Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "srcline.h"
20#include "symbol.h"
21#include "sort.h"
22#include "strlist.h"
23#include "target.h"
24#include "thread.h"
25#include "util.h"
26#include "vdso.h"
27#include <stdbool.h>
28#include <sys/types.h>
29#include <sys/stat.h>
30#include <unistd.h>
31#include "unwind.h"
32#include "linux/hash.h"
33#include "asm/bug.h"
34#include "bpf-event.h"
35#include <internal/lib.h> // page_size
36#include "cgroup.h"
37
38#include <linux/ctype.h>
39#include <symbol/kallsyms.h>
40#include <linux/mman.h>
41#include <linux/string.h>
42#include <linux/zalloc.h>
43
44static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
46static struct dso *machine__kernel_dso(struct machine *machine)
47{
48 return machine->vmlinux_map->dso;
49}
50
51static void dsos__init(struct dsos *dsos)
52{
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56}
57
58static void machine__threads_init(struct machine *machine)
59{
60 int i;
61
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
69 }
70}
71
72static int machine__set_mmap_name(struct machine *machine)
73{
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
81
82 return machine->mmap_name ? 0 : -ENOMEM;
83}
84
85int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86{
87 int err = -ENOMEM;
88
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
93
94 machine__threads_init(machine);
95
96 machine->vdso_info = NULL;
97 machine->env = NULL;
98
99 machine->pid = pid;
100
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
106
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
110
111 if (machine__set_mmap_name(machine))
112 goto out;
113
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
118
119 if (thread == NULL)
120 goto out;
121
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
125 }
126
127 machine->current_tid = NULL;
128 err = 0;
129
130out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
134 }
135 return 0;
136}
137
138struct machine *machine__new_host(void)
139{
140 struct machine *machine = malloc(sizeof(*machine));
141
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
144
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
147 }
148
149 return machine;
150out_delete:
151 free(machine);
152 return NULL;
153}
154
155struct machine *machine__new_kallsyms(void)
156{
157 struct machine *machine = machine__new_host();
158 /*
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
163 */
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
167 }
168
169 return machine;
170}
171
172static void dsos__purge(struct dsos *dsos)
173{
174 struct dso *pos, *n;
175
176 down_write(&dsos->lock);
177
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
183 }
184
185 up_write(&dsos->lock);
186}
187
188static void dsos__exit(struct dsos *dsos)
189{
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
192}
193
194void machine__delete_threads(struct machine *machine)
195{
196 struct rb_node *nd;
197 int i;
198
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
208 }
209 up_write(&threads->lock);
210 }
211}
212
213void machine__exit(struct machine *machine)
214{
215 int i;
216
217 if (machine == NULL)
218 return;
219
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
231 /*
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
238 */
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
241
242 exit_rwsem(&threads->lock);
243 }
244}
245
246void machine__delete(struct machine *machine)
247{
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
251 }
252}
253
254void machines__init(struct machines *machines)
255{
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
258}
259
260void machines__exit(struct machines *machines)
261{
262 machine__exit(&machines->host);
263 /* XXX exit guest */
264}
265
266struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
268{
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
273
274 if (machine == NULL)
275 return NULL;
276
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
280 }
281
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
290 }
291 }
292
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296 return machine;
297}
298
299void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300{
301 struct rb_node *nd;
302
303 machines->host.comm_exec = comm_exec;
304
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308 machine->comm_exec = comm_exec;
309 }
310}
311
312struct machine *machines__find(struct machines *machines, pid_t pid)
313{
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
318
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
321
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
333 }
334
335 return default_machine;
336}
337
338struct machine *machines__findnew(struct machines *machines, pid_t pid)
339{
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
343
344 if (machine && (machine->pid == pid))
345 goto out;
346
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
353
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
356
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
360 }
361 machine = NULL;
362 goto out;
363 }
364 root_dir = path;
365 }
366
367 machine = machines__add(machines, pid, root_dir);
368out:
369 return machine;
370}
371
372void machines__process_guests(struct machines *machines,
373 machine__process_t process, void *data)
374{
375 struct rb_node *nd;
376
377 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
378 struct machine *pos = rb_entry(nd, struct machine, rb_node);
379 process(pos, data);
380 }
381}
382
383void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
384{
385 struct rb_node *node;
386 struct machine *machine;
387
388 machines->host.id_hdr_size = id_hdr_size;
389
390 for (node = rb_first_cached(&machines->guests); node;
391 node = rb_next(node)) {
392 machine = rb_entry(node, struct machine, rb_node);
393 machine->id_hdr_size = id_hdr_size;
394 }
395
396 return;
397}
398
399static void machine__update_thread_pid(struct machine *machine,
400 struct thread *th, pid_t pid)
401{
402 struct thread *leader;
403
404 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
405 return;
406
407 th->pid_ = pid;
408
409 if (th->pid_ == th->tid)
410 return;
411
412 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
413 if (!leader)
414 goto out_err;
415
416 if (!leader->maps)
417 leader->maps = maps__new(machine);
418
419 if (!leader->maps)
420 goto out_err;
421
422 if (th->maps == leader->maps)
423 return;
424
425 if (th->maps) {
426 /*
427 * Maps are created from MMAP events which provide the pid and
428 * tid. Consequently there never should be any maps on a thread
429 * with an unknown pid. Just print an error if there are.
