchr(oldname, '%'))
1316 netdev_info(dev, "renamed from %s\n", oldname);
1317
1318 old_assign_type = dev->name_assign_type;
1319 dev->name_assign_type = NET_NAME_RENAMED;
1320
1321rollback:
1322 ret = device_rename(&dev->dev, dev->name);
1323 if (ret) {
1324 memcpy(dev->name, oldname, IFNAMSIZ);
1325 dev->name_assign_type = old_assign_type;
1326 up_write(&devnet_rename_sem);
1327 return ret;
1328 }
1329
1330 up_write(&devnet_rename_sem);
1331
1332 netdev_adjacent_rename_links(dev, oldname);
1333
1334 write_lock_bh(&dev_base_lock);
1335 netdev_name_node_del(dev->name_node);
1336 write_unlock_bh(&dev_base_lock);
1337
1338 synchronize_rcu();
1339
1340 write_lock_bh(&dev_base_lock);
1341 netdev_name_node_add(net, dev->name_node);
1342 write_unlock_bh(&dev_base_lock);
1343
1344 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1345 ret = notifier_to_errno(ret);
1346
1347 if (ret) {
1348 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349 if (err >= 0) {
1350 err = ret;
1351 down_write(&devnet_rename_sem);
1352 memcpy(dev->name, oldname, IFNAMSIZ);
1353 memcpy(oldname, newname, IFNAMSIZ);
1354 dev->name_assign_type = old_assign_type;
1355 old_assign_type = NET_NAME_RENAMED;
1356 goto rollback;
1357 } else {
1358 pr_err("%s: name change rollback failed: %d\n",
1359 dev->name, ret);
1360 }
1361 }
1362
1363 return err;
1364}
1365
1366/**
1367 * dev_set_alias - change ifalias of a device
1368 * @dev: device
1369 * @alias: name up to IFALIASZ
1370 * @len: limit of bytes to copy from info
1371 *
1372 * Set ifalias for a device,
1373 */
1374int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375{
1376 struct dev_ifalias *new_alias = NULL;
1377
1378 if (len >= IFALIASZ)
1379 return -EINVAL;
1380
1381 if (len) {
1382 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 if (!new_alias)
1384 return -ENOMEM;
1385
1386 memcpy(new_alias->ifalias, alias, len);
1387 new_alias->ifalias[len] = 0;
1388 }
1389
1390 mutex_lock(&ifalias_mutex);
1391 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 mutex_is_locked(&ifalias_mutex));
1393 mutex_unlock(&ifalias_mutex);
1394
1395 if (new_alias)
1396 kfree_rcu(new_alias, rcuhead);
1397
1398 return len;
1399}
1400EXPORT_SYMBOL(dev_set_alias);
1401
1402/**
1403 * dev_get_alias - get ifalias of a device
1404 * @dev: device
1405 * @name: buffer to store name of ifalias
1406 * @len: size of buffer
1407 *
1408 * get ifalias for a device. Caller must make sure dev cannot go
1409 * away, e.g. rcu read lock or own a reference count to device.
1410 */
1411int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412{
1413 const struct dev_ifalias *alias;
1414 int ret = 0;
1415
1416 rcu_read_lock();
1417 alias = rcu_dereference(dev->ifalias);
1418 if (alias)
1419 ret = snprintf(name, len, "%s", alias->ifalias);
1420 rcu_read_unlock();
1421
1422 return ret;
1423}
1424
1425/**
1426 * netdev_features_change - device changes features
1427 * @dev: device to cause notification
1428 *
1429 * Called to indicate a device has changed features.
1430 */
1431void netdev_features_change(struct net_device *dev)
1432{
1433 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1434}
1435EXPORT_SYMBOL(netdev_features_change);
1436
1437/**
1438 * netdev_state_change - device changes state
1439 * @dev: device to cause notification
1440 *
1441 * Called to indicate a device has changed state. This function calls
1442 * the notifier chains for netdev_chain and sends a NEWLINK message
1443 * to the routing socket.
1444 */
1445void netdev_state_change(struct net_device *dev)
1446{
1447 if (dev->flags & IFF_UP) {
1448 struct netdev_notifier_change_info change_info = {
1449 .info.dev = dev,
1450 };
1451
1452 call_netdevice_notifiers_info(NETDEV_CHANGE,
1453 &change_info.info);
1454 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1455 }
1456}
1457EXPORT_SYMBOL(netdev_state_change);
1458
1459/**
1460 * __netdev_notify_peers - notify network peers about existence of @dev,
1461 * to be called when rtnl lock is already held.
1462 * @dev: network device
1463 *
1464 * Generate traffic such that interested network peers are aware of
1465 * @dev, such as by generating a gratuitous ARP. This may be used when
1466 * a device wants to inform the rest of the network about some sort of
1467 * reconfiguration such as a failover event or virtual machine
1468 * migration.
1469 */
1470void __netdev_notify_peers(struct net_device *dev)
1471{
1472 ASSERT_RTNL();
1473 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475}
1476EXPORT_SYMBOL(__netdev_notify_peers);
1477
1478/**
1479 * netdev_notify_peers - notify network peers about existence of @dev
1480 * @dev: network device
1481 *
1482 * Generate traffic such that interested network peers are aware of
1483 * @dev, such as by generating a gratuitous ARP. This may be used when
1484 * a device wants to inform the rest of the network about some sort of
1485 * reconfiguration such as a failover event or virtual machine
1486 * migration.
1487 */
1488void netdev_notify_peers(struct net_device *dev)
1489{
1490 rtnl_lock();
1491 __netdev_notify_peers(dev);
1492 rtnl_unlock();
1493}
1494EXPORT_SYMBOL(netdev_notify_peers);
1495
1496static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1497{
1498 const struct net_device_ops *ops = dev->netdev_ops;
1499 int ret;
1500
1501 ASSERT_RTNL();
1502
1503 if (!netif_device_present(dev)) {
1504 /* may be detached because parent is runtime-suspended */
1505 if (dev->dev.parent)
1506 pm_runtime_resume(dev->dev.parent);
1507 if (!netif_device_present(dev))
1508 return -ENODEV;
1509 }
1510
1511 /* Block netpoll from trying to do any rx path servicing.
1512 * If we don't do this there is a chance ndo_poll_controller
1513 * or ndo_poll may be running while we open the device
1514 */
1515 netpoll_poll_disable(dev);
1516
1517 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1518 ret = notifier_to_errno(ret);
1519 if (ret)
1520 return ret;
1521
1522 set_bit(__LINK_STATE_START, &dev->state);
1523
1524 if (ops->ndo_validate_addr)
1525 ret = ops->ndo_validate_addr(dev);
1526
1527 if (!ret && ops->ndo_open)
1528 ret = ops->ndo_open(dev);
1529
1530 netpoll_poll_enable(dev);
1531
1532 if (ret)
1533 clear_bit(__LINK_STATE_START, &dev->state);
1534 else {
1535 dev->flags |= IFF_UP;
1536 dev_set_rx_mode(dev);
1537 dev_activate(dev);
1538 add_device_randomness(dev->dev_addr, dev->addr_len);
1539 }
1540
1541 return ret;
1542}
1543
1544/**
1545 * dev_open - prepare an interface for use.
1546 * @dev: device to open
1547 * @extack: netlink extended ack
1548 *
1549 * Takes a device from down to up state. The device's private open
1550 * function is invoked and then the multicast lists are loaded. Finally
1551 * the device is moved into the up state and a %NETDEV_UP message is
1552 * sent to the netdev notifier chain.
1553 *
1554 * Calling this function on an active interface is a nop. On a failure
1555 * a negative errno code is returned.
1556 */
1557int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1558{
1559 int ret;
1560
1561 if (dev->flags & IFF_UP)
1562 return 0;
1563
1564 ret = __dev_open(dev, extack);
1565 if (ret < 0)
1566 return ret;
1567
1568 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1569 call_netdevice_notifiers(NETDEV_UP, dev);
1570
1571 return ret;
1572}
1573EXPORT_SYMBOL(dev_open);
1574
1575static void __dev_close_many(struct list_head *head)
1576{
1577 struct net_device *dev;
1578
1579 ASSERT_RTNL();
1580 might_sleep();
1581
1582 list_for_each_entry(dev, head, close_list) {
1583 /* Temporarily disable netpoll until the interface is down */
1584 netpoll_poll_disable(dev);
1585
1586 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1587
1588 clear_bit(__LINK_STATE_START, &dev->state);
1589
1590 /* Synchronize to scheduled poll. We cannot touch poll list, it
1591 * can be even on different cpu. So just clear netif_running().
1592 *
1593 * dev->stop() will invoke napi_disable() on all of it's
1594 * napi_struct instances on this device.
1595 */
1596 smp_mb__after_atomic(); /* Commit netif_running(). */
1597 }
1598
1599 dev_deactivate_many(head);
1600
1601 list_for_each_entry(dev, head, close_list) {
1602 const struct net_device_ops *ops = dev->netdev_ops;
1603
1604 /*
1605 * Call the device specific close. This cannot fail.
1606 * Only if device is UP
1607 *
1608 * We allow it to be called even after a DETACH hot-plug
1609 * event.
1610 */
1611 if (ops->ndo_stop)
1612 ops->ndo_stop(dev);
1613
1614 dev->flags &= ~IFF_UP;
1615 netpoll_poll_enable(dev);
1616 }
1617}
1618
1619static void __dev_close(struct net_device *dev)
1620{
1621 LIST_HEAD(single);
1622
1623 list_add(&dev->close_list, &single);
1624 __dev_close_many(&single);
1625 list_del(&single);
1626}
1627
1628void dev_close_many(struct list_head *head, bool unlink)
1629{
1630 struct net_device *dev, *tmp;
1631
1632 /* Remove the devices that don't need to be closed */
1633 list_for_each_entry_safe(dev, tmp, head, close_list)
1634 if (!(dev->flags & IFF_UP))
1635 list_del_init(&dev->close_list);
1636
1637 __dev_close_many(head);
1638
1639 list_for_each_entry_safe(dev, tmp, head, close_list) {
1640 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1641 call_netdevice_notifiers(NETDEV_DOWN, dev);
1642 if (unlink)
1643 list_del_init(&dev->close_list);
1644 }
1645}
1646EXPORT_SYMBOL(dev_close_many);
1647
1648/**
1649 * dev_close - shutdown an interface.
1650 * @dev: device to shutdown
1651 *
1652 * This function moves an active device into down state. A
1653 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655 * chain.
1656 */
1657void dev_close(struct net_device *dev)
1658{
1659 if (dev->flags & IFF_UP) {
1660 LIST_HEAD(single);
1661
1662 list_add(&dev->close_list, &single);
1663 dev_close_many(&single, true);
1664 list_del(&single);
1665 }
1666}
1667EXPORT_SYMBOL(dev_close);
1668
1669
1670/**
1671 * dev_disable_lro - disable Large Receive Offload on a device
1672 * @dev: device
1673 *
1674 * Disable Large Receive Offload (LRO) on a net device. Must be
1675 * called under RTNL. This is needed if received packets may be
1676 * forwarded to another interface.
1677 */
1678void dev_disable_lro(struct net_device *dev)
1679{
1680 struct net_device *lower_dev;
1681 struct list_head *iter;
1682
1683 dev->wanted_features &= ~NETIF_F_LRO;
1684 netdev_update_features(dev);
1685
1686 if (unlikely(dev->features & NETIF_F_LRO))
1687 netdev_WARN(dev, "failed to disable LRO!\n");
1688
1689 netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 dev_disable_lro(lower_dev);
1691}
1692EXPORT_SYMBOL(dev_disable_lro);
1693
1694/**
1695 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696 * @dev: device
1697 *
1698 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1699 * called under RTNL. This is needed if Generic XDP is installed on
1700 * the device.
1701 */
1702static void dev_disable_gro_hw(struct net_device *dev)
1703{
1704 dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 netdev_update_features(dev);
1706
1707 if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709}
1710
1711const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712{
1713#define N(val) \
1714 case NETDEV_##val: \
1715 return "NETDEV_" __stringify(val);
1716 switch (cmd) {
1717 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1724 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1726 N(PRE_CHANGEADDR)
1727 }
1728#undef N
1729 return "UNKNOWN_NETDEV_EVENT";
1730}
1731EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732
1733static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 struct net_device *dev)
1735{
1736 struct netdev_notifier_info info = {
1737 .dev = dev,
1738 };
1739
1740 return nb->notifier_call(nb, val, &info);
1741}
1742
1743static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 struct net_device *dev)
1745{
1746 int err;
1747
1748 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 err = notifier_to_errno(err);
1750 if (err)
1751 return err;
1752
1753 if (!(dev->flags & IFF_UP))
1754 return 0;
1755
1756 call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 return 0;
1758}
1759
1760static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 struct net_device *dev)
1762{
1763 if (dev->flags & IFF_UP) {
1764 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 dev);
1766 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767 }
1768 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769}
1770
1771static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 struct net *net)
1773{
1774 struct net_device *dev;
1775 int err;
1776
1777 for_each_netdev(net, dev) {
1778 err = call_netdevice_register_notifiers(nb, dev);
1779 if (err)
1780 goto rollback;
1781 }
1782 return 0;
1783
1784rollback:
1785 for_each_netdev_continue_reverse(net, dev)
1786 call_netdevice_unregister_notifiers(nb, dev);
1787 return err;
1788}
1789
1790static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 struct net *net)
1792{
1793 struct net_device *dev;
1794
1795 for_each_netdev(net, dev)
1796 call_netdevice_unregister_notifiers(nb, dev);
1797}
1798
1799static int dev_boot_phase = 1;
1800
1801/**
1802 * register_netdevice_notifier - register a network notifier block
1803 * @nb: notifier
1804 *
1805 * Register a notifier to be called when network device events occur.
1806 * The notifier passed is linked into the kernel structures and must
1807 * not be reused until it has been unregistered. A negative errno code
1808 * is returned on a failure.
1809 *
1810 * When registered all registration and up events are replayed
1811 * to the new notifier to allow device to have a race free
1812 * view of the network device list.
1813 */
1814
1815int register_netdevice_notifier(struct notifier_block *nb)
1816{
1817 struct net *net;
1818 int err;
1819
1820 /* Close race with setup_net() and cleanup_net() */
1821 down_write(&pernet_ops_rwsem);
1822 rtnl_lock();
1823 err = raw_notifier_chain_register(&netdev_chain, nb);
1824 if (err)
1825 goto unlock;
1826 if (dev_boot_phase)
1827 goto unlock;
1828 for_each_net(net) {
1829 err = call_netdevice_register_net_notifiers(nb, net);
1830 if (err)
1831 goto rollback;
1832 }
1833
1834unlock:
1835 rtnl_unlock();
1836 up_write(&pernet_ops_rwsem);
1837 return err;
1838
1839rollback:
1840 for_each_net_continue_reverse(net)
1841 call_netdevice_unregister_net_notifiers(nb, net);
1842
1843 raw_notifier_chain_unregister(&netdev_chain, nb);
1844 goto unlock;
1845}
1846EXPORT_SYMBOL(register_netdevice_notifier);
1847
1848/**
1849 * unregister_netdevice_notifier - unregister a network notifier block
1850 * @nb: notifier
1851 *
1852 * Unregister a notifier previously registered by
1853 * register_netdevice_notifier(). The notifier is unlinked into the
1854 * kernel structures and may then be reused. A negative errno code
1855 * is returned on a failure.
1856 *
1857 * After unregistering unregister and down device events are synthesized
1858 * for all devices on the device list to the removed notifier to remove
1859 * the need for special case cleanup code.
1860 */
1861
1862int unregister_netdevice_notifier(struct notifier_block *nb)
1863{
1864 struct net *net;
1865 int err;
1866
1867 /* Close race with setup_net() and cleanup_net() */
1868 down_write(&pernet_ops_rwsem);
1869 rtnl_lock();
1870 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1871 if (err)
1872 goto unlock;
1873
1874 for_each_net(net)
1875 call_netdevice_unregister_net_notifiers(nb, net);
1876
1877unlock:
1878 rtnl_unlock();
1879 up_write(&pernet_ops_rwsem);
1880 return err;
1881}
1882EXPORT_SYMBOL(unregister_netdevice_notifier);
1883
1884static int __register_netdevice_notifier_net(struct net *net,
1885 struct notifier_block *nb,
1886 bool ignore_call_fail)
1887{
1888 int err;
1889
1890 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 if (err)
1892 return err;
1893 if (dev_boot_phase)
1894 return 0;
1895
1896 err = call_netdevice_register_net_notifiers(nb, net);
1897 if (err && !ignore_call_fail)
1898 goto chain_unregister;
1899
1900 return 0;
1901
1902chain_unregister:
1903 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 return err;
1905}
1906
1907static int __unregister_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb)
1909{
1910 int err;
1911
1912 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 if (err)
1914 return err;
1915
1916 call_netdevice_unregister_net_notifiers(nb, net);
1917 return 0;
1918}
1919
1920/**
1921 * register_netdevice_notifier_net - register a per-netns network notifier block
1922 * @net: network namespace
1923 * @nb: notifier
1924 *
1925 * Register a notifier to be called when network device events occur.
1926 * The notifier passed is linked into the kernel structures and must
1927 * not be reused until it has been unregistered. A negative errno code
1928 * is returned on a failure.
1929 *
1930 * When registered all registration and up events are replayed
1931 * to the new notifier to allow device to have a race free
1932 * view of the network device list.
1933 */
1934
1935int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936{
1937 int err;
1938
1939 rtnl_lock();
1940 err = __register_netdevice_notifier_net(net, nb, false);
1941 rtnl_unlock();
1942 return err;
1943}
1944EXPORT_SYMBOL(register_netdevice_notifier_net);
1945
1946/**
1947 * unregister_netdevice_notifier_net - unregister a per-netns
1948 * network notifier block
1949 * @net: network namespace
1950 * @nb: notifier
1951 *
1952 * Unregister a notifier previously registered by
1953 * register_netdevice_notifier(). The notifier is unlinked into the
1954 * kernel structures and may then be reused. A negative errno code
1955 * is returned on a failure.
1956 *
1957 * After unregistering unregister and down device events are synthesized
1958 * for all devices on the device list to the removed notifier to remove
1959 * the need for special case cleanup code.
1960 */
1961
1962int unregister_netdevice_notifier_net(struct net *net,
1963 struct notifier_block *nb)
1964{
1965 int err;
1966
1967 rtnl_lock();
1968 err = __unregister_netdevice_notifier_net(net, nb);
1969 rtnl_unlock();
1970 return err;
1971}
1972EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1973
1974int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 struct notifier_block *nb,
1976 struct netdev_net_notifier *nn)
1977{
1978 int err;
1979
1980 rtnl_lock();
1981 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 if (!err) {
1983 nn->nb = nb;
1984 list_add(&nn->list, &dev->net_notifier_list);
1985 }
1986 rtnl_unlock();
1987 return err;
1988}
1989EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990
1991int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 struct notifier_block *nb,
1993 struct netdev_net_notifier *nn)
1994{
1995 int err;
1996
1997 rtnl_lock();
1998 list_del(&nn->list);
1999 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 rtnl_unlock();
2001 return err;
2002}
2003EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004
2005static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 struct net *net)
2007{
2008 struct netdev_net_notifier *nn;
2009
2010 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 __register_netdevice_notifier_net(net, nn->nb, true);
2013 }
2014}
2015
2016/**
2017 * call_netdevice_notifiers_info - call all network notifier blocks
2018 * @val: value passed unmodified to notifier function
2019 * @info: notifier information data
2020 *
2021 * Call all network notifier blocks. Parameters and return value
2022 * are as for raw_notifier_call_chain().
2023 */
2024
2025static int call_netdevice_notifiers_info(unsigned long val,
2026 struct netdev_notifier_info *info)
2027{
2028 struct net *net = dev_net(info->dev);
2029 int ret;
2030
2031 ASSERT_RTNL();
2032
2033 /* Run per-netns notifier block chain first, then run the global one.
2034 * Hopefully, one day, the global one is going to be removed after
2035 * all notifier block registrators get converted to be per-netns.
2036 */
2037 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 if (ret & NOTIFY_STOP_MASK)
2039 return ret;
2040 return raw_notifier_call_chain(&netdev_chain, val, info);
2041}
2042
2043static int call_netdevice_notifiers_extack(unsigned long val,
2044 struct net_device *dev,
2045 struct netlink_ext_ack *extack)
2046{
2047 struct netdev_notifier_info info = {
2048 .dev = dev,
2049 .extack = extack,
2050 };
2051
2052 return call_netdevice_notifiers_info(val, &info);
2053}
2054
2055/**
2056 * call_netdevice_notifiers - call all network notifier blocks
2057 * @val: value passed unmodified to notifier function
2058 * @dev: net_device pointer passed unmodified to notifier function
2059 *
2060 * Call all network notifier blocks. Parameters and return value
2061 * are as for raw_notifier_call_chain().
2062 */
2063
2064int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2065{
2066 return call_netdevice_notifiers_extack(val, dev, NULL);
2067}
2068EXPORT_SYMBOL(call_netdevice_notifiers);
2069
2070/**
2071 * call_netdevice_notifiers_mtu - call all network notifier blocks
2072 * @val: value passed unmodified to notifier function
2073 * @dev: net_device pointer passed unmodified to notifier function
2074 * @arg: additional u32 argument passed to the notifier function
2075 *
2076 * Call all network notifier blocks. Parameters and return value
2077 * are as for raw_notifier_call_chain().
2078 */
2079static int call_netdevice_notifiers_mtu(unsigned long val,
2080 struct net_device *dev, u32 arg)
2081{
2082 struct netdev_notifier_info_ext info = {
2083 .info.dev = dev,
2084 .ext.mtu = arg,
2085 };
2086
2087 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088
2089 return call_netdevice_notifiers_info(val, &info.info);
2090}
2091
2092#ifdef CONFIG_NET_INGRESS
2093static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2094
2095void net_inc_ingress_queue(void)
2096{
2097 static_branch_inc(&ingress_needed_key);
2098}
2099EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100
2101void net_dec_ingress_queue(void)
2102{
2103 static_branch_dec(&ingress_needed_key);
2104}
2105EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106#endif
2107
2108#ifdef CONFIG_NET_EGRESS
2109static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2110
2111void net_inc_egress_queue(void)
2112{
2113 static_branch_inc(&egress_needed_key);
2114}
2115EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116
2117void net_dec_egress_queue(void)
2118{
2119 static_branch_dec(&egress_needed_key);
2120}
2121EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122#endif
2123
2124static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2125#ifdef CONFIG_JUMP_LABEL
2126static atomic_t netstamp_needed_deferred;
2127static atomic_t netstamp_wanted;
2128static void netstamp_clear(struct work_struct *work)
2129{
2130 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2131 int wanted;
2132
2133 wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 if (wanted > 0)
2135 static_branch_enable(&netstamp_needed_key);
2136 else
2137 static_branch_disable(&netstamp_needed_key);
2138}
2139static DECLARE_WORK(netstamp_work, netstamp_clear);
2140#endif
2141
2142void net_enable_timestamp(void)
2143{
2144#ifdef CONFIG_JUMP_LABEL
2145 int wanted;
2146
2147 while (1) {
2148 wanted = atomic_read(&netstamp_wanted);
2149 if (wanted <= 0)
2150 break;
2151 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 return;
2153 }
2154 atomic_inc(&netstamp_needed_deferred);
2155 schedule_work(&netstamp_work);
2156#else
2157 static_branch_inc(&netstamp_needed_key);
2158#endif
2159}
2160EXPORT_SYMBOL(net_enable_timestamp);
2161
2162void net_disable_timestamp(void)
2163{
2164#ifdef CONFIG_JUMP_LABEL
2165 int wanted;
2166
2167 while (1) {
2168 wanted = atomic_read(&netstamp_wanted);
2169 if (wanted <= 1)
2170 break;
2171 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 return;
2173 }
2174 atomic_dec(&netstamp_needed_deferred);
2175 schedule_work(&netstamp_work);
2176#else
2177 static_branch_dec(&netstamp_needed_key);
2178#endif
2179}
2180EXPORT_SYMBOL(net_disable_timestamp);
2181
2182static inline void net_timestamp_set(struct sk_buff *skb)
2183{
2184 skb->tstamp = 0;
2185 if (static_branch_unlikely(&netstamp_needed_key))
2186 __net_timestamp(skb);
2187}
2188
2189#define net_timestamp_check(COND, SKB) \
2190 if (static_branch_unlikely(&netstamp_needed_key)) { \
2191 if ((COND) && !(SKB)->tstamp) \
2192 __net_timestamp(SKB); \
2193 } \
2194
2195bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2196{
2197 unsigned int len;
2198
2199 if (!(dev->flags & IFF_UP))
2200 return false;
2201
2202 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 if (skb->len <= len)
2204 return true;
2205
2206 /* if TSO is enabled, we don't care about the length as the packet
2207 * could be forwarded without being segmented before
2208 */
2209 if (skb_is_gso(skb))
2210 return true;
2211
2212 return false;
2213}
2214EXPORT_SYMBOL_GPL(is_skb_forwardable);
2215
2216int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217{
2218 int ret = ____dev_forward_skb(dev, skb);
2219
2220 if (likely(!ret)) {
2221 skb->protocol = eth_type_trans(skb, dev);
2222 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223 }
2224
2225 return ret;
2226}
2227EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228
2229/**
2230 * dev_forward_skb - loopback an skb to another netif
2231 *
2232 * @dev: destination network device
2233 * @skb: buffer to forward
2234 *
2235 * return values:
2236 * NET_RX_SUCCESS (no congestion)
2237 * NET_RX_DROP (packet was dropped, but freed)
2238 *
2239 * dev_forward_skb can be used for injecting an skb from the
2240 * start_xmit function of one device into the receive queue
2241 * of another device.
2242 *
2243 * The receiving device may be in another namespace, so
2244 * we have to clear all information in the skb that could
2245 * impact namespace isolation.
2246 */
2247int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248{
2249 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2250}
2251EXPORT_SYMBOL_GPL(dev_forward_skb);
2252
2253static inline int deliver_skb(struct sk_buff *skb,
2254 struct packet_type *pt_prev,
2255 struct net_device *orig_dev)
2256{
2257 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2258 return -ENOMEM;
2259 refcount_inc(&skb->users);
2260 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261}
2262
2263static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 struct packet_type **pt,
2265 struct net_device *orig_dev,
2266 __be16 type,
2267 struct list_head *ptype_list)
2268{
2269 struct packet_type *ptype, *pt_prev = *pt;
2270
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->type != type)
2273 continue;
2274 if (pt_prev)
2275 deliver_skb(skb, pt_prev, orig_dev);
2276 pt_prev = ptype;
2277 }
2278 *pt = pt_prev;
2279}
2280
2281static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282{
2283 if (!ptype->af_packet_priv || !skb->sk)
2284 return false;
2285
2286 if (ptype->id_match)
2287 return ptype->id_match(ptype, skb->sk);
2288 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 return true;
2290
2291 return false;
2292}
2293
2294/**
2295 * dev_nit_active - return true if any network interface taps are in use
2296 *
2297 * @dev: network device to check for the presence of taps
2298 */
2299bool dev_nit_active(struct net_device *dev)
2300{
2301 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302}
2303EXPORT_SYMBOL_GPL(dev_nit_active);
2304
2305/*
2306 * Support routine. Sends outgoing frames to any network
2307 * taps currently in use.
2308 */
2309
2310void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2311{
2312 struct packet_type *ptype;
2313 struct sk_buff *skb2 = NULL;
2314 struct packet_type *pt_prev = NULL;
2315 struct list_head *ptype_list = &ptype_all;
2316
2317 rcu_read_lock();
2318again:
2319 list_for_each_entry_rcu(ptype, ptype_list, list) {
2320 if (ptype->ignore_outgoing)
2321 continue;
2322
2323 /* Never send packets back to the socket
2324 * they originated from - MvS (miquels@drinkel.ow.org)
2325 */
2326 if (skb_loop_sk(ptype, skb))
2327 continue;
2328
2329 if (pt_prev) {
2330 deliver_skb(skb2, pt_prev, skb->dev);
2331 pt_prev = ptype;
2332 continue;
2333 }
2334
2335 /* need to clone skb, done only once */
2336 skb2 = skb_clone(skb, GFP_ATOMIC);
2337 if (!skb2)
2338 goto out_unlock;
2339
2340 net_timestamp_set(skb2);
2341
2342 /* skb->nh should be correctly
2343 * set by sender, so that the second statement is
2344 * just protection against buggy protocols.
2345 */
2346 skb_reset_mac_header(skb2);
2347
2348 if (skb_network_header(skb2) < skb2->data ||
2349 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 ntohs(skb2->protocol),
2352 dev->name);
2353 skb_reset_network_header(skb2);
2354 }
2355
2356 skb2->transport_header = skb2->network_header;
2357 skb2->pkt_type = PACKET_OUTGOING;
2358 pt_prev = ptype;
2359 }
2360
2361 if (ptype_list == &ptype_all) {
2362 ptype_list = &dev->ptype_all;
2363 goto again;
2364 }
2365out_unlock:
2366 if (pt_prev) {
2367 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 else
2370 kfree_skb(skb2);
2371 }
2372 rcu_read_unlock();
2373}
2374EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2375
2376/**
2377 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2378 * @dev: Network device
2379 * @txq: number of queues available
2380 *
2381 * If real_num_tx_queues is changed the tc mappings may no longer be
2382 * valid. To resolve this verify the tc mapping remains valid and if
2383 * not NULL the mapping. With no priorities mapping to this
2384 * offset/count pair it will no longer be used. In the worst case TC0
2385 * is invalid nothing can be done so disable priority mappings. If is
2386 * expected that drivers will fix this mapping if they can before
2387 * calling netif_set_real_num_tx_queues.
2388 */
2389static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2390{
2391 int i;
2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393
2394 /* If TC0 is invalidated disable TC mapping */
2395 if (tc->offset + tc->count > txq) {
2396 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2397 dev->num_tc = 0;
2398 return;
2399 }
2400
2401 /* Invalidated prio to tc mappings set to TC0 */
2402 for (i = 1; i < TC_BITMASK + 1; i++) {
2403 int q = netdev_get_prio_tc_map(dev, i);
2404
2405 tc = &dev->tc_to_txq[q];
2406 if (tc->offset + tc->count > txq) {
2407 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 i, q);
2409 netdev_set_prio_tc_map(dev, i, 0);
2410 }
2411 }
2412}
2413
2414int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415{
2416 if (dev->num_tc) {
2417 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 int i;
2419
2420 /* walk through the TCs and see if it falls into any of them */
2421 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 if ((txq - tc->offset) < tc->count)
2423 return i;
2424 }
2425
2426 /* didn't find it, just return -1 to indicate no match */
2427 return -1;
2428 }
2429
2430 return 0;
2431}
2432EXPORT_SYMBOL(netdev_txq_to_tc);
2433
2434#ifdef CONFIG_XPS
2435struct static_key xps_needed __read_mostly;
2436EXPORT_SYMBOL(xps_needed);
2437struct static_key xps_rxqs_needed __read_mostly;
2438EXPORT_SYMBOL(xps_rxqs_needed);
2439static DEFINE_MUTEX(xps_map_mutex);
2440#define xmap_dereference(P) \
2441 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442
2443static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 int tci, u16 index)
2445{
2446 struct xps_map *map = NULL;
2447 int pos;
2448
2449 if (dev_maps)
2450 map = xmap_dereference(dev_maps->attr_map[tci]);
2451 if (!map)
2452 return false;
2453
2454 for (pos = map->len; pos--;) {
2455 if (map->queues[pos] != index)
2456 continue;
2457
2458 if (map->len > 1) {
2459 map->queues[pos] = map->queues[--map->len];
2460 break;
2461 }
2462
2463 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2464 kfree_rcu(map, rcu);
2465 return false;
2466 }
2467
2468 return true;
2469}
2470
2471static bool remove_xps_queue_cpu(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 int cpu, u16 offset, u16 count)
2474{
2475 int num_tc = dev->num_tc ? : 1;
2476 bool active = false;
2477 int tci;
2478
2479 for (tci = cpu * num_tc; num_tc--; tci++) {
2480 int i, j;
2481
2482 for (i = count, j = offset; i--; j++) {
2483 if (!remove_xps_queue(dev_maps, tci, j))
2484 break;
2485 }
2486
2487 active |= i < 0;
2488 }
2489
2490 return active;
2491}
2492
2493static void reset_xps_maps(struct net_device *dev,
2494 struct xps_dev_maps *dev_maps,
2495 bool is_rxqs_map)
2496{
2497 if (is_rxqs_map) {
2498 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 } else {
2501 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502 }
2503 static_key_slow_dec_cpuslocked(&xps_needed);
2504 kfree_rcu(dev_maps, rcu);
2505}
2506
2507static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 u16 offset, u16 count, bool is_rxqs_map)
2510{
2511 bool active = false;
2512 int i, j;
2513
2514 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 j < nr_ids;)
2516 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 count);
2518 if (!active)
2519 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2520
2521 if (!is_rxqs_map) {
2522 for (i = offset + (count - 1); count--; i--) {
2523 netdev_queue_numa_node_write(
2524 netdev_get_tx_queue(dev, i),
2525 NUMA_NO_NODE);
2526 }
2527 }
2528}
2529
2530static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 u16 count)
2532{
2533 const unsigned long *possible_mask = NULL;
2534 struct xps_dev_maps *dev_maps;
2535 unsigned int nr_ids;
2536
2537 if (!static_key_false(&xps_needed))
2538 return;
2539
2540 cpus_read_lock();
2541 mutex_lock(&xps_map_mutex);
2542
2543 if (static_key_false(&xps_rxqs_needed)) {
2544 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 if (dev_maps) {
2546 nr_ids = dev->num_rx_queues;
2547 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 offset, count, true);
2549 }
2550 }
2551
2552 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 if (!dev_maps)
2554 goto out_no_maps;
2555
2556 if (num_possible_cpus() > 1)
2557 possible_mask = cpumask_bits(cpu_possible_mask);
2558 nr_ids = nr_cpu_ids;
2559 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 false);
2561
2562out_no_maps:
2563 mutex_unlock(&xps_map_mutex);
2564 cpus_read_unlock();
2565}
2566
2567static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568{
2569 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570}
2571
2572static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 u16 index, bool is_rxqs_map)
2574{
2575 struct xps_map *new_map;
2576 int alloc_len = XPS_MIN_MAP_ALLOC;
2577 int i, pos;
2578
2579 for (pos = 0; map && pos < map->len; pos++) {
2580 if (map->queues[pos] != index)
2581 continue;
2582 return map;
2583 }
2584
2585 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2586 if (map) {
2587 if (pos < map->alloc_len)
2588 return map;
2589
2590 alloc_len = map->alloc_len * 2;
2591 }
2592
2593 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 * map
2595 */
2596 if (is_rxqs_map)
2597 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 else
2599 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 cpu_to_node(attr_index));
2601 if (!new_map)
2602 return NULL;
2603
2604 for (i = 0; i < pos; i++)
2605 new_map->queues[i] = map->queues[i];
2606 new_map->alloc_len = alloc_len;
2607 new_map->len = pos;
2608
2609 return new_map;
2610}
2611
2612/* Must be called under cpus_read_lock */
2613int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 u16 index, bool is_rxqs_map)
2615{
2616 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2617 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2618 int i, j, tci, numa_node_id = -2;
2619 int maps_sz, num_tc = 1, tc = 0;
2620 struct xps_map *map, *new_map;
2621 bool active = false;
2622 unsigned int nr_ids;
2623
2624 if (dev->num_tc) {
2625 /* Do not allow XPS on subordinate device directly */
2626 num_tc = dev->num_tc;
2627 if (num_tc < 0)
2628 return -EINVAL;
2629
2630 /* If queue belongs to subordinate dev use its map */
2631 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632
2633 tc = netdev_txq_to_tc(dev, index);
2634 if (tc < 0)
2635 return -EINVAL;
2636 }
2637
2638 mutex_lock(&xps_map_mutex);
2639 if (is_rxqs_map) {
2640 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 nr_ids = dev->num_rx_queues;
2643 } else {
2644 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 if (num_possible_cpus() > 1) {
2646 online_mask = cpumask_bits(cpu_online_mask);
2647 possible_mask = cpumask_bits(cpu_possible_mask);
2648 }
2649 dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 nr_ids = nr_cpu_ids;
2651 }
2652
2653 if (maps_sz < L1_CACHE_BYTES)
2654 maps_sz = L1_CACHE_BYTES;
2655
2656 /* allocate memory for queue storage */
2657 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 j < nr_ids;) {
2659 if (!new_dev_maps)
2660 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2661 if (!new_dev_maps) {
2662 mutex_unlock(&xps_map_mutex);
2663 return -ENOMEM;
2664 }
2665
2666 tci = j * num_tc + tc;
2667 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2668 NULL;
2669
2670 map = expand_xps_map(map, j, index, is_rxqs_map);
2671 if (!map)
2672 goto error;
2673
2674 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2675 }
2676
2677 if (!new_dev_maps)
2678 goto out_no_new_maps;
2679
2680 if (!dev_maps) {
2681 /* Increment static keys at most once per type */
2682 static_key_slow_inc_cpuslocked(&xps_needed);
2683 if (is_rxqs_map)
2684 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685 }
2686
2687 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 j < nr_ids;) {
2689 /* copy maps belonging to foreign traffic classes */
2690 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2691 /* fill in the new device map from the old device map */
2692 map = xmap_dereference(dev_maps->attr_map[tci]);
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 }
2695
2696 /* We need to explicitly update tci as prevous loop
2697 * could break out early if dev_maps is NULL.
2698 */
2699 tci = j * num_tc + tc;
2700
2701 if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 netif_attr_test_online(j, online_mask, nr_ids)) {
2703 /* add tx-queue to CPU/rx-queue maps */
2704 int pos = 0;
2705
2706 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2707 while ((pos < map->len) && (map->queues[pos] != index))
2708 pos++;
2709
2710 if (pos == map->len)
2711 map->queues[map->len++] = index;
2712#ifdef CONFIG_NUMA
2713 if (!is_rxqs_map) {
2714 if (numa_node_id == -2)
2715 numa_node_id = cpu_to_node(j);
2716 else if (numa_node_id != cpu_to_node(j))
2717 numa_node_id = -1;
2718 }
2719#endif
2720 } else if (dev_maps) {
2721 /* fill in the new device map from the old device map */
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2724 }
2725
2726 /* copy maps belonging to foreign traffic classes */
2727 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 /* fill in the new device map from the old device map */
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 }
2732 }
2733
2734 if (is_rxqs_map)
2735 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 else
2737 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2738
2739 /* Cleanup old maps */
2740 if (!dev_maps)
2741 goto out_no_old_maps;
2742
2743 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 j < nr_ids;) {
2745 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 map = xmap_dereference(dev_maps->attr_map[tci]);
2748 if (map && map != new_map)
2749 kfree_rcu(map, rcu);
2750 }
2751 }
2752
2753 kfree_rcu(dev_maps, rcu);
2754
2755out_no_old_maps:
2756 dev_maps = new_dev_maps;
2757 active = true;
2758
2759out_no_new_maps:
2760 if (!is_rxqs_map) {
2761 /* update Tx queue numa node */
2762 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 (numa_node_id >= 0) ?
2764 numa_node_id : NUMA_NO_NODE);
2765 }
2766
2767 if (!dev_maps)
2768 goto out_no_maps;
2769
2770 /* removes tx-queue from unused CPUs/rx-queues */
2771 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 j < nr_ids;) {
2773 for (i = tc, tci = j * num_tc; i--; tci++)
2774 active |= remove_xps_queue(dev_maps, tci, index);
2775 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 !netif_attr_test_online(j, online_mask, nr_ids))
2777 active |= remove_xps_queue(dev_maps, tci, index);
2778 for (i = num_tc - tc, tci++; --i; tci++)
2779 active |= remove_xps_queue(dev_maps, tci, index);
2780 }
2781
2782 /* free map if not active */
2783 if (!active)
2784 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2785
2786out_no_maps:
2787 mutex_unlock(&xps_map_mutex);
2788
2789 return 0;
2790error:
2791 /* remove any maps that we added */
2792 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 j < nr_ids;) {
2794 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2796 map = dev_maps ?
2797 xmap_dereference(dev_maps->attr_map[tci]) :
2798 NULL;
2799 if (new_map && new_map != map)
2800 kfree(new_map);
2801 }
2802 }
2803
2804 mutex_unlock(&xps_map_mutex);
2805
2806 kfree(new_dev_maps);
2807 return -ENOMEM;
2808}
2809EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2810
2811int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 u16 index)
2813{
2814 int ret;
2815
2816 cpus_read_lock();
2817 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 cpus_read_unlock();
2819
2820 return ret;
2821}
2822EXPORT_SYMBOL(netif_set_xps_queue);
2823
2824#endif
2825static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826{
2827 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828
2829 /* Unbind any subordinate channels */
2830 while (txq-- != &dev->_tx[0]) {
2831 if (txq->sb_dev)
2832 netdev_unbind_sb_channel(dev, txq->sb_dev);
2833 }
2834}
2835
2836void netdev_reset_tc(struct net_device *dev)
2837{
2838#ifdef CONFIG_XPS
2839 netif_reset_xps_queues_gt(dev, 0);
2840#endif
2841 netdev_unbind_all_sb_channels(dev);
2842
2843 /* Reset TC configuration of device */
2844 dev->num_tc = 0;
2845 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847}
2848EXPORT_SYMBOL(netdev_reset_tc);
2849
2850int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851{
2852 if (tc >= dev->num_tc)
2853 return -EINVAL;
2854
2855#ifdef CONFIG_XPS
2856 netif_reset_xps_queues(dev, offset, count);
2857#endif
2858 dev->tc_to_txq[tc].count = count;
2859 dev->tc_to_txq[tc].offset = offset;
2860 return 0;
2861}
2862EXPORT_SYMBOL(netdev_set_tc_queue);
2863
2864int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865{
2866 if (num_tc > TC_MAX_QUEUE)
2867 return -EINVAL;
2868
2869#ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871#endif
2872 netdev_unbind_all_sb_channels(dev);
2873
2874 dev->num_tc = num_tc;
2875 return 0;
2876}
2877EXPORT_SYMBOL(netdev_set_num_tc);
2878
2879void netdev_unbind_sb_channel(struct net_device *dev,
2880 struct net_device *sb_dev)
2881{
2882 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883
2884#ifdef CONFIG_XPS
2885 netif_reset_xps_queues_gt(sb_dev, 0);
2886#endif
2887 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889
2890 while (txq-- != &dev->_tx[0]) {
2891 if (txq->sb_dev == sb_dev)
2892 txq->sb_dev = NULL;
2893 }
2894}
2895EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896
2897int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 struct net_device *sb_dev,
2899 u8 tc, u16 count, u16 offset)
2900{
2901 /* Make certain the sb_dev and dev are already configured */
2902 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 return -EINVAL;
2904
2905 /* We cannot hand out queues we don't have */
2906 if ((offset + count) > dev->real_num_tx_queues)
2907 return -EINVAL;
2908
2909 /* Record the mapping */
2910 sb_dev->tc_to_txq[tc].count = count;
2911 sb_dev->tc_to_txq[tc].offset = offset;
2912
2913 /* Provide a way for Tx queue to find the tc_to_txq map or
2914 * XPS map for itself.
2915 */
2916 while (count--)
2917 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918
2919 return 0;
2920}
2921EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922
2923int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924{
2925 /* Do not use a multiqueue device to represent a subordinate channel */
2926 if (netif_is_multiqueue(dev))
2927 return -ENODEV;
2928
2929 /* We allow channels 1 - 32767 to be used for subordinate channels.
2930 * Channel 0 is meant to be "native" mode and used only to represent
2931 * the main root device. We allow writing 0 to reset the device back
2932 * to normal mode after being used as a subordinate channel.
2933 */
2934 if (channel > S16_MAX)
2935 return -EINVAL;
2936
2937 dev->num_tc = -channel;
2938
2939 return 0;
2940}
2941EXPORT_SYMBOL(netdev_set_sb_channel);
2942
2943/*
2944 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2945 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2946 */
2947int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2948{
2949 bool disabling;
2950 int rc;
2951
2952 disabling = txq < dev->real_num_tx_queues;
2953
2954 if (txq < 1 || txq > dev->num_tx_queues)
2955 return -EINVAL;
2956
2957 if (dev->reg_state == NETREG_REGISTERED ||
2958 dev->reg_state == NETREG_UNREGISTERING) {
2959 ASSERT_RTNL();
2960
2961 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 txq);
2963 if (rc)
2964 return rc;
2965
2966 if (dev->num_tc)
2967 netif_setup_tc(dev, txq);
2968
2969 dev->real_num_tx_queues = txq;
2970
2971 if (disabling) {
2972 synchronize_net();
2973 qdisc_reset_all_tx_gt(dev, txq);
2974#ifdef CONFIG_XPS
2975 netif_reset_xps_queues_gt(dev, txq);
2976#endif
2977 }
2978 } else {
2979 dev->real_num_tx_queues = txq;
2980 }
2981
2982 return 0;
2983}
2984EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2985
2986#ifdef CONFIG_SYSFS
2987/**
2988 * netif_set_real_num_rx_queues - set actual number of RX queues used
2989 * @dev: Network device
2990 * @rxq: Actual number of RX queues
2991 *
2992 * This must be called either with the rtnl_lock held or before
2993 * registration of the net device. Returns 0 on success, or a
2994 * negative error code. If called before registration, it always
2995 * succeeds.
2996 */
2997int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998{
2999 int rc;
3000
3001 if (rxq < 1 || rxq > dev->num_rx_queues)
3002 return -EINVAL;
3003
3004 if (dev->reg_state == NETREG_REGISTERED) {
3005 ASSERT_RTNL();
3006
3007 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 rxq);
3009 if (rc)
3010 return rc;
3011 }
3012
3013 dev->real_num_rx_queues = rxq;
3014 return 0;
3015}
3016EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017#endif
3018
3019/**
3020 * netif_get_num_default_rss_queues - default number of RSS queues
3021 *
3022 * This routine should set an upper limit on the number of RSS queues
3023 * used by default by multiqueue devices.
3024 */
3025int netif_get_num_default_rss_queues(void)
3026{
3027 return is_kdump_kernel() ?
3028 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3029}
3030EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031
3032static void __netif_reschedule(struct Qdisc *q)
3033{
3034 struct softnet_data *sd;
3035 unsigned long flags;
3036
3037 local_irq_save(flags);
3038 sd = this_cpu_ptr(&softnet_data);
3039 q->next_sched = NULL;
3040 *sd->output_queue_tailp = q;
3041 sd->output_queue_tailp = &q->next_sched;
3042 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 local_irq_restore(flags);
3044}
3045
3046void __netif_schedule(struct Qdisc *q)
3047{
3048 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 __netif_reschedule(q);
3050}
3051EXPORT_SYMBOL(__netif_schedule);
3052
3053struct dev_kfree_skb_cb {
3054 enum skb_free_reason reason;
3055};
3056
3057static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3058{
3059 return (struct dev_kfree_skb_cb *)skb->cb;
3060}
3061
3062void netif_schedule_queue(struct netdev_queue *txq)
3063{
3064 rcu_read_lock();
3065 if (!netif_xmit_stopped(txq)) {
3066 struct Qdisc *q = rcu_dereference(txq->qdisc);
3067
3068 __netif_schedule(q);
3069 }
3070 rcu_read_unlock();
3071}
3072EXPORT_SYMBOL(netif_schedule_queue);
3073
3074void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075{
3076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 struct Qdisc *q;
3078
3079 rcu_read_lock();
3080 q = rcu_dereference(dev_queue->qdisc);
3081 __netif_schedule(q);
3082 rcu_read_unlock();
3083 }
3084}
3085EXPORT_SYMBOL(netif_tx_wake_queue);
3086
3087void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3088{
3089 unsigned long flags;
3090
3091 if (unlikely(!skb))
3092 return;
3093
3094 if (likely(refcount_read(&skb->users) == 1)) {
3095 smp_rmb();
3096 refcount_set(&skb->users, 0);
3097 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3098 return;
3099 }
3100 get_kfree_skb_cb(skb)->reason = reason;
3101 local_irq_save(flags);
3102 skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 __this_cpu_write(softnet_data.completion_queue, skb);
3104 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 local_irq_restore(flags);
3106}
3107EXPORT_SYMBOL(__dev_kfree_skb_irq);
3108
3109void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3110{
3111 if (in_irq() || irqs_disabled())
3112 __dev_kfree_skb_irq(skb, reason);
3113 else
3114 dev_kfree_skb(skb);
3115}
3116EXPORT_SYMBOL(__dev_kfree_skb_any);
3117
3118
3119/**
3120 * netif_device_detach - mark device as removed
3121 * @dev: network device
3122 *
3123 * Mark device as removed from system and therefore no longer available.
3124 */
3125void netif_device_detach(struct net_device *dev)
3126{
3127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 netif_running(dev)) {
3129 netif_tx_stop_all_queues(dev);
3130 }
3131}
3132EXPORT_SYMBOL(netif_device_detach);
3133
3134/**
3135 * netif_device_attach - mark device as attached
3136 * @dev: network device
3137 *
3138 * Mark device as attached from system and restart if needed.
3139 */
3140void netif_device_attach(struct net_device *dev)
3141{
3142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 netif_running(dev)) {
3144 netif_tx_wake_all_queues(dev);
3145 __netdev_watchdog_up(dev);
3146 }
3147}
3148EXPORT_SYMBOL(netif_device_attach);
3149
3150/*
3151 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152 * to be used as a distribution range.
3153 */
3154static u16 skb_tx_hash(const struct net_device *dev,
3155 const struct net_device *sb_dev,
3156 struct sk_buff *skb)
3157{
3158 u32 hash;
3159 u16 qoffset = 0;
3160 u16 qcount = dev->real_num_tx_queues;
3161
3162 if (dev->num_tc) {
3163 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164
3165 qoffset = sb_dev->tc_to_txq[tc].offset;
3166 qcount = sb_dev->tc_to_txq[tc].count;
3167 }
3168
3169 if (skb_rx_queue_recorded(skb)) {
3170 hash = skb_get_rx_queue(skb);
3171 if (hash >= qoffset)
3172 hash -= qoffset;
3173 while (unlikely(hash >= qcount))
3174 hash -= qcount;
3175 return hash + qoffset;
3176 }
3177
3178 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179}
3180
3181static void skb_warn_bad_offload(const struct sk_buff *skb)
3182{
3183 static const netdev_features_t null_features;
3184 struct net_device *dev = skb->dev;
3185 const char *name = "";
3186
3187 if (!net_ratelimit())
3188 return;
3189
3190 if (dev) {
3191 if (dev->dev.parent)
3192 name = dev_driver_string(dev->dev.parent);
3193 else
3194 name = netdev_name(dev);
3195 }
3196 skb_dump(KERN_WARNING, skb, false);
3197 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3198 name, dev ? &dev->features : &null_features,
3199 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3200}
3201
3202/*
3203 * Invalidate hardware checksum when packet is to be mangled, and
3204 * complete checksum manually on outgoing path.
3205 */
3206int skb_checksum_help(struct sk_buff *skb)
3207{
3208 __wsum csum;
3209 int ret = 0, offset;
3210
3211 if (skb->ip_summed == CHECKSUM_COMPLETE)
3212 goto out_set_summed;
3213
3214 if (unlikely(skb_is_gso(skb))) {
3215 skb_warn_bad_offload(skb);
3216 return -EINVAL;
3217 }
3218
3219 /* Before computing a checksum, we should make sure no frag could
3220 * be modified by an external entity : checksum could be wrong.
3221 */
3222 if (skb_has_shared_frag(skb)) {
3223 ret = __skb_linearize(skb);
3224 if (ret)
3225 goto out;
3226 }
3227
3228 offset = skb_checksum_start_offset(skb);
3229 BUG_ON(offset >= skb_headlen(skb));
3230 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231
3232 offset += skb->csum_offset;
3233 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234
3235 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 if (ret)
3237 goto out;
3238
3239 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3240out_set_summed:
3241 skb->ip_summed = CHECKSUM_NONE;
3242out:
3243 return ret;
3244}
3245EXPORT_SYMBOL(skb_checksum_help);
3246
3247int skb_crc32c_csum_help(struct sk_buff *skb)
3248{
3249 __le32 crc32c_csum;
3250 int ret = 0, offset, start;
3251
3252 if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 goto out;
3254
3255 if (unlikely(skb_is_gso(skb)))
3256 goto out;
3257
3258 /* Before computing a checksum, we should make sure no frag could
3259 * be modified by an external entity : checksum could be wrong.
3260 */
3261 if (unlikely(skb_has_shared_frag(skb))) {
3262 ret = __skb_linearize(skb);
3263 if (ret)
3264 goto out;
3265 }
3266 start = skb_checksum_start_offset(skb);
3267 offset = start + offsetof(struct sctphdr, checksum);
3268 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 ret = -EINVAL;
3270 goto out;
3271 }
3272
3273 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 if (ret)
3275 goto out;
3276
3277 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 skb->len - start, ~(__u32)0,
3279 crc32c_csum_stub));
3280 *(__le32 *)(skb->data + offset) = crc32c_csum;
3281 skb->ip_summed = CHECKSUM_NONE;
3282 skb->csum_not_inet = 0;
3283out:
3284 return ret;
3285}
3286
3287__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3288{
3289 __be16 type = skb->protocol;
3290
3291 /* Tunnel gso handlers can set protocol to ethernet. */
3292 if (type == htons(ETH_P_TEB)) {
3293 struct ethhdr *eth;
3294
3295 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 return 0;
3297
3298 eth = (struct ethhdr *)skb->data;
3299 type = eth->h_proto;
3300 }
3301
3302 return __vlan_get_protocol(skb, type, depth);
3303}
3304
3305/**
3306 * skb_mac_gso_segment - mac layer segmentation handler.
3307 * @skb: buffer to segment
3308 * @features: features for the output path (see dev->features)
3309 */
3310struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 netdev_features_t features)
3312{
3313 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 struct packet_offload *ptype;
3315 int vlan_depth = skb->mac_len;
3316 __be16 type = skb_network_protocol(skb, &vlan_depth);
3317
3318 if (unlikely(!type))
3319 return ERR_PTR(-EINVAL);
3320
3321 __skb_pull(skb, vlan_depth);
3322
3323 rcu_read_lock();
3324 list_for_each_entry_rcu(ptype, &offload_base, list) {
3325 if (ptype->type == type && ptype->callbacks.gso_segment) {
3326 segs = ptype->callbacks.gso_segment(skb, features);
3327 break;
3328 }
3329 }
3330 rcu_read_unlock();
3331
3332 __skb_push(skb, skb->data - skb_mac_header(skb));
3333
3334 return segs;
3335}
3336EXPORT_SYMBOL(skb_mac_gso_segment);
3337
3338
3339/* openvswitch calls this on rx path, so we need a different check.
3340 */
3341static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342{
3343 if (tx_path)
3344 return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 skb->ip_summed != CHECKSUM_UNNECESSARY;
3346
3347 return skb->ip_summed == CHECKSUM_NONE;
3348}
3349
3350/**
3351 * __skb_gso_segment - Perform segmentation on skb.
3352 * @skb: buffer to segment
3353 * @features: features for the output path (see dev->features)
3354 * @tx_path: whether it is called in TX path
3355 *
3356 * This function segments the given skb and returns a list of segments.
3357 *
3358 * It may return NULL if the skb requires no segmentation. This is
3359 * only possible when GSO is used for verifying header integrity.
3360 *
3361 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3362 */
3363struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 netdev_features_t features, bool tx_path)
3365{
3366 struct sk_buff *segs;
3367
3368 if (unlikely(skb_needs_check(skb, tx_path))) {
3369 int err;
3370
3371 /* We're going to init ->check field in TCP or UDP header */
3372 err = skb_cow_head(skb, 0);
3373 if (err < 0)
3374 return ERR_PTR(err);
3375 }
3376
3377 /* Only report GSO partial support if it will enable us to
3378 * support segmentation on this frame without needing additional
3379 * work.
3380 */
3381 if (features & NETIF_F_GSO_PARTIAL) {
3382 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 struct net_device *dev = skb->dev;
3384
3385 partial_features |= dev->features & dev->gso_partial_features;
3386 if (!skb_gso_ok(skb, features | partial_features))
3387 features &= ~NETIF_F_GSO_PARTIAL;
3388 }
3389
3390 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3391 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392
3393 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3394 SKB_GSO_CB(skb)->encap_level = 0;
3395
3396 skb_reset_mac_header(skb);
3397 skb_reset_mac_len(skb);
3398
3399 segs = skb_mac_gso_segment(skb, features);
3400
3401 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3402 skb_warn_bad_offload(skb);
3403
3404 return segs;
3405}
3406EXPORT_SYMBOL(__skb_gso_segment);
3407
3408/* Take action when hardware reception checksum errors are detected. */
3409#ifdef CONFIG_BUG
3410void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3411{
3412 if (net_ratelimit()) {
3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414 skb_dump(KERN_ERR, skb, true);
3415 dump_stack();
3416 }
3417}
3418EXPORT_SYMBOL(netdev_rx_csum_fault);
3419#endif
3420
3421/* XXX: check that highmem exists at all on the given machine. */
3422static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423{
3424#ifdef CONFIG_HIGHMEM
3425 int i;
3426
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3433 }
3434 }
3435#endif
3436 return 0;
3437}
3438
3439/* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
3442#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3443static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446{
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451}
3452#else
3453static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456{
3457 return features;
3458}
3459#endif
3460
3461static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3463{
3464 __be16 type;
3465
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3468
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 }
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3475
3476 return features;
3477}
3478
3479netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482{
3483 return features;
3484}
3485EXPORT_SYMBOL(passthru_features_check);
3486
3487static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 return vlan_features_check(skb, features);
3492}
3493
3494static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497{
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > dev->gso_max_segs)
3501 return features & ~NETIF_F_GSO_MASK;
3502
3503 if (!skb_shinfo(skb)->gso_type) {
3504 skb_warn_bad_offload(skb);
3505 return features & ~NETIF_F_GSO_MASK;
3506 }
3507
3508 /* Support for GSO partial features requires software
3509 * intervention before we can actually process the packets
3510 * so we need to strip support for any partial features now
3511 * and we can pull them back in after we have partially
3512 * segmented the frame.
3513 */
3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 features &= ~dev->gso_partial_features;
3516
3517 /* Make sure to clear the IPv4 ID mangling feature if the
3518 * IPv4 header has the potential to be fragmented.
3519 */
3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 struct iphdr *iph = skb->encapsulation ?
3522 inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524 if (!(iph->frag_off & htons(IP_DF)))
3525 features &= ~NETIF_F_TSO_MANGLEID;
3526 }
3527
3528 return features;
3529}
3530
3531netdev_features_t netif_skb_features(struct sk_buff *skb)
3532{
3533 struct net_device *dev = skb->dev;
3534 netdev_features_t features = dev->features;
3535
3536 if (skb_is_gso(skb))
3537 features = gso_features_check(skb, dev, features);
3538
3539 /* If encapsulation offload request, verify we are testing
3540 * hardware encapsulation features instead of standard
3541 * features for the netdev
3542 */
3543 if (skb->encapsulation)
3544 features &= dev->hw_enc_features;
3545
3546 if (skb_vlan_tagged(skb))
3547 features = netdev_intersect_features(features,
3548 dev->vlan_features |
3549 NETIF_F_HW_VLAN_CTAG_TX |
3550 NETIF_F_HW_VLAN_STAG_TX);
3551
3552 if (dev->netdev_ops->ndo_features_check)
3553 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 features);
3555 else
3556 features &= dflt_features_check(skb, dev, features);
3557
3558 return harmonize_features(skb, features);
3559}
3560EXPORT_SYMBOL(netif_skb_features);
3561
3562static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3563 struct netdev_queue *txq, bool more)
3564{
3565 unsigned int len;
3566 int rc;
3567
3568 if (dev_nit_active(dev))
3569 dev_queue_xmit_nit(skb, dev);
3570
3571 len = skb->len;
3572 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3573 trace_net_dev_start_xmit(skb, dev);
3574 rc = netdev_start_xmit(skb, dev, txq, more);
3575 trace_net_dev_xmit(skb, rc, dev, len);
3576
3577 return rc;
3578}
3579
3580struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 struct netdev_queue *txq, int *ret)
3582{
3583 struct sk_buff *skb = first;
3584 int rc = NETDEV_TX_OK;
3585
3586 while (skb) {
3587 struct sk_buff *next = skb->next;
3588
3589 skb_mark_not_on_list(skb);
3590 rc = xmit_one(skb, dev, txq, next != NULL);
3591 if (unlikely(!dev_xmit_complete(rc))) {
3592 skb->next = next;
3593 goto out;
3594 }
3595
3596 skb = next;
3597 if (netif_tx_queue_stopped(txq) && skb) {
3598 rc = NETDEV_TX_BUSY;
3599 break;
3600 }
3601 }
3602
3603out:
3604 *ret = rc;
3605 return skb;
3606}
3607
3608static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 netdev_features_t features)
3610{
3611 if (skb_vlan_tag_present(skb) &&
3612 !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 skb = __vlan_hwaccel_push_inside(skb);
3614 return skb;
3615}
3616
3617int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 const netdev_features_t features)
3619{
3620 if (unlikely(skb->csum_not_inet))
3621 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 skb_crc32c_csum_help(skb);
3623
3624 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3625}
3626EXPORT_SYMBOL(skb_csum_hwoffload_help);
3627
3628static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3629{
3630 netdev_features_t features;
3631
3632 features = netif_skb_features(skb);
3633 skb = validate_xmit_vlan(skb, features);
3634 if (unlikely(!skb))
3635 goto out_null;
3636
3637 skb = sk_validate_xmit_skb(skb, dev);
3638 if (unlikely(!skb))
3639 goto out_null;
3640
3641 if (netif_needs_gso(skb, features)) {
3642 struct sk_buff *segs;
3643
3644 segs = skb_gso_segment(skb, features);
3645 if (IS_ERR(segs)) {
3646 goto out_kfree_skb;
3647 } else if (segs) {
3648 consume_skb(skb);
3649 skb = segs;
3650 }
3651 } else {
3652 if (skb_needs_linearize(skb, features) &&
3653 __skb_linearize(skb))
3654 goto out_kfree_skb;
3655
3656 /* If packet is not checksummed and device does not
3657 * support checksumming for this protocol, complete
3658 * checksumming here.
3659 */
3660 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 if (skb->encapsulation)
3662 skb_set_inner_transport_header(skb,
3663 skb_checksum_start_offset(skb));
3664 else
3665 skb_set_transport_header(skb,
3666 skb_checksum_start_offset(skb));
3667 if (skb_csum_hwoffload_help(skb, features))
3668 goto out_kfree_skb;
3669 }
3670 }
3671
3672 skb = validate_xmit_xfrm(skb, features, again);
3673
3674 return skb;
3675
3676out_kfree_skb:
3677 kfree_skb(skb);
3678out_null:
3679 atomic_long_inc(&dev->tx_dropped);
3680 return NULL;
3681}
3682
3683struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3684{
3685 struct sk_buff *next, *head = NULL, *tail;
3686
3687 for (; skb != NULL; skb = next) {
3688 next = skb->next;
3689 skb_mark_not_on_list(skb);
3690
3691 /* in case skb wont be segmented, point to itself */
3692 skb->prev = skb;
3693
3694 skb = validate_xmit_skb(skb, dev, again);
3695 if (!skb)
3696 continue;
3697
3698 if (!head)
3699 head = skb;
3700 else
3701 tail->next = skb;
3702 /* If skb was segmented, skb->prev points to
3703 * the last segment. If not, it still contains skb.
3704 */
3705 tail = skb->prev;
3706 }
3707 return head;
3708}
3709EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3710
3711static void qdisc_pkt_len_init(struct sk_buff *skb)
3712{
3713 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3714
3715 qdisc_skb_cb(skb)->pkt_len = skb->len;
3716
3717 /* To get more precise estimation of bytes sent on wire,
3718 * we add to pkt_len the headers size of all segments
3719 */
3720 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 unsigned int hdr_len;
3722 u16 gso_segs = shinfo->gso_segs;
3723
3724 /* mac layer + network layer */
3725 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3726
3727 /* + transport layer */
3728 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 const struct tcphdr *th;
3730 struct tcphdr _tcphdr;
3731
3732 th = skb_header_pointer(skb, skb_transport_offset(skb),
3733 sizeof(_tcphdr), &_tcphdr);
3734 if (likely(th))
3735 hdr_len += __tcp_hdrlen(th);
3736 } else {
3737 struct udphdr _udphdr;
3738
3739 if (skb_header_pointer(skb, skb_transport_offset(skb),
3740 sizeof(_udphdr), &_udphdr))
3741 hdr_len += sizeof(struct udphdr);
3742 }
3743
3744 if (shinfo->gso_type & SKB_GSO_DODGY)
3745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3746 shinfo->gso_size);
3747
3748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3749 }
3750}
3751
3752static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3753 struct net_device *dev,
3754 struct netdev_queue *txq)
3755{
3756 spinlock_t *root_lock = qdisc_lock(q);
3757 struct sk_buff *to_free = NULL;
3758 bool contended;
3759 int rc;
3760
3761 qdisc_calculate_pkt_len(skb, q);
3762
3763 if (q->flags & TCQ_F_NOLOCK) {
3764 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3765 qdisc_run(q);
3766
3767 if (unlikely(to_free))
3768 kfree_skb_list(to_free);
3769 return rc;
3770 }
3771
3772 /*
3773 * Heuristic to force contended enqueues to serialize on a
3774 * separate lock before trying to get qdisc main lock.
3775 * This permits qdisc->running owner to get the lock more
3776 * often and dequeue packets faster.
3777 */
3778 contended = qdisc_is_running(q);
3779 if (unlikely(contended))
3780 spin_lock(&q->busylock);
3781
3782 spin_lock(root_lock);
3783 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3784 __qdisc_drop(skb, &to_free);
3785 rc = NET_XMIT_DROP;
3786 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3787 qdisc_run_begin(q)) {
3788 /*
3789 * This is a work-conserving queue; there are no old skbs
3790 * waiting to be sent out; and the qdisc is not running -
3791 * xmit the skb directly.
3792 */
3793
3794 qdisc_bstats_update(q, skb);
3795
3796 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3800 }
3801 __qdisc_run(q);
3802 }
3803
3804 qdisc_run_end(q);
3805 rc = NET_XMIT_SUCCESS;
3806 } else {
3807 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3808 if (qdisc_run_begin(q)) {
3809 if (unlikely(contended)) {
3810 spin_unlock(&q->busylock);
3811 contended = false;
3812 }
3813 __qdisc_run(q);
3814 qdisc_run_end(q);
3815 }
3816 }
3817 spin_unlock(root_lock);
3818 if (unlikely(to_free))
3819 kfree_skb_list(to_free);
3820 if (unlikely(contended))
3821 spin_unlock(&q->busylock);
3822 return rc;
3823}
3824
3825#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3826static void skb_update_prio(struct sk_buff *skb)
3827{
3828 const struct netprio_map *map;
3829 const struct sock *sk;
3830 unsigned int prioidx;
3831
3832 if (skb->priority)
3833 return;
3834 map = rcu_dereference_bh(skb->dev->priomap);
3835 if (!map)
3836 return;
3837 sk = skb_to_full_sk(skb);
3838 if (!sk)
3839 return;
3840
3841 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3842
3843 if (prioidx < map->priomap_len)
3844 skb->priority = map->priomap[prioidx];
3845}
3846#else
3847#define skb_update_prio(skb)
3848#endif
3849
3850/**
3851 * dev_loopback_xmit - loop back @skb
3852 * @net: network namespace this loopback is happening in
3853 * @sk: sk needed to be a netfilter okfn
3854 * @skb: buffer to transmit
3855 */
3856int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3857{
3858 skb_reset_mac_header(skb);
3859 __skb_pull(skb, skb_network_offset(skb));
3860 skb->pkt_type = PACKET_LOOPBACK;
3861 skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 WARN_ON(!skb_dst(skb));
3863 skb_dst_force(skb);
3864 netif_rx_ni(skb);
3865 return 0;
3866}
3867EXPORT_SYMBOL(dev_loopback_xmit);
3868
3869#ifdef CONFIG_NET_EGRESS
3870static struct sk_buff *
3871sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872{
3873 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3874 struct tcf_result cl_res;
3875
3876 if (!miniq)
3877 return skb;
3878
3879 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3880 qdisc_skb_cb(skb)->mru = 0;
3881 mini_qdisc_bstats_cpu_update(miniq, skb);
3882
3883 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3884 case TC_ACT_OK:
3885 case TC_ACT_RECLASSIFY:
3886 skb->tc_index = TC_H_MIN(cl_res.classid);
3887 break;
3888 case TC_ACT_SHOT:
3889 mini_qdisc_qstats_cpu_drop(miniq);
3890 *ret = NET_XMIT_DROP;
3891 kfree_skb(skb);
3892 return NULL;
3893 case TC_ACT_STOLEN:
3894 case TC_ACT_QUEUED:
3895 case TC_ACT_TRAP:
3896 *ret = NET_XMIT_SUCCESS;
3897 consume_skb(skb);
3898 return NULL;
3899 case TC_ACT_REDIRECT:
3900 /* No need to push/pop skb's mac_header here on egress! */
3901 skb_do_redirect(skb);
3902 *ret = NET_XMIT_SUCCESS;
3903 return NULL;
3904 default:
3905 break;
3906 }
3907
3908 return skb;
3909}
3910#endif /* CONFIG_NET_EGRESS */
3911
3912#ifdef CONFIG_XPS
3913static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3914 struct xps_dev_maps *dev_maps, unsigned int tci)
3915{
3916 struct xps_map *map;
3917 int queue_index = -1;
3918
3919 if (dev->num_tc) {
3920 tci *= dev->num_tc;
3921 tci += netdev_get_prio_tc_map(dev, skb->priority);
3922 }
3923
3924 map = rcu_dereference(dev_maps->attr_map[tci]);
3925 if (map) {
3926 if (map->len == 1)
3927 queue_index = map->queues[0];
3928 else
3929 queue_index = map->queues[reciprocal_scale(
3930 skb_get_hash(skb), map->len)];
3931 if (unlikely(queue_index >= dev->real_num_tx_queues))
3932 queue_index = -1;
3933 }
3934 return queue_index;
3935}
3936#endif
3937
3938static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3939 struct sk_buff *skb)
3940{
3941#ifdef CONFIG_XPS
3942 struct xps_dev_maps *dev_maps;
3943 struct sock *sk = skb->sk;
3944 int queue_index = -1;
3945
3946 if (!static_key_false(&xps_needed))
3947 return -1;
3948
3949 rcu_read_lock();
3950 if (!static_key_false(&xps_rxqs_needed))
3951 goto get_cpus_map;
3952
3953 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3954 if (dev_maps) {
3955 int tci = sk_rx_queue_get(sk);
3956
3957 if (tci >= 0 && tci < dev->num_rx_queues)
3958 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3959 tci);
3960 }
3961
3962get_cpus_map:
3963 if (queue_index < 0) {
3964 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3965 if (dev_maps) {
3966 unsigned int tci = skb->sender_cpu - 1;
3967
3968 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3969 tci);
3970 }
3971 }
3972 rcu_read_unlock();
3973
3974 return queue_index;
3975#else
3976 return -1;
3977#endif
3978}
3979
3980u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
3982{
3983 return 0;
3984}
3985EXPORT_SYMBOL(dev_pick_tx_zero);
3986
3987u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3988 struct net_device *sb_dev)
3989{
3990 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3991}
3992EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3993
3994u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3995 struct net_device *sb_dev)
3996{
3997 struct sock *sk = skb->sk;
3998 int queue_index = sk_tx_queue_get(sk);
3999
4000 sb_dev = sb_dev ? : dev;
4001
4002 if (queue_index < 0 || skb->ooo_okay ||
4003 queue_index >= dev->real_num_tx_queues) {
4004 int new_index = get_xps_queue(dev, sb_dev, skb);
4005
4006 if (new_index < 0)
4007 new_index = skb_tx_hash(dev, sb_dev, skb);
4008
4009 if (queue_index != new_index && sk &&
4010 sk_fullsock(sk) &&
4011 rcu_access_pointer(sk->sk_dst_cache))
4012 sk_tx_queue_set(sk, new_index);
4013
4014 queue_index = new_index;
4015 }
4016
4017 return queue_index;
4018}
4019EXPORT_SYMBOL(netdev_pick_tx);
4020
4021struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4022 struct sk_buff *skb,
4023 struct net_device *sb_dev)
4024{
4025 int queue_index = 0;
4026
4027#ifdef CONFIG_XPS
4028 u32 sender_cpu = skb->sender_cpu - 1;
4029
4030 if (sender_cpu >= (u32)NR_CPUS)
4031 skb->sender_cpu = raw_smp_processor_id() + 1;
4032#endif
4033
4034 if (dev->real_num_tx_queues != 1) {
4035 const struct net_device_ops *ops = dev->netdev_ops;
4036
4037 if (ops->ndo_select_queue)
4038 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4039 else
4040 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4041
4042 queue_index = netdev_cap_txqueue(dev, queue_index);
4043 }
4044
4045 skb_set_queue_mapping(skb, queue_index);
4046 return netdev_get_tx_queue(dev, queue_index);
4047}
4048
4049/**
4050 * __dev_queue_xmit - transmit a buffer
4051 * @skb: buffer to transmit
4052 * @sb_dev: suboordinate device used for L2 forwarding offload
4053 *
4054 * Queue a buffer for transmission to a network device. The caller must
4055 * have set the device and priority and built the buffer before calling
4056 * this function. The function can be called from an interrupt.