430 */
431 if (!maps__empty(th->maps))
432 pr_err("Discarding thread maps for %d:%d\n",
433 th->pid_, th->tid);
434 maps__put(th->maps);
435 }
436
437 th->maps = maps__get(leader->maps);
438out_put:
439 thread__put(leader);
440 return;
441out_err:
442 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
443 goto out_put;
444}
445
446/*
447 * Front-end cache - TID lookups come in blocks,
448 * so most of the time we dont have to look up
449 * the full rbtree:
450 */
451static struct thread*
452__threads__get_last_match(struct threads *threads, struct machine *machine,
453 int pid, int tid)
454{
455 struct thread *th;
456
457 th = threads->last_match;
458 if (th != NULL) {
459 if (th->tid == tid) {
460 machine__update_thread_pid(machine, th, pid);
461 return thread__get(th);
462 }
463
464 threads->last_match = NULL;
465 }
466
467 return NULL;
468}
469
470static struct thread*
471threads__get_last_match(struct threads *threads, struct machine *machine,
472 int pid, int tid)
473{
474 struct thread *th = NULL;
475
476 if (perf_singlethreaded)
477 th = __threads__get_last_match(threads, machine, pid, tid);
478
479 return th;
480}
481
482static void
483__threads__set_last_match(struct threads *threads, struct thread *th)
484{
485 threads->last_match = th;
486}
487
488static void
489threads__set_last_match(struct threads *threads, struct thread *th)
490{
491 if (perf_singlethreaded)
492 __threads__set_last_match(threads, th);
493}
494
495/*
496 * Caller must eventually drop thread->refcnt returned with a successful
497 * lookup/new thread inserted.
498 */
499static struct thread *____machine__findnew_thread(struct machine *machine,
500 struct threads *threads,
501 pid_t pid, pid_t tid,
502 bool create)
503{
504 struct rb_node **p = &threads->entries.rb_root.rb_node;
505 struct rb_node *parent = NULL;
506 struct thread *th;
507 bool leftmost = true;
508
509 th = threads__get_last_match(threads, machine, pid, tid);
510 if (th)
511 return th;
512
513 while (*p != NULL) {
514 parent = *p;
515 th = rb_entry(parent, struct thread, rb_node);
516
517 if (th->tid == tid) {
518 threads__set_last_match(threads, th);
519 machine__update_thread_pid(machine, th, pid);
520 return thread__get(th);
521 }
522
523 if (tid < th->tid)
524 p = &(*p)->rb_left;
525 else {
526 p = &(*p)->rb_right;
527 leftmost = false;
528 }
529 }
530
531 if (!create)
532 return NULL;
533
534 th = thread__new(pid, tid);
535 if (th != NULL) {
536 rb_link_node(&th->rb_node, parent, p);
537 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
538
539 /*
540 * We have to initialize maps separately after rb tree is updated.
541 *
542 * The reason is that we call machine__findnew_thread
543 * within thread__init_maps to find the thread
544 * leader and that would screwed the rb tree.