4057 *
4058 * A negative errno code is returned on a failure. A success does not
4059 * guarantee the frame will be transmitted as it may be dropped due
4060 * to congestion or traffic shaping.
4061 *
4062 * -----------------------------------------------------------------------------------
4063 * I notice this method can also return errors from the queue disciplines,
4064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4065 * be positive.
4066 *
4067 * Regardless of the return value, the skb is consumed, so it is currently
4068 * difficult to retry a send to this method. (You can bump the ref count
4069 * before sending to hold a reference for retry if you are careful.)
4070 *
4071 * When calling this method, interrupts MUST be enabled. This is because
4072 * the BH enable code must have IRQs enabled so that it will not deadlock.
4073 * --BLG
4074 */
4075static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4076{
4077 struct net_device *dev = skb->dev;
4078 struct netdev_queue *txq;
4079 struct Qdisc *q;
4080 int rc = -ENOMEM;
4081 bool again = false;
4082
4083 skb_reset_mac_header(skb);
4084
4085 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4086 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4087
4088 /* Disable soft irqs for various locks below. Also
4089 * stops preemption for RCU.
4090 */
4091 rcu_read_lock_bh();
4092
4093 skb_update_prio(skb);
4094
4095 qdisc_pkt_len_init(skb);
4096#ifdef CONFIG_NET_CLS_ACT
4097 skb->tc_at_ingress = 0;
4098# ifdef CONFIG_NET_EGRESS
4099 if (static_branch_unlikely(&egress_needed_key)) {
4100 skb = sch_handle_egress(skb, &rc, dev);
4101 if (!skb)
4102 goto out;
4103 }
4104# endif
4105#endif
4106 /* If device/qdisc don't need skb->dst, release it right now while
4107 * its hot in this cpu cache.
4108 */
4109 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4110 skb_dst_drop(skb);
4111 else
4112 skb_dst_force(skb);
4113
4114 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4115 q = rcu_dereference_bh(txq->qdisc);
4116
4117 trace_net_dev_queue(skb);
4118 if (q->enqueue) {
4119 rc = __dev_xmit_skb(skb, q, dev, txq);
4120 goto out;
4121 }
4122
4123 /* The device has no queue. Common case for software devices:
4124 * loopback, all the sorts of tunnels...
4125
4126 * Really, it is unlikely that netif_tx_lock protection is necessary
4127 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4128 * counters.)
4129 * However, it is possible, that they rely on protection
4130 * made by us here.
4131
4132 * Check this and shot the lock. It is not prone from deadlocks.
4133 *Either shot noqueue qdisc, it is even simpler 8)
4134 */
4135 if (dev->flags & IFF_UP) {
4136 int cpu = smp_processor_id(); /* ok because BHs are off */
4137
4138 if (txq->xmit_lock_owner != cpu) {
4139 if (dev_xmit_recursion())
4140 goto recursion_alert;
4141
4142 skb = validate_xmit_skb(skb, dev, &again);
4143 if (!skb)
4144 goto out;
4145
4146 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4147 HARD_TX_LOCK(dev, txq, cpu);
4148
4149 if (!netif_xmit_stopped(txq)) {
4150 dev_xmit_recursion_inc();
4151 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4152 dev_xmit_recursion_dec();
4153 if (dev_xmit_complete(rc)) {
4154 HARD_TX_UNLOCK(dev, txq);
4155 goto out;
4156 }
4157 }
4158 HARD_TX_UNLOCK(dev, txq);
4159 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4160 dev->name);
4161 } else {
4162 /* Recursion is detected! It is possible,
4163 * unfortunately
4164 */
4165recursion_alert:
4166 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4167 dev->name);
4168 }
4169 }
4170
4171 rc = -ENETDOWN;
4172 rcu_read_unlock_bh();
4173
4174 atomic_long_inc(&dev->tx_dropped);
4175 kfree_skb_list(skb);
4176 return rc;
4177out:
4178 rcu_read_unlock_bh();
4179 return rc;
4180}
4181
4182int dev_queue_xmit(struct sk_buff *skb)
4183{
4184 return __dev_queue_xmit(skb, NULL);
4185}
4186EXPORT_SYMBOL(dev_queue_xmit);
4187
4188int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4189{
4190 return __dev_queue_xmit(skb, sb_dev);
4191}
4192EXPORT_SYMBOL(dev_queue_xmit_accel);
4193
4194int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4195{
4196 struct net_device *dev = skb->dev;
4197 struct sk_buff *orig_skb = skb;
4198 struct netdev_queue *txq;
4199 int ret = NETDEV_TX_BUSY;
4200 bool again = false;
4201
4202 if (unlikely(!netif_running(dev) ||
4203 !netif_carrier_ok(dev)))
4204 goto drop;
4205
4206 skb = validate_xmit_skb_list(skb, dev, &again);
4207 if (skb != orig_skb)
4208 goto drop;
4209
4210 skb_set_queue_mapping(skb, queue_id);
4211 txq = skb_get_tx_queue(dev, skb);
4212 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4213
4214 local_bh_disable();
4215
4216 dev_xmit_recursion_inc();
4217 HARD_TX_LOCK(dev, txq, smp_processor_id());
4218 if (!netif_xmit_frozen_or_drv_stopped(txq))
4219 ret = netdev_start_xmit(skb, dev, txq, false);
4220 HARD_TX_UNLOCK(dev, txq);
4221 dev_xmit_recursion_dec();
4222
4223 local_bh_enable();
4224 return ret;
4225drop:
4226 atomic_long_inc(&dev->tx_dropped);
4227 kfree_skb_list(skb);
4228 return NET_XMIT_DROP;
4229}
4230EXPORT_SYMBOL(__dev_direct_xmit);
4231
4232/*************************************************************************
4233 * Receiver routines
4234 *************************************************************************/
4235
4236int netdev_max_backlog __read_mostly = 1000;
4237EXPORT_SYMBOL(netdev_max_backlog);
4238
4239int netdev_tstamp_prequeue __read_mostly = 1;
4240int netdev_budget __read_mostly = 300;
4241/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4242unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4243int weight_p __read_mostly = 64; /* old backlog weight */
4244int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4245int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4246int dev_rx_weight __read_mostly = 64;
4247int dev_tx_weight __read_mostly = 64;
4248/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4249int gro_normal_batch __read_mostly = 8;
4250
4251/* Called with irq disabled */
4252static inline void ____napi_schedule(struct softnet_data *sd,
4253 struct napi_struct *napi)
4254{
4255 list_add_tail(&napi->poll_list, &sd->poll_list);
4256 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4257}
4258
4259#ifdef CONFIG_RPS
4260
4261/* One global table that all flow-based protocols share. */
4262struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4263EXPORT_SYMBOL(rps_sock_flow_table);
4264u32 rps_cpu_mask __read_mostly;
4265EXPORT_SYMBOL(rps_cpu_mask);
4266
4267struct static_key_false rps_needed __read_mostly;
4268EXPORT_SYMBOL(rps_needed);
4269struct static_key_false rfs_needed __read_mostly;
4270EXPORT_SYMBOL(rfs_needed);
4271
4272static struct rps_dev_flow *
4273set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4274 struct rps_dev_flow *rflow, u16 next_cpu)
4275{
4276 if (next_cpu < nr_cpu_ids) {
4277#ifdef CONFIG_RFS_ACCEL
4278 struct netdev_rx_queue *rxqueue;
4279 struct rps_dev_flow_table *flow_table;
4280 struct rps_dev_flow *old_rflow;
4281 u32 flow_id;
4282 u16 rxq_index;
4283 int rc;
4284
4285 /* Should we steer this flow to a different hardware queue? */
4286 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4287 !(dev->features & NETIF_F_NTUPLE))
4288 goto out;
4289 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4290 if (rxq_index == skb_get_rx_queue(skb))
4291 goto out;
4292
4293 rxqueue = dev->_rx + rxq_index;
4294 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4295 if (!flow_table)
4296 goto out;
4297 flow_id = skb_get_hash(skb) & flow_table->mask;
4298 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4299 rxq_index, flow_id);
4300 if (rc < 0)
4301 goto out;
4302 old_rflow = rflow;
4303 rflow = &flow_table->flows[flow_id];
4304 rflow->filter = rc;
4305 if (old_rflow->filter == rflow->filter)
4306 old_rflow->filter = RPS_NO_FILTER;
4307 out:
4308#endif
4309 rflow->last_qtail =
4310 per_cpu(softnet_data, next_cpu).input_queue_head;
4311 }
4312
4313 rflow->cpu = next_cpu;
4314 return rflow;
4315}
4316
4317/*
4318 * get_rps_cpu is called from netif_receive_skb and returns the target
4319 * CPU from the RPS map of the receiving queue for a given skb.
4320 * rcu_read_lock must be held on entry.
4321 */
4322static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4323 struct rps_dev_flow **rflowp)
4324{
4325 const struct rps_sock_flow_table *sock_flow_table;
4326 struct netdev_rx_queue *rxqueue = dev->_rx;
4327 struct rps_dev_flow_table *flow_table;
4328 struct rps_map *map;
4329 int cpu = -1;
4330 u32 tcpu;
4331 u32 hash;
4332
4333 if (skb_rx_queue_recorded(skb)) {
4334 u16 index = skb_get_rx_queue(skb);
4335
4336 if (unlikely(index >= dev->real_num_rx_queues)) {
4337 WARN_ONCE(dev->real_num_rx_queues > 1,
4338 "%s received packet on queue %u, but number "
4339 "of RX queues is %u\n",
4340 dev->name, index, dev->real_num_rx_queues);
4341 goto done;
4342 }
4343 rxqueue += index;
4344 }
4345
4346 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4347
4348 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4349 map = rcu_dereference(rxqueue->rps_map);
4350 if (!flow_table && !map)
4351 goto done;
4352
4353 skb_reset_network_header(skb);
4354 hash = skb_get_hash(skb);
4355 if (!hash)
4356 goto done;
4357
4358 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4359 if (flow_table && sock_flow_table) {
4360 struct rps_dev_flow *rflow;
4361 u32 next_cpu;
4362 u32 ident;
4363
4364 /* First check into global flow table if there is a match */
4365 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4366 if ((ident ^ hash) & ~rps_cpu_mask)
4367 goto try_rps;
4368
4369 next_cpu = ident & rps_cpu_mask;
4370
4371 /* OK, now we know there is a match,
4372 * we can look at the local (per receive queue) flow table
4373 */
4374 rflow = &flow_table->flows[hash & flow_table->mask];
4375 tcpu = rflow->cpu;
4376
4377 /*
4378 * If the desired CPU (where last recvmsg was done) is
4379 * different from current CPU (one in the rx-queue flow
4380 * table entry), switch if one of the following holds:
4381 * - Current CPU is unset (>= nr_cpu_ids).
4382 * - Current CPU is offline.
4383 * - The current CPU's queue tail has advanced beyond the
4384 * last packet that was enqueued using this table entry.
4385 * This guarantees that all previous packets for the flow
4386 * have been dequeued, thus preserving in order delivery.
4387 */
4388 if (unlikely(tcpu != next_cpu) &&
4389 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4390 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4391 rflow->last_qtail)) >= 0)) {
4392 tcpu = next_cpu;
4393 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4394 }
4395
4396 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4397 *rflowp = rflow;
4398 cpu = tcpu;
4399 goto done;
4400 }
4401 }
4402
4403try_rps:
4404
4405 if (map) {
4406 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4407 if (cpu_online(tcpu)) {
4408 cpu = tcpu;
4409 goto done;
4410 }
4411 }
4412
4413done:
4414 return cpu;
4415}
4416
4417#ifdef CONFIG_RFS_ACCEL
4418
4419/**
4420 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4421 * @dev: Device on which the filter was set
4422 * @rxq_index: RX queue index
4423 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4424 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4425 *
4426 * Drivers that implement ndo_rx_flow_steer() should periodically call
4427 * this function for each installed filter and remove the filters for
4428 * which it returns %true.
4429 */
4430bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4431 u32 flow_id, u16 filter_id)
4432{
4433 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4434 struct rps_dev_flow_table *flow_table;
4435 struct rps_dev_flow *rflow;
4436 bool expire = true;
4437 unsigned int cpu;
4438
4439 rcu_read_lock();
4440 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441 if (flow_table && flow_id <= flow_table->mask) {
4442 rflow = &flow_table->flows[flow_id];
4443 cpu = READ_ONCE(rflow->cpu);
4444 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4445 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4446 rflow->last_qtail) <
4447 (int)(10 * flow_table->mask)))
4448 expire = false;
4449 }
4450 rcu_read_unlock();
4451 return expire;
4452}
4453EXPORT_SYMBOL(rps_may_expire_flow);
4454
4455#endif /* CONFIG_RFS_ACCEL */
4456
4457/* Called from hardirq (IPI) context */
4458static void rps_trigger_softirq(void *data)
4459{
4460 struct softnet_data *sd = data;
4461
4462 ____napi_schedule(sd, &sd->backlog);
4463 sd->received_rps++;
4464}
4465
4466#endif /* CONFIG_RPS */
4467
4468/*
4469 * Check if this softnet_data structure is another cpu one
4470 * If yes, queue it to our IPI list and return 1
4471 * If no, return 0
4472 */
4473static int rps_ipi_queued(struct softnet_data *sd)
4474{
4475#ifdef CONFIG_RPS
4476 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4477
4478 if (sd != mysd) {
4479 sd->rps_ipi_next = mysd->rps_ipi_list;
4480 mysd->rps_ipi_list = sd;
4481
4482 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4483 return 1;
4484 }
4485#endif /* CONFIG_RPS */
4486 return 0;
4487}
4488
4489#ifdef CONFIG_NET_FLOW_LIMIT
4490int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4491#endif
4492
4493static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4494{
4495#ifdef CONFIG_NET_FLOW_LIMIT
4496 struct sd_flow_limit *fl;
4497 struct softnet_data *sd;
4498 unsigned int old_flow, new_flow;
4499
4500 if (qlen < (netdev_max_backlog >> 1))
4501 return false;
4502
4503 sd = this_cpu_ptr(&softnet_data);
4504
4505 rcu_read_lock();
4506 fl = rcu_dereference(sd->flow_limit);
4507 if (fl) {
4508 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4509 old_flow = fl->history[fl->history_head];
4510 fl->history[fl->history_head] = new_flow;
4511
4512 fl->history_head++;
4513 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4514
4515 if (likely(fl->buckets[old_flow]))
4516 fl->buckets[old_flow]--;
4517
4518 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4519 fl->count++;
4520 rcu_read_unlock();
4521 return true;
4522 }
4523 }
4524 rcu_read_unlock();
4525#endif
4526 return false;
4527}
4528
4529/*
4530 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4531 * queue (may be a remote CPU queue).
4532 */
4533static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4534 unsigned int *qtail)
4535{
4536 struct softnet_data *sd;
4537 unsigned long flags;
4538 unsigned int qlen;
4539
4540 sd = &per_cpu(softnet_data, cpu);
4541
4542 local_irq_save(flags);
4543
4544 rps_lock(sd);
4545 if (!netif_running(skb->dev))
4546 goto drop;
4547 qlen = skb_queue_len(&sd->input_pkt_queue);
4548 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4549 if (qlen) {
4550enqueue:
4551 __skb_queue_tail(&sd->input_pkt_queue, skb);
4552 input_queue_tail_incr_save(sd, qtail);
4553 rps_unlock(sd);
4554 local_irq_restore(flags);
4555 return NET_RX_SUCCESS;
4556 }
4557
4558 /* Schedule NAPI for backlog device
4559 * We can use non atomic operation since we own the queue lock
4560 */
4561 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4562 if (!rps_ipi_queued(sd))
4563 ____napi_schedule(sd, &sd->backlog);
4564 }
4565 goto enqueue;
4566 }
4567
4568drop:
4569 sd->dropped++;
4570 rps_unlock(sd);
4571
4572 local_irq_restore(flags);
4573
4574 atomic_long_inc(&skb->dev->rx_dropped);
4575 kfree_skb(skb);
4576 return NET_RX_DROP;
4577}
4578
4579static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4580{
4581 struct net_device *dev = skb->dev;
4582 struct netdev_rx_queue *rxqueue;
4583
4584 rxqueue = dev->_rx;
4585
4586 if (skb_rx_queue_recorded(skb)) {
4587 u16 index = skb_get_rx_queue(skb);
4588
4589 if (unlikely(index >= dev->real_num_rx_queues)) {
4590 WARN_ONCE(dev->real_num_rx_queues > 1,
4591 "%s received packet on queue %u, but number "
4592 "of RX queues is %u\n",
4593 dev->name, index, dev->real_num_rx_queues);
4594
4595 return rxqueue; /* Return first rxqueue */
4596 }
4597 rxqueue += index;
4598 }
4599 return rxqueue;
4600}
4601
4602static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4603 struct xdp_buff *xdp,
4604 struct bpf_prog *xdp_prog)
4605{
4606 struct netdev_rx_queue *rxqueue;
4607 void *orig_data, *orig_data_end;
4608 u32 metalen, act = XDP_DROP;
4609 __be16 orig_eth_type;
4610 struct ethhdr *eth;
4611 bool orig_bcast;
4612 int hlen, off;
4613 u32 mac_len;
4614
4615 /* Reinjected packets coming from act_mirred or similar should
4616 * not get XDP generic processing.
4617 */
4618 if (skb_is_redirected(skb))
4619 return XDP_PASS;
4620
4621 /* XDP packets must be linear and must have sufficient headroom
4622 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4623 * native XDP provides, thus we need to do it here as well.
4624 */
4625 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4626 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4627 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4628 int troom = skb->tail + skb->data_len - skb->end;
4629
4630 /* In case we have to go down the path and also linearize,
4631 * then lets do the pskb_expand_head() work just once here.
4632 */
4633 if (pskb_expand_head(skb,
4634 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4635 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4636 goto do_drop;
4637 if (skb_linearize(skb))
4638 goto do_drop;
4639 }
4640
4641 /* The XDP program wants to see the packet starting at the MAC
4642 * header.
4643 */
4644 mac_len = skb->data - skb_mac_header(skb);
4645 hlen = skb_headlen(skb) + mac_len;
4646 xdp->data = skb->data - mac_len;
4647 xdp->data_meta = xdp->data;
4648 xdp->data_end = xdp->data + hlen;
4649 xdp->data_hard_start = skb->data - skb_headroom(skb);
4650
4651 /* SKB "head" area always have tailroom for skb_shared_info */
4652 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4653 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4654
4655 orig_data_end = xdp->data_end;
4656 orig_data = xdp->data;
4657 eth = (struct ethhdr *)xdp->data;
4658 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4659 orig_eth_type = eth->h_proto;
4660
4661 rxqueue = netif_get_rxqueue(skb);
4662 xdp->rxq = &rxqueue->xdp_rxq;
4663
4664 act = bpf_prog_run_xdp(xdp_prog, xdp);
4665
4666 /* check if bpf_xdp_adjust_head was used */
4667 off = xdp->data - orig_data;
4668 if (off) {
4669 if (off > 0)
4670 __skb_pull(skb, off);
4671 else if (off < 0)
4672 __skb_push(skb, -off);
4673
4674 skb->mac_header += off;
4675 skb_reset_network_header(skb);
4676 }
4677
4678 /* check if bpf_xdp_adjust_tail was used */
4679 off = xdp->data_end - orig_data_end;
4680 if (off != 0) {
4681 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4682 skb->len += off; /* positive on grow, negative on shrink */
4683 }
4684
4685 /* check if XDP changed eth hdr such SKB needs update */
4686 eth = (struct ethhdr *)xdp->data;
4687 if ((orig_eth_type != eth->h_proto) ||
4688 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4689 __skb_push(skb, ETH_HLEN);
4690 skb->protocol = eth_type_trans(skb, skb->dev);
4691 }
4692
4693 switch (act) {
4694 case XDP_REDIRECT:
4695 case XDP_TX:
4696 __skb_push(skb, mac_len);
4697 break;
4698 case XDP_PASS:
4699 metalen = xdp->data - xdp->data_meta;
4700 if (metalen)
4701 skb_metadata_set(skb, metalen);
4702 break;
4703 default:
4704 bpf_warn_invalid_xdp_action(act);
4705 fallthrough;
4706 case XDP_ABORTED:
4707 trace_xdp_exception(skb->dev, xdp_prog, act);
4708 fallthrough;
4709 case XDP_DROP:
4710 do_drop:
4711 kfree_skb(skb);
4712 break;
4713 }
4714
4715 return act;
4716}
4717
4718/* When doing generic XDP we have to bypass the qdisc layer and the
4719 * network taps in order to match in-driver-XDP behavior.
4720 */
4721void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4722{
4723 struct net_device *dev = skb->dev;
4724 struct netdev_queue *txq;
4725 bool free_skb = true;
4726 int cpu, rc;
4727
4728 txq = netdev_core_pick_tx(dev, skb, NULL);
4729 cpu = smp_processor_id();
4730 HARD_TX_LOCK(dev, txq, cpu);
4731 if (!netif_xmit_stopped(txq)) {
4732 rc = netdev_start_xmit(skb, dev, txq, 0);
4733 if (dev_xmit_complete(rc))
4734 free_skb = false;
4735 }
4736 HARD_TX_UNLOCK(dev, txq);
4737 if (free_skb) {
4738 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4739 kfree_skb(skb);
4740 }
4741}
4742
4743static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4744
4745int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4746{
4747 if (xdp_prog) {
4748 struct xdp_buff xdp;
4749 u32 act;
4750 int err;
4751
4752 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4753 if (act != XDP_PASS) {
4754 switch (act) {
4755 case XDP_REDIRECT:
4756 err = xdp_do_generic_redirect(skb->dev, skb,
4757 &xdp, xdp_prog);
4758 if (err)
4759 goto out_redir;
4760 break;
4761 case XDP_TX:
4762 generic_xdp_tx(skb, xdp_prog);
4763 break;
4764 }
4765 return XDP_DROP;
4766 }
4767 }
4768 return XDP_PASS;
4769out_redir:
4770 kfree_skb(skb);
4771 return XDP_DROP;
4772}
4773EXPORT_SYMBOL_GPL(do_xdp_generic);
4774
4775static int netif_rx_internal(struct sk_buff *skb)
4776{
4777 int ret;
4778
4779 net_timestamp_check(netdev_tstamp_prequeue, skb);
4780
4781 trace_netif_rx(skb);
4782
4783#ifdef CONFIG_RPS
4784 if (static_branch_unlikely(&rps_needed)) {
4785 struct rps_dev_flow voidflow, *rflow = &voidflow;
4786 int cpu;
4787
4788 preempt_disable();
4789 rcu_read_lock();
4790
4791 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4792 if (cpu < 0)
4793 cpu = smp_processor_id();
4794
4795 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4796
4797 rcu_read_unlock();
4798 preempt_enable();
4799 } else
4800#endif
4801 {
4802 unsigned int qtail;
4803
4804 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4805 put_cpu();
4806 }
4807 return ret;
4808}
4809
4810/**
4811 * netif_rx - post buffer to the network code
4812 * @skb: buffer to post
4813 *
4814 * This function receives a packet from a device driver and queues it for
4815 * the upper (protocol) levels to process. It always succeeds. The buffer
4816 * may be dropped during processing for congestion control or by the
4817 * protocol layers.
4818 *
4819 * return values:
4820 * NET_RX_SUCCESS (no congestion)
4821 * NET_RX_DROP (packet was dropped)
4822 *
4823 */
4824
4825int netif_rx(struct sk_buff *skb)
4826{
4827 int ret;
4828
4829 trace_netif_rx_entry(skb);
4830
4831 ret = netif_rx_internal(skb);
4832 trace_netif_rx_exit(ret);
4833
4834 return ret;
4835}
4836EXPORT_SYMBOL(netif_rx);
4837
4838int netif_rx_ni(struct sk_buff *skb)
4839{
4840 int err;
4841
4842 trace_netif_rx_ni_entry(skb);
4843
4844 preempt_disable();
4845 err = netif_rx_internal(skb);
4846 if (local_softirq_pending())
4847 do_softirq();
4848 preempt_enable();
4849 trace_netif_rx_ni_exit(err);
4850
4851 return err;
4852}
4853EXPORT_SYMBOL(netif_rx_ni);
4854
4855int netif_rx_any_context(struct sk_buff *skb)
4856{
4857 /*
4858 * If invoked from contexts which do not invoke bottom half
4859 * processing either at return from interrupt or when softrqs are
4860 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4861 * directly.
4862 */
4863 if (in_interrupt())
4864 return netif_rx(skb);
4865 else
4866 return netif_rx_ni(skb);
4867}
4868EXPORT_SYMBOL(netif_rx_any_context);
4869
4870static __latent_entropy void net_tx_action(struct softirq_action *h)
4871{
4872 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4873
4874 if (sd->completion_queue) {
4875 struct sk_buff *clist;
4876
4877 local_irq_disable();
4878 clist = sd->completion_queue;
4879 sd->completion_queue = NULL;
4880 local_irq_enable();
4881
4882 while (clist) {
4883 struct sk_buff *skb = clist;
4884
4885 clist = clist->next;
4886
4887 WARN_ON(refcount_read(&skb->users));
4888 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4889 trace_consume_skb(skb);
4890 else
4891 trace_kfree_skb(skb, net_tx_action);
4892
4893 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4894 __kfree_skb(skb);
4895 else
4896 __kfree_skb_defer(skb);
4897 }
4898
4899 __kfree_skb_flush();
4900 }
4901
4902 if (sd->output_queue) {
4903 struct Qdisc *head;
4904
4905 local_irq_disable();
4906 head = sd->output_queue;
4907 sd->output_queue = NULL;
4908 sd->output_queue_tailp = &sd->output_queue;
4909 local_irq_enable();
4910
4911 while (head) {
4912 struct Qdisc *q = head;
4913 spinlock_t *root_lock = NULL;
4914
4915 head = head->next_sched;
4916
4917 if (!(q->flags & TCQ_F_NOLOCK)) {
4918 root_lock = qdisc_lock(q);
4919 spin_lock(root_lock);
4920 }
4921 /* We need to make sure head->next_sched is read
4922 * before clearing __QDISC_STATE_SCHED
4923 */
4924 smp_mb__before_atomic();
4925 clear_bit(__QDISC_STATE_SCHED, &q->state);
4926 qdisc_run(q);
4927 if (root_lock)
4928 spin_unlock(root_lock);
4929 }
4930 }
4931
4932 xfrm_dev_backlog(sd);
4933}
4934
4935#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4936/* This hook is defined here for ATM LANE */
4937int (*br_fdb_test_addr_hook)(struct net_device *dev,
4938 unsigned char *addr) __read_mostly;
4939EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4940#endif
4941
4942static inline struct sk_buff *
4943sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4944 struct net_device *orig_dev, bool *another)
4945{
4946#ifdef CONFIG_NET_CLS_ACT
4947 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4948 struct tcf_result cl_res;
4949
4950 /* If there's at least one ingress present somewhere (so
4951 * we get here via enabled static key), remaining devices
4952 * that are not configured with an ingress qdisc will bail
4953 * out here.
4954 */
4955 if (!miniq)
4956 return skb;
4957
4958 if (*pt_prev) {
4959 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4960 *pt_prev = NULL;
4961 }
4962
4963 qdisc_skb_cb(skb)->pkt_len = skb->len;
4964 qdisc_skb_cb(skb)->mru = 0;
4965 skb->tc_at_ingress = 1;
4966 mini_qdisc_bstats_cpu_update(miniq, skb);
4967
4968 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4969 &cl_res, false)) {
4970 case TC_ACT_OK:
4971 case TC_ACT_RECLASSIFY:
4972 skb->tc_index = TC_H_MIN(cl_res.classid);
4973 break;
4974 case TC_ACT_SHOT:
4975 mini_qdisc_qstats_cpu_drop(miniq);
4976 kfree_skb(skb);
4977 return NULL;
4978 case TC_ACT_STOLEN:
4979 case TC_ACT_QUEUED:
4980 case TC_ACT_TRAP:
4981 consume_skb(skb);
4982 return NULL;
4983 case TC_ACT_REDIRECT:
4984 /* skb_mac_header check was done by cls/act_bpf, so
4985 * we can safely push the L2 header back before
4986 * redirecting to another netdev
4987 */
4988 __skb_push(skb, skb->mac_len);
4989 if (skb_do_redirect(skb) == -EAGAIN) {
4990 __skb_pull(skb, skb->mac_len);
4991 *another = true;
4992 break;
4993 }
4994 return NULL;
4995 case TC_ACT_CONSUMED:
4996 return NULL;
4997 default:
4998 break;
4999 }
5000#endif /* CONFIG_NET_CLS_ACT */
5001 return skb;
5002}
5003
5004/**
5005 * netdev_is_rx_handler_busy - check if receive handler is registered
5006 * @dev: device to check
5007 *
5008 * Check if a receive handler is already registered for a given device.
5009 * Return true if there one.
5010 *
5011 * The caller must hold the rtnl_mutex.
5012 */
5013bool netdev_is_rx_handler_busy(struct net_device *dev)
5014{
5015 ASSERT_RTNL();
5016 return dev && rtnl_dereference(dev->rx_handler);
5017}
5018EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5019
5020/**
5021 * netdev_rx_handler_register - register receive handler
5022 * @dev: device to register a handler for
5023 * @rx_handler: receive handler to register
5024 * @rx_handler_data: data pointer that is used by rx handler
5025 *
5026 * Register a receive handler for a device. This handler will then be
5027 * called from __netif_receive_skb. A negative errno code is returned
5028 * on a failure.
5029 *
5030 * The caller must hold the rtnl_mutex.
5031 *
5032 * For a general description of rx_handler, see enum rx_handler_result.
5033 */
5034int netdev_rx_handler_register(struct net_device *dev,
5035 rx_handler_func_t *rx_handler,
5036 void *rx_handler_data)
5037{
5038 if (netdev_is_rx_handler_busy(dev))
5039 return -EBUSY;
5040
5041 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5042 return -EINVAL;
5043
5044 /* Note: rx_handler_data must be set before rx_handler */
5045 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5046 rcu_assign_pointer(dev->rx_handler, rx_handler);
5047
5048 return 0;
5049}
5050EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5051
5052/**
5053 * netdev_rx_handler_unregister - unregister receive handler
5054 * @dev: device to unregister a handler from
5055 *
5056 * Unregister a receive handler from a device.
5057 *
5058 * The caller must hold the rtnl_mutex.
5059 */
5060void netdev_rx_handler_unregister(struct net_device *dev)
5061{
5062
5063 ASSERT_RTNL();
5064 RCU_INIT_POINTER(dev->rx_handler, NULL);
5065 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5066 * section has a guarantee to see a non NULL rx_handler_data
5067 * as well.
5068 */
5069 synchronize_net();
5070 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5071}
5072EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5073
5074/*
5075 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5076 * the special handling of PFMEMALLOC skbs.
5077 */
5078static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5079{
5080 switch (skb->protocol) {
5081 case htons(ETH_P_ARP):
5082 case htons(ETH_P_IP):
5083 case htons(ETH_P_IPV6):
5084 case htons(ETH_P_8021Q):
5085 case htons(ETH_P_8021AD):
5086 return true;
5087 default:
5088 return false;
5089 }
5090}
5091
5092static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5093 int *ret, struct net_device *orig_dev)
5094{
5095 if (nf_hook_ingress_active(skb)) {
5096 int ingress_retval;
5097
5098 if (*pt_prev) {
5099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5100 *pt_prev = NULL;
5101 }
5102
5103 rcu_read_lock();
5104 ingress_retval = nf_hook_ingress(skb);
5105 rcu_read_unlock();
5106 return ingress_retval;
5107 }
5108 return 0;
5109}
5110
5111static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5112 struct packet_type **ppt_prev)
5113{
5114 struct packet_type *ptype, *pt_prev;
5115 rx_handler_func_t *rx_handler;
5116 struct sk_buff *skb = *pskb;
5117 struct net_device *orig_dev;
5118 bool deliver_exact = false;
5119 int ret = NET_RX_DROP;
5120 __be16 type;
5121
5122 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5123
5124 trace_netif_receive_skb(skb);
5125
5126 orig_dev = skb->dev;
5127
5128 skb_reset_network_header(skb);
5129 if (!skb_transport_header_was_set(skb))
5130 skb_reset_transport_header(skb);
5131 skb_reset_mac_len(skb);
5132
5133 pt_prev = NULL;
5134
5135another_round:
5136 skb->skb_iif = skb->dev->ifindex;
5137
5138 __this_cpu_inc(softnet_data.processed);
5139
5140 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5141 int ret2;
5142
5143 preempt_disable();
5144 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5145 preempt_enable();
5146
5147 if (ret2 != XDP_PASS) {
5148 ret = NET_RX_DROP;
5149 goto out;
5150 }
5151 skb_reset_mac_len(skb);
5152 }
5153
5154 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5155 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5156 skb = skb_vlan_untag(skb);
5157 if (unlikely(!skb))
5158 goto out;
5159 }
5160
5161 if (skb_skip_tc_classify(skb))
5162 goto skip_classify;
5163
5164 if (pfmemalloc)
5165 goto skip_taps;
5166
5167 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5168 if (pt_prev)
5169 ret = deliver_skb(skb, pt_prev, orig_dev);
5170 pt_prev = ptype;
5171 }
5172
5173 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5174 if (pt_prev)
5175 ret = deliver_skb(skb, pt_prev, orig_dev);
5176 pt_prev = ptype;
5177 }
5178
5179skip_taps:
5180#ifdef CONFIG_NET_INGRESS
5181 if (static_branch_unlikely(&ingress_needed_key)) {
5182 bool another = false;
5183
5184 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5185 &another);
5186 if (another)
5187 goto another_round;
5188 if (!skb)
5189 goto out;
5190
5191 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5192 goto out;
5193 }
5194#endif
5195 skb_reset_redirect(skb);
5196skip_classify:
5197 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5198 goto drop;
5199
5200 if (skb_vlan_tag_present(skb)) {
5201 if (pt_prev) {
5202 ret = deliver_skb(skb, pt_prev, orig_dev);
5203 pt_prev = NULL;
5204 }
5205 if (vlan_do_receive(&skb))
5206 goto another_round;
5207 else if (unlikely(!skb))
5208 goto out;
5209 }
5210
5211 rx_handler = rcu_dereference(skb->dev->rx_handler);
5212 if (rx_handler) {
5213 if (pt_prev) {
5214 ret = deliver_skb(skb, pt_prev, orig_dev);
5215 pt_prev = NULL;
5216 }
5217 switch (rx_handler(&skb)) {
5218 case RX_HANDLER_CONSUMED:
5219 ret = NET_RX_SUCCESS;
5220 goto out;
5221 case RX_HANDLER_ANOTHER:
5222 goto another_round;
5223 case RX_HANDLER_EXACT:
5224 deliver_exact = true;
5225 case RX_HANDLER_PASS:
5226 break;
5227 default:
5228 BUG();
5229 }
5230 }
5231
5232 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5233check_vlan_id:
5234 if (skb_vlan_tag_get_id(skb)) {
5235 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5236 * find vlan device.
5237 */
5238 skb->pkt_type = PACKET_OTHERHOST;
5239 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5240 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5241 /* Outer header is 802.1P with vlan 0, inner header is
5242 * 802.1Q or 802.1AD and vlan_do_receive() above could
5243 * not find vlan dev for vlan id 0.
5244 */
5245 __vlan_hwaccel_clear_tag(skb);
5246 skb = skb_vlan_untag(skb);
5247 if (unlikely(!skb))
5248 goto out;
5249 if (vlan_do_receive(&skb))
5250 /* After stripping off 802.1P header with vlan 0
5251 * vlan dev is found for inner header.
5252 */
5253 goto another_round;
5254 else if (unlikely(!skb))
5255 goto out;
5256 else
5257 /* We have stripped outer 802.1P vlan 0 header.
5258 * But could not find vlan dev.
5259 * check again for vlan id to set OTHERHOST.
5260 */
5261 goto check_vlan_id;
5262 }
5263 /* Note: we might in the future use prio bits
5264 * and set skb->priority like in vlan_do_receive()
5265 * For the time being, just ignore Priority Code Point
5266 */
5267 __vlan_hwaccel_clear_tag(skb);
5268 }
5269
5270 type = skb->protocol;
5271
5272 /* deliver only exact match when indicated */
5273 if (likely(!deliver_exact)) {
5274 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5275 &ptype_base[ntohs(type) &
5276 PTYPE_HASH_MASK]);
5277 }
5278
5279 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5280 &orig_dev->ptype_specific);
5281
5282 if (unlikely(skb->dev != orig_dev)) {
5283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 &skb->dev->ptype_specific);
5285 }
5286
5287 if (pt_prev) {
5288 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5289 goto drop;
5290 *ppt_prev = pt_prev;
5291 } else {
5292drop:
5293 if (!deliver_exact)
5294 atomic_long_inc(&skb->dev->rx_dropped);
5295 else
5296 atomic_long_inc(&skb->dev->rx_nohandler);
5297 kfree_skb(skb);
5298 /* Jamal, now you will not able to escape explaining
5299 * me how you were going to use this. :-)
5300 */
5301 ret = NET_RX_DROP;
5302 }
5303
5304out:
5305 /* The invariant here is that if *ppt_prev is not NULL
5306 * then skb should also be non-NULL.
5307 *
5308 * Apparently *ppt_prev assignment above holds this invariant due to
5309 * skb dereferencing near it.
5310 */
5311 *pskb = skb;
5312 return ret;
5313}
5314
5315static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5316{
5317 struct net_device *orig_dev = skb->dev;
5318 struct packet_type *pt_prev = NULL;
5319 int ret;
5320
5321 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5322 if (pt_prev)
5323 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5324 skb->dev, pt_prev, orig_dev);
5325 return ret;
5326}
5327
5328/**
5329 * netif_receive_skb_core - special purpose version of netif_receive_skb
5330 * @skb: buffer to process
5331 *
5332 * More direct receive version of netif_receive_skb(). It should
5333 * only be used by callers that have a need to skip RPS and Generic XDP.
5334 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5335 *
5336 * This function may only be called from softirq context and interrupts
5337 * should be enabled.
5338 *
5339 * Return values (usually ignored):
5340 * NET_RX_SUCCESS: no congestion
5341 * NET_RX_DROP: packet was dropped
5342 */
5343int netif_receive_skb_core(struct sk_buff *skb)
5344{
5345 int ret;
5346
5347 rcu_read_lock();
5348 ret = __netif_receive_skb_one_core(skb, false);
5349 rcu_read_unlock();
5350
5351 return ret;
5352}
5353EXPORT_SYMBOL(netif_receive_skb_core);
5354
5355static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5356 struct packet_type *pt_prev,
5357 struct net_device *orig_dev)
5358{
5359 struct sk_buff *skb, *next;
5360
5361 if (!pt_prev)
5362 return;
5363 if (list_empty(head))
5364 return;
5365 if (pt_prev->list_func != NULL)
5366 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5367 ip_list_rcv, head, pt_prev, orig_dev);
5368 else
5369 list_for_each_entry_safe(skb, next, head, list) {
5370 skb_list_del_init(skb);
5371 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5372 }
5373}
5374
5375static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5376{
5377 /* Fast-path assumptions:
5378 * - There is no RX handler.
5379 * - Only one packet_type matches.
5380 * If either of these fails, we will end up doing some per-packet
5381 * processing in-line, then handling the 'last ptype' for the whole
5382 * sublist. This can't cause out-of-order delivery to any single ptype,
5383 * because the 'last ptype' must be constant across the sublist, and all
5384 * other ptypes are handled per-packet.
5385 */
5386 /* Current (common) ptype of sublist */
5387 struct packet_type *pt_curr = NULL;
5388 /* Current (common) orig_dev of sublist */
5389 struct net_device *od_curr = NULL;
5390 struct list_head sublist;
5391 struct sk_buff *skb, *next;
5392
5393 INIT_LIST_HEAD(&sublist);
5394 list_for_each_entry_safe(skb, next, head, list) {
5395 struct net_device *orig_dev = skb->dev;
5396 struct packet_type *pt_prev = NULL;
5397
5398 skb_list_del_init(skb);
5399 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5400 if (!pt_prev)
5401 continue;
5402 if (pt_curr != pt_prev || od_curr != orig_dev) {
5403 /* dispatch old sublist */
5404 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5405 /* start new sublist */
5406 INIT_LIST_HEAD(&sublist);
5407 pt_curr = pt_prev;
5408 od_curr = orig_dev;
5409 }
5410 list_add_tail(&skb->list, &sublist);
5411 }
5412
5413 /* dispatch final sublist */
5414 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5415}
5416
5417static int __netif_receive_skb(struct sk_buff *skb)
5418{
5419 int ret;
5420
5421 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5422 unsigned int noreclaim_flag;
5423
5424 /*
5425 * PFMEMALLOC skbs are special, they should
5426 * - be delivered to SOCK_MEMALLOC sockets only
5427 * - stay away from userspace
5428 * - have bounded memory usage
5429 *
5430 * Use PF_MEMALLOC as this saves us from propagating the allocation
5431 * context down to all allocation sites.
5432 */
5433 noreclaim_flag = memalloc_noreclaim_save();
5434 ret = __netif_receive_skb_one_core(skb, true);
5435 memalloc_noreclaim_restore(noreclaim_flag);
5436 } else
5437 ret = __netif_receive_skb_one_core(skb, false);
5438
5439 return ret;
5440}
5441
5442static void __netif_receive_skb_list(struct list_head *head)
5443{
5444 unsigned long noreclaim_flag = 0;
5445 struct sk_buff *skb, *next;
5446 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5447
5448 list_for_each_entry_safe(skb, next, head, list) {
5449 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5450 struct list_head sublist;
5451
5452 /* Handle the previous sublist */
5453 list_cut_before(&sublist, head, &skb->list);
5454 if (!list_empty(&sublist))
5455 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5456 pfmemalloc = !pfmemalloc;
5457 /* See comments in __netif_receive_skb */
5458 if (pfmemalloc)
5459 noreclaim_flag = memalloc_noreclaim_save();
5460 else
5461 memalloc_noreclaim_restore(noreclaim_flag);
5462 }
5463 }
5464 /* Handle the remaining sublist */
5465 if (!list_empty(head))
5466 __netif_receive_skb_list_core(head, pfmemalloc);
5467 /* Restore pflags */
5468 if (pfmemalloc)
5469 memalloc_noreclaim_restore(noreclaim_flag);
5470}
5471
5472static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5473{
5474 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5475 struct bpf_prog *new = xdp->prog;
5476 int ret = 0;
5477
5478 if (new) {
5479 u32 i;
5480
5481 mutex_lock(&new->aux->used_maps_mutex);
5482
5483 /* generic XDP does not work with DEVMAPs that can
5484 * have a bpf_prog installed on an entry
5485 */
5486 for (i = 0; i < new->aux->used_map_cnt; i++) {
5487 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5488 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5489 mutex_unlock(&new->aux->used_maps_mutex);
5490 return -EINVAL;
5491 }
5492 }
5493
5494 mutex_unlock(&new->aux->used_maps_mutex);
5495 }
5496
5497 switch (xdp->command) {
5498 case XDP_SETUP_PROG:
5499 rcu_assign_pointer(dev->xdp_prog, new);
5500 if (old)
5501 bpf_prog_put(old);
5502
5503 if (old && !new) {
5504 static_branch_dec(&generic_xdp_needed_key);
5505 } else if (new && !old) {
5506 static_branch_inc(&generic_xdp_needed_key);
5507 dev_disable_lro(dev);
5508 dev_disable_gro_hw(dev);
5509 }
5510 break;
5511
5512 default:
5513 ret = -EINVAL;
5514 break;
5515 }
5516
5517 return ret;
5518}
5519
5520static int netif_receive_skb_internal(struct sk_buff *skb)
5521{
5522 int ret;
5523
5524 net_timestamp_check(netdev_tstamp_prequeue, skb);
5525
5526 if (skb_defer_rx_timestamp(skb))
5527 return NET_RX_SUCCESS;
5528
5529 rcu_read_lock();
5530#ifdef CONFIG_RPS
5531 if (static_branch_unlikely(&rps_needed)) {
5532 struct rps_dev_flow voidflow, *rflow = &voidflow;
5533 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5534
5535 if (cpu >= 0) {
5536 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 rcu_read_unlock();
5538 return ret;
5539 }
5540 }
5541#endif
5542 ret = __netif_receive_skb(skb);
5543 rcu_read_unlock();
5544 return ret;
5545}
5546
5547static void netif_receive_skb_list_internal(struct list_head *head)
5548{
5549 struct sk_buff *skb, *next;
5550 struct list_head sublist;
5551
5552 INIT_LIST_HEAD(&sublist);
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 net_timestamp_check(netdev_tstamp_prequeue, skb);
5555 skb_list_del_init(skb);
5556 if (!skb_defer_rx_timestamp(skb))
5557 list_add_tail(&skb->list, &sublist);
5558 }
5559 list_splice_init(&sublist, head);
5560
5561 rcu_read_lock();
5562#ifdef CONFIG_RPS
5563 if (static_branch_unlikely(&rps_needed)) {
5564 list_for_each_entry_safe(skb, next, head, list) {
5565 struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567
5568 if (cpu >= 0) {
5569 /* Will be handled, remove from list */
5570 skb_list_del_init(skb);
5571 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5572 }
5573 }
5574 }
5575#endif
5576 __netif_receive_skb_list(head);
5577 rcu_read_unlock();
5578}
5579
5580/**
5581 * netif_receive_skb - process receive buffer from network
5582 * @skb: buffer to process
5583 *
5584 * netif_receive_skb() is the main receive data processing function.
5585 * It always succeeds. The buffer may be dropped during processing
5586 * for congestion control or by the protocol layers.
5587 *
5588 * This function may only be called from softirq context and interrupts
5589 * should be enabled.
5590 *
5591 * Return values (usually ignored):
5592 * NET_RX_SUCCESS: no congestion
5593 * NET_RX_DROP: packet was dropped
5594 */
5595int netif_receive_skb(struct sk_buff *skb)
5596{
5597 int ret;
5598
5599 trace_netif_receive_skb_entry(skb);
5600
5601 ret = netif_receive_skb_internal(skb);
5602 trace_netif_receive_skb_exit(ret);
5603
5604 return ret;
5605}
5606EXPORT_SYMBOL(netif_receive_skb);
5607
5608/**
5609 * netif_receive_skb_list - process many receive buffers from network
5610 * @head: list of skbs to process.
5611 *
5612 * Since return value of netif_receive_skb() is normally ignored, and
5613 * wouldn't be meaningful for a list, this function returns void.
5614 *
5615 * This function may only be called from softirq context and interrupts
5616 * should be enabled.
5617 */
5618void netif_receive_skb_list(struct list_head *head)
5619{
5620 struct sk_buff *skb;
5621
5622 if (list_empty(head))
5623 return;
5624 if (trace_netif_receive_skb_list_entry_enabled()) {
5625 list_for_each_entry(skb, head, list)
5626 trace_netif_receive_skb_list_entry(skb);
5627 }
5628 netif_receive_skb_list_internal(head);
5629 trace_netif_receive_skb_list_exit(0);
5630}
5631EXPORT_SYMBOL(netif_receive_skb_list);
5632
5633static DEFINE_PER_CPU(struct work_struct, flush_works);
5634
5635/* Network device is going away, flush any packets still pending */
5636static void flush_backlog(struct work_struct *work)
5637{
5638 struct sk_buff *skb, *tmp;
5639 struct softnet_data *sd;
5640
5641 local_bh_disable();
5642 sd = this_cpu_ptr(&softnet_data);
5643
5644 local_irq_disable();
5645 rps_lock(sd);
5646 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648 __skb_unlink(skb, &sd->input_pkt_queue);
5649 dev_kfree_skb_irq(skb);
5650 input_queue_head_incr(sd);
5651 }
5652 }
5653 rps_unlock(sd);
5654 local_irq_enable();
5655
5656 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 __skb_unlink(skb, &sd->process_queue);
5659 kfree_skb(skb);
5660 input_queue_head_incr(sd);
5661 }
5662 }
5663 local_bh_enable();
5664}
5665
5666static bool flush_required(int cpu)
5667{
5668#if IS_ENABLED(CONFIG_RPS)
5669 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 bool do_flush;
5671
5672 local_irq_disable();
5673 rps_lock(sd);
5674
5675 /* as insertion into process_queue happens with the rps lock held,
5676 * process_queue access may race only with dequeue
5677 */
5678 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 !skb_queue_empty_lockless(&sd->process_queue);
5680 rps_unlock(sd);
5681 local_irq_enable();
5682
5683 return do_flush;
5684#endif
5685 /* without RPS we can't safely check input_pkt_queue: during a
5686 * concurrent remote skb_queue_splice() we can detect as empty both
5687 * input_pkt_queue and process_queue even if the latter could end-up
5688 * containing a lot of packets.
5689 */
5690 return true;
5691}
5692
5693static void flush_all_backlogs(void)
5694{
5695 static cpumask_t flush_cpus;
5696 unsigned int cpu;
5697
5698 /* since we are under rtnl lock protection we can use static data
5699 * for the cpumask and avoid allocating on stack the possibly
5700 * large mask
5701 */
5702 ASSERT_RTNL();
5703
5704 get_online_cpus();
5705
5706 cpumask_clear(&flush_cpus);
5707 for_each_online_cpu(cpu) {
5708 if (flush_required(cpu)) {
5709 queue_work_on(cpu, system_highpri_wq,
5710 per_cpu_ptr(&flush_works, cpu));
5711 cpumask_set_cpu(cpu, &flush_cpus);
5712 }
5713 }
5714
5715 /* we can have in flight packet[s] on the cpus we are not flushing,
5716 * synchronize_net() in rollback_registered_many() will take care of
5717 * them
5718 */
5719 for_each_cpu(cpu, &flush_cpus)
5720 flush_work(per_cpu_ptr(&flush_works, cpu));
5721
5722 put_online_cpus();
5723}
5724
5725/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5726static void gro_normal_list(struct napi_struct *napi)
5727{
5728 if (!napi->rx_count)
5729 return;
5730 netif_receive_skb_list_internal(&napi->rx_list);
5731 INIT_LIST_HEAD(&napi->rx_list);
5732 napi->rx_count = 0;
5733}
5734
5735/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5736 * pass the whole batch up to the stack.
5737 */
5738static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5739{
5740 list_add_tail(&skb->list, &napi->rx_list);
5741 if (++napi->rx_count >= gro_normal_batch)
5742 gro_normal_list(napi);
5743}
5744
5745INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5746INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5747static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5748{
5749 struct packet_offload *ptype;
5750 __be16 type = skb->protocol;
5751 struct list_head *head = &offload_base;
5752 int err = -ENOENT;
5753
5754 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5755
5756 if (NAPI_GRO_CB(skb)->count == 1) {
5757 skb_shinfo(skb)->gso_size = 0;
5758 goto out;
5759 }
5760
5761 rcu_read_lock();
5762 list_for_each_entry_rcu(ptype, head, list) {
5763 if (ptype->type != type || !ptype->callbacks.gro_complete)
5764 continue;
5765
5766 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5767 ipv6_gro_complete, inet_gro_complete,
5768 skb, 0);
5769 break;
5770 }
5771 rcu_read_unlock();
5772
5773 if (err) {
5774 WARN_ON(&ptype->list == head);
5775 kfree_skb(skb);
5776 return NET_RX_SUCCESS;
5777 }
5778
5779out:
5780 gro_normal_one(napi, skb);
5781 return NET_RX_SUCCESS;
5782}
5783
5784static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5785 bool flush_old)
5786{
5787 struct list_head *head = &napi->gro_hash[index].list;
5788 struct sk_buff *skb, *p;
5789
5790 list_for_each_entry_safe_reverse(skb, p, head, list) {
5791 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5792 return;
5793 skb_list_del_init(skb);
5794 napi_gro_complete(napi, skb);
5795 napi->gro_hash[index].count--;
5796 }
5797
5798 if (!napi->gro_hash[index].count)
5799 __clear_bit(index, &napi->gro_bitmask);
5800}
5801
5802/* napi->gro_hash[].list contains packets ordered by age.
5803 * youngest packets at the head of it.
5804 * Complete skbs in reverse order to reduce latencies.
5805 */
5806void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5807{
5808 unsigned long bitmask = napi->gro_bitmask;
5809 unsigned int i, base = ~0U;
5810
5811 while ((i = ffs(bitmask)) != 0) {
5812 bitmask >>= i;
5813 base += i;
5814 __napi_gro_flush_chain(napi, base, flush_old);
5815 }
5816}
5817EXPORT_SYMBOL(napi_gro_flush);
5818
5819static struct list_head *gro_list_prepare(struct napi_struct *napi,
5820 struct sk_buff *skb)
5821{
5822 unsigned int maclen = skb->dev->hard_header_len;
5823 u32 hash = skb_get_hash_raw(skb);
5824 struct list_head *head;
5825 struct sk_buff *p;
5826
5827 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5828 list_for_each_entry(p, head, list) {
5829 unsigned long diffs;
5830
5831 NAPI_GRO_CB(p)->flush = 0;
5832
5833 if (hash != skb_get_hash_raw(p)) {
5834 NAPI_GRO_CB(p)->same_flow = 0;
5835 continue;
5836 }
5837
5838 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5839 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5840 if (skb_vlan_tag_present(p))
5841 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5842 diffs |= skb_metadata_dst_cmp(p, skb);
5843 diffs |= skb_metadata_differs(p, skb);
5844 if (maclen == ETH_HLEN)
5845 diffs |= compare_ether_header(skb_mac_header(p),
5846 skb_mac_header(skb));
5847 else if (!diffs)
5848 diffs = memcmp(skb_mac_header(p),
5849 skb_mac_header(skb),
5850 maclen);
5851 NAPI_GRO_CB(p)->same_flow = !diffs;
5852 }
5853
5854 return head;
5855}
5856
5857static void skb_gro_reset_offset(struct sk_buff *skb)
5858{
5859 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5860 const skb_frag_t *frag0 = &pinfo->frags[0];
5861
5862 NAPI_GRO_CB(skb)->data_offset = 0;
5863 NAPI_GRO_CB(skb)->frag0 = NULL;
5864 NAPI_GRO_CB(skb)->frag0_len = 0;
5865
5866 if (!skb_headlen(skb) && pinfo->nr_frags &&
5867 !PageHighMem(skb_frag_page(frag0))) {
5868 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5869 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5870 skb_frag_size(frag0),
5871 skb->end - skb->tail);
5872 }
5873}
5874
5875static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5876{
5877 struct skb_shared_info *pinfo = skb_shinfo(skb);
5878
5879 BUG_ON(skb->end - skb->tail < grow);
5880
5881 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5882
5883 skb->data_len -= grow;
5884 skb->tail += grow;
5885
5886 skb_frag_off_add(&pinfo->frags[0], grow);
5887 skb_frag_size_sub(&pinfo->frags[0], grow);
5888
5889 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5890 skb_frag_unref(skb, 0);
5891 memmove(pinfo->frags, pinfo->frags + 1,
5892 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5893 }
5894}
5895
5896static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5897{
5898 struct sk_buff *oldest;
5899
5900 oldest = list_last_entry(head, struct sk_buff, list);
5901
5902 /* We are called with head length >= MAX_GRO_SKBS, so this is
5903 * impossible.
5904 */
5905 if (WARN_ON_ONCE(!oldest))
5906 return;
5907
5908 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5909 * SKB to the chain.
5910 */
5911 skb_list_del_init(oldest);
5912 napi_gro_complete(napi, oldest);
5913}
5914
5915INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5916 struct sk_buff *));
5917INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5918 struct sk_buff *));
5919static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5920{
5921 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5922 struct list_head *head = &offload_base;
5923 struct packet_offload *ptype;
5924 __be16 type = skb->protocol;
5925 struct list_head *gro_head;
5926 struct sk_buff *pp = NULL;
5927 enum gro_result ret;
5928 int same_flow;
5929 int grow;
5930
5931 if (netif_elide_gro(skb->dev))
5932 goto normal;
5933
5934 gro_head = gro_list_prepare(napi, skb);
5935
5936 rcu_read_lock();
5937 list_for_each_entry_rcu(ptype, head, list) {
5938 if (ptype->type != type || !ptype->callbacks.gro_receive)
5939 continue;
5940
5941 skb_set_network_header(skb, skb_gro_offset(skb));
5942 skb_reset_mac_len(skb);
5943 NAPI_GRO_CB(skb)->same_flow = 0;
5944 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5945 NAPI_GRO_CB(skb)->free = 0;
5946 NAPI_GRO_CB(skb)->encap_mark = 0;
5947 NAPI_GRO_CB(skb)->recursion_counter = 0;
5948 NAPI_GRO_CB(skb)->is_fou = 0;
5949 NAPI_GRO_CB(skb)->is_atomic = 1;
5950 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5951
5952 /* Setup for GRO checksum validation */
5953 switch (skb->ip_summed) {
5954 case CHECKSUM_COMPLETE:
5955 NAPI_GRO_CB(skb)->csum = skb->csum;
5956 NAPI_GRO_CB(skb)->csum_valid = 1;
5957 NAPI_GRO_CB(skb)->csum_cnt = 0;
5958 break;
5959 case CHECKSUM_UNNECESSARY:
5960 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5961 NAPI_GRO_CB(skb)->csum_valid = 0;
5962 break;
5963 default:
5964 NAPI_GRO_CB(skb)->csum_cnt = 0;
5965 NAPI_GRO_CB(skb)->csum_valid = 0;
5966 }
5967
5968 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5969 ipv6_gro_receive, inet_gro_receive,
5970 gro_head, skb);
5971 break;
5972 }
5973 rcu_read_unlock();
5974
5975 if (&ptype->list == head)
5976 goto normal;
5977
5978 if (PTR_ERR(pp) == -EINPROGRESS) {
5979 ret = GRO_CONSUMED;
5980 goto ok;
5981 }
5982
5983 same_flow = NAPI_GRO_CB(skb)->same_flow;
5984 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5985
5986 if (pp) {
5987 skb_list_del_init(pp);
5988 napi_gro_complete(napi, pp);
5989 napi->gro_hash[hash].count--;
5990 }
5991
5992 if (same_flow)
5993 goto ok;
5994
5995 if (NAPI_GRO_CB(skb)->flush)
5996 goto normal;
5997
5998 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5999 gro_flush_oldest(napi, gro_head);
6000 } else {
6001 napi->gro_hash[hash].count++;
6002 }
6003 NAPI_GRO_CB(skb)->count = 1;
6004 NAPI_GRO_CB(skb)->age = jiffies;
6005 NAPI_GRO_CB(skb)->last = skb;
6006 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6007 list_add(&skb->list, gro_head);
6008 ret = GRO_HELD;
6009
6010pull:
6011 grow = skb_gro_offset(skb) - skb_headlen(skb);
6012 if (grow > 0)
6013 gro_pull_from_frag0(skb, grow);
6014ok:
6015 if (napi->gro_hash[hash].count) {
6016 if (!test_bit(hash, &napi->gro_bitmask))
6017 __set_bit(hash, &napi->gro_bitmask);
6018 } else if (test_bit(hash, &napi->gro_bitmask)) {
6019 __clear_bit(hash, &napi->gro_bitmask);
6020 }
6021
6022 return ret;
6023
6024normal:
6025 ret = GRO_NORMAL;
6026 goto pull;
6027}
6028
6029struct packet_offload *gro_find_receive_by_type(__be16 type)
6030{
6031 struct list_head *offload_head = &offload_base;
6032 struct packet_offload *ptype;
6033
6034 list_for_each_entry_rcu(ptype, offload_head, list) {
6035 if (ptype->type != type || !ptype->callbacks.gro_receive)
6036 continue;
6037 return ptype;
6038 }
6039 return NULL;
6040}
6041EXPORT_SYMBOL(gro_find_receive_by_type);
6042
6043struct packet_offload *gro_find_complete_by_type(__be16 type)
6044{
6045 struct list_head *offload_head = &offload_base;
6046 struct packet_offload *ptype;
6047
6048 list_for_each_entry_rcu(ptype, offload_head, list) {
6049 if (ptype->type != type || !ptype->callbacks.gro_complete)
6050 continue;
6051 return ptype;
6052 }
6053 return NULL;
6054}
6055EXPORT_SYMBOL(gro_find_complete_by_type);
6056
6057static void napi_skb_free_stolen_head(struct sk_buff *skb)
6058{
6059 skb_dst_drop(skb);
6060 skb_ext_put(skb);
6061 kmem_cache_free(skbuff_head_cache, skb);
6062}
6063
6064static gro_result_t napi_skb_finish(struct napi_struct *napi,
6065 struct sk_buff *skb,
6066 gro_result_t ret)
6067{
6068 switch (ret) {
6069 case GRO_NORMAL:
6070 gro_normal_one(napi, skb);
6071 break;
6072
6073 case GRO_DROP:
6074 kfree_skb(skb);
6075 break;
6076
6077 case GRO_MERGED_FREE:
6078 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6079 napi_skb_free_stolen_head(skb);
6080 else
6081 __kfree_skb(skb);
6082 break;
6083
6084 case GRO_HELD:
6085 case GRO_MERGED:
6086 case GRO_CONSUMED:
6087 break;
6088 }
6089
6090 return ret;
6091}
6092
6093gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6094{
6095 gro_result_t ret;
6096
6097 skb_mark_napi_id(skb, napi);
6098 trace_napi_gro_receive_entry(skb);
6099
6100 skb_gro_reset_offset(skb);
6101
6102 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6103 trace_napi_gro_receive_exit(ret);
6104
6105 return ret;
6106}
6107EXPORT_SYMBOL(napi_gro_receive);
6108
6109static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6110{
6111 if (unlikely(skb->pfmemalloc)) {
6112 consume_skb(skb);
6113 return;
6114 }
6115 __skb_pull(skb, skb_headlen(skb));
6116 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6117 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6118 __vlan_hwaccel_clear_tag(skb);
6119 skb->dev = napi->dev;
6120 skb->skb_iif = 0;
6121
6122 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6123 skb->pkt_type = PACKET_HOST;
6124
6125 skb->encapsulation = 0;
6126 skb_shinfo(skb)->gso_type = 0;
6127 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6128 skb_ext_reset(skb);
6129
6130 napi->skb = skb;
6131}
6132
6133struct sk_buff *napi_get_frags(struct napi_struct *napi)
6134{
6135 struct sk_buff *skb = napi->skb;
6136
6137 if (!skb) {
6138 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6139 if (skb) {
6140 napi->skb = skb;
6141 skb_mark_napi_id(skb, napi);
6142 }
6143 }
6144 return skb;
6145}
6146EXPORT_SYMBOL(napi_get_frags);
6147
6148static gro_result_t napi_frags_finish(struct napi_struct *napi,
6149 struct sk_buff *skb,
6150 gro_result_t ret)
6151{
6152 switch (ret) {
6153 case GRO_NORMAL:
6154 case GRO_HELD:
6155 __skb_push(skb, ETH_HLEN);
6156 skb->protocol = eth_type_trans(skb, skb->dev);
6157 if (ret == GRO_NORMAL)
6158 gro_normal_one(napi, skb);
6159 break;
6160
6161 case GRO_DROP:
6162 napi_reuse_skb(napi, skb);
6163 break;
6164
6165 case GRO_MERGED_FREE:
6166 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6167 napi_skb_free_stolen_head(skb);
6168 else
6169 napi_reuse_skb(napi, skb);
6170 break;
6171
6172 case GRO_MERGED:
6173 case GRO_CONSUMED:
6174 break;
6175 }
6176
6177 return ret;
6178}
6179
6180/* Upper GRO stack assumes network header starts at gro_offset=0
6181 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6182 * We copy ethernet header into skb->data to have a common layout.
6183 */
6184static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6185{
6186 struct sk_buff *skb = napi->skb;
6187 const struct ethhdr *eth;
6188 unsigned int hlen = sizeof(*eth);
6189
6190 napi->skb = NULL;
6191
6192 skb_reset_mac_header(skb);
6193 skb_gro_reset_offset(skb);
6194
6195 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6196 eth = skb_gro_header_slow(skb, hlen, 0);
6197 if (unlikely(!eth)) {
6198 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6199 __func__, napi->dev->name);
6200 napi_reuse_skb(napi, skb);
6201 return NULL;
6202 }
6203 } else {
6204 eth = (const struct ethhdr *)skb->data;
6205 gro_pull_from_frag0(skb, hlen);
6206 NAPI_GRO_CB(skb)->frag0 += hlen;
6207 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6208 }
6209 __skb_pull(skb, hlen);
6210
6211 /*
6212 * This works because the only protocols we care about don't require
6213 * special handling.
6214 * We'll fix it up properly in napi_frags_finish()
6215 */
6216 skb->protocol = eth->h_proto;
6217
6218 return skb;
6219}
6220
6221gro_result_t napi_gro_frags(struct napi_struct *napi)
6222{
6223 gro_result_t ret;
6224 struct sk_buff *skb = napi_frags_skb(napi);
6225
6226 if (!skb)
6227 return GRO_DROP;
6228
6229 trace_napi_gro_frags_entry(skb);
6230
6231 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6232 trace_napi_gro_frags_exit(ret);
6233
6234 return ret;
6235}
6236EXPORT_SYMBOL(napi_gro_frags);
6237
6238/* Compute the checksum from gro_offset and return the folded value
6239 * after adding in any pseudo checksum.
6240 */
6241__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6242{
6243 __wsum wsum;
6244 __sum16 sum;
6245
6246 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6247
6248 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6249 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6250 /* See comments in __skb_checksum_complete(). */
6251 if (likely(!sum)) {
6252 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6253 !skb->csum_complete_sw)
6254 netdev_rx_csum_fault(skb->dev, skb);
6255 }
6256
6257 NAPI_GRO_CB(skb)->csum = wsum;
6258 NAPI_GRO_CB(skb)->csum_valid = 1;
6259
6260 return sum;
6261}
6262EXPORT_SYMBOL(__skb_gro_checksum_complete);
6263
6264static void net_rps_send_ipi(struct softnet_data *remsd)
6265{
6266#ifdef CONFIG_RPS
6267 while (remsd) {
6268 struct softnet_data *next = remsd->rps_ipi_next;
6269
6270 if (cpu_online(remsd->cpu))
6271 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6272 remsd = next;
6273 }
6274#endif
6275}
6276
6277/*
6278 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6279 * Note: called with local irq disabled, but exits with local irq enabled.
6280 */
6281static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6282{
6283#ifdef CONFIG_RPS
6284 struct softnet_data *remsd = sd->rps_ipi_list;
6285
6286 if (remsd) {
6287 sd->rps_ipi_list = NULL;
6288
6289 local_irq_enable();
6290
6291 /* Send pending IPI's to kick RPS processing on remote cpus. */
6292 net_rps_send_ipi(remsd);
6293 } else
6294#endif
6295 local_irq_enable();
6296}
6297
6298static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6299{
6300#ifdef CONFIG_RPS
6301 return sd->rps_ipi_list != NULL;
6302#else
6303 return false;
6304#endif
6305}
6306
6307static int process_backlog(struct napi_struct *napi, int quota)
6308{
6309 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6310 bool again = true;
6311 int work = 0;
6312
6313 /* Check if we have pending ipi, its better to send them now,
6314 * not waiting net_rx_action() end.
6315 */
6316 if (sd_has_rps_ipi_waiting(sd)) {
6317 local_irq_disable();
6318 net_rps_action_and_irq_enable(sd);
6319 }
6320
6321 napi->weight = dev_rx_weight;
6322 while (again) {
6323 struct sk_buff *skb;
6324
6325 while ((skb = __skb_dequeue(&sd->process_queue))) {
6326 rcu_read_lock();
6327 __netif_receive_skb(skb);
6328 rcu_read_unlock();
6329 input_queue_head_incr(sd);
6330 if (++work >= quota)
6331 return work;
6332
6333 }
6334
6335 local_irq_disable();
6336 rps_lock(sd);
6337 if (skb_queue_empty(&sd->input_pkt_queue)) {
6338 /*
6339 * Inline a custom version of __napi_complete().