545 */
546 if (thread__init_maps(th, machine)) {
547 rb_erase_cached(&th->rb_node, &threads->entries);
548 RB_CLEAR_NODE(&th->rb_node);
549 thread__put(th);
550 return NULL;
551 }
552 /*
553 * It is now in the rbtree, get a ref
554 */
555 thread__get(th);
556 threads__set_last_match(threads, th);
557 ++threads->nr;
558 }
559
560 return th;
561}
562
563struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
564{
565 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
566}
567
568struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
569 pid_t tid)
570{
571 struct threads *threads = machine__threads(machine, tid);
572 struct thread *th;
573
574 down_write(&threads->lock);
575 th = __machine__findnew_thread(machine, pid, tid);
576 up_write(&threads->lock);
577 return th;
578}
579
580struct thread *machine__find_thread(struct machine *machine, pid_t pid,
581 pid_t tid)
582{
583 struct threads *threads = machine__threads(machine, tid);
584 struct thread *th;
585
586 down_read(&threads->lock);
587 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
588 up_read(&threads->lock);
589 return th;
590}
591
592struct comm *machine__thread_exec_comm(struct machine *machine,
593 struct thread *thread)
594{
595 if (machine->comm_exec)
596 return thread__exec_comm(thread);
597 else
598 return thread__comm(thread);
599}
600
601int machine__process_comm_event(struct machine *machine, union perf_event *event,
602 struct perf_sample *sample)
603{
604 struct thread *thread = machine__findnew_thread(machine,
605 event->comm.pid,
606 event->comm.tid);
607 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
608 int err = 0;
609
610 if (exec)
611 machine->comm_exec = true;
612
613 if (dump_trace)
614 perf_event__fprintf_comm(event, stdout);
615
616 if (thread == NULL ||
617 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
618 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
619 err = -1;
620 }
621
622 thread__put(thread);
623
624 return err;
625}
626
627int machine__process_namespaces_event(struct machine *machine __maybe_unused,
628 union perf_event *event,
629 struct perf_sample *sample __maybe_unused)
630{
631 struct thread *thread = machine__findnew_thread(machine,
632 event->namespaces.pid,
633 event->namespaces.tid);
634 int err = 0;
635
636 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
637 "\nWARNING: kernel seems to support more namespaces than perf"
638 " tool.\nTry updating the perf tool..\n\n");
639
640 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
641 "\nWARNING: perf tool seems to support more namespaces than"
642 " the kernel.\nTry updating the kernel..\n\n");
643
644 if (dump_trace)
645 perf_event__fprintf_namespaces(event, stdout);
646
647 if (thread == NULL ||
648 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
649 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
650 err = -1;
651 }
652
653 thread__put(thread);
654
655 return err;
656}
657
658int machine__process_cgroup_event(struct machine *machine,
659 union perf_event *event,
660 struct perf_sample *sample __maybe_unused)
661{
662 struct cgroup *cgrp;
663
664 if (dump_trace)
665 perf_event__fprintf_cgroup(event, stdout);
666
667 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
668 if (cgrp == NULL)
669 return -ENOMEM;
670
671 return 0;
672}
673
674int machine__process_lost_event(struct machine *machine __maybe_unused,
675 union perf_event *event, struct perf_sample *sample __maybe_unused)
676{
677 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
678 event->lost.id, event->lost.lost);
679 return 0;
680}
681
682int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
683 union perf_event *event, struct perf_sample *sample)
684{
685 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
686 sample->id, event->lost_samples.lost);
687 return 0;
688}
689
690static struct dso *machine__findnew_module_dso(struct machine *machine,
691 struct kmod_path *m,
692 const char *filename)
693{
694 struct dso *dso;
695
696 down_write(&machine->dsos.lock);
697
698 dso = __dsos__find(&machine->dsos, m->name, true);
699 if (!dso) {
700 dso = __dsos__addnew(&machine->dsos, m->name);
701 if (dso == NULL)
702 goto out_unlock;
703
704 dso__set_module_info(dso, m, machine);
705 dso__set_long_name(dso, strdup(filename), true);
706 dso->kernel = DSO_SPACE__KERNEL;
707 }
708
709 dso__get(dso);
710out_unlock:
711 up_write(&machine->dsos.lock);
712 return dso;
713}
714
715int machine__process_aux_event(struct machine *machine __maybe_unused,
716 union perf_event *event)
717{
718 if (dump_trace)
719 perf_event__fprintf_aux(event, stdout);
720 return 0;
721}
722
723int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
724 union perf_event *event)
725{
726 if (dump_trace)
727 perf_event__fprintf_itrace_start(event, stdout);
728 return 0;
729}
730
731int machine__process_switch_event(struct machine *machine __maybe_unused,
732 union perf_event *event)
733{
734 if (dump_trace)
735 perf_event__fprintf_switch(event, stdout);
736 return 0;
737}
738
739static int machine__process_ksymbol_register(struct machine *machine,
740 union perf_event *event,
741 struct perf_sample *sample __maybe_unused)
742{
743 struct symbol *sym;
744 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
745
746 if (!map) {
747 struct dso *dso = dso__new(event->ksymbol.name);
748
749 if (dso) {
750 dso->kernel = DSO_SPACE__KERNEL;
751 map = map__new2(0, dso);
752 }
753
754 if (!dso || !map) {
755 dso__put(dso);
756 return -ENOMEM;
757 }
758
759 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
760 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
761 map->dso->data.file_size = event->ksymbol.len;
762 dso__set_loaded(map->dso);
763 }
764
765 map->start = event->ksymbol.addr;
766 map->end = map->start + event->ksymbol.len;
767 maps__insert(&machine->kmaps, map);
768 dso__set_loaded(dso);
769
770 if (is_bpf_image(event->ksymbol.name)) {
771 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
772 dso__set_long_name(dso, "", false);
773 }
774 }
775
776 sym = symbol__new(map->map_ip(map, map->start),
777 event->ksymbol.len,
778 0, 0, event->ksymbol.name);
779 if (!sym)
780 return -ENOMEM;
781 dso__insert_symbol(map->dso, sym);
782 return 0;
783}
784
785static int machine__process_ksymbol_unregister(struct machine *machine,
786 union perf_event *event,
787 struct perf_sample *sample __maybe_unused)
788{
789 struct symbol *sym;
790 struct map *map;
791
792 map = maps__find(&machine->kmaps, event->ksymbol.addr);
793 if (!map)
794 return 0;
795
796 if (map != machine->vmlinux_map)
797 maps__remove(&machine->kmaps, map);
798 else {
799 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
800 if (sym)
801 dso__delete_symbol(map->dso, sym);
802 }
803
804 return 0;
805}
806
807int machine__process_ksymbol(struct machine *machine __maybe_unused,
808 union perf_event *event,
809 struct perf_sample *sample)
810{
811 if (dump_trace)
812 perf_event__fprintf_ksymbol(event, stdout);
813
814 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
815 return machine__process_ksymbol_unregister(machine, event,
816 sample);
817 return machine__process_ksymbol_register(machine, event, sample);
818}
819
820int machine__process_text_poke(struct machine *machine, union perf_event *event,
821 struct perf_sample *sample __maybe_unused)
822{
823 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
824 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
825
826 if (dump_trace)
827 perf_event__fprintf_text_poke(event, machine, stdout);
828
829 if (!event->text_poke.new_len)
830 return 0;
831
832 if (cpumode != PERF_RECORD_MISC_KERNEL) {
833 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
834 return 0;
835 }
836
837 if (map && map->dso) {
838 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
839 int ret;
840
841 /*
842 * Kernel maps might be changed when loading symbols so loading
843 * must be done prior to using kernel maps.
844 */
845 map__load(map);
846 ret = dso__data_write_cache_addr(map->dso, map, machine,
847 event->text_poke.addr,
848 new_bytes,
849 event->text_poke.new_len);
850 if (ret != event->text_poke.new_len)
851 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
852 event->text_poke.addr);
853 } else {
854 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
855 event->text_poke.addr);
856 }
857
858 return 0;
859}
860
861static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
862 const char *filename)
863{
864 struct map *map = NULL;
865 struct kmod_path m;
866 struct dso *dso;
867
868 if (kmod_path__parse_name(&m, filename))
869 return NULL;
870
871 dso = machine__findnew_module_dso(machine, &m, filename);
872 if (dso == NULL)
873 goto out;
874
875 map = map__new2(start, dso);
876 if (map == NULL)
877 goto out;
878
879 maps__insert(&machine->kmaps, map);
880
881 /* Put the map here because maps__insert alread got it */
882 map__put(map);
883out:
884 /* put the dso here, corresponding to machine__findnew_module_dso */
885 dso__put(dso);
886 zfree(&m.name);
887 return map;
888}
889
890size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
891{
892 struct rb_node *nd;
893 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
894
895 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
896 struct machine *pos = rb_entry(nd, struct machine, rb_node);
897 ret += __dsos__fprintf(&pos->dsos.head, fp);
898 }
899
900 return ret;
901}
902
903size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
904 bool (skip)(struct dso *dso, int parm), int parm)
905{
906 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
907}
908
909size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
910 bool (skip)(struct dso *dso, int parm), int parm)
911{