6340 * only current cpu owns and manipulates this napi,
6341 * and NAPI_STATE_SCHED is the only possible flag set
6342 * on backlog.
6343 * We can use a plain write instead of clear_bit(),
6344 * and we dont need an smp_mb() memory barrier.
6345 */
6346 napi->state = 0;
6347 again = false;
6348 } else {
6349 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6350 &sd->process_queue);
6351 }
6352 rps_unlock(sd);
6353 local_irq_enable();
6354 }
6355
6356 return work;
6357}
6358
6359/**
6360 * __napi_schedule - schedule for receive
6361 * @n: entry to schedule
6362 *
6363 * The entry's receive function will be scheduled to run.
6364 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6365 */
6366void __napi_schedule(struct napi_struct *n)
6367{
6368 unsigned long flags;
6369
6370 local_irq_save(flags);
6371 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6372 local_irq_restore(flags);
6373}
6374EXPORT_SYMBOL(__napi_schedule);
6375
6376/**
6377 * napi_schedule_prep - check if napi can be scheduled
6378 * @n: napi context
6379 *
6380 * Test if NAPI routine is already running, and if not mark
6381 * it as running. This is used as a condition variable to
6382 * insure only one NAPI poll instance runs. We also make
6383 * sure there is no pending NAPI disable.
6384 */
6385bool napi_schedule_prep(struct napi_struct *n)
6386{
6387 unsigned long val, new;
6388
6389 do {
6390 val = READ_ONCE(n->state);
6391 if (unlikely(val & NAPIF_STATE_DISABLE))
6392 return false;
6393 new = val | NAPIF_STATE_SCHED;
6394
6395 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6396 * This was suggested by Alexander Duyck, as compiler
6397 * emits better code than :
6398 * if (val & NAPIF_STATE_SCHED)
6399 * new |= NAPIF_STATE_MISSED;
6400 */
6401 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6402 NAPIF_STATE_MISSED;
6403 } while (cmpxchg(&n->state, val, new) != val);
6404
6405 return !(val & NAPIF_STATE_SCHED);
6406}
6407EXPORT_SYMBOL(napi_schedule_prep);
6408
6409/**
6410 * __napi_schedule_irqoff - schedule for receive
6411 * @n: entry to schedule
6412 *
6413 * Variant of __napi_schedule() assuming hard irqs are masked
6414 */
6415void __napi_schedule_irqoff(struct napi_struct *n)
6416{
6417 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6418}
6419EXPORT_SYMBOL(__napi_schedule_irqoff);
6420
6421bool napi_complete_done(struct napi_struct *n, int work_done)
6422{
6423 unsigned long flags, val, new, timeout = 0;
6424 bool ret = true;
6425
6426 /*
6427 * 1) Don't let napi dequeue from the cpu poll list
6428 * just in case its running on a different cpu.
6429 * 2) If we are busy polling, do nothing here, we have
6430 * the guarantee we will be called later.
6431 */
6432 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6433 NAPIF_STATE_IN_BUSY_POLL)))
6434 return false;
6435
6436 if (work_done) {
6437 if (n->gro_bitmask)
6438 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6439 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6440 }
6441 if (n->defer_hard_irqs_count > 0) {
6442 n->defer_hard_irqs_count--;
6443 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6444 if (timeout)
6445 ret = false;
6446 }
6447 if (n->gro_bitmask) {
6448 /* When the NAPI instance uses a timeout and keeps postponing
6449 * it, we need to bound somehow the time packets are kept in
6450 * the GRO layer
6451 */
6452 napi_gro_flush(n, !!timeout);
6453 }
6454
6455 gro_normal_list(n);
6456
6457 if (unlikely(!list_empty(&n->poll_list))) {
6458 /* If n->poll_list is not empty, we need to mask irqs */
6459 local_irq_save(flags);
6460 list_del_init(&n->poll_list);
6461 local_irq_restore(flags);
6462 }
6463
6464 do {
6465 val = READ_ONCE(n->state);
6466
6467 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6468
6469 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6470 NAPIF_STATE_PREFER_BUSY_POLL);
6471
6472 /* If STATE_MISSED was set, leave STATE_SCHED set,
6473 * because we will call napi->poll() one more time.
6474 * This C code was suggested by Alexander Duyck to help gcc.
6475 */
6476 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6477 NAPIF_STATE_SCHED;
6478 } while (cmpxchg(&n->state, val, new) != val);
6479
6480 if (unlikely(val & NAPIF_STATE_MISSED)) {
6481 __napi_schedule(n);
6482 return false;
6483 }
6484
6485 if (timeout)
6486 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6487 HRTIMER_MODE_REL_PINNED);
6488 return ret;
6489}
6490EXPORT_SYMBOL(napi_complete_done);
6491
6492/* must be called under rcu_read_lock(), as we dont take a reference */
6493static struct napi_struct *napi_by_id(unsigned int napi_id)
6494{
6495 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6496 struct napi_struct *napi;
6497
6498 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6499 if (napi->napi_id == napi_id)
6500 return napi;
6501
6502 return NULL;
6503}
6504
6505#if defined(CONFIG_NET_RX_BUSY_POLL)
6506
6507static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6508{
6509 if (!skip_schedule) {
6510 gro_normal_list(napi);
6511 __napi_schedule(napi);
6512 return;
6513 }
6514
6515 if (napi->gro_bitmask) {
6516 /* flush too old packets
6517 * If HZ < 1000, flush all packets.
6518 */
6519 napi_gro_flush(napi, HZ >= 1000);
6520 }
6521
6522 gro_normal_list(napi);
6523 clear_bit(NAPI_STATE_SCHED, &napi->state);
6524}
6525
6526static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6527 u16 budget)
6528{
6529 bool skip_schedule = false;
6530 unsigned long timeout;
6531 int rc;
6532
6533 /* Busy polling means there is a high chance device driver hard irq
6534 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6535 * set in napi_schedule_prep().
6536 * Since we are about to call napi->poll() once more, we can safely
6537 * clear NAPI_STATE_MISSED.
6538 *
6539 * Note: x86 could use a single "lock and ..." instruction
6540 * to perform these two clear_bit()
6541 */
6542 clear_bit(NAPI_STATE_MISSED, &napi->state);
6543 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6544
6545 local_bh_disable();
6546
6547 if (prefer_busy_poll) {
6548 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6549 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6550 if (napi->defer_hard_irqs_count && timeout) {
6551 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6552 skip_schedule = true;
6553 }
6554 }
6555
6556 /* All we really want here is to re-enable device interrupts.
6557 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6558 */
6559 rc = napi->poll(napi, budget);
6560 /* We can't gro_normal_list() here, because napi->poll() might have
6561 * rearmed the napi (napi_complete_done()) in which case it could
6562 * already be running on another CPU.
6563 */
6564 trace_napi_poll(napi, rc, budget);
6565 netpoll_poll_unlock(have_poll_lock);
6566 if (rc == budget)
6567 __busy_poll_stop(napi, skip_schedule);
6568 local_bh_enable();
6569}
6570
6571void napi_busy_loop(unsigned int napi_id,
6572 bool (*loop_end)(void *, unsigned long),
6573 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6574{
6575 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6576 int (*napi_poll)(struct napi_struct *napi, int budget);
6577 void *have_poll_lock = NULL;
6578 struct napi_struct *napi;
6579
6580restart:
6581 napi_poll = NULL;
6582
6583 rcu_read_lock();
6584
6585 napi = napi_by_id(napi_id);
6586 if (!napi)
6587 goto out;
6588
6589 preempt_disable();
6590 for (;;) {
6591 int work = 0;
6592
6593 local_bh_disable();
6594 if (!napi_poll) {
6595 unsigned long val = READ_ONCE(napi->state);
6596
6597 /* If multiple threads are competing for this napi,
6598 * we avoid dirtying napi->state as much as we can.
6599 */
6600 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6601 NAPIF_STATE_IN_BUSY_POLL)) {
6602 if (prefer_busy_poll)
6603 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604 goto count;
6605 }
6606 if (cmpxchg(&napi->state, val,
6607 val | NAPIF_STATE_IN_BUSY_POLL |
6608 NAPIF_STATE_SCHED) != val) {
6609 if (prefer_busy_poll)
6610 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6611 goto count;
6612 }
6613 have_poll_lock = netpoll_poll_lock(napi);
6614 napi_poll = napi->poll;
6615 }
6616 work = napi_poll(napi, budget);
6617 trace_napi_poll(napi, work, budget);
6618 gro_normal_list(napi);
6619count:
6620 if (work > 0)
6621 __NET_ADD_STATS(dev_net(napi->dev),
6622 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6623 local_bh_enable();
6624
6625 if (!loop_end || loop_end(loop_end_arg, start_time))
6626 break;
6627
6628 if (unlikely(need_resched())) {
6629 if (napi_poll)
6630 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6631 preempt_enable();
6632 rcu_read_unlock();
6633 cond_resched();
6634 if (loop_end(loop_end_arg, start_time))
6635 return;
6636 goto restart;
6637 }
6638 cpu_relax();
6639 }
6640 if (napi_poll)
6641 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6642 preempt_enable();
6643out:
6644 rcu_read_unlock();
6645}
6646EXPORT_SYMBOL(napi_busy_loop);
6647
6648#endif /* CONFIG_NET_RX_BUSY_POLL */
6649
6650static void napi_hash_add(struct napi_struct *napi)
6651{
6652 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6653 return;
6654
6655 spin_lock(&napi_hash_lock);
6656
6657 /* 0..NR_CPUS range is reserved for sender_cpu use */
6658 do {
6659 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6660 napi_gen_id = MIN_NAPI_ID;
6661 } while (napi_by_id(napi_gen_id));
6662 napi->napi_id = napi_gen_id;
6663
6664 hlist_add_head_rcu(&napi->napi_hash_node,
6665 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6666
6667 spin_unlock(&napi_hash_lock);
6668}
6669
6670/* Warning : caller is responsible to make sure rcu grace period
6671 * is respected before freeing memory containing @napi
6672 */
6673static void napi_hash_del(struct napi_struct *napi)
6674{
6675 spin_lock(&napi_hash_lock);
6676
6677 hlist_del_init_rcu(&napi->napi_hash_node);
6678
6679 spin_unlock(&napi_hash_lock);
6680}
6681
6682static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6683{
6684 struct napi_struct *napi;
6685
6686 napi = container_of(timer, struct napi_struct, timer);
6687
6688 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6689 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6690 */
6691 if (!napi_disable_pending(napi) &&
6692 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6693 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6694 __napi_schedule_irqoff(napi);
6695 }
6696
6697 return HRTIMER_NORESTART;
6698}
6699
6700static void init_gro_hash(struct napi_struct *napi)
6701{
6702 int i;
6703
6704 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6705 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6706 napi->gro_hash[i].count = 0;
6707 }
6708 napi->gro_bitmask = 0;
6709}
6710
6711void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6712 int (*poll)(struct napi_struct *, int), int weight)
6713{
6714 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6715 return;
6716
6717 INIT_LIST_HEAD(&napi->poll_list);
6718 INIT_HLIST_NODE(&napi->napi_hash_node);
6719 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6720 napi->timer.function = napi_watchdog;
6721 init_gro_hash(napi);
6722 napi->skb = NULL;
6723 INIT_LIST_HEAD(&napi->rx_list);
6724 napi->rx_count = 0;
6725 napi->poll = poll;
6726 if (weight > NAPI_POLL_WEIGHT)
6727 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6728 weight);
6729 napi->weight = weight;
6730 napi->dev = dev;
6731#ifdef CONFIG_NETPOLL
6732 napi->poll_owner = -1;
6733#endif
6734 set_bit(NAPI_STATE_SCHED, &napi->state);
6735 set_bit(NAPI_STATE_NPSVC, &napi->state);
6736 list_add_rcu(&napi->dev_list, &dev->napi_list);
6737 napi_hash_add(napi);
6738}
6739EXPORT_SYMBOL(netif_napi_add);
6740
6741void napi_disable(struct napi_struct *n)
6742{
6743 might_sleep();
6744 set_bit(NAPI_STATE_DISABLE, &n->state);
6745
6746 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6747 msleep(1);
6748 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6749 msleep(1);
6750
6751 hrtimer_cancel(&n->timer);
6752
6753 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6754 clear_bit(NAPI_STATE_DISABLE, &n->state);
6755}
6756EXPORT_SYMBOL(napi_disable);
6757
6758static void flush_gro_hash(struct napi_struct *napi)
6759{
6760 int i;
6761
6762 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6763 struct sk_buff *skb, *n;
6764
6765 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6766 kfree_skb(skb);
6767 napi->gro_hash[i].count = 0;
6768 }
6769}
6770
6771/* Must be called in process context */
6772void __netif_napi_del(struct napi_struct *napi)
6773{
6774 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6775 return;
6776
6777 napi_hash_del(napi);
6778 list_del_rcu(&napi->dev_list);
6779 napi_free_frags(napi);
6780
6781 flush_gro_hash(napi);
6782 napi->gro_bitmask = 0;
6783}
6784EXPORT_SYMBOL(__netif_napi_del);
6785
6786static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6787{
6788 void *have;
6789 int work, weight;
6790
6791 list_del_init(&n->poll_list);
6792
6793 have = netpoll_poll_lock(n);
6794
6795 weight = n->weight;
6796
6797 /* This NAPI_STATE_SCHED test is for avoiding a race
6798 * with netpoll's poll_napi(). Only the entity which
6799 * obtains the lock and sees NAPI_STATE_SCHED set will
6800 * actually make the ->poll() call. Therefore we avoid
6801 * accidentally calling ->poll() when NAPI is not scheduled.
6802 */
6803 work = 0;
6804 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6805 work = n->poll(n, weight);
6806 trace_napi_poll(n, work, weight);
6807 }
6808
6809 if (unlikely(work > weight))
6810 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6811 n->poll, work, weight);
6812
6813 if (likely(work < weight))
6814 goto out_unlock;
6815
6816 /* Drivers must not modify the NAPI state if they
6817 * consume the entire weight. In such cases this code
6818 * still "owns" the NAPI instance and therefore can
6819 * move the instance around on the list at-will.
6820 */
6821 if (unlikely(napi_disable_pending(n))) {
6822 napi_complete(n);
6823 goto out_unlock;
6824 }
6825
6826 /* The NAPI context has more processing work, but busy-polling
6827 * is preferred. Exit early.
6828 */
6829 if (napi_prefer_busy_poll(n)) {
6830 if (napi_complete_done(n, work)) {
6831 /* If timeout is not set, we need to make sure
6832 * that the NAPI is re-scheduled.
6833 */
6834 napi_schedule(n);
6835 }
6836 goto out_unlock;
6837 }
6838
6839 if (n->gro_bitmask) {
6840 /* flush too old packets
6841 * If HZ < 1000, flush all packets.
6842 */
6843 napi_gro_flush(n, HZ >= 1000);
6844 }
6845
6846 gro_normal_list(n);
6847
6848 /* Some drivers may have called napi_schedule
6849 * prior to exhausting their budget.
6850 */
6851 if (unlikely(!list_empty(&n->poll_list))) {
6852 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6853 n->dev ? n->dev->name : "backlog");
6854 goto out_unlock;
6855 }
6856
6857 list_add_tail(&n->poll_list, repoll);
6858
6859out_unlock:
6860 netpoll_poll_unlock(have);
6861
6862 return work;
6863}
6864
6865static __latent_entropy void net_rx_action(struct softirq_action *h)
6866{
6867 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6868 unsigned long time_limit = jiffies +
6869 usecs_to_jiffies(netdev_budget_usecs);
6870 int budget = netdev_budget;
6871 LIST_HEAD(list);
6872 LIST_HEAD(repoll);
6873
6874 local_irq_disable();
6875 list_splice_init(&sd->poll_list, &list);
6876 local_irq_enable();
6877
6878 for (;;) {
6879 struct napi_struct *n;
6880
6881 if (list_empty(&list)) {
6882 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6883 goto out;
6884 break;
6885 }
6886
6887 n = list_first_entry(&list, struct napi_struct, poll_list);
6888 budget -= napi_poll(n, &repoll);
6889
6890 /* If softirq window is exhausted then punt.
6891 * Allow this to run for 2 jiffies since which will allow
6892 * an average latency of 1.5/HZ.
6893 */
6894 if (unlikely(budget <= 0 ||
6895 time_after_eq(jiffies, time_limit))) {
6896 sd->time_squeeze++;
6897 break;
6898 }
6899 }
6900
6901 local_irq_disable();
6902
6903 list_splice_tail_init(&sd->poll_list, &list);
6904 list_splice_tail(&repoll, &list);
6905 list_splice(&list, &sd->poll_list);
6906 if (!list_empty(&sd->poll_list))
6907 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6908
6909 net_rps_action_and_irq_enable(sd);
6910out:
6911 __kfree_skb_flush();
6912}
6913
6914struct netdev_adjacent {
6915 struct net_device *dev;
6916
6917 /* upper master flag, there can only be one master device per list */
6918 bool master;
6919
6920 /* lookup ignore flag */
6921 bool ignore;
6922
6923 /* counter for the number of times this device was added to us */
6924 u16 ref_nr;
6925
6926 /* private field for the users */
6927 void *private;
6928
6929 struct list_head list;
6930 struct rcu_head rcu;
6931};
6932
6933static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6934 struct list_head *adj_list)
6935{
6936 struct netdev_adjacent *adj;
6937
6938 list_for_each_entry(adj, adj_list, list) {
6939 if (adj->dev == adj_dev)
6940 return adj;
6941 }
6942 return NULL;
6943}
6944
6945static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6946 struct netdev_nested_priv *priv)
6947{
6948 struct net_device *dev = (struct net_device *)priv->data;
6949
6950 return upper_dev == dev;
6951}
6952
6953/**
6954 * netdev_has_upper_dev - Check if device is linked to an upper device
6955 * @dev: device
6956 * @upper_dev: upper device to check
6957 *
6958 * Find out if a device is linked to specified upper device and return true
6959 * in case it is. Note that this checks only immediate upper device,
6960 * not through a complete stack of devices. The caller must hold the RTNL lock.
6961 */
6962bool netdev_has_upper_dev(struct net_device *dev,
6963 struct net_device *upper_dev)
6964{
6965 struct netdev_nested_priv priv = {
6966 .data = (void *)upper_dev,
6967 };
6968
6969 ASSERT_RTNL();
6970
6971 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6972 &priv);
6973}
6974EXPORT_SYMBOL(netdev_has_upper_dev);
6975
6976/**
6977 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6978 * @dev: device
6979 * @upper_dev: upper device to check
6980 *
6981 * Find out if a device is linked to specified upper device and return true
6982 * in case it is. Note that this checks the entire upper device chain.
6983 * The caller must hold rcu lock.
6984 */
6985
6986bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6987 struct net_device *upper_dev)
6988{
6989 struct netdev_nested_priv priv = {
6990 .data = (void *)upper_dev,
6991 };
6992
6993 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6994 &priv);
6995}
6996EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6997
6998/**
6999 * netdev_has_any_upper_dev - Check if device is linked to some device
7000 * @dev: device
7001 *
7002 * Find out if a device is linked to an upper device and return true in case
7003 * it is. The caller must hold the RTNL lock.
7004 */
7005bool netdev_has_any_upper_dev(struct net_device *dev)
7006{
7007 ASSERT_RTNL();
7008
7009 return !list_empty(&dev->adj_list.upper);
7010}
7011EXPORT_SYMBOL(netdev_has_any_upper_dev);
7012
7013/**
7014 * netdev_master_upper_dev_get - Get master upper device
7015 * @dev: device
7016 *
7017 * Find a master upper device and return pointer to it or NULL in case
7018 * it's not there. The caller must hold the RTNL lock.
7019 */
7020struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7021{
7022 struct netdev_adjacent *upper;
7023
7024 ASSERT_RTNL();
7025
7026 if (list_empty(&dev->adj_list.upper))
7027 return NULL;
7028
7029 upper = list_first_entry(&dev->adj_list.upper,
7030 struct netdev_adjacent, list);
7031 if (likely(upper->master))
7032 return upper->dev;
7033 return NULL;
7034}
7035EXPORT_SYMBOL(netdev_master_upper_dev_get);
7036
7037static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7038{
7039 struct netdev_adjacent *upper;
7040
7041 ASSERT_RTNL();
7042
7043 if (list_empty(&dev->adj_list.upper))
7044 return NULL;
7045
7046 upper = list_first_entry(&dev->adj_list.upper,
7047 struct netdev_adjacent, list);
7048 if (likely(upper->master) && !upper->ignore)
7049 return upper->dev;
7050 return NULL;
7051}
7052
7053/**
7054 * netdev_has_any_lower_dev - Check if device is linked to some device
7055 * @dev: device
7056 *
7057 * Find out if a device is linked to a lower device and return true in case
7058 * it is. The caller must hold the RTNL lock.
7059 */
7060static bool netdev_has_any_lower_dev(struct net_device *dev)
7061{
7062 ASSERT_RTNL();
7063
7064 return !list_empty(&dev->adj_list.lower);
7065}
7066
7067void *netdev_adjacent_get_private(struct list_head *adj_list)
7068{
7069 struct netdev_adjacent *adj;
7070
7071 adj = list_entry(adj_list, struct netdev_adjacent, list);
7072
7073 return adj->private;
7074}
7075EXPORT_SYMBOL(netdev_adjacent_get_private);
7076
7077/**
7078 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7079 * @dev: device
7080 * @iter: list_head ** of the current position
7081 *
7082 * Gets the next device from the dev's upper list, starting from iter
7083 * position. The caller must hold RCU read lock.
7084 */
7085struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7086 struct list_head **iter)
7087{
7088 struct netdev_adjacent *upper;
7089
7090 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7091
7092 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7093
7094 if (&upper->list == &dev->adj_list.upper)
7095 return NULL;
7096
7097 *iter = &upper->list;
7098
7099 return upper->dev;
7100}
7101EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7102
7103static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7104 struct list_head **iter,
7105 bool *ignore)
7106{
7107 struct netdev_adjacent *upper;
7108
7109 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7110
7111 if (&upper->list == &dev->adj_list.upper)
7112 return NULL;
7113
7114 *iter = &upper->list;
7115 *ignore = upper->ignore;
7116
7117 return upper->dev;
7118}
7119
7120static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7121 struct list_head **iter)
7122{
7123 struct netdev_adjacent *upper;
7124
7125 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7126
7127 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128
7129 if (&upper->list == &dev->adj_list.upper)
7130 return NULL;
7131
7132 *iter = &upper->list;
7133
7134 return upper->dev;
7135}
7136
7137static int __netdev_walk_all_upper_dev(struct net_device *dev,
7138 int (*fn)(struct net_device *dev,
7139 struct netdev_nested_priv *priv),
7140 struct netdev_nested_priv *priv)
7141{
7142 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7143 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7144 int ret, cur = 0;
7145 bool ignore;
7146
7147 now = dev;
7148 iter = &dev->adj_list.upper;
7149
7150 while (1) {
7151 if (now != dev) {
7152 ret = fn(now, priv);
7153 if (ret)
7154 return ret;
7155 }
7156
7157 next = NULL;
7158 while (1) {
7159 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7160 if (!udev)
7161 break;
7162 if (ignore)
7163 continue;
7164
7165 next = udev;
7166 niter = &udev->adj_list.upper;
7167 dev_stack[cur] = now;
7168 iter_stack[cur++] = iter;
7169 break;
7170 }
7171
7172 if (!next) {
7173 if (!cur)
7174 return 0;
7175 next = dev_stack[--cur];
7176 niter = iter_stack[cur];
7177 }
7178
7179 now = next;
7180 iter = niter;
7181 }
7182
7183 return 0;
7184}
7185
7186int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7187 int (*fn)(struct net_device *dev,
7188 struct netdev_nested_priv *priv),
7189 struct netdev_nested_priv *priv)
7190{
7191 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7192 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7193 int ret, cur = 0;
7194
7195 now = dev;
7196 iter = &dev->adj_list.upper;
7197
7198 while (1) {
7199 if (now != dev) {
7200 ret = fn(now, priv);
7201 if (ret)
7202 return ret;
7203 }
7204
7205 next = NULL;
7206 while (1) {
7207 udev = netdev_next_upper_dev_rcu(now, &iter);
7208 if (!udev)
7209 break;
7210
7211 next = udev;
7212 niter = &udev->adj_list.upper;
7213 dev_stack[cur] = now;
7214 iter_stack[cur++] = iter;
7215 break;
7216 }
7217
7218 if (!next) {
7219 if (!cur)
7220 return 0;
7221 next = dev_stack[--cur];
7222 niter = iter_stack[cur];
7223 }
7224
7225 now = next;
7226 iter = niter;
7227 }
7228
7229 return 0;
7230}
7231EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7232
7233static bool __netdev_has_upper_dev(struct net_device *dev,
7234 struct net_device *upper_dev)
7235{
7236 struct netdev_nested_priv priv = {
7237 .flags = 0,
7238 .data = (void *)upper_dev,
7239 };
7240
7241 ASSERT_RTNL();
7242
7243 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7244 &priv);
7245}
7246
7247/**
7248 * netdev_lower_get_next_private - Get the next ->private from the
7249 * lower neighbour list
7250 * @dev: device
7251 * @iter: list_head ** of the current position
7252 *
7253 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7254 * list, starting from iter position. The caller must hold either hold the
7255 * RTNL lock or its own locking that guarantees that the neighbour lower
7256 * list will remain unchanged.
7257 */
7258void *netdev_lower_get_next_private(struct net_device *dev,
7259 struct list_head **iter)
7260{
7261 struct netdev_adjacent *lower;
7262
7263 lower = list_entry(*iter, struct netdev_adjacent, list);
7264
7265 if (&lower->list == &dev->adj_list.lower)
7266 return NULL;
7267
7268 *iter = lower->list.next;
7269
7270 return lower->private;
7271}
7272EXPORT_SYMBOL(netdev_lower_get_next_private);
7273
7274/**
7275 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7276 * lower neighbour list, RCU
7277 * variant
7278 * @dev: device
7279 * @iter: list_head ** of the current position
7280 *
7281 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7282 * list, starting from iter position. The caller must hold RCU read lock.
7283 */
7284void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7285 struct list_head **iter)
7286{
7287 struct netdev_adjacent *lower;
7288
7289 WARN_ON_ONCE(!rcu_read_lock_held());
7290
7291 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7292
7293 if (&lower->list == &dev->adj_list.lower)
7294 return NULL;
7295
7296 *iter = &lower->list;
7297
7298 return lower->private;
7299}
7300EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7301
7302/**
7303 * netdev_lower_get_next - Get the next device from the lower neighbour
7304 * list
7305 * @dev: device
7306 * @iter: list_head ** of the current position
7307 *
7308 * Gets the next netdev_adjacent from the dev's lower neighbour
7309 * list, starting from iter position. The caller must hold RTNL lock or
7310 * its own locking that guarantees that the neighbour lower
7311 * list will remain unchanged.
7312 */
7313void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7314{
7315 struct netdev_adjacent *lower;
7316
7317 lower = list_entry(*iter, struct netdev_adjacent, list);
7318
7319 if (&lower->list == &dev->adj_list.lower)
7320 return NULL;
7321
7322 *iter = lower->list.next;
7323
7324 return lower->dev;
7325}
7326EXPORT_SYMBOL(netdev_lower_get_next);
7327
7328static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7329 struct list_head **iter)
7330{
7331 struct netdev_adjacent *lower;
7332
7333 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7334
7335 if (&lower->list == &dev->adj_list.lower)
7336 return NULL;
7337
7338 *iter = &lower->list;
7339
7340 return lower->dev;
7341}
7342
7343static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7344 struct list_head **iter,
7345 bool *ignore)
7346{
7347 struct netdev_adjacent *lower;
7348
7349 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7350
7351 if (&lower->list == &dev->adj_list.lower)
7352 return NULL;
7353
7354 *iter = &lower->list;
7355 *ignore = lower->ignore;
7356
7357 return lower->dev;
7358}
7359
7360int netdev_walk_all_lower_dev(struct net_device *dev,
7361 int (*fn)(struct net_device *dev,
7362 struct netdev_nested_priv *priv),
7363 struct netdev_nested_priv *priv)
7364{
7365 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7366 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7367 int ret, cur = 0;
7368
7369 now = dev;
7370 iter = &dev->adj_list.lower;
7371
7372 while (1) {
7373 if (now != dev) {
7374 ret = fn(now, priv);
7375 if (ret)
7376 return ret;
7377 }
7378
7379 next = NULL;
7380 while (1) {
7381 ldev = netdev_next_lower_dev(now, &iter);
7382 if (!ldev)
7383 break;
7384
7385 next = ldev;
7386 niter = &ldev->adj_list.lower;
7387 dev_stack[cur] = now;
7388 iter_stack[cur++] = iter;
7389 break;
7390 }
7391
7392 if (!next) {
7393 if (!cur)
7394 return 0;
7395 next = dev_stack[--cur];
7396 niter = iter_stack[cur];
7397 }
7398
7399 now = next;
7400 iter = niter;
7401 }
7402
7403 return 0;
7404}
7405EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7406
7407static int __netdev_walk_all_lower_dev(struct net_device *dev,
7408 int (*fn)(struct net_device *dev,
7409 struct netdev_nested_priv *priv),
7410 struct netdev_nested_priv *priv)
7411{
7412 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7413 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7414 int ret, cur = 0;
7415 bool ignore;
7416
7417 now = dev;
7418 iter = &dev->adj_list.lower;
7419
7420 while (1) {
7421 if (now != dev) {
7422 ret = fn(now, priv);
7423 if (ret)
7424 return ret;
7425 }
7426
7427 next = NULL;
7428 while (1) {
7429 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7430 if (!ldev)
7431 break;
7432 if (ignore)
7433 continue;
7434
7435 next = ldev;
7436 niter = &ldev->adj_list.lower;
7437 dev_stack[cur] = now;
7438 iter_stack[cur++] = iter;
7439 break;
7440 }
7441
7442 if (!next) {
7443 if (!cur)
7444 return 0;
7445 next = dev_stack[--cur];
7446 niter = iter_stack[cur];
7447 }
7448
7449 now = next;
7450 iter = niter;
7451 }
7452
7453 return 0;
7454}
7455
7456struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7457 struct list_head **iter)
7458{
7459 struct netdev_adjacent *lower;
7460
7461 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7462 if (&lower->list == &dev->adj_list.lower)
7463 return NULL;
7464
7465 *iter = &lower->list;
7466
7467 return lower->dev;
7468}
7469EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7470
7471static u8 __netdev_upper_depth(struct net_device *dev)
7472{
7473 struct net_device *udev;
7474 struct list_head *iter;
7475 u8 max_depth = 0;
7476 bool ignore;
7477
7478 for (iter = &dev->adj_list.upper,
7479 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7480 udev;
7481 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7482 if (ignore)
7483 continue;
7484 if (max_depth < udev->upper_level)
7485 max_depth = udev->upper_level;
7486 }
7487
7488 return max_depth;
7489}
7490
7491static u8 __netdev_lower_depth(struct net_device *dev)
7492{
7493 struct net_device *ldev;
7494 struct list_head *iter;
7495 u8 max_depth = 0;
7496 bool ignore;
7497
7498 for (iter = &dev->adj_list.lower,
7499 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7500 ldev;
7501 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7502 if (ignore)
7503 continue;
7504 if (max_depth < ldev->lower_level)
7505 max_depth = ldev->lower_level;
7506 }
7507
7508 return max_depth;
7509}
7510
7511static int __netdev_update_upper_level(struct net_device *dev,
7512 struct netdev_nested_priv *__unused)
7513{
7514 dev->upper_level = __netdev_upper_depth(dev) + 1;
7515 return 0;
7516}
7517
7518static int __netdev_update_lower_level(struct net_device *dev,
7519 struct netdev_nested_priv *priv)
7520{
7521 dev->lower_level = __netdev_lower_depth(dev) + 1;
7522
7523#ifdef CONFIG_LOCKDEP
7524 if (!priv)
7525 return 0;
7526
7527 if (priv->flags & NESTED_SYNC_IMM)
7528 dev->nested_level = dev->lower_level - 1;
7529 if (priv->flags & NESTED_SYNC_TODO)
7530 net_unlink_todo(dev);
7531#endif
7532 return 0;
7533}
7534
7535int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7536 int (*fn)(struct net_device *dev,
7537 struct netdev_nested_priv *priv),
7538 struct netdev_nested_priv *priv)
7539{
7540 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7541 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7542 int ret, cur = 0;
7543
7544 now = dev;
7545 iter = &dev->adj_list.lower;
7546
7547 while (1) {
7548 if (now != dev) {
7549 ret = fn(now, priv);
7550 if (ret)
7551 return ret;
7552 }
7553
7554 next = NULL;
7555 while (1) {
7556 ldev = netdev_next_lower_dev_rcu(now, &iter);
7557 if (!ldev)
7558 break;
7559
7560 next = ldev;
7561 niter = &ldev->adj_list.lower;
7562 dev_stack[cur] = now;
7563 iter_stack[cur++] = iter;
7564 break;
7565 }
7566
7567 if (!next) {
7568 if (!cur)
7569 return 0;
7570 next = dev_stack[--cur];
7571 niter = iter_stack[cur];
7572 }
7573
7574 now = next;
7575 iter = niter;
7576 }
7577
7578 return 0;
7579}
7580EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7581
7582/**
7583 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7584 * lower neighbour list, RCU
7585 * variant
7586 * @dev: device
7587 *
7588 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7589 * list. The caller must hold RCU read lock.
7590 */
7591void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7592{
7593 struct netdev_adjacent *lower;
7594
7595 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7596 struct netdev_adjacent, list);
7597 if (lower)
7598 return lower->private;
7599 return NULL;
7600}
7601EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7602
7603/**
7604 * netdev_master_upper_dev_get_rcu - Get master upper device
7605 * @dev: device
7606 *
7607 * Find a master upper device and return pointer to it or NULL in case
7608 * it's not there. The caller must hold the RCU read lock.
7609 */
7610struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7611{
7612 struct netdev_adjacent *upper;
7613
7614 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7615 struct netdev_adjacent, list);
7616 if (upper && likely(upper->master))
7617 return upper->dev;
7618 return NULL;
7619}
7620EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7621
7622static int netdev_adjacent_sysfs_add(struct net_device *dev,
7623 struct net_device *adj_dev,
7624 struct list_head *dev_list)
7625{
7626 char linkname[IFNAMSIZ+7];
7627
7628 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7629 "upper_%s" : "lower_%s", adj_dev->name);
7630 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7631 linkname);
7632}
7633static void netdev_adjacent_sysfs_del(struct net_device *dev,
7634 char *name,
7635 struct list_head *dev_list)
7636{
7637 char linkname[IFNAMSIZ+7];
7638
7639 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7640 "upper_%s" : "lower_%s", name);
7641 sysfs_remove_link(&(dev->dev.kobj), linkname);
7642}
7643
7644static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7645 struct net_device *adj_dev,
7646 struct list_head *dev_list)
7647{
7648 return (dev_list == &dev->adj_list.upper ||
7649 dev_list == &dev->adj_list.lower) &&
7650 net_eq(dev_net(dev), dev_net(adj_dev));
7651}
7652
7653static int __netdev_adjacent_dev_insert(struct net_device *dev,
7654 struct net_device *adj_dev,
7655 struct list_head *dev_list,
7656 void *private, bool master)
7657{
7658 struct netdev_adjacent *adj;
7659 int ret;
7660
7661 adj = __netdev_find_adj(adj_dev, dev_list);
7662
7663 if (adj) {
7664 adj->ref_nr += 1;
7665 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7666 dev->name, adj_dev->name, adj->ref_nr);
7667
7668 return 0;
7669 }
7670
7671 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7672 if (!adj)
7673 return -ENOMEM;
7674
7675 adj->dev = adj_dev;
7676 adj->master = master;
7677 adj->ref_nr = 1;
7678 adj->private = private;
7679 adj->ignore = false;
7680 dev_hold(adj_dev);
7681
7682 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7683 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7684
7685 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7686 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7687 if (ret)
7688 goto free_adj;
7689 }
7690
7691 /* Ensure that master link is always the first item in list. */
7692 if (master) {
7693 ret = sysfs_create_link(&(dev->dev.kobj),
7694 &(adj_dev->dev.kobj), "master");
7695 if (ret)
7696 goto remove_symlinks;
7697
7698 list_add_rcu(&adj->list, dev_list);
7699 } else {
7700 list_add_tail_rcu(&adj->list, dev_list);
7701 }
7702
7703 return 0;
7704
7705remove_symlinks:
7706 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7707 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7708free_adj:
7709 kfree(adj);
7710 dev_put(adj_dev);
7711
7712 return ret;
7713}
7714
7715static void __netdev_adjacent_dev_remove(struct net_device *dev,
7716 struct net_device *adj_dev,
7717 u16 ref_nr,
7718 struct list_head *dev_list)
7719{
7720 struct netdev_adjacent *adj;
7721
7722 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7723 dev->name, adj_dev->name, ref_nr);
7724
7725 adj = __netdev_find_adj(adj_dev, dev_list);
7726
7727 if (!adj) {
7728 pr_err("Adjacency does not exist for device %s from %s\n",
7729 dev->name, adj_dev->name);
7730 WARN_ON(1);
7731 return;
7732 }
7733
7734 if (adj->ref_nr > ref_nr) {
7735 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7736 dev->name, adj_dev->name, ref_nr,
7737 adj->ref_nr - ref_nr);
7738 adj->ref_nr -= ref_nr;
7739 return;
7740 }
7741
7742 if (adj->master)
7743 sysfs_remove_link(&(dev->dev.kobj), "master");
7744
7745 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7746 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7747
7748 list_del_rcu(&adj->list);
7749 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7750 adj_dev->name, dev->name, adj_dev->name);
7751 dev_put(adj_dev);
7752 kfree_rcu(adj, rcu);
7753}
7754
7755static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7756 struct net_device *upper_dev,
7757 struct list_head *up_list,
7758 struct list_head *down_list,
7759 void *private, bool master)
7760{
7761 int ret;
7762
7763 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7764 private, master);
7765 if (ret)
7766 return ret;
7767
7768 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7769 private, false);
7770 if (ret) {
7771 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7772 return ret;
7773 }
7774
7775 return 0;
7776}
7777
7778static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7779 struct net_device *upper_dev,
7780 u16 ref_nr,
7781 struct list_head *up_list,
7782 struct list_head *down_list)
7783{
7784 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7785 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7786}
7787
7788static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7789 struct net_device *upper_dev,
7790 void *private, bool master)
7791{
7792 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7793 &dev->adj_list.upper,
7794 &upper_dev->adj_list.lower,
7795 private, master);
7796}
7797
7798static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7799 struct net_device *upper_dev)
7800{
7801 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7802 &dev->adj_list.upper,
7803 &upper_dev->adj_list.lower);
7804}
7805
7806static int __netdev_upper_dev_link(struct net_device *dev,
7807 struct net_device *upper_dev, bool master,
7808 void *upper_priv, void *upper_info,
7809 struct netdev_nested_priv *priv,
7810 struct netlink_ext_ack *extack)
7811{
7812 struct netdev_notifier_changeupper_info changeupper_info = {
7813 .info = {
7814 .dev = dev,
7815 .extack = extack,
7816 },
7817 .upper_dev = upper_dev,
7818 .master = master,
7819 .linking = true,
7820 .upper_info = upper_info,
7821 };
7822 struct net_device *master_dev;
7823 int ret = 0;
7824
7825 ASSERT_RTNL();
7826
7827 if (dev == upper_dev)
7828 return -EBUSY;
7829
7830 /* To prevent loops, check if dev is not upper device to upper_dev. */
7831 if (__netdev_has_upper_dev(upper_dev, dev))
7832 return -EBUSY;
7833
7834 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7835 return -EMLINK;
7836
7837 if (!master) {
7838 if (__netdev_has_upper_dev(dev, upper_dev))
7839 return -EEXIST;
7840 } else {
7841 master_dev = __netdev_master_upper_dev_get(dev);
7842 if (master_dev)
7843 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7844 }
7845
7846 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7847 &changeupper_info.info);
7848 ret = notifier_to_errno(ret);
7849 if (ret)
7850 return ret;
7851
7852 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7853 master);
7854 if (ret)
7855 return ret;
7856
7857 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7858 &changeupper_info.info);
7859 ret = notifier_to_errno(ret);
7860 if (ret)
7861 goto rollback;
7862
7863 __netdev_update_upper_level(dev, NULL);
7864 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7865
7866 __netdev_update_lower_level(upper_dev, priv);
7867 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7868 priv);
7869
7870 return 0;
7871
7872rollback:
7873 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7874
7875 return ret;
7876}
7877
7878/**
7879 * netdev_upper_dev_link - Add a link to the upper device
7880 * @dev: device
7881 * @upper_dev: new upper device
7882 * @extack: netlink extended ack
7883 *
7884 * Adds a link to device which is upper to this one. The caller must hold
7885 * the RTNL lock. On a failure a negative errno code is returned.
7886 * On success the reference counts are adjusted and the function
7887 * returns zero.
7888 */
7889int netdev_upper_dev_link(struct net_device *dev,
7890 struct net_device *upper_dev,
7891 struct netlink_ext_ack *extack)
7892{
7893 struct netdev_nested_priv priv = {
7894 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7895 .data = NULL,
7896 };
7897
7898 return __netdev_upper_dev_link(dev, upper_dev, false,
7899 NULL, NULL, &priv, extack);
7900}
7901EXPORT_SYMBOL(netdev_upper_dev_link);
7902
7903/**
7904 * netdev_master_upper_dev_link - Add a master link to the upper device
7905 * @dev: device
7906 * @upper_dev: new upper device
7907 * @upper_priv: upper device private
7908 * @upper_info: upper info to be passed down via notifier
7909 * @extack: netlink extended ack
7910 *
7911 * Adds a link to device which is upper to this one. In this case, only
7912 * one master upper device can be linked, although other non-master devices
7913 * might be linked as well. The caller must hold the RTNL lock.
7914 * On a failure a negative errno code is returned. On success the reference
7915 * counts are adjusted and the function returns zero.
7916 */
7917int netdev_master_upper_dev_link(struct net_device *dev,
7918 struct net_device *upper_dev,
7919 void *upper_priv, void *upper_info,
7920 struct netlink_ext_ack *extack)
7921{
7922 struct netdev_nested_priv priv = {
7923 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7924 .data = NULL,
7925 };
7926
7927 return __netdev_upper_dev_link(dev, upper_dev, true,
7928 upper_priv, upper_info, &priv, extack);
7929}
7930EXPORT_SYMBOL(netdev_master_upper_dev_link);
7931
7932static void __netdev_upper_dev_unlink(struct net_device *dev,
7933 struct net_device *upper_dev,
7934 struct netdev_nested_priv *priv)
7935{
7936 struct netdev_notifier_changeupper_info changeupper_info = {
7937 .info = {
7938 .dev = dev,
7939 },
7940 .upper_dev = upper_dev,
7941 .linking = false,
7942 };
7943
7944 ASSERT_RTNL();
7945
7946 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7947
7948 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7949 &changeupper_info.info);
7950
7951 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7952
7953 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7954 &changeupper_info.info);
7955
7956 __netdev_update_upper_level(dev, NULL);
7957 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7958
7959 __netdev_update_lower_level(upper_dev, priv);
7960 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7961 priv);
7962}
7963
7964/**
7965 * netdev_upper_dev_unlink - Removes a link to upper device
7966 * @dev: device
7967 * @upper_dev: new upper device
7968 *
7969 * Removes a link to device which is upper to this one. The caller must hold
7970 * the RTNL lock.
7971 */
7972void netdev_upper_dev_unlink(struct net_device *dev,
7973 struct net_device *upper_dev)
7974{
7975 struct netdev_nested_priv priv = {
7976 .flags = NESTED_SYNC_TODO,
7977 .data = NULL,
7978 };
7979
7980 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7981}
7982EXPORT_SYMBOL(netdev_upper_dev_unlink);
7983
7984static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7985 struct net_device *lower_dev,
7986 bool val)
7987{
7988 struct netdev_adjacent *adj;
7989
7990 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7991 if (adj)
7992 adj->ignore = val;
7993
7994 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7995 if (adj)
7996 adj->ignore = val;
7997}
7998
7999static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8000 struct net_device *lower_dev)
8001{
8002 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8003}
8004
8005static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8006 struct net_device *lower_dev)
8007{
8008 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8009}
8010
8011int netdev_adjacent_change_prepare(struct net_device *old_dev,
8012 struct net_device *new_dev,
8013 struct net_device *dev,
8014 struct netlink_ext_ack *extack)
8015{
8016 struct netdev_nested_priv priv = {
8017 .flags = 0,
8018 .data = NULL,
8019 };
8020 int err;
8021
8022 if (!new_dev)
8023 return 0;
8024
8025 if (old_dev && new_dev != old_dev)
8026 netdev_adjacent_dev_disable(dev, old_dev);
8027 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8028 extack);
8029 if (err) {
8030 if (old_dev && new_dev != old_dev)
8031 netdev_adjacent_dev_enable(dev, old_dev);
8032 return err;
8033 }
8034
8035 return 0;
8036}
8037EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8038
8039void netdev_adjacent_change_commit(struct net_device *old_dev,
8040 struct net_device *new_dev,
8041 struct net_device *dev)
8042{
8043 struct netdev_nested_priv priv = {
8044 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8045 .data = NULL,
8046 };
8047
8048 if (!new_dev || !old_dev)
8049 return;
8050
8051 if (new_dev == old_dev)
8052 return;
8053
8054 netdev_adjacent_dev_enable(dev, old_dev);
8055 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8056}
8057EXPORT_SYMBOL(netdev_adjacent_change_commit);
8058
8059void netdev_adjacent_change_abort(struct net_device *old_dev,
8060 struct net_device *new_dev,
8061 struct net_device *dev)
8062{
8063 struct netdev_nested_priv priv = {
8064 .flags = 0,
8065 .data = NULL,
8066 };
8067
8068 if (!new_dev)
8069 return;
8070
8071 if (old_dev && new_dev != old_dev)
8072 netdev_adjacent_dev_enable(dev, old_dev);
8073
8074 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8075}
8076EXPORT_SYMBOL(netdev_adjacent_change_abort);
8077
8078/**
8079 * netdev_bonding_info_change - Dispatch event about slave change
8080 * @dev: device
8081 * @bonding_info: info to dispatch
8082 *
8083 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8084 * The caller must hold the RTNL lock.
8085 */
8086void netdev_bonding_info_change(struct net_device *dev,
8087 struct netdev_bonding_info *bonding_info)
8088{
8089 struct netdev_notifier_bonding_info info = {
8090 .info.dev = dev,
8091 };
8092
8093 memcpy(&info.bonding_info, bonding_info,
8094 sizeof(struct netdev_bonding_info));
8095 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8096 &info.info);
8097}
8098EXPORT_SYMBOL(netdev_bonding_info_change);
8099
8100/**
8101 * netdev_get_xmit_slave - Get the xmit slave of master device
8102 * @dev: device
8103 * @skb: The packet
8104 * @all_slaves: assume all the slaves are active
8105 *
8106 * The reference counters are not incremented so the caller must be
8107 * careful with locks. The caller must hold RCU lock.
8108 * %NULL is returned if no slave is found.
8109 */
8110
8111struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8112 struct sk_buff *skb,
8113 bool all_slaves)
8114{
8115 const struct net_device_ops *ops = dev->netdev_ops;
8116
8117 if (!ops->ndo_get_xmit_slave)
8118 return NULL;
8119 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8120}
8121EXPORT_SYMBOL(netdev_get_xmit_slave);
8122
8123static void netdev_adjacent_add_links(struct net_device *dev)
8124{
8125 struct netdev_adjacent *iter;
8126
8127 struct net *net = dev_net(dev);
8128
8129 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8130 if (!net_eq(net, dev_net(iter->dev)))
8131 continue;
8132 netdev_adjacent_sysfs_add(iter->dev, dev,
8133 &iter->dev->adj_list.lower);
8134 netdev_adjacent_sysfs_add(dev, iter->dev,
8135 &dev->adj_list.upper);
8136 }
8137
8138 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8139 if (!net_eq(net, dev_net(iter->dev)))
8140 continue;
8141 netdev_adjacent_sysfs_add(iter->dev, dev,
8142 &iter->dev->adj_list.upper);
8143 netdev_adjacent_sysfs_add(dev, iter->dev,
8144 &dev->adj_list.lower);
8145 }
8146}
8147
8148static void netdev_adjacent_del_links(struct net_device *dev)
8149{
8150 struct netdev_adjacent *iter;
8151
8152 struct net *net = dev_net(dev);
8153
8154 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8155 if (!net_eq(net, dev_net(iter->dev)))
8156 continue;
8157 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8158 &iter->dev->adj_list.lower);
8159 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8160 &dev->adj_list.upper);
8161 }
8162
8163 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8164 if (!net_eq(net, dev_net(iter->dev)))
8165 continue;
8166 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8167 &iter->dev->adj_list.upper);
8168 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8169 &dev->adj_list.lower);
8170 }
8171}
8172
8173void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8174{
8175 struct netdev_adjacent *iter;
8176
8177 struct net *net = dev_net(dev);
8178
8179 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180 if (!net_eq(net, dev_net(iter->dev)))
8181 continue;
8182 netdev_adjacent_sysfs_del(iter->dev, oldname,
8183 &iter->dev->adj_list.lower);
8184 netdev_adjacent_sysfs_add(iter->dev, dev,
8185 &iter->dev->adj_list.lower);
8186 }
8187
8188 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189 if (!net_eq(net, dev_net(iter->dev)))
8190 continue;
8191 netdev_adjacent_sysfs_del(iter->dev, oldname,
8192 &iter->dev->adj_list.upper);
8193 netdev_adjacent_sysfs_add(iter->dev, dev,
8194 &iter->dev->adj_list.upper);
8195 }
8196}
8197
8198void *netdev_lower_dev_get_private(struct net_device *dev,
8199 struct net_device *lower_dev)
8200{
8201 struct netdev_adjacent *lower;
8202
8203 if (!lower_dev)
8204 return NULL;
8205 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8206 if (!lower)
8207 return NULL;
8208
8209 return lower->private;
8210}
8211EXPORT_SYMBOL(netdev_lower_dev_get_private);
8212
8213
8214/**
8215 * netdev_lower_state_changed - Dispatch event about lower device state change
8216 * @lower_dev: device
8217 * @lower_state_info: state to dispatch
8218 *
8219 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8220 * The caller must hold the RTNL lock.
8221 */
8222void netdev_lower_state_changed(struct net_device *lower_dev,
8223 void *lower_state_info)
8224{
8225 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8226 .info.dev = lower_dev,
8227 };
8228
8229 ASSERT_RTNL();
8230 changelowerstate_info.lower_state_info = lower_state_info;
8231 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8232 &changelowerstate_info.info);
8233}
8234EXPORT_SYMBOL(netdev_lower_state_changed);
8235
8236static void dev_change_rx_flags(struct net_device *dev, int flags)
8237{
8238 const struct net_device_ops *ops = dev->netdev_ops;
8239
8240 if (ops->ndo_change_rx_flags)
8241 ops->ndo_change_rx_flags(dev, flags);
8242}
8243
8244static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8245{
8246 unsigned int old_flags = dev->flags;
8247 kuid_t uid;
8248 kgid_t gid;
8249
8250 ASSERT_RTNL();
8251
8252 dev->flags |= IFF_PROMISC;
8253 dev->promiscuity += inc;
8254 if (dev->promiscuity == 0) {
8255 /*
8256 * Avoid overflow.
8257 * If inc causes overflow, untouch promisc and return error.
8258 */
8259 if (inc < 0)
8260 dev->flags &= ~IFF_PROMISC;
8261 else {
8262 dev->promiscuity -= inc;
8263 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8264 dev->name);
8265 return -EOVERFLOW;
8266 }
8267 }
8268 if (dev->flags != old_flags) {
8269 pr_info("device %s %s promiscuous mode\n",
8270 dev->name,
8271 dev->flags & IFF_PROMISC ? "entered" : "left");
8272 if (audit_enabled) {
8273 current_uid_gid(&uid, &gid);
8274 audit_log(audit_context(), GFP_ATOMIC,
8275 AUDIT_ANOM_PROMISCUOUS,
8276 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8277 dev->name, (dev->flags & IFF_PROMISC),
8278 (old_flags & IFF_PROMISC),
8279 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8280 from_kuid(&init_user_ns, uid),
8281 from_kgid(&init_user_ns, gid),
8282 audit_get_sessionid(current));
8283 }
8284
8285 dev_change_rx_flags(dev, IFF_PROMISC);
8286 }
8287 if (notify)
8288 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8289 return 0;
8290}
8291
8292/**
8293 * dev_set_promiscuity - update promiscuity count on a device
8294 * @dev: device
8295 * @inc: modifier
8296 *
8297 * Add or remove promiscuity from a device. While the count in the device
8298 * remains above zero the interface remains promiscuous. Once it hits zero
8299 * the device reverts back to normal filtering operation. A negative inc
8300 * value is used to drop promiscuity on the device.
8301 * Return 0 if successful or a negative errno code on error.
8302 */
8303int dev_set_promiscuity(struct net_device *dev, int inc)
8304{
8305 unsigned int old_flags = dev->flags;
8306 int err;
8307
8308 err = __dev_set_promiscuity(dev, inc, true);
8309 if (err < 0)
8310 return err;
8311 if (dev->flags != old_flags)
8312 dev_set_rx_mode(dev);
8313 return err;
8314}
8315EXPORT_SYMBOL(dev_set_promiscuity);
8316
8317static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8318{
8319 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8320
8321 ASSERT_RTNL();
8322
8323 dev->flags |= IFF_ALLMULTI;
8324 dev->allmulti += inc;
8325 if (dev->allmulti == 0) {
8326 /*
8327 * Avoid overflow.
8328 * If inc causes overflow, untouch allmulti and return error.
8329 */
8330 if (inc < 0)
8331 dev->flags &= ~IFF_ALLMULTI;
8332 else {
8333 dev->allmulti -= inc;
8334 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8335 dev->name);
8336 return -EOVERFLOW;
8337 }
8338 }
8339 if (dev->flags ^ old_flags) {
8340 dev_change_rx_flags(dev, IFF_ALLMULTI);
8341 dev_set_rx_mode(dev);
8342 if (notify)
8343 __dev_notify_flags(dev, old_flags,
8344 dev->gflags ^ old_gflags);
8345 }
8346 return 0;
8347}
8348
8349/**
8350 * dev_set_allmulti - update allmulti count on a device
8351 * @dev: device
8352 * @inc: modifier
8353 *
8354 * Add or remove reception of all multicast frames to a device. While the
8355 * count in the device remains above zero the interface remains listening
8356 * to all interfaces. Once it hits zero the device reverts back to normal
8357 * filtering operation. A negative @inc value is used to drop the counter
8358 * when releasing a resource needing all multicasts.
8359 * Return 0 if successful or a negative errno code on error.
8360 */
8361
8362int dev_set_allmulti(struct net_device *dev, int inc)
8363{
8364 return __dev_set_allmulti(dev, inc, true);
8365}
8366EXPORT_SYMBOL(dev_set_allmulti);
8367
8368/*
8369 * Upload unicast and multicast address lists to device and
8370 * configure RX filtering. When the device doesn't support unicast
8371 * filtering it is put in promiscuous mode while unicast addresses
8372 * are present.
8373 */
8374void __dev_set_rx_mode(struct net_device *dev)
8375{
8376 const struct net_device_ops *ops = dev->netdev_ops;
8377
8378 /* dev_open will call this function so the list will stay sane. */
8379 if (!(dev->flags&IFF_UP))
8380 return;
8381
8382 if (!netif_device_present(dev))
8383 return;
8384
8385 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8386 /* Unicast addresses changes may only happen under the rtnl,
8387 * therefore calling __dev_set_promiscuity here is safe.
8388 */
8389 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8390 __dev_set_promiscuity(dev, 1, false);
8391 dev->uc_promisc = true;
8392 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8393 __dev_set_promiscuity(dev, -1, false);
8394 dev->uc_promisc = false;
8395 }
8396 }
8397
8398 if (ops->ndo_set_rx_mode)
8399 ops->ndo_set_rx_mode(dev);
8400}
8401
8402void dev_set_rx_mode(struct net_device *dev)
8403{
8404 netif_addr_lock_bh(dev);
8405 __dev_set_rx_mode(dev);
8406 netif_addr_unlock_bh(dev);
8407}
8408
8409/**
8410 * dev_get_flags - get flags reported to userspace
8411 * @dev: device
8412 *
8413 * Get the combination of flag bits exported through APIs to userspace.
8414 */
8415unsigned int dev_get_flags(const struct net_device *dev)
8416{
8417 unsigned int flags;
8418
8419 flags = (dev->flags & ~(IFF_PROMISC |
8420 IFF_ALLMULTI |
8421 IFF_RUNNING |
8422 IFF_LOWER_UP |
8423 IFF_DORMANT)) |
8424 (dev->gflags & (IFF_PROMISC |
8425 IFF_ALLMULTI));
8426
8427 if (netif_running(dev)) {
8428 if (netif_oper_up(dev))
8429 flags |= IFF_RUNNING;
8430 if (netif_carrier_ok(dev))
8431 flags |= IFF_LOWER_UP;
8432 if (netif_dormant(dev))
8433 flags |= IFF_DORMANT;
8434 }
8435
8436 return flags;
8437}
8438EXPORT_SYMBOL(dev_get_flags);
8439
8440int __dev_change_flags(struct net_device *dev, unsigned int flags,
8441 struct netlink_ext_ack *extack)
8442{
8443 unsigned int old_flags = dev->flags;
8444 int ret;
8445
8446 ASSERT_RTNL();
8447
8448 /*
8449 * Set the flags on our device.
8450 */
8451
8452 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8453 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8454 IFF_AUTOMEDIA)) |
8455 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8456 IFF_ALLMULTI));
8457
8458 /*
8459 * Load in the correct multicast list now the flags have changed.
8460 */
8461
8462 if ((old_flags ^ flags) & IFF_MULTICAST)
8463 dev_change_rx_flags(dev, IFF_MULTICAST);
8464
8465 dev_set_rx_mode(dev);
8466
8467 /*
8468 * Have we downed the interface. We handle IFF_UP ourselves
8469 * according to user attempts to set it, rather than blindly
8470 * setting it.
8471 */
8472
8473 ret = 0;
8474 if ((old_flags ^ flags) & IFF_UP) {
8475 if (old_flags & IFF_UP)
8476 __dev_close(dev);
8477 else
8478 ret = __dev_open(dev, extack);
8479 }
8480
8481 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8482 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8483 unsigned int old_flags = dev->flags;
8484
8485 dev->gflags ^= IFF_PROMISC;
8486
8487 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8488 if (dev->flags != old_flags)
8489 dev_set_rx_mode(dev);
8490 }
8491
8492 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8493 * is important. Some (broken) drivers set IFF_PROMISC, when
8494 * IFF_ALLMULTI is requested not asking us and not reporting.
8495 */
8496 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8497 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8498
8499 dev->gflags ^= IFF_ALLMULTI;
8500 __dev_set_allmulti(dev, inc, false);
8501 }
8502
8503 return ret;
8504}
8505
8506void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8507 unsigned int gchanges)
8508{
8509 unsigned int changes = dev->flags ^ old_flags;
8510
8511 if (gchanges)
8512 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8513
8514 if (changes & IFF_UP) {
8515 if (dev->flags & IFF_UP)
8516 call_netdevice_notifiers(NETDEV_UP, dev);
8517 else
8518 call_netdevice_notifiers(NETDEV_DOWN, dev);
8519 }
8520
8521 if (dev->flags & IFF_UP &&
8522 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8523 struct netdev_notifier_change_info change_info = {
8524 .info = {
8525 .dev = dev,
8526 },
8527 .flags_changed = changes,
8528 };
8529
8530 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8531 }
8532}
8533
8534/**
8535 * dev_change_flags - change device settings
8536 * @dev: device
8537 * @flags: device state flags
8538 * @extack: netlink extended ack
8539 *
8540 * Change settings on device based state flags. The flags are
8541 * in the userspace exported format.
8542 */
8543int dev_change_flags(struct net_device *dev, unsigned int flags,
8544 struct netlink_ext_ack *extack)
8545{
8546 int ret;
8547 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8548
8549 ret = __dev_change_flags(dev, flags, extack);
8550 if (ret < 0)
8551 return ret;
8552
8553 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8554 __dev_notify_flags(dev, old_flags, changes);
8555 return ret;
8556}
8557EXPORT_SYMBOL(dev_change_flags);
8558
8559int __dev_set_mtu(struct net_device *dev, int new_mtu)
8560{
8561 const struct net_device_ops *ops = dev->netdev_ops;
8562
8563 if (ops->ndo_change_mtu)
8564 return ops->ndo_change_mtu(dev, new_mtu);
8565
8566 /* Pairs with all the lockless reads of dev->mtu in the stack */
8567 WRITE_ONCE(dev->mtu, new_mtu);
8568 return 0;
8569}
8570EXPORT_SYMBOL(__dev_set_mtu);
8571
8572int dev_validate_mtu(struct net_device *dev, int new_mtu,
8573 struct netlink_ext_ack *extack)
8574{
8575 /* MTU must be positive, and in range */
8576 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8577 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8578 return -EINVAL;
8579 }
8580
8581 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8582 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8583 return -EINVAL;
8584 }
8585 return 0;
8586}
8587
8588/**
8589 * dev_set_mtu_ext - Change maximum transfer unit
8590 * @dev: device
8591 * @new_mtu: new transfer unit
8592 * @extack: netlink extended ack
8593 *
8594 * Change the maximum transfer size of the network device.
8595 */
8596int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8597 struct netlink_ext_ack *extack)
8598{
8599 int err, orig_mtu;
8600
8601 if (new_mtu == dev->mtu)
8602 return 0;
8603
8604 err = dev_validate_mtu(dev, new_mtu, extack);
8605 if (err)
8606 return err;
8607
8608 if (!netif_device_present(dev))
8609 return -ENODEV;
8610
8611 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8612 err = notifier_to_errno(err);
8613 if (err)
8614 return err;
8615
8616 orig_mtu = dev->mtu;
8617 err = __dev_set_mtu(dev, new_mtu);
8618
8619 if (!err) {
8620 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8621 orig_mtu);
8622 err = notifier_to_errno(err);
8623 if (err) {
8624 /* setting mtu back and notifying everyone again,
8625 * so that they have a chance to revert changes.
8626 */
8627 __dev_set_mtu(dev, orig_mtu);
8628 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8629 new_mtu);
8630 }
8631 }
8632 return err;
8633}
8634
8635int dev_set_mtu(struct net_device *dev, int new_mtu)
8636{
8637 struct netlink_ext_ack extack;
8638 int err;
8639
8640 memset(&extack, 0, sizeof(extack));
8641 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8642 if (err && extack._msg)
8643 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8644 return err;
8645}
8646EXPORT_SYMBOL(dev_set_mtu);
8647
8648/**
8649 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8650 * @dev: device
8651 * @new_len: new tx queue length
8652 */
8653int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8654{
8655 unsigned int orig_len = dev->tx_queue_len;
8656 int res;
8657
8658 if (new_len != (unsigned int)new_len)
8659 return -ERANGE;
8660
8661 if (new_len != orig_len) {
8662 dev->tx_queue_len = new_len;
8663 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8664 res = notifier_to_errno(res);
8665 if (res)
8666 goto err_rollback;
8667 res = dev_qdisc_change_tx_queue_len(dev);
8668 if (res)
8669 goto err_rollback;
8670 }
8671
8672 return 0;
8673
8674err_rollback:
8675 netdev_err(dev, "refused to change device tx_queue_len\n");
8676 dev->tx_queue_len = orig_len;
8677 return res;
8678}
8679
8680/**
8681 * dev_set_group - Change group this device belongs to
8682 * @dev: device
8683 * @new_group: group this device should belong to
8684 */
8685void dev_set_group(struct net_device *dev, int new_group)
8686{
8687 dev->group = new_group;
8688}
8689EXPORT_SYMBOL(dev_set_group);
8690
8691/**
8692 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8693 * @dev: device
8694 * @addr: new address
8695 * @extack: netlink extended ack
8696 */
8697int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8698 struct netlink_ext_ack *extack)
8699{
8700 struct netdev_notifier_pre_changeaddr_info info = {
8701 .info.dev = dev,
8702 .info.extack = extack,
8703 .dev_addr = addr,
8704 };
8705 int rc;
8706
8707 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8708 return notifier_to_errno(rc);
8709}
8710EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8711
8712/**
8713 * dev_set_mac_address - Change Media Access Control Address
8714 * @dev: device
8715 * @sa: new address
8716 * @extack: netlink extended ack
8717 *
8718 * Change the hardware (MAC) address of the device
8719 */
8720int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8721 struct netlink_ext_ack *extack)
8722{
8723 const struct net_device_ops *ops = dev->netdev_ops;
8724 int err;
8725
8726 if (!ops->ndo_set_mac_address)
8727 return -EOPNOTSUPP;
8728 if (sa->sa_family != dev->type)
8729 return -EINVAL;
8730 if (!netif_device_present(dev))
8731 return -ENODEV;
8732 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8733 if (err)
8734 return err;
8735 err = ops->ndo_set_mac_address(dev, sa);
8736 if (err)
8737 return err;
8738 dev->addr_assign_type = NET_ADDR_SET;
8739 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8740 add_device_randomness(dev->dev_addr, dev->addr_len);
8741 return 0;
8742}
8743EXPORT_SYMBOL(dev_set_mac_address);
8744
8745/**
8746 * dev_change_carrier - Change device carrier
8747 * @dev: device
8748 * @new_carrier: new value
8749 *
8750 * Change device carrier
8751 */
8752int dev_change_carrier(struct net_device *dev, bool new_carrier)
8753{
8754 const struct net_device_ops *ops = dev->netdev_ops;
8755
8756 if (!ops->ndo_change_carrier)
8757 return -EOPNOTSUPP;
8758 if (!netif_device_present(dev))
8759 return -ENODEV;
8760 return ops->ndo_change_carrier(dev, new_carrier);
8761}
8762EXPORT_SYMBOL(dev_change_carrier);
8763
8764/**
8765 * dev_get_phys_port_id - Get device physical port ID
8766 * @dev: device
8767 * @ppid: port ID
8768 *
8769 * Get device physical port ID
8770 */
8771int dev_get_phys_port_id(struct net_device *dev,
8772 struct netdev_phys_item_id *ppid)
8773{
8774 const struct net_device_ops *ops = dev->netdev_ops;
8775
8776 if (!ops->ndo_get_phys_port_id)
8777 return -EOPNOTSUPP;
8778 return ops->ndo_get_phys_port_id(dev, ppid);
8779}
8780EXPORT_SYMBOL(dev_get_phys_port_id);
8781
8782/**
8783 * dev_get_phys_port_name - Get device physical port name
8784 * @dev: device
8785 * @name: port name
8786 * @len: limit of bytes to copy to name
8787 *
8788 * Get device physical port name
8789 */
8790int dev_get_phys_port_name(struct net_device *dev,
8791 char *name, size_t len)
8792{
8793 const struct net_device_ops *ops = dev->netdev_ops;
8794 int err;
8795
8796 if (ops->ndo_get_phys_port_name) {
8797 err = ops->ndo_get_phys_port_name(dev, name, len);
8798 if (err != -EOPNOTSUPP)
8799 return err;
8800 }
8801 return devlink_compat_phys_port_name_get(dev, name, len);
8802}
8803EXPORT_SYMBOL(dev_get_phys_port_name);
8804
8805/**
8806 * dev_get_port_parent_id - Get the device's port parent identifier
8807 * @dev: network device
8808 * @ppid: pointer to a storage for the port's parent identifier
8809 * @recurse: allow/disallow recursion to lower devices
8810 *
8811 * Get the devices's port parent identifier
8812 */
8813int dev_get_port_parent_id(struct net_device *dev,
8814 struct netdev_phys_item_id *ppid,
8815 bool recurse)
8816{
8817 const struct net_device_ops *ops = dev->netdev_ops;
8818 struct netdev_phys_item_id first = { };
8819 struct net_device *lower_dev;
8820 struct list_head *iter;
8821 int err;
8822
8823 if (ops->ndo_get_port_parent_id) {
8824 err = ops->ndo_get_port_parent_id(dev, ppid);
8825 if (err != -EOPNOTSUPP)
8826 return err;
8827 }
8828
8829 err = devlink_compat_switch_id_get(dev, ppid);
8830 if (!err || err != -EOPNOTSUPP)
8831 return err;
8832
8833 if (!recurse)
8834 return -EOPNOTSUPP;
8835
8836 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8837 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8838 if (err)
8839 break;
8840 if (!first.id_len)
8841 first = *ppid;
8842 else if (memcmp(&first, ppid, sizeof(*ppid)))
8843 return -EOPNOTSUPP;
8844 }
8845
8846 return err;
8847}
8848EXPORT_SYMBOL(dev_get_port_parent_id);
8849
8850/**
8851 * netdev_port_same_parent_id - Indicate if two network devices have
8852 * the same port parent identifier
8853 * @a: first network device
8854 * @b: second network device
8855 */
8856bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8857{
8858 struct netdev_phys_item_id a_id = { };
8859 struct netdev_phys_item_id b_id = { };
8860
8861 if (dev_get_port_parent_id(a, &a_id, true) ||
8862 dev_get_port_parent_id(b, &b_id, true))
8863 return false;
8864
8865 return netdev_phys_item_id_same(&a_id, &b_id);
8866}
8867EXPORT_SYMBOL(netdev_port_same_parent_id);
8868
8869/**
8870 * dev_change_proto_down - update protocol port state information
8871 * @dev: device
8872 * @proto_down: new value
8873 *
8874 * This info can be used by switch drivers to set the phys state of the
8875 * port.
8876 */
8877int dev_change_proto_down(struct net_device *dev, bool proto_down)
8878{
8879 const struct net_device_ops *ops = dev->netdev_ops;
8880
8881 if (!ops->ndo_change_proto_down)
8882 return -EOPNOTSUPP;
8883 if (!netif_device_present(dev))
8884 return -ENODEV;
8885 return ops->ndo_change_proto_down(dev, proto_down);
8886}
8887EXPORT_SYMBOL(dev_change_proto_down);
8888
8889/**
8890 * dev_change_proto_down_generic - generic implementation for
8891 * ndo_change_proto_down that sets carrier according to
8892 * proto_down.