912 struct rb_node *nd;
913 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
914
915 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
916 struct machine *pos = rb_entry(nd, struct machine, rb_node);
917 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
918 }
919 return ret;
920}
921
922size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
923{
924 int i;
925 size_t printed = 0;
926 struct dso *kdso = machine__kernel_dso(machine);
927
928 if (kdso->has_build_id) {
929 char filename[PATH_MAX];
930 if (dso__build_id_filename(kdso, filename, sizeof(filename),
931 false))
932 printed += fprintf(fp, "[0] %s\n", filename);
933 }
934
935 for (i = 0; i < vmlinux_path__nr_entries; ++i)
936 printed += fprintf(fp, "[%d] %s\n",
937 i + kdso->has_build_id, vmlinux_path[i]);
938
939 return printed;
940}
941
942size_t machine__fprintf(struct machine *machine, FILE *fp)
943{
944 struct rb_node *nd;
945 size_t ret;
946 int i;
947
948 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
949 struct threads *threads = &machine->threads[i];
950
951 down_read(&threads->lock);
952
953 ret = fprintf(fp, "Threads: %u\n", threads->nr);
954
955 for (nd = rb_first_cached(&threads->entries); nd;
956 nd = rb_next(nd)) {
957 struct thread *pos = rb_entry(nd, struct thread, rb_node);
958
959 ret += thread__fprintf(pos, fp);
960 }
961
962 up_read(&threads->lock);
963 }
964 return ret;
965}
966
967static struct dso *machine__get_kernel(struct machine *machine)
968{
969 const char *vmlinux_name = machine->mmap_name;
970 struct dso *kernel;
971
972 if (machine__is_host(machine)) {
973 if (symbol_conf.vmlinux_name)
974 vmlinux_name = symbol_conf.vmlinux_name;
975
976 kernel = machine__findnew_kernel(machine, vmlinux_name,
977 "[kernel]", DSO_SPACE__KERNEL);
978 } else {
979 if (symbol_conf.default_guest_vmlinux_name)
980 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
981
982 kernel = machine__findnew_kernel(machine, vmlinux_name,
983 "[guest.kernel]",
984 DSO_SPACE__KERNEL_GUEST);
985 }
986
987 if (kernel != NULL && (!kernel->has_build_id))
988 dso__read_running_kernel_build_id(kernel, machine);
989
990 return kernel;
991}
992
993struct process_args {
994 u64 start;
995};
996
997void machine__get_kallsyms_filename(struct machine *machine, char *buf,
998 size_t bufsz)
999{
1000 if (machine__is_default_guest(machine))
1001 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1002 else
1003 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1004}
1005
1006const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1007
1008/* Figure out the start address of kernel map from /proc/kallsyms.
1009 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1010 * symbol_name if it's not that important.
1011 */
1012static int machine__get_running_kernel_start(struct machine *machine,
1013 const char **symbol_name,
1014 u64 *start, u64 *end)
1015{
1016 char filename[PATH_MAX];
1017 int i, err = -1;
1018 const char *name;
1019 u64 addr = 0;
1020
1021 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1022
1023 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1024 return 0;
1025
1026 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1027 err = kallsyms__get_function_start(filename, name, &addr);
1028 if (!err)
1029 break;
1030 }
1031
1032 if (err)
1033 return -1;
1034
1035 if (symbol_name)
1036 *symbol_name = name;
1037
1038 *start = addr;
1039
1040 err = kallsyms__get_function_start(filename, "_etext", &addr);
1041 if (!err)
1042 *end = addr;
1043
1044 return 0;
1045}
1046
1047int machine__create_extra_kernel_map(struct machine *machine,
1048 struct dso *kernel,
1049 struct extra_kernel_map *xm)
1050{
1051 struct kmap *kmap;
1052 struct map *map;
1053
1054 map = map__new2(xm->start, kernel);
1055 if (!map)
1056 return -1;
1057
1058 map->end = xm->end;
1059 map->pgoff = xm->pgoff;
1060
1061 kmap = map__kmap(map);
1062
1063 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1064
1065 maps__insert(&machine->kmaps, map);
1066
1067 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1068 kmap->name, map->start, map->end);
1069
1070 map__put(map);
1071
1072 return 0;
1073}
1074
1075static u64 find_entry_trampoline(struct dso *dso)
1076{
1077 /* Duplicates are removed so lookup all aliases */
1078 const char *syms[] = {
1079 "_entry_trampoline",
1080 "__entry_trampoline_start",
1081 "entry_SYSCALL_64_trampoline",
1082 };
1083 struct symbol *sym = dso__first_symbol(dso);
1084 unsigned int i;
1085
1086 for (; sym; sym = dso__next_symbol(sym)) {
1087 if (sym->binding != STB_GLOBAL)
1088 continue;
1089 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1090 if (!strcmp(sym->name, syms[i]))
1091 return sym->start;
1092 }
1093 }
1094
1095 return 0;
1096}
1097
1098/*
1099 * These values can be used for kernels that do not have symbols for the entry
1100 * trampolines in kallsyms.