8893 *
8894 * @dev: device
8895 * @proto_down: new value
8896 */
8897int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8898{
8899 if (proto_down)
8900 netif_carrier_off(dev);
8901 else
8902 netif_carrier_on(dev);
8903 dev->proto_down = proto_down;
8904 return 0;
8905}
8906EXPORT_SYMBOL(dev_change_proto_down_generic);
8907
8908/**
8909 * dev_change_proto_down_reason - proto down reason
8910 *
8911 * @dev: device
8912 * @mask: proto down mask
8913 * @value: proto down value
8914 */
8915void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8916 u32 value)
8917{
8918 int b;
8919
8920 if (!mask) {
8921 dev->proto_down_reason = value;
8922 } else {
8923 for_each_set_bit(b, &mask, 32) {
8924 if (value & (1 << b))
8925 dev->proto_down_reason |= BIT(b);
8926 else
8927 dev->proto_down_reason &= ~BIT(b);
8928 }
8929 }
8930}
8931EXPORT_SYMBOL(dev_change_proto_down_reason);
8932
8933struct bpf_xdp_link {
8934 struct bpf_link link;
8935 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8936 int flags;
8937};
8938
8939static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8940{
8941 if (flags & XDP_FLAGS_HW_MODE)
8942 return XDP_MODE_HW;
8943 if (flags & XDP_FLAGS_DRV_MODE)
8944 return XDP_MODE_DRV;
8945 if (flags & XDP_FLAGS_SKB_MODE)
8946 return XDP_MODE_SKB;
8947 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8948}
8949
8950static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8951{
8952 switch (mode) {
8953 case XDP_MODE_SKB:
8954 return generic_xdp_install;
8955 case XDP_MODE_DRV:
8956 case XDP_MODE_HW:
8957 return dev->netdev_ops->ndo_bpf;
8958 default:
8959 return NULL;
8960 }
8961}
8962
8963static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8964 enum bpf_xdp_mode mode)
8965{
8966 return dev->xdp_state[mode].link;
8967}
8968
8969static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8970 enum bpf_xdp_mode mode)
8971{
8972 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8973
8974 if (link)
8975 return link->link.prog;
8976 return dev->xdp_state[mode].prog;
8977}
8978
8979static u8 dev_xdp_prog_count(struct net_device *dev)
8980{
8981 u8 count = 0;
8982 int i;
8983
8984 for (i = 0; i < __MAX_XDP_MODE; i++)
8985 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8986 count++;
8987 return count;
8988}
8989
8990u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8991{
8992 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8993
8994 return prog ? prog->aux->id : 0;
8995}
8996
8997static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8998 struct bpf_xdp_link *link)
8999{
9000 dev->xdp_state[mode].link = link;
9001 dev->xdp_state[mode].prog = NULL;
9002}
9003
9004static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9005 struct bpf_prog *prog)
9006{
9007 dev->xdp_state[mode].link = NULL;
9008 dev->xdp_state[mode].prog = prog;
9009}
9010
9011static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9012 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9013 u32 flags, struct bpf_prog *prog)
9014{
9015 struct netdev_bpf xdp;
9016 int err;
9017
9018 memset(&xdp, 0, sizeof(xdp));
9019 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9020 xdp.extack = extack;
9021 xdp.flags = flags;
9022 xdp.prog = prog;
9023
9024 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9025 * "moved" into driver), so they don't increment it on their own, but
9026 * they do decrement refcnt when program is detached or replaced.
9027 * Given net_device also owns link/prog, we need to bump refcnt here
9028 * to prevent drivers from underflowing it.
9029 */
9030 if (prog)
9031 bpf_prog_inc(prog);
9032 err = bpf_op(dev, &xdp);
9033 if (err) {
9034 if (prog)
9035 bpf_prog_put(prog);
9036 return err;
9037 }
9038
9039 if (mode != XDP_MODE_HW)
9040 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9041
9042 return 0;
9043}
9044
9045static void dev_xdp_uninstall(struct net_device *dev)
9046{
9047 struct bpf_xdp_link *link;
9048 struct bpf_prog *prog;
9049 enum bpf_xdp_mode mode;
9050 bpf_op_t bpf_op;
9051
9052 ASSERT_RTNL();
9053
9054 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9055 prog = dev_xdp_prog(dev, mode);
9056 if (!prog)
9057 continue;
9058
9059 bpf_op = dev_xdp_bpf_op(dev, mode);
9060 if (!bpf_op)
9061 continue;
9062
9063 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9064
9065 /* auto-detach link from net device */
9066 link = dev_xdp_link(dev, mode);
9067 if (link)
9068 link->dev = NULL;
9069 else
9070 bpf_prog_put(prog);
9071
9072 dev_xdp_set_link(dev, mode, NULL);
9073 }
9074}
9075
9076static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9077 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9078 struct bpf_prog *old_prog, u32 flags)
9079{
9080 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9081 struct bpf_prog *cur_prog;
9082 enum bpf_xdp_mode mode;
9083 bpf_op_t bpf_op;
9084 int err;
9085
9086 ASSERT_RTNL();
9087
9088 /* either link or prog attachment, never both */
9089 if (link && (new_prog || old_prog))
9090 return -EINVAL;
9091 /* link supports only XDP mode flags */
9092 if (link && (flags & ~XDP_FLAGS_MODES)) {
9093 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9094 return -EINVAL;
9095 }
9096 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9097 if (num_modes > 1) {
9098 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9099 return -EINVAL;
9100 }
9101 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9102 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9103 NL_SET_ERR_MSG(extack,
9104 "More than one program loaded, unset mode is ambiguous");
9105 return -EINVAL;
9106 }
9107 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9108 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9109 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9110 return -EINVAL;
9111 }
9112
9113 mode = dev_xdp_mode(dev, flags);
9114 /* can't replace attached link */
9115 if (dev_xdp_link(dev, mode)) {
9116 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9117 return -EBUSY;
9118 }
9119
9120 cur_prog = dev_xdp_prog(dev, mode);
9121 /* can't replace attached prog with link */
9122 if (link && cur_prog) {
9123 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9124 return -EBUSY;
9125 }
9126 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9127 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9128 return -EEXIST;
9129 }
9130
9131 /* put effective new program into new_prog */
9132 if (link)
9133 new_prog = link->link.prog;
9134
9135 if (new_prog) {
9136 bool offload = mode == XDP_MODE_HW;
9137 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9138 ? XDP_MODE_DRV : XDP_MODE_SKB;
9139
9140 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9141 NL_SET_ERR_MSG(extack, "XDP program already attached");
9142 return -EBUSY;
9143 }
9144 if (!offload && dev_xdp_prog(dev, other_mode)) {
9145 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9146 return -EEXIST;
9147 }
9148 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9149 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9150 return -EINVAL;
9151 }
9152 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9153 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9154 return -EINVAL;
9155 }
9156 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9157 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9158 return -EINVAL;
9159 }
9160 }
9161
9162 /* don't call drivers if the effective program didn't change */
9163 if (new_prog != cur_prog) {
9164 bpf_op = dev_xdp_bpf_op(dev, mode);
9165 if (!bpf_op) {
9166 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9167 return -EOPNOTSUPP;
9168 }
9169
9170 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9171 if (err)
9172 return err;
9173 }
9174
9175 if (link)
9176 dev_xdp_set_link(dev, mode, link);
9177 else
9178 dev_xdp_set_prog(dev, mode, new_prog);
9179 if (cur_prog)
9180 bpf_prog_put(cur_prog);
9181
9182 return 0;
9183}
9184
9185static int dev_xdp_attach_link(struct net_device *dev,
9186 struct netlink_ext_ack *extack,
9187 struct bpf_xdp_link *link)
9188{
9189 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9190}
9191
9192static int dev_xdp_detach_link(struct net_device *dev,
9193 struct netlink_ext_ack *extack,
9194 struct bpf_xdp_link *link)
9195{
9196 enum bpf_xdp_mode mode;
9197 bpf_op_t bpf_op;
9198
9199 ASSERT_RTNL();
9200
9201 mode = dev_xdp_mode(dev, link->flags);
9202 if (dev_xdp_link(dev, mode) != link)
9203 return -EINVAL;
9204
9205 bpf_op = dev_xdp_bpf_op(dev, mode);
9206 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9207 dev_xdp_set_link(dev, mode, NULL);
9208 return 0;
9209}
9210
9211static void bpf_xdp_link_release(struct bpf_link *link)
9212{
9213 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9214
9215 rtnl_lock();
9216
9217 /* if racing with net_device's tear down, xdp_link->dev might be
9218 * already NULL, in which case link was already auto-detached
9219 */
9220 if (xdp_link->dev) {
9221 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9222 xdp_link->dev = NULL;
9223 }
9224
9225 rtnl_unlock();
9226}
9227
9228static int bpf_xdp_link_detach(struct bpf_link *link)
9229{
9230 bpf_xdp_link_release(link);
9231 return 0;
9232}
9233
9234static void bpf_xdp_link_dealloc(struct bpf_link *link)
9235{
9236 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9237
9238 kfree(xdp_link);
9239}
9240
9241static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9242 struct seq_file *seq)
9243{
9244 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245 u32 ifindex = 0;
9246
9247 rtnl_lock();
9248 if (xdp_link->dev)
9249 ifindex = xdp_link->dev->ifindex;
9250 rtnl_unlock();
9251
9252 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9253}
9254
9255static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9256 struct bpf_link_info *info)
9257{
9258 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9259 u32 ifindex = 0;
9260
9261 rtnl_lock();
9262 if (xdp_link->dev)
9263 ifindex = xdp_link->dev->ifindex;
9264 rtnl_unlock();
9265
9266 info->xdp.ifindex = ifindex;
9267 return 0;
9268}
9269
9270static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9271 struct bpf_prog *old_prog)
9272{
9273 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9274 enum bpf_xdp_mode mode;
9275 bpf_op_t bpf_op;
9276 int err = 0;
9277
9278 rtnl_lock();
9279
9280 /* link might have been auto-released already, so fail */
9281 if (!xdp_link->dev) {
9282 err = -ENOLINK;
9283 goto out_unlock;
9284 }
9285
9286 if (old_prog && link->prog != old_prog) {
9287 err = -EPERM;
9288 goto out_unlock;
9289 }
9290 old_prog = link->prog;
9291 if (old_prog == new_prog) {
9292 /* no-op, don't disturb drivers */
9293 bpf_prog_put(new_prog);
9294 goto out_unlock;
9295 }
9296
9297 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9298 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9299 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9300 xdp_link->flags, new_prog);
9301 if (err)
9302 goto out_unlock;
9303
9304 old_prog = xchg(&link->prog, new_prog);
9305 bpf_prog_put(old_prog);
9306
9307out_unlock:
9308 rtnl_unlock();
9309 return err;
9310}
9311
9312static const struct bpf_link_ops bpf_xdp_link_lops = {
9313 .release = bpf_xdp_link_release,
9314 .dealloc = bpf_xdp_link_dealloc,
9315 .detach = bpf_xdp_link_detach,
9316 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9317 .fill_link_info = bpf_xdp_link_fill_link_info,
9318 .update_prog = bpf_xdp_link_update,
9319};
9320
9321int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9322{
9323 struct net *net = current->nsproxy->net_ns;
9324 struct bpf_link_primer link_primer;
9325 struct bpf_xdp_link *link;
9326 struct net_device *dev;
9327 int err, fd;
9328
9329 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9330 if (!dev)
9331 return -EINVAL;
9332
9333 link = kzalloc(sizeof(*link), GFP_USER);
9334 if (!link) {
9335 err = -ENOMEM;
9336 goto out_put_dev;
9337 }
9338
9339 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9340 link->dev = dev;
9341 link->flags = attr->link_create.flags;
9342
9343 err = bpf_link_prime(&link->link, &link_primer);
9344 if (err) {
9345 kfree(link);
9346 goto out_put_dev;
9347 }
9348
9349 rtnl_lock();
9350 err = dev_xdp_attach_link(dev, NULL, link);
9351 rtnl_unlock();
9352
9353 if (err) {
9354 bpf_link_cleanup(&link_primer);
9355 goto out_put_dev;
9356 }
9357
9358 fd = bpf_link_settle(&link_primer);
9359 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9360 dev_put(dev);
9361 return fd;
9362
9363out_put_dev:
9364 dev_put(dev);
9365 return err;
9366}
9367
9368/**
9369 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9370 * @dev: device
9371 * @extack: netlink extended ack
9372 * @fd: new program fd or negative value to clear
9373 * @expected_fd: old program fd that userspace expects to replace or clear
9374 * @flags: xdp-related flags
9375 *
9376 * Set or clear a bpf program for a device
9377 */
9378int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9379 int fd, int expected_fd, u32 flags)
9380{
9381 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9382 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9383 int err;
9384
9385 ASSERT_RTNL();
9386
9387 if (fd >= 0) {
9388 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9389 mode != XDP_MODE_SKB);
9390 if (IS_ERR(new_prog))
9391 return PTR_ERR(new_prog);
9392 }
9393
9394 if (expected_fd >= 0) {
9395 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9396 mode != XDP_MODE_SKB);
9397 if (IS_ERR(old_prog)) {
9398 err = PTR_ERR(old_prog);
9399 old_prog = NULL;
9400 goto err_out;
9401 }
9402 }
9403
9404 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9405
9406err_out:
9407 if (err && new_prog)
9408 bpf_prog_put(new_prog);
9409 if (old_prog)
9410 bpf_prog_put(old_prog);
9411 return err;
9412}
9413
9414/**
9415 * dev_new_index - allocate an ifindex
9416 * @net: the applicable net namespace
9417 *
9418 * Returns a suitable unique value for a new device interface
9419 * number. The caller must hold the rtnl semaphore or the
9420 * dev_base_lock to be sure it remains unique.
9421 */
9422static int dev_new_index(struct net *net)
9423{
9424 int ifindex = net->ifindex;
9425
9426 for (;;) {
9427 if (++ifindex <= 0)
9428 ifindex = 1;
9429 if (!__dev_get_by_index(net, ifindex))
9430 return net->ifindex = ifindex;
9431 }
9432}
9433
9434/* Delayed registration/unregisteration */
9435static LIST_HEAD(net_todo_list);
9436DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9437
9438static void net_set_todo(struct net_device *dev)
9439{
9440 list_add_tail(&dev->todo_list, &net_todo_list);
9441 dev_net(dev)->dev_unreg_count++;
9442}
9443
9444static void rollback_registered_many(struct list_head *head)
9445{
9446 struct net_device *dev, *tmp;
9447 LIST_HEAD(close_head);
9448
9449 BUG_ON(dev_boot_phase);
9450 ASSERT_RTNL();
9451
9452 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9453 /* Some devices call without registering
9454 * for initialization unwind. Remove those
9455 * devices and proceed with the remaining.
9456 */
9457 if (dev->reg_state == NETREG_UNINITIALIZED) {
9458 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9459 dev->name, dev);
9460
9461 WARN_ON(1);
9462 list_del(&dev->unreg_list);
9463 continue;
9464 }
9465 dev->dismantle = true;
9466 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9467 }
9468
9469 /* If device is running, close it first. */
9470 list_for_each_entry(dev, head, unreg_list)
9471 list_add_tail(&dev->close_list, &close_head);
9472 dev_close_many(&close_head, true);
9473
9474 list_for_each_entry(dev, head, unreg_list) {
9475 /* And unlink it from device chain. */
9476 unlist_netdevice(dev);
9477
9478 dev->reg_state = NETREG_UNREGISTERING;
9479 }
9480 flush_all_backlogs();
9481
9482 synchronize_net();
9483
9484 list_for_each_entry(dev, head, unreg_list) {
9485 struct sk_buff *skb = NULL;
9486
9487 /* Shutdown queueing discipline. */
9488 dev_shutdown(dev);
9489
9490 dev_xdp_uninstall(dev);
9491
9492 /* Notify protocols, that we are about to destroy
9493 * this device. They should clean all the things.
9494 */
9495 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9496
9497 if (!dev->rtnl_link_ops ||
9498 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9499 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9500 GFP_KERNEL, NULL, 0);
9501
9502 /*
9503 * Flush the unicast and multicast chains
9504 */
9505 dev_uc_flush(dev);
9506 dev_mc_flush(dev);
9507
9508 netdev_name_node_alt_flush(dev);
9509 netdev_name_node_free(dev->name_node);
9510
9511 if (dev->netdev_ops->ndo_uninit)
9512 dev->netdev_ops->ndo_uninit(dev);
9513
9514 if (skb)
9515 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9516
9517 /* Notifier chain MUST detach us all upper devices. */
9518 WARN_ON(netdev_has_any_upper_dev(dev));
9519 WARN_ON(netdev_has_any_lower_dev(dev));
9520
9521 /* Remove entries from kobject tree */
9522 netdev_unregister_kobject(dev);
9523#ifdef CONFIG_XPS
9524 /* Remove XPS queueing entries */
9525 netif_reset_xps_queues_gt(dev, 0);
9526#endif
9527 }
9528
9529 synchronize_net();
9530
9531 list_for_each_entry(dev, head, unreg_list)
9532 dev_put(dev);
9533}
9534
9535static void rollback_registered(struct net_device *dev)
9536{
9537 LIST_HEAD(single);
9538
9539 list_add(&dev->unreg_list, &single);
9540 rollback_registered_many(&single);
9541 list_del(&single);
9542}
9543
9544static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9545 struct net_device *upper, netdev_features_t features)
9546{
9547 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9548 netdev_features_t feature;
9549 int feature_bit;
9550
9551 for_each_netdev_feature(upper_disables, feature_bit) {
9552 feature = __NETIF_F_BIT(feature_bit);
9553 if (!(upper->wanted_features & feature)
9554 && (features & feature)) {
9555 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9556 &feature, upper->name);
9557 features &= ~feature;
9558 }
9559 }
9560
9561 return features;
9562}
9563
9564static void netdev_sync_lower_features(struct net_device *upper,
9565 struct net_device *lower, netdev_features_t features)
9566{
9567 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9568 netdev_features_t feature;
9569 int feature_bit;
9570
9571 for_each_netdev_feature(upper_disables, feature_bit) {
9572 feature = __NETIF_F_BIT(feature_bit);
9573 if (!(features & feature) && (lower->features & feature)) {
9574 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9575 &feature, lower->name);
9576 lower->wanted_features &= ~feature;
9577 __netdev_update_features(lower);
9578
9579 if (unlikely(lower->features & feature))
9580 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9581 &feature, lower->name);
9582 else
9583 netdev_features_change(lower);
9584 }
9585 }
9586}
9587
9588static netdev_features_t netdev_fix_features(struct net_device *dev,
9589 netdev_features_t features)
9590{
9591 /* Fix illegal checksum combinations */
9592 if ((features & NETIF_F_HW_CSUM) &&
9593 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9594 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9595 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9596 }
9597
9598 /* TSO requires that SG is present as well. */
9599 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9600 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9601 features &= ~NETIF_F_ALL_TSO;
9602 }
9603
9604 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9605 !(features & NETIF_F_IP_CSUM)) {
9606 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9607 features &= ~NETIF_F_TSO;
9608 features &= ~NETIF_F_TSO_ECN;
9609 }
9610
9611 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9612 !(features & NETIF_F_IPV6_CSUM)) {
9613 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9614 features &= ~NETIF_F_TSO6;
9615 }
9616
9617 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9618 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9619 features &= ~NETIF_F_TSO_MANGLEID;
9620
9621 /* TSO ECN requires that TSO is present as well. */
9622 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9623 features &= ~NETIF_F_TSO_ECN;
9624
9625 /* Software GSO depends on SG. */
9626 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9627 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9628 features &= ~NETIF_F_GSO;
9629 }
9630
9631 /* GSO partial features require GSO partial be set */
9632 if ((features & dev->gso_partial_features) &&
9633 !(features & NETIF_F_GSO_PARTIAL)) {
9634 netdev_dbg(dev,
9635 "Dropping partially supported GSO features since no GSO partial.\n");
9636 features &= ~dev->gso_partial_features;
9637 }
9638
9639 if (!(features & NETIF_F_RXCSUM)) {
9640 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9641 * successfully merged by hardware must also have the
9642 * checksum verified by hardware. If the user does not
9643 * want to enable RXCSUM, logically, we should disable GRO_HW.
9644 */
9645 if (features & NETIF_F_GRO_HW) {
9646 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9647 features &= ~NETIF_F_GRO_HW;
9648 }
9649 }
9650
9651 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9652 if (features & NETIF_F_RXFCS) {
9653 if (features & NETIF_F_LRO) {
9654 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9655 features &= ~NETIF_F_LRO;
9656 }
9657
9658 if (features & NETIF_F_GRO_HW) {
9659 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9660 features &= ~NETIF_F_GRO_HW;
9661 }
9662 }
9663
9664 if (features & NETIF_F_HW_TLS_TX) {
9665 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9666 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9667 bool hw_csum = features & NETIF_F_HW_CSUM;
9668
9669 if (!ip_csum && !hw_csum) {
9670 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9671 features &= ~NETIF_F_HW_TLS_TX;
9672 }
9673 }
9674
9675 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9676 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9677 features &= ~NETIF_F_HW_TLS_RX;
9678 }
9679
9680 return features;
9681}
9682
9683int __netdev_update_features(struct net_device *dev)
9684{
9685 struct net_device *upper, *lower;
9686 netdev_features_t features;
9687 struct list_head *iter;
9688 int err = -1;
9689
9690 ASSERT_RTNL();
9691
9692 features = netdev_get_wanted_features(dev);
9693
9694 if (dev->netdev_ops->ndo_fix_features)
9695 features = dev->netdev_ops->ndo_fix_features(dev, features);
9696
9697 /* driver might be less strict about feature dependencies */
9698 features = netdev_fix_features(dev, features);
9699
9700 /* some features can't be enabled if they're off on an upper device */
9701 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9702 features = netdev_sync_upper_features(dev, upper, features);
9703
9704 if (dev->features == features)
9705 goto sync_lower;
9706
9707 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9708 &dev->features, &features);
9709
9710 if (dev->netdev_ops->ndo_set_features)
9711 err = dev->netdev_ops->ndo_set_features(dev, features);
9712 else
9713 err = 0;
9714
9715 if (unlikely(err < 0)) {
9716 netdev_err(dev,
9717 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9718 err, &features, &dev->features);
9719 /* return non-0 since some features might have changed and
9720 * it's better to fire a spurious notification than miss it
9721 */
9722 return -1;
9723 }
9724
9725sync_lower:
9726 /* some features must be disabled on lower devices when disabled
9727 * on an upper device (think: bonding master or bridge)
9728 */
9729 netdev_for_each_lower_dev(dev, lower, iter)
9730 netdev_sync_lower_features(dev, lower, features);
9731
9732 if (!err) {
9733 netdev_features_t diff = features ^ dev->features;
9734
9735 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9736 /* udp_tunnel_{get,drop}_rx_info both need
9737 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9738 * device, or they won't do anything.
9739 * Thus we need to update dev->features
9740 * *before* calling udp_tunnel_get_rx_info,
9741 * but *after* calling udp_tunnel_drop_rx_info.
9742 */
9743 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9744 dev->features = features;
9745 udp_tunnel_get_rx_info(dev);
9746 } else {
9747 udp_tunnel_drop_rx_info(dev);
9748 }
9749 }
9750
9751 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9752 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753 dev->features = features;
9754 err |= vlan_get_rx_ctag_filter_info(dev);
9755 } else {
9756 vlan_drop_rx_ctag_filter_info(dev);
9757 }
9758 }
9759
9760 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9761 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9762 dev->features = features;
9763 err |= vlan_get_rx_stag_filter_info(dev);
9764 } else {
9765 vlan_drop_rx_stag_filter_info(dev);
9766 }
9767 }
9768
9769 dev->features = features;
9770 }
9771
9772 return err < 0 ? 0 : 1;
9773}
9774
9775/**
9776 * netdev_update_features - recalculate device features
9777 * @dev: the device to check
9778 *
9779 * Recalculate dev->features set and send notifications if it
9780 * has changed. Should be called after driver or hardware dependent
9781 * conditions might have changed that influence the features.
9782 */
9783void netdev_update_features(struct net_device *dev)
9784{
9785 if (__netdev_update_features(dev))
9786 netdev_features_change(dev);
9787}
9788EXPORT_SYMBOL(netdev_update_features);
9789
9790/**
9791 * netdev_change_features - recalculate device features
9792 * @dev: the device to check
9793 *
9794 * Recalculate dev->features set and send notifications even
9795 * if they have not changed. Should be called instead of
9796 * netdev_update_features() if also dev->vlan_features might
9797 * have changed to allow the changes to be propagated to stacked
9798 * VLAN devices.
9799 */
9800void netdev_change_features(struct net_device *dev)
9801{
9802 __netdev_update_features(dev);
9803 netdev_features_change(dev);
9804}
9805EXPORT_SYMBOL(netdev_change_features);
9806
9807/**
9808 * netif_stacked_transfer_operstate - transfer operstate
9809 * @rootdev: the root or lower level device to transfer state from
9810 * @dev: the device to transfer operstate to
9811 *
9812 * Transfer operational state from root to device. This is normally
9813 * called when a stacking relationship exists between the root
9814 * device and the device(a leaf device).
9815 */
9816void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9817 struct net_device *dev)
9818{
9819 if (rootdev->operstate == IF_OPER_DORMANT)
9820 netif_dormant_on(dev);
9821 else
9822 netif_dormant_off(dev);
9823
9824 if (rootdev->operstate == IF_OPER_TESTING)
9825 netif_testing_on(dev);
9826 else
9827 netif_testing_off(dev);
9828
9829 if (netif_carrier_ok(rootdev))
9830 netif_carrier_on(dev);
9831 else
9832 netif_carrier_off(dev);
9833}
9834EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9835
9836static int netif_alloc_rx_queues(struct net_device *dev)
9837{
9838 unsigned int i, count = dev->num_rx_queues;
9839 struct netdev_rx_queue *rx;
9840 size_t sz = count * sizeof(*rx);
9841 int err = 0;
9842
9843 BUG_ON(count < 1);
9844
9845 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9846 if (!rx)
9847 return -ENOMEM;
9848
9849 dev->_rx = rx;
9850
9851 for (i = 0; i < count; i++) {
9852 rx[i].dev = dev;
9853
9854 /* XDP RX-queue setup */
9855 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9856 if (err < 0)
9857 goto err_rxq_info;
9858 }
9859 return 0;
9860
9861err_rxq_info:
9862 /* Rollback successful reg's and free other resources */
9863 while (i--)
9864 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9865 kvfree(dev->_rx);
9866 dev->_rx = NULL;
9867 return err;
9868}
9869
9870static void netif_free_rx_queues(struct net_device *dev)
9871{
9872 unsigned int i, count = dev->num_rx_queues;
9873
9874 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9875 if (!dev->_rx)
9876 return;
9877
9878 for (i = 0; i < count; i++)
9879 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9880
9881 kvfree(dev->_rx);
9882}
9883
9884static void netdev_init_one_queue(struct net_device *dev,
9885 struct netdev_queue *queue, void *_unused)
9886{
9887 /* Initialize queue lock */
9888 spin_lock_init(&queue->_xmit_lock);
9889 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9890 queue->xmit_lock_owner = -1;
9891 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9892 queue->dev = dev;
9893#ifdef CONFIG_BQL
9894 dql_init(&queue->dql, HZ);
9895#endif
9896}
9897
9898static void netif_free_tx_queues(struct net_device *dev)
9899{
9900 kvfree(dev->_tx);
9901}
9902
9903static int netif_alloc_netdev_queues(struct net_device *dev)
9904{
9905 unsigned int count = dev->num_tx_queues;
9906 struct netdev_queue *tx;
9907 size_t sz = count * sizeof(*tx);
9908
9909 if (count < 1 || count > 0xffff)
9910 return -EINVAL;
9911
9912 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9913 if (!tx)
9914 return -ENOMEM;
9915
9916 dev->_tx = tx;
9917
9918 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9919 spin_lock_init(&dev->tx_global_lock);
9920
9921 return 0;
9922}
9923
9924void netif_tx_stop_all_queues(struct net_device *dev)
9925{
9926 unsigned int i;
9927
9928 for (i = 0; i < dev->num_tx_queues; i++) {
9929 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9930
9931 netif_tx_stop_queue(txq);
9932 }
9933}
9934EXPORT_SYMBOL(netif_tx_stop_all_queues);
9935
9936/**
9937 * register_netdevice - register a network device
9938 * @dev: device to register
9939 *
9940 * Take a completed network device structure and add it to the kernel
9941 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9942 * chain. 0 is returned on success. A negative errno code is returned
9943 * on a failure to set up the device, or if the name is a duplicate.
9944 *
9945 * Callers must hold the rtnl semaphore. You may want
9946 * register_netdev() instead of this.
9947 *
9948 * BUGS:
9949 * The locking appears insufficient to guarantee two parallel registers
9950 * will not get the same name.
9951 */
9952
9953int register_netdevice(struct net_device *dev)
9954{
9955 int ret;
9956 struct net *net = dev_net(dev);
9957
9958 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9959 NETDEV_FEATURE_COUNT);
9960 BUG_ON(dev_boot_phase);
9961 ASSERT_RTNL();
9962
9963 might_sleep();
9964
9965 /* When net_device's are persistent, this will be fatal. */
9966 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9967 BUG_ON(!net);
9968
9969 ret = ethtool_check_ops(dev->ethtool_ops);
9970 if (ret)
9971 return ret;
9972
9973 spin_lock_init(&dev->addr_list_lock);
9974 netdev_set_addr_lockdep_class(dev);
9975
9976 ret = dev_get_valid_name(net, dev, dev->name);
9977 if (ret < 0)
9978 goto out;
9979
9980 ret = -ENOMEM;
9981 dev->name_node = netdev_name_node_head_alloc(dev);
9982 if (!dev->name_node)
9983 goto out;
9984
9985 /* Init, if this function is available */
9986 if (dev->netdev_ops->ndo_init) {
9987 ret = dev->netdev_ops->ndo_init(dev);
9988 if (ret) {
9989 if (ret > 0)
9990 ret = -EIO;
9991 goto err_free_name;
9992 }
9993 }
9994
9995 if (((dev->hw_features | dev->features) &
9996 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9997 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9998 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9999 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10000 ret = -EINVAL;
10001 goto err_uninit;
10002 }
10003
10004 ret = -EBUSY;
10005 if (!dev->ifindex)
10006 dev->ifindex = dev_new_index(net);
10007 else if (__dev_get_by_index(net, dev->ifindex))
10008 goto err_uninit;
10009
10010 /* Transfer changeable features to wanted_features and enable
10011 * software offloads (GSO and GRO).
10012 */
10013 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10014 dev->features |= NETIF_F_SOFT_FEATURES;
10015
10016 if (dev->netdev_ops->ndo_udp_tunnel_add) {
10017 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10018 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10019 }
10020
10021 dev->wanted_features = dev->features & dev->hw_features;
10022
10023 if (!(dev->flags & IFF_LOOPBACK))
10024 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10025
10026 /* If IPv4 TCP segmentation offload is supported we should also
10027 * allow the device to enable segmenting the frame with the option
10028 * of ignoring a static IP ID value. This doesn't enable the
10029 * feature itself but allows the user to enable it later.
10030 */
10031 if (dev->hw_features & NETIF_F_TSO)
10032 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10033 if (dev->vlan_features & NETIF_F_TSO)
10034 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10035 if (dev->mpls_features & NETIF_F_TSO)
10036 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10037 if (dev->hw_enc_features & NETIF_F_TSO)
10038 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10039
10040 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10041 */
10042 dev->vlan_features |= NETIF_F_HIGHDMA;
10043
10044 /* Make NETIF_F_SG inheritable to tunnel devices.
10045 */
10046 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10047
10048 /* Make NETIF_F_SG inheritable to MPLS.
10049 */
10050 dev->mpls_features |= NETIF_F_SG;
10051
10052 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10053 ret = notifier_to_errno(ret);
10054 if (ret)
10055 goto err_uninit;
10056
10057 ret = netdev_register_kobject(dev);
10058 if (ret) {
10059 dev->reg_state = NETREG_UNREGISTERED;
10060 goto err_uninit;
10061 }
10062 dev->reg_state = NETREG_REGISTERED;
10063
10064 __netdev_update_features(dev);
10065
10066 /*
10067 * Default initial state at registry is that the
10068 * device is present.
10069 */
10070
10071 set_bit(__LINK_STATE_PRESENT, &dev->state);
10072
10073 linkwatch_init_dev(dev);
10074
10075 dev_init_scheduler(dev);
10076 dev_hold(dev);
10077 list_netdevice(dev);
10078 add_device_randomness(dev->dev_addr, dev->addr_len);
10079
10080 /* If the device has permanent device address, driver should
10081 * set dev_addr and also addr_assign_type should be set to
10082 * NET_ADDR_PERM (default value).
10083 */
10084 if (dev->addr_assign_type == NET_ADDR_PERM)
10085 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10086
10087 /* Notify protocols, that a new device appeared. */
10088 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10089 ret = notifier_to_errno(ret);
10090 if (ret) {
10091 /* Expect explicit free_netdev() on failure */
10092 dev->needs_free_netdev = false;
10093 rollback_registered(dev);
10094 net_set_todo(dev);
10095 goto out;
10096 }
10097 /*
10098 * Prevent userspace races by waiting until the network
10099 * device is fully setup before sending notifications.
10100 */
10101 if (!dev->rtnl_link_ops ||
10102 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10103 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10104
10105out:
10106 return ret;
10107
10108err_uninit:
10109 if (dev->netdev_ops->ndo_uninit)
10110 dev->netdev_ops->ndo_uninit(dev);
10111 if (dev->priv_destructor)
10112 dev->priv_destructor(dev);
10113err_free_name:
10114 netdev_name_node_free(dev->name_node);
10115 goto out;
10116}
10117EXPORT_SYMBOL(register_netdevice);
10118
10119/**
10120 * init_dummy_netdev - init a dummy network device for NAPI
10121 * @dev: device to init
10122 *
10123 * This takes a network device structure and initialize the minimum
10124 * amount of fields so it can be used to schedule NAPI polls without
10125 * registering a full blown interface. This is to be used by drivers
10126 * that need to tie several hardware interfaces to a single NAPI
10127 * poll scheduler due to HW limitations.
10128 */
10129int init_dummy_netdev(struct net_device *dev)
10130{
10131 /* Clear everything. Note we don't initialize spinlocks
10132 * are they aren't supposed to be taken by any of the
10133 * NAPI code and this dummy netdev is supposed to be
10134 * only ever used for NAPI polls
10135 */
10136 memset(dev, 0, sizeof(struct net_device));
10137
10138 /* make sure we BUG if trying to hit standard
10139 * register/unregister code path
10140 */
10141 dev->reg_state = NETREG_DUMMY;
10142
10143 /* NAPI wants this */
10144 INIT_LIST_HEAD(&dev->napi_list);
10145
10146 /* a dummy interface is started by default */
10147 set_bit(__LINK_STATE_PRESENT, &dev->state);
10148 set_bit(__LINK_STATE_START, &dev->state);
10149
10150 /* napi_busy_loop stats accounting wants this */
10151 dev_net_set(dev, &init_net);
10152
10153 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10154 * because users of this 'device' dont need to change
10155 * its refcount.
10156 */
10157
10158 return 0;
10159}
10160EXPORT_SYMBOL_GPL(init_dummy_netdev);
10161
10162
10163/**
10164 * register_netdev - register a network device
10165 * @dev: device to register
10166 *
10167 * Take a completed network device structure and add it to the kernel
10168 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10169 * chain. 0 is returned on success. A negative errno code is returned
10170 * on a failure to set up the device, or if the name is a duplicate.