1101 */
1102#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1103#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1104#define X86_64_ENTRY_TRAMPOLINE 0x6000
1105
1106/* Map x86_64 PTI entry trampolines */
1107int machine__map_x86_64_entry_trampolines(struct machine *machine,
1108 struct dso *kernel)
1109{
1110 struct maps *kmaps = &machine->kmaps;
1111 int nr_cpus_avail, cpu;
1112 bool found = false;
1113 struct map *map;
1114 u64 pgoff;
1115
1116 /*
1117 * In the vmlinux case, pgoff is a virtual address which must now be
1118 * mapped to a vmlinux offset.
1119 */
1120 maps__for_each_entry(kmaps, map) {
1121 struct kmap *kmap = __map__kmap(map);
1122 struct map *dest_map;
1123
1124 if (!kmap || !is_entry_trampoline(kmap->name))
1125 continue;
1126
1127 dest_map = maps__find(kmaps, map->pgoff);
1128 if (dest_map != map)
1129 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1130 found = true;
1131 }
1132 if (found || machine->trampolines_mapped)
1133 return 0;
1134
1135 pgoff = find_entry_trampoline(kernel);
1136 if (!pgoff)
1137 return 0;
1138
1139 nr_cpus_avail = machine__nr_cpus_avail(machine);
1140
1141 /* Add a 1 page map for each CPU's entry trampoline */
1142 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1143 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1144 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1145 X86_64_ENTRY_TRAMPOLINE;
1146 struct extra_kernel_map xm = {
1147 .start = va,
1148 .end = va + page_size,
1149 .pgoff = pgoff,
1150 };
1151
1152 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1153
1154 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1155 return -1;
1156 }
1157
1158 machine->trampolines_mapped = nr_cpus_avail;
1159
1160 return 0;
1161}
1162
1163int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1164 struct dso *kernel __maybe_unused)
1165{
1166 return 0;
1167}
1168
1169static int
1170__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1171{
1172 /* In case of renewal the kernel map, destroy previous one */
1173 machine__destroy_kernel_maps(machine);
1174
1175 machine->vmlinux_map = map__new2(0, kernel);
1176 if (machine->vmlinux_map == NULL)
1177 return -1;
1178
1179 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1180 maps__insert(&machine->kmaps, machine->vmlinux_map);
1181 return 0;
1182}
1183
1184void machine__destroy_kernel_maps(struct machine *machine)
1185{
1186 struct kmap *kmap;
1187 struct map *map = machine__kernel_map(machine);
1188
1189 if (map == NULL)
1190 return;
1191
1192 kmap = map__kmap(map);
1193 maps__remove(&machine->kmaps, map);
1194 if (kmap && kmap->ref_reloc_sym) {
1195 zfree((char **)&kmap->ref_reloc_sym->name);
1196 zfree(&kmap->ref_reloc_sym);
1197 }
1198
1199 map__zput(machine->vmlinux_map);
1200}
1201
1202int machines__create_guest_kernel_maps(struct machines *machines)
1203{
1204 int ret = 0;
1205 struct dirent **namelist = NULL;
1206 int i, items = 0;
1207 char path[PATH_MAX];
1208 pid_t pid;
1209 char *endp;
1210
1211 if (symbol_conf.default_guest_vmlinux_name ||
1212 symbol_conf.default_guest_modules ||
1213 symbol_conf.default_guest_kallsyms) {
1214 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1215 }
1216
1217 if (symbol_conf.guestmount) {
1218 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1219 if (items <= 0)
1220 return -ENOENT;
1221 for (i = 0; i < items; i++) {
1222 if (!isdigit(namelist[i]->d_name[0])) {
1223 /* Filter out . and .. */
1224 continue;
1225 }
1226 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1227 if ((*endp != '\0') ||
1228 (endp == namelist[i]->d_name) ||
1229 (errno == ERANGE)) {
1230 pr_debug("invalid directory (%s). Skipping.\n",
1231 namelist[i]->d_name);
1232 continue;
1233 }
1234 sprintf(path, "%s/%s/proc/kallsyms",
1235 symbol_conf.guestmount,
1236 namelist[i]->d_name);
1237 ret = access(path, R_OK);
1238 if (ret) {
1239 pr_debug("Can't access file %s\n", path);
1240 goto failure;
1241 }
1242 machines__create_kernel_maps(machines, pid);
1243 }
1244failure:
1245 free(namelist);
1246 }
1247
1248 return ret;
1249}
1250
1251void machines__destroy_kernel_maps(struct machines *machines)
1252{
1253 struct rb_node *next = rb_first_cached(&machines->guests);
1254
1255 machine__destroy_kernel_maps(&machines->host);
1256
1257 while (next) {
1258 struct machine *pos = rb_entry(next, struct machine, rb_node);
1259
1260 next = rb_next(&pos->rb_node);
1261 rb_erase_cached(&pos->rb_node, &machines->guests);
1262 machine__delete(pos);
1263 }
1264}
1265
1266int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1267{
1268 struct machine *machine = machines__findnew(machines, pid);
1269
1270 if (machine == NULL)
1271 return -1;
1272
1273 return machine__create_kernel_maps(machine);
1274}
1275
1276int machine__load_kallsyms(struct machine *machine, const char *filename)
1277{
1278 struct map *map = machine__kernel_map(machine);
1279 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1280
1281 if (ret > 0) {
1282 dso__set_loaded(map->dso);
1283 /*
1284 * Since /proc/kallsyms will have multiple sessions for the
1285 * kernel, with modules between them, fixup the end of all
1286 * sections.
1287 */
1288 maps__fixup_end(&machine->kmaps);
1289 }
1290
1291 return ret;
1292}
1293
1294int machine__load_vmlinux_path(struct machine *machine)
1295{
1296 struct map *map = machine__kernel_map(machine);
1297 int ret = dso__load_vmlinux_path(map->dso, map);
1298
1299 if (ret > 0)
1300 dso__set_loaded(map->dso);
1301
1302 return ret;
1303}
1304
1305static char *get_kernel_version(const char *root_dir)
1306{
1307 char version[PATH_MAX];
1308 FILE *file;
1309 char *name, *tmp;
1310 const char *prefix = "Linux version ";
1311
1312 sprintf(version, "%s/proc/version", root_dir);
1313 file = fopen(version, "r");
1314 if (!file)
1315 return NULL;
1316
1317 tmp = fgets(version, sizeof(version), file);
1318 fclose(file);
1319 if (!tmp)
1320 return NULL;
1321
1322 name = strstr(version, prefix);
1323 if (!name)
1324 return NULL;
1325 name += strlen(prefix);
1326 tmp = strchr(name, ' ');
1327 if (tmp)
1328 *tmp = '\0';
1329
1330 return strdup(name);
1331}
1332
1333static bool is_kmod_dso(struct dso *dso)
1334{
1335 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1336 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1337}
1338
1339static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1340{
1341 char *long_name;
1342 struct map *map = maps__find_by_name(maps, m->name);
1343
1344 if (map == NULL)
1345 return 0;
1346
1347 long_name = strdup(path);
1348 if (long_name == NULL)
1349 return -ENOMEM;
1350
1351 dso__set_long_name(map->dso, long_name, true);
1352 dso__kernel_module_get_build_id(map->dso, "");
1353
1354 /*
1355 * Full name could reveal us kmod compression, so
1356 * we need to update the symtab_type if needed.
1357 */
1358 if (m->comp && is_kmod_dso(map->dso)) {
1359 map->dso->symtab_type++;
1360 map->dso->comp = m->comp;
1361 }
1362
1363 return 0;
1364}
1365
1366static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1367{
1368 struct dirent *dent;
1369 DIR *dir = opendir(dir_name);
1370 int ret = 0;
1371
1372 if (!dir) {
1373 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1374 return -1;
1375 }
1376
1377 while ((dent = readdir(dir)) != NULL) {
1378 char path[PATH_MAX];
1379 struct stat st;
1380
1381 /*sshfs might return bad dent->d_type, so we have to stat*/
1382 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1383 if (stat(path, &st))
1384 continue;
1385
1386 if (S_ISDIR(st.st_mode)) {
1387 if (!strcmp(dent->d_name, ".") ||
1388 !strcmp(dent->d_name, ".."))
1389 continue;
1390
1391 /* Do not follow top-level source and build symlinks */
1392 if (depth == 0) {
1393 if (!strcmp(dent->d_name, "source") ||
1394 !strcmp(dent->d_name, "build"))
1395 continue;
1396 }
1397
1398 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1399 if (ret < 0)
1400 goto out;
1401 } else {
1402 struct kmod_path m;
1403
1404 ret = kmod_path__parse_name(&m, dent->d_name);
1405 if (ret)
1406 goto out;
1407
1408 if (m.kmod)
1409 ret = maps__set_module_path(maps, path, &m);
1410
1411 zfree(&m.name);
1412
1413 if (ret)
1414 goto out;
1415 }
1416 }
1417
1418out:
1419 closedir(dir);
1420 return ret;
1421}
1422
1423static int machine__set_modules_path(struct machine *machine)
1424{
1425 char *version;
1426 char modules_path[PATH_MAX];
1427
1428 version = get_kernel_version(machine->root_dir);
1429 if (!version)
1430 return -1;
1431
1432 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1433 machine->root_dir, version);
1434 free(version);
1435
1436 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1437}
1438int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1439 u64 *size __maybe_unused,
1440 const char *name __maybe_unused)
1441{
1442 return 0;
1443}
1444
1445static int machine__create_module(void *arg, const char *name, u64 start,
1446 u64 size)
1447{
1448 struct machine *machine = arg;
1449 struct map *map;
1450
1451 if (arch__fix_module_text_start(&start, &size, name) < 0)
1452 return -1;
1453
1454 map = machine__addnew_module_map(machine, start, name);
1455 if (map == NULL)
1456 return -1;
1457 map->end = start + size;
1458
1459 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1460
1461 return 0;
1462}
1463
1464static int machine__create_modules(struct machine *machine)
1465{
1466 const char *modules;
1467 char path[PATH_MAX];
1468
1469 if (machine__is_default_guest(machine)) {
1470 modules = symbol_conf.default_guest_modules;
1471 } else {
1472 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1473 modules = path;
1474 }
1475
1476 if (symbol__restricted_filename(modules, "/proc/modules"))
1477 return -1;
1478
1479 if (modules__parse(modules, machine, machine__create_module))
1480 return -1;
1481
1482 if (!machine__set_modules_path(machine))
1483 return 0;
1484
1485 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1486
1487 return 0;
1488}
1489
1490static void machine__set_kernel_mmap(struct machine *machine,
1491 u64 start, u64 end)
1492{
1493 machine->vmlinux_map->start = start;
1494 machine->vmlinux_map->end = end;
1495 /*
1496 * Be a bit paranoid here, some perf.data file came with
1497 * a zero sized synthesized MMAP event for the kernel.
1498 */
1499 if (start == 0 && end == 0)
1500 machine->vmlinux_map->end = ~0ULL;
1501}
1502
1503static void machine__update_kernel_mmap(struct machine *machine,
1504 u64 start, u64 end)
1505{
1506 struct map *map = machine__kernel_map(machine);
1507
1508 map__get(map);
1509 maps__remove(&machine->kmaps, map);
1510
1511 machine__set_kernel_mmap(machine, start, end);
1512
1513 maps__insert(&machine->kmaps, map);
1514 map__put(map);
1515}
1516
1517int machine__create_kernel_maps(struct machine *machine)
1518{
1519 struct dso *kernel = machine__get_kernel(machine);
1520 const char *name = NULL;
1521 struct map *map;
1522 u64 start = 0, end = ~0ULL;
1523 int ret;
1524
1525 if (kernel == NULL)
1526 return -1;
1527
1528 ret = __machine__create_kernel_maps(machine, kernel);
1529 if (ret < 0)
1530 goto out_put;
1531
1532 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1533 if (machine__is_host(machine))
1534 pr_debug("Problems creating module maps, "
1535 "continuing anyway...\n");
1536 else
1537 pr_debug("Problems creating module maps for guest %d, "
1538 "continuing anyway...\n", machine->pid);
1539 }
1540
1541 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1542 if (name &&
1543 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1544 machine__destroy_kernel_maps(machine);
1545 ret = -1;
1546 goto out_put;
1547 }
1548
1549 /*
1550 * we have a real start address now, so re-order the kmaps
1551 * assume it's the last in the kmaps
1552 */
1553 machine__update_kernel_mmap(machine, start