10171 *
10172 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10173 * and expands the device name if you passed a format string to
10174 * alloc_netdev.
10175 */
10176int register_netdev(struct net_device *dev)
10177{
10178 int err;
10179
10180 if (rtnl_lock_killable())
10181 return -EINTR;
10182 err = register_netdevice(dev);
10183 rtnl_unlock();
10184 return err;
10185}
10186EXPORT_SYMBOL(register_netdev);
10187
10188int netdev_refcnt_read(const struct net_device *dev)
10189{
10190 int i, refcnt = 0;
10191
10192 for_each_possible_cpu(i)
10193 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10194 return refcnt;
10195}
10196EXPORT_SYMBOL(netdev_refcnt_read);
10197
10198#define WAIT_REFS_MIN_MSECS 1
10199#define WAIT_REFS_MAX_MSECS 250
10200/**
10201 * netdev_wait_allrefs - wait until all references are gone.
10202 * @dev: target net_device
10203 *
10204 * This is called when unregistering network devices.
10205 *
10206 * Any protocol or device that holds a reference should register
10207 * for netdevice notification, and cleanup and put back the
10208 * reference if they receive an UNREGISTER event.
10209 * We can get stuck here if buggy protocols don't correctly
10210 * call dev_put.
10211 */
10212static void netdev_wait_allrefs(struct net_device *dev)
10213{
10214 unsigned long rebroadcast_time, warning_time;
10215 int wait = 0, refcnt;
10216
10217 linkwatch_forget_dev(dev);
10218
10219 rebroadcast_time = warning_time = jiffies;
10220 refcnt = netdev_refcnt_read(dev);
10221
10222 while (refcnt != 0) {
10223 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224 rtnl_lock();
10225
10226 /* Rebroadcast unregister notification */
10227 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10228
10229 __rtnl_unlock();
10230 rcu_barrier();
10231 rtnl_lock();
10232
10233 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10234 &dev->state)) {
10235 /* We must not have linkwatch events
10236 * pending on unregister. If this
10237 * happens, we simply run the queue
10238 * unscheduled, resulting in a noop
10239 * for this device.
10240 */
10241 linkwatch_run_queue();
10242 }
10243
10244 __rtnl_unlock();
10245
10246 rebroadcast_time = jiffies;
10247 }
10248
10249 if (!wait) {
10250 rcu_barrier();
10251 wait = WAIT_REFS_MIN_MSECS;
10252 } else {
10253 msleep(wait);
10254 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10255 }
10256
10257 refcnt = netdev_refcnt_read(dev);
10258
10259 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10260 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10261 dev->name, refcnt);
10262 warning_time = jiffies;
10263 }
10264 }
10265}
10266
10267/* The sequence is:
10268 *
10269 * rtnl_lock();
10270 * ...
10271 * register_netdevice(x1);
10272 * register_netdevice(x2);
10273 * ...
10274 * unregister_netdevice(y1);
10275 * unregister_netdevice(y2);
10276 * ...
10277 * rtnl_unlock();
10278 * free_netdev(y1);
10279 * free_netdev(y2);
10280 *
10281 * We are invoked by rtnl_unlock().
10282 * This allows us to deal with problems:
10283 * 1) We can delete sysfs objects which invoke hotplug
10284 * without deadlocking with linkwatch via keventd.
10285 * 2) Since we run with the RTNL semaphore not held, we can sleep
10286 * safely in order to wait for the netdev refcnt to drop to zero.
10287 *
10288 * We must not return until all unregister events added during
10289 * the interval the lock was held have been completed.
10290 */
10291void netdev_run_todo(void)
10292{
10293 struct list_head list;
10294#ifdef CONFIG_LOCKDEP
10295 struct list_head unlink_list;
10296
10297 list_replace_init(&net_unlink_list, &unlink_list);
10298
10299 while (!list_empty(&unlink_list)) {
10300 struct net_device *dev = list_first_entry(&unlink_list,
10301 struct net_device,
10302 unlink_list);
10303 list_del_init(&dev->unlink_list);
10304 dev->nested_level = dev->lower_level - 1;
10305 }
10306#endif
10307
10308 /* Snapshot list, allow later requests */
10309 list_replace_init(&net_todo_list, &list);
10310
10311 __rtnl_unlock();
10312
10313
10314 /* Wait for rcu callbacks to finish before next phase */
10315 if (!list_empty(&list))
10316 rcu_barrier();
10317
10318 while (!list_empty(&list)) {
10319 struct net_device *dev
10320 = list_first_entry(&list, struct net_device, todo_list);
10321 list_del(&dev->todo_list);
10322
10323 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10324 pr_err("network todo '%s' but state %d\n",
10325 dev->name, dev->reg_state);
10326 dump_stack();
10327 continue;
10328 }
10329
10330 dev->reg_state = NETREG_UNREGISTERED;
10331
10332 netdev_wait_allrefs(dev);
10333
10334 /* paranoia */
10335 BUG_ON(netdev_refcnt_read(dev));
10336 BUG_ON(!list_empty(&dev->ptype_all));
10337 BUG_ON(!list_empty(&dev->ptype_specific));
10338 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10339 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10340#if IS_ENABLED(CONFIG_DECNET)
10341 WARN_ON(dev->dn_ptr);
10342#endif
10343 if (dev->priv_destructor)
10344 dev->priv_destructor(dev);
10345 if (dev->needs_free_netdev)
10346 free_netdev(dev);
10347
10348 /* Report a network device has been unregistered */
10349 rtnl_lock();
10350 dev_net(dev)->dev_unreg_count--;
10351 __rtnl_unlock();
10352 wake_up(&netdev_unregistering_wq);
10353
10354 /* Free network device */
10355 kobject_put(&dev->dev.kobj);
10356 }
10357}
10358
10359/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10360 * all the same fields in the same order as net_device_stats, with only
10361 * the type differing, but rtnl_link_stats64 may have additional fields
10362 * at the end for newer counters.
10363 */
10364void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10365 const struct net_device_stats *netdev_stats)
10366{
10367#if BITS_PER_LONG == 64
10368 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10369 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10370 /* zero out counters that only exist in rtnl_link_stats64 */
10371 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10372 sizeof(*stats64) - sizeof(*netdev_stats));
10373#else
10374 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10375 const unsigned long *src = (const unsigned long *)netdev_stats;
10376 u64 *dst = (u64 *)stats64;
10377
10378 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10379 for (i = 0; i < n; i++)
10380 dst[i] = src[i];
10381 /* zero out counters that only exist in rtnl_link_stats64 */
10382 memset((char *)stats64 + n * sizeof(u64), 0,
10383 sizeof(*stats64) - n * sizeof(u64));
10384#endif
10385}
10386EXPORT_SYMBOL(netdev_stats_to_stats64);
10387
10388/**
10389 * dev_get_stats - get network device statistics
10390 * @dev: device to get statistics from
10391 * @storage: place to store stats
10392 *
10393 * Get network statistics from device. Return @storage.
10394 * The device driver may provide its own method by setting
10395 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10396 * otherwise the internal statistics structure is used.
10397 */
10398struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10399 struct rtnl_link_stats64 *storage)
10400{
10401 const struct net_device_ops *ops = dev->netdev_ops;
10402
10403 if (ops->ndo_get_stats64) {
10404 memset(storage, 0, sizeof(*storage));
10405 ops->ndo_get_stats64(dev, storage);
10406 } else if (ops->ndo_get_stats) {
10407 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10408 } else {
10409 netdev_stats_to_stats64(storage, &dev->stats);
10410 }
10411 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10412 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10413 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10414 return storage;
10415}
10416EXPORT_SYMBOL(dev_get_stats);
10417
10418/**
10419 * dev_fetch_sw_netstats - get per-cpu network device statistics
10420 * @s: place to store stats
10421 * @netstats: per-cpu network stats to read from
10422 *
10423 * Read per-cpu network statistics and populate the related fields in @s.
10424 */
10425void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10426 const struct pcpu_sw_netstats __percpu *netstats)
10427{
10428 int cpu;
10429
10430 for_each_possible_cpu(cpu) {
10431 const struct pcpu_sw_netstats *stats;
10432 struct pcpu_sw_netstats tmp;
10433 unsigned int start;
10434
10435 stats = per_cpu_ptr(netstats, cpu);
10436 do {
10437 start = u64_stats_fetch_begin_irq(&stats->syncp);
10438 tmp.rx_packets = stats->rx_packets;
10439 tmp.rx_bytes = stats->rx_bytes;
10440 tmp.tx_packets = stats->tx_packets;
10441 tmp.tx_bytes = stats->tx_bytes;
10442 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10443
10444 s->rx_packets += tmp.rx_packets;
10445 s->rx_bytes += tmp.rx_bytes;
10446 s->tx_packets += tmp.tx_packets;
10447 s->tx_bytes += tmp.tx_bytes;
10448 }
10449}
10450EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10451
10452/**
10453 * dev_get_tstats64 - ndo_get_stats64 implementation
10454 * @dev: device to get statistics from
10455 * @s: place to store stats
10456 *
10457 * Populate @s from dev->stats and dev->tstats. Can be used as
10458 * ndo_get_stats64() callback.
10459 */
10460void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10461{
10462 netdev_stats_to_stats64(s, &dev->stats);
10463 dev_fetch_sw_netstats(s, dev->tstats);
10464}
10465EXPORT_SYMBOL_GPL(dev_get_tstats64);
10466
10467struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10468{
10469 struct netdev_queue *queue = dev_ingress_queue(dev);
10470
10471#ifdef CONFIG_NET_CLS_ACT
10472 if (queue)
10473 return queue;
10474 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10475 if (!queue)
10476 return NULL;
10477 netdev_init_one_queue(dev, queue, NULL);
10478 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10479 queue->qdisc_sleeping = &noop_qdisc;
10480 rcu_assign_pointer(dev->ingress_queue, queue);
10481#endif
10482 return queue;
10483}
10484
10485static const struct ethtool_ops default_ethtool_ops;
10486
10487void netdev_set_default_ethtool_ops(struct net_device *dev,
10488 const struct ethtool_ops *ops)
10489{
10490 if (dev->ethtool_ops == &default_ethtool_ops)
10491 dev->ethtool_ops = ops;
10492}
10493EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10494
10495void netdev_freemem(struct net_device *dev)
10496{
10497 char *addr = (char *)dev - dev->padded;
10498
10499 kvfree(addr);
10500}
10501
10502/**
10503 * alloc_netdev_mqs - allocate network device
10504 * @sizeof_priv: size of private data to allocate space for
10505 * @name: device name format string
10506 * @name_assign_type: origin of device name
10507 * @setup: callback to initialize device
10508 * @txqs: the number of TX subqueues to allocate
10509 * @rxqs: the number of RX subqueues to allocate
10510 *
10511 * Allocates a struct net_device with private data area for driver use
10512 * and performs basic initialization. Also allocates subqueue structs
10513 * for each queue on the device.
10514 */
10515struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10516 unsigned char name_assign_type,
10517 void (*setup)(struct net_device *),
10518 unsigned int txqs, unsigned int rxqs)
10519{
10520 struct net_device *dev;
10521 unsigned int alloc_size;
10522 struct net_device *p;
10523
10524 BUG_ON(strlen(name) >= sizeof(dev->name));
10525
10526 if (txqs < 1) {
10527 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10528 return NULL;
10529 }
10530
10531 if (rxqs < 1) {
10532 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10533 return NULL;
10534 }
10535
10536 alloc_size = sizeof(struct net_device);
10537 if (sizeof_priv) {
10538 /* ensure 32-byte alignment of private area */
10539 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10540 alloc_size += sizeof_priv;
10541 }
10542 /* ensure 32-byte alignment of whole construct */
10543 alloc_size += NETDEV_ALIGN - 1;
10544
10545 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10546 if (!p)
10547 return NULL;
10548
10549 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10550 dev->padded = (char *)dev - (char *)p;
10551
10552 dev->pcpu_refcnt = alloc_percpu(int);
10553 if (!dev->pcpu_refcnt)
10554 goto free_dev;
10555
10556 if (dev_addr_init(dev))
10557 goto free_pcpu;
10558
10559 dev_mc_init(dev);
10560 dev_uc_init(dev);
10561
10562 dev_net_set(dev, &init_net);
10563
10564 dev->gso_max_size = GSO_MAX_SIZE;
10565 dev->gso_max_segs = GSO_MAX_SEGS;
10566 dev->upper_level = 1;
10567 dev->lower_level = 1;
10568#ifdef CONFIG_LOCKDEP
10569 dev->nested_level = 0;
10570 INIT_LIST_HEAD(&dev->unlink_list);
10571#endif
10572
10573 INIT_LIST_HEAD(&dev->napi_list);
10574 INIT_LIST_HEAD(&dev->unreg_list);
10575 INIT_LIST_HEAD(&dev->close_list);
10576 INIT_LIST_HEAD(&dev->link_watch_list);
10577 INIT_LIST_HEAD(&dev->adj_list.upper);
10578 INIT_LIST_HEAD(&dev->adj_list.lower);
10579 INIT_LIST_HEAD(&dev->ptype_all);
10580 INIT_LIST_HEAD(&dev->ptype_specific);
10581 INIT_LIST_HEAD(&dev->net_notifier_list);
10582#ifdef CONFIG_NET_SCHED
10583 hash_init(dev->qdisc_hash);
10584#endif
10585 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10586 setup(dev);
10587
10588 if (!dev->tx_queue_len) {
10589 dev->priv_flags |= IFF_NO_QUEUE;
10590 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10591 }
10592
10593 dev->num_tx_queues = txqs;
10594 dev->real_num_tx_queues = txqs;
10595 if (netif_alloc_netdev_queues(dev))
10596 goto free_all;
10597
10598 dev->num_rx_queues = rxqs;
10599 dev->real_num_rx_queues = rxqs;
10600 if (netif_alloc_rx_queues(dev))
10601 goto free_all;
10602
10603 strcpy(dev->name, name);
10604 dev->name_assign_type = name_assign_type;
10605 dev->group = INIT_NETDEV_GROUP;
10606 if (!dev->ethtool_ops)
10607 dev->ethtool_ops = &default_ethtool_ops;
10608
10609 nf_hook_ingress_init(dev);
10610
10611 return dev;
10612
10613free_all:
10614 free_netdev(dev);
10615 return NULL;
10616
10617free_pcpu:
10618 free_percpu(dev->pcpu_refcnt);
10619free_dev:
10620 netdev_freemem(dev);
10621 return NULL;
10622}
10623EXPORT_SYMBOL(alloc_netdev_mqs);
10624
10625/**
10626 * free_netdev - free network device
10627 * @dev: device
10628 *
10629 * This function does the last stage of destroying an allocated device
10630 * interface. The reference to the device object is released. If this
10631 * is the last reference then it will be freed.Must be called in process
10632 * context.
10633 */
10634void free_netdev(struct net_device *dev)
10635{
10636 struct napi_struct *p, *n;
10637
10638 might_sleep();
10639
10640 /* When called immediately after register_netdevice() failed the unwind
10641 * handling may still be dismantling the device. Handle that case by
10642 * deferring the free.
10643 */
10644 if (dev->reg_state == NETREG_UNREGISTERING) {
10645 ASSERT_RTNL();
10646 dev->needs_free_netdev = true;
10647 return;
10648 }
10649
10650 netif_free_tx_queues(dev);
10651 netif_free_rx_queues(dev);
10652
10653 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10654
10655 /* Flush device addresses */
10656 dev_addr_flush(dev);
10657
10658 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10659 netif_napi_del(p);
10660
10661 free_percpu(dev->pcpu_refcnt);
10662 dev->pcpu_refcnt = NULL;
10663 free_percpu(dev->xdp_bulkq);
10664 dev->xdp_bulkq = NULL;
10665
10666 /* Compatibility with error handling in drivers */
10667 if (dev->reg_state == NETREG_UNINITIALIZED) {
10668 netdev_freemem(dev);
10669 return;
10670 }
10671
10672 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10673 dev->reg_state = NETREG_RELEASED;
10674
10675 /* will free via device release */
10676 put_device(&dev->dev);
10677}
10678EXPORT_SYMBOL(free_netdev);
10679
10680/**
10681 * synchronize_net - Synchronize with packet receive processing
10682 *
10683 * Wait for packets currently being received to be done.
10684 * Does not block later packets from starting.
10685 */
10686void synchronize_net(void)
10687{
10688 might_sleep();
10689 if (rtnl_is_locked())
10690 synchronize_rcu_expedited();
10691 else
10692 synchronize_rcu();
10693}
10694EXPORT_SYMBOL(synchronize_net);
10695
10696/**
10697 * unregister_netdevice_queue - remove device from the kernel
10698 * @dev: device
10699 * @head: list
10700 *
10701 * This function shuts down a device interface and removes it
10702 * from the kernel tables.
10703 * If head not NULL, device is queued to be unregistered later.
10704 *
10705 * Callers must hold the rtnl semaphore. You may want
10706 * unregister_netdev() instead of this.
10707 */
10708
10709void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10710{
10711 ASSERT_RTNL();
10712
10713 if (head) {
10714 list_move_tail(&dev->unreg_list, head);
10715 } else {
10716 rollback_registered(dev);
10717 /* Finish processing unregister after unlock */
10718 net_set_todo(dev);
10719 }
10720}
10721EXPORT_SYMBOL(unregister_netdevice_queue);
10722
10723/**
10724 * unregister_netdevice_many - unregister many devices
10725 * @head: list of devices
10726 *
10727 * Note: As most callers use a stack allocated list_head,
10728 * we force a list_del() to make sure stack wont be corrupted later.
10729 */
10730void unregister_netdevice_many(struct list_head *head)
10731{
10732 struct net_device *dev;
10733
10734 if (!list_empty(head)) {
10735 rollback_registered_many(head);
10736 list_for_each_entry(dev, head, unreg_list)
10737 net_set_todo(dev);
10738 list_del(head);
10739 }
10740}
10741EXPORT_SYMBOL(unregister_netdevice_many);
10742
10743/**
10744 * unregister_netdev - remove device from the kernel
10745 * @dev: device
10746 *
10747 * This function shuts down a device interface and removes it
10748 * from the kernel tables.
10749 *
10750 * This is just a wrapper for unregister_netdevice that takes
10751 * the rtnl semaphore. In general you want to use this and not
10752 * unregister_netdevice.
10753 */
10754void unregister_netdev(struct net_device *dev)
10755{
10756 rtnl_lock();
10757 unregister_netdevice(dev);
10758 rtnl_unlock();
10759}
10760EXPORT_SYMBOL(unregister_netdev);
10761
10762/**
10763 * dev_change_net_namespace - move device to different nethost namespace
10764 * @dev: device
10765 * @net: network namespace
10766 * @pat: If not NULL name pattern to try if the current device name
10767 * is already taken in the destination network namespace.
10768 *
10769 * This function shuts down a device interface and moves it
10770 * to a new network namespace. On success 0 is returned, on
10771 * a failure a netagive errno code is returned.
10772 *
10773 * Callers must hold the rtnl semaphore.
10774 */
10775
10776int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10777{
10778 struct net *net_old = dev_net(dev);
10779 int err, new_nsid, new_ifindex;
10780
10781 ASSERT_RTNL();
10782
10783 /* Don't allow namespace local devices to be moved. */
10784 err = -EINVAL;
10785 if (dev->features & NETIF_F_NETNS_LOCAL)
10786 goto out;
10787
10788 /* Ensure the device has been registrered */
10789 if (dev->reg_state != NETREG_REGISTERED)
10790 goto out;
10791
10792 /* Get out if there is nothing todo */
10793 err = 0;
10794 if (net_eq(net_old, net))
10795 goto out;
10796
10797 /* Pick the destination device name, and ensure
10798 * we can use it in the destination network namespace.
10799 */
10800 err = -EEXIST;
10801 if (__dev_get_by_name(net, dev->name)) {
10802 /* We get here if we can't use the current device name */
10803 if (!pat)
10804 goto out;
10805 err = dev_get_valid_name(net, dev, pat);
10806 if (err < 0)
10807 goto out;
10808 }
10809
10810 /*
10811 * And now a mini version of register_netdevice unregister_netdevice.
10812 */
10813
10814 /* If device is running close it first. */
10815 dev_close(dev);
10816
10817 /* And unlink it from device chain */
10818 unlist_netdevice(dev);
10819
10820 synchronize_net();
10821
10822 /* Shutdown queueing discipline. */
10823 dev_shutdown(dev);
10824
10825 /* Notify protocols, that we are about to destroy
10826 * this device. They should clean all the things.
10827 *
10828 * Note that dev->reg_state stays at NETREG_REGISTERED.
10829 * This is wanted because this way 8021q and macvlan know
10830 * the device is just moving and can keep their slaves up.
10831 */
10832 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10833 rcu_barrier();
10834
10835 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10836 /* If there is an ifindex conflict assign a new one */
10837 if (__dev_get_by_index(net, dev->ifindex))
10838 new_ifindex = dev_new_index(net);
10839 else
10840 new_ifindex = dev->ifindex;
10841
10842 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10843 new_ifindex);
10844
10845 /*
10846 * Flush the unicast and multicast chains
10847 */
10848 dev_uc_flush(dev);
10849 dev_mc_flush(dev);
10850
10851 /* Send a netdev-removed uevent to the old namespace */
10852 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10853 netdev_adjacent_del_links(dev);
10854
10855 /* Move per-net netdevice notifiers that are following the netdevice */
10856 move_netdevice_notifiers_dev_net(dev, net);
10857
10858 /* Actually switch the network namespace */
10859 dev_net_set(dev, net);
10860 dev->ifindex = new_ifindex;
10861
10862 /* Send a netdev-add uevent to the new namespace */
10863 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10864 netdev_adjacent_add_links(dev);
10865
10866 /* Fixup kobjects */
10867 err = device_rename(&dev->dev, dev->name);
10868 WARN_ON(err);
10869
10870 /* Adapt owner in case owning user namespace of target network
10871 * namespace is different from the original one.
10872 */
10873 err = netdev_change_owner(dev, net_old, net);
10874 WARN_ON(err);
10875
10876 /* Add the device back in the hashes */
10877 list_netdevice(dev);
10878
10879 /* Notify protocols, that a new device appeared. */
10880 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10881
10882 /*
10883 * Prevent userspace races by waiting until the network
10884 * device is fully setup before sending notifications.
10885 */
10886 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10887
10888 synchronize_net();
10889 err = 0;
10890out:
10891 return err;
10892}
10893EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10894
10895static int dev_cpu_dead(unsigned int oldcpu)
10896{
10897 struct sk_buff **list_skb;
10898 struct sk_buff *skb;
10899 unsigned int cpu;
10900 struct softnet_data *sd, *oldsd, *remsd = NULL;
10901
10902 local_irq_disable();
10903 cpu = smp_processor_id();
10904 sd = &per_cpu(softnet_data, cpu);
10905 oldsd = &per_cpu(softnet_data, oldcpu);
10906
10907 /* Find end of our completion_queue. */
10908 list_skb = &sd->completion_queue;
10909 while (*list_skb)
10910 list_skb = &(*list_skb)->next;
10911 /* Append completion queue from offline CPU. */
10912 *list_skb = oldsd->completion_queue;
10913 oldsd->completion_queue = NULL;
10914
10915 /* Append output queue from offline CPU. */
10916 if (oldsd->output_queue) {
10917 *sd->output_queue_tailp = oldsd->output_queue;
10918 sd->output_queue_tailp = oldsd->output_queue_tailp;
10919 oldsd->output_queue = NULL;
10920 oldsd->output_queue_tailp = &oldsd->output_queue;
10921 }
10922 /* Append NAPI poll list from offline CPU, with one exception :
10923 * process_backlog() must be called by cpu owning percpu backlog.
10924 * We properly handle process_queue & input_pkt_queue later.
10925 */
10926 while (!list_empty(&oldsd->poll_list)) {
10927 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10928 struct napi_struct,
10929 poll_list);
10930
10931 list_del_init(&napi->poll_list);
10932 if (napi->poll == process_backlog)
10933 napi->state = 0;
10934 else
10935 ____napi_schedule(sd, napi);
10936 }
10937
10938 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10939 local_irq_enable();
10940
10941#ifdef CONFIG_RPS
10942 remsd = oldsd->rps_ipi_list;
10943 oldsd->rps_ipi_list = NULL;
10944#endif
10945 /* send out pending IPI's on offline CPU */
10946 net_rps_send_ipi(remsd);
10947
10948 /* Process offline CPU's input_pkt_queue */
10949 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10950 netif_rx_ni(skb);
10951 input_queue_head_incr(oldsd);
10952 }
10953 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10954 netif_rx_ni(skb);
10955 input_queue_head_incr(oldsd);
10956 }
10957
10958 return 0;
10959}
10960
10961/**
10962 * netdev_increment_features - increment feature set by one
10963 * @all: current feature set
10964 * @one: new feature set
10965 * @mask: mask feature set
10966 *
10967 * Computes a new feature set after adding a device with feature set
10968 * @one to the master device with current feature set @all. Will not
10969 * enable anything that is off in @mask. Returns the new feature set.
10970 */
10971netdev_features_t netdev_increment_features(netdev_features_t all,
10972 netdev_features_t one, netdev_features_t mask)
10973{
10974 if (mask & NETIF_F_HW_CSUM)
10975 mask |= NETIF_F_CSUM_MASK;
10976 mask |= NETIF_F_VLAN_CHALLENGED;
10977
10978 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10979 all &= one | ~NETIF_F_ALL_FOR_ALL;
10980
10981 /* If one device supports hw checksumming, set for all. */
10982 if (all & NETIF_F_HW_CSUM)
10983 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10984
10985 return all;
10986}
10987EXPORT_SYMBOL(netdev_increment_features);
10988
10989static struct hlist_head * __net_init netdev_create_hash(void)
10990{
10991 int i;
10992 struct hlist_head *hash;
10993
10994 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10995 if (hash != NULL)
10996 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10997 INIT_HLIST_HEAD(&hash[i]);
10998
10999 return hash;
11000}
11001
11002/* Initialize per network namespace state */
11003static int __net_init netdev_init(struct net *net)
11004{
11005 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11006 8 * sizeof_field(struct napi_struct, gro_bitmask));
11007
11008 if (net != &init_net)
11009 INIT_LIST_HEAD(&net->dev_base_head);
11010
11011 net->dev_name_head = netdev_create_hash();
11012 if (net->dev_name_head == NULL)
11013 goto err_name;
11014
11015 net->dev_index_head = netdev_create_hash();
11016 if (net->dev_index_head == NULL)
11017 goto err_idx;
11018
11019 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11020
11021 return 0;
11022
11023err_idx:
11024 kfree(net->dev_name_head);
11025err_name:
11026 return -ENOMEM;
11027}
11028
11029/**
11030 * netdev_drivername - network driver for the device
11031 * @dev: network device
11032 *
11033 * Determine network driver for device.
11034 */
11035const char *netdev_drivername(const struct net_device *dev)
11036{
11037 const struct device_driver *driver;
11038 const struct device *parent;
11039 const char *empty = "";
11040
11041 parent = dev->dev.parent;
11042 if (!parent)
11043 return empty;
11044
11045 driver = parent->driver;
11046 if (driver && driver->name)
11047 return driver->name;
11048 return empty;
11049}
11050
11051static void __netdev_printk(const char *level, const struct net_device *dev,
11052 struct va_format *vaf)
11053{
11054 if (dev && dev->dev.parent) {
11055 dev_printk_emit(level[1] - '0',
11056 dev->dev.parent,
11057 "%s %s %s%s: %pV",
11058 dev_driver_string(dev->dev.parent),
11059 dev_name(dev->dev.parent),
11060 netdev_name(dev), netdev_reg_state(dev),
11061 vaf);
11062 } else if (dev) {
11063 printk("%s%s%s: %pV",
11064 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11065 } else {
11066 printk("%s(NULL net_device): %pV", level, vaf);
11067 }
11068}
11069
11070void netdev_printk(const char *level, const struct net_device *dev,
11071 const char *format, ...)
11072{
11073 struct va_format vaf;
11074 va_list args;
11075
11076 va_start(args, format);
11077
11078 vaf.fmt = format;
11079 vaf.va = &args;
11080
11081 __netdev_printk(level, dev, &vaf);
11082
11083 va_end(args);
11084}
11085EXPORT_SYMBOL(netdev_printk);
11086
11087#define define_netdev_printk_level(func, level) \
11088void func(const struct net_device *dev, const char *fmt, ...) \
11089{ \
11090 struct va_format vaf; \
11091 va_list args; \
11092 \
11093 va_start(args, fmt); \
11094 \
11095 vaf.fmt = fmt; \
11096 vaf.va = &args; \
11097 \
11098 __netdev_printk(level, dev, &vaf); \
11099 \
11100 va_end(args); \
11101} \
11102EXPORT_SYMBOL(func);
11103
11104define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11105define_netdev_printk_level(netdev_alert, KERN_ALERT);
11106define_netdev_printk_level(netdev_crit, KERN_CRIT);
11107define_netdev_printk_level(netdev_err, KERN_ERR);
11108define_netdev_printk_level(netdev_warn, KERN_WARNING);
11109define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11110define_netdev_printk_level(netdev_info, KERN_INFO);
11111
11112static void __net_exit netdev_exit(struct net *net)
11113{
11114 kfree(net->dev_name_head);
11115 kfree(net->dev_index_head);
11116 if (net != &init_net)
11117 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11118}
11119
11120static struct pernet_operations __net_initdata netdev_net_ops = {
11121 .init = netdev_init,
11122 .exit = netdev_exit,
11123};
11124
11125static void __net_exit default_device_exit(struct net *net)
11126{
11127 struct net_device *dev, *aux;
11128 /*
11129 * Push all migratable network devices back to the
11130 * initial network namespace
11131 */
11132 rtnl_lock();
11133 for_each_netdev_safe(net, dev, aux) {
11134 int err;
11135 char fb_name[IFNAMSIZ];
11136
11137 /* Ignore unmoveable devices (i.e. loopback) */
11138 if (dev->features & NETIF_F_NETNS_LOCAL)
11139 continue;
11140
11141 /* Leave virtual devices for the generic cleanup */
11142 if (dev->rtnl_link_ops)
11143 continue;
11144
11145 /* Push remaining network devices to init_net */
11146 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11147 if (__dev_get_by_name(&init_net, fb_name))
11148 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11149 err = dev_change_net_namespace(dev, &init_net, fb_name);
11150 if (err) {
11151 pr_emerg("%s: failed to move %s to init_net: %d\n",
11152 __func__, dev->name, err);
11153 BUG();
11154 }
11155 }
11156 rtnl_unlock();
11157}
11158
11159static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11160{
11161 /* Return with the rtnl_lock held when there are no network
11162 * devices unregistering in any network namespace in net_list.
11163 */
11164 struct net *net;
11165 bool unregistering;
11166 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11167
11168 add_wait_queue(&netdev_unregistering_wq, &wait);
11169 for (;;) {
11170 unregistering = false;
11171 rtnl_lock();
11172 list_for_each_entry(net, net_list, exit_list) {
11173 if (net->dev_unreg_count > 0) {
11174 unregistering = true;
11175 break;
11176 }
11177 }
11178 if (!unregistering)
11179 break;
11180 __rtnl_unlock();
11181
11182 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11183 }
11184 remove_wait_queue(&netdev_unregistering_wq, &wait);
11185}
11186
11187static void __net_exit default_device_exit_batch(struct list_head *net_list)
11188{
11189 /* At exit all network devices most be removed from a network
11190 * namespace. Do this in the reverse order of registration.
11191 * Do this across as many network namespaces as possible to
11192 * improve batching efficiency.
11193 */
11194 struct net_device *dev;
11195 struct net *net;
11196 LIST_HEAD(dev_kill_list);
11197
11198 /* To prevent network device cleanup code from dereferencing
11199 * loopback devices or network devices that have been freed
11200 * wait here for all pending unregistrations to complete,
11201 * before unregistring the loopback device and allowing the
11202 * network namespace be freed.
11203 *
11204 * The netdev todo list containing all network devices
11205 * unregistrations that happen in default_device_exit_batch
11206 * will run in the rtnl_unlock() at the end of
11207 * default_device_exit_batch.
11208 */
11209 rtnl_lock_unregistering(net_list);
11210 list_for_each_entry(net, net_list, exit_list) {
11211 for_each_netdev_reverse(net, dev) {
11212 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11213 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11214 else
11215 unregister_netdevice_queue(dev, &dev_kill_list);
11216 }
11217 }
11218 unregister_netdevice_many(&dev_kill_list);
11219 rtnl_unlock();
11220}
11221
11222static struct pernet_operations __net_initdata default_device_ops = {
11223 .exit = default_device_exit,
11224 .exit_batch = default_device_exit_batch,
11225};
11226
11227/*
11228 * Initialize the DEV module. At boot time this walks the device list and
11229 * unhooks any devices that fail to initialise (normally hardware not
11230 * present) and leaves us with a valid list of present and active devices.
11231 *
11232 */
11233
11234/*
11235 * This is called single threaded during boot, so no need
11236 * to take the rtnl semaphore.
11237 */
11238static int __init net_dev_init(void)
11239{
11240 int i, rc = -ENOMEM;
11241
11242 BUG_ON(!dev_boot_phase);
11243
11244 if (dev_proc_init())
11245 goto out;
11246
11247 if (netdev_kobject_init())
11248 goto out;
11249
11250 INIT_LIST_HEAD(&ptype_all);
11251 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11252 INIT_LIST_HEAD(&ptype_base[i]);
11253
11254 INIT_LIST_HEAD(&offload_base);
11255
11256 if (register_pernet_subsys(&netdev_net_ops))
11257 goto out;
11258
11259 /*
11260 * Initialise the packet receive queues.
11261 */
11262
11263 for_each_possible_cpu(i) {
11264 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11265 struct softnet_data *sd = &per_cpu(softnet_data, i);
11266
11267 INIT_WORK(flush, flush_backlog);
11268
11269 skb_queue_head_init(&sd->input_pkt_queue);
11270 skb_queue_head_init(&sd->process_queue);
11271#ifdef CONFIG_XFRM_OFFLOAD
11272 skb_queue_head_init(&sd->xfrm_backlog);
11273#endif
11274 INIT_LIST_HEAD(&sd->poll_list);
11275 sd->output_queue_tailp = &sd->output_queue;
11276#ifdef CONFIG_RPS
11277 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11278 sd->cpu = i;
11279#endif
11280
11281 init_gro_hash(&sd->backlog);
11282 sd->backlog.poll = process_backlog;
11283 sd->backlog.weight = weight_p;
11284 }
11285
11286 dev_boot_phase = 0;
11287
11288 /* The loopback device is special if any other network devices
11289 * is present in a network namespace the loopback device must
11290 * be present. Since we now dynamically allocate and free the
11291 * loopback device ensure this invariant is maintained by
11292 * keeping the loopback device as the first device on the
11293 * list of network devices. Ensuring the loopback devices
11294 * is the first device that appears and the last network device
11295 * that disappears.
11296 */
11297 if (register_pernet_device(&loopback_net_ops))
11298 goto out;
11299
11300 if (register_pernet_device(&default_device_ops))
11301 goto out;
11302
11303 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11304 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11305
11306 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11307 NULL, dev_cpu_dead);
11308 WARN_ON(rc < 0);
11309 rc = 0;
11310out:
11311 return rc;
11312}
11313
11314subsys_initcall(net_dev_init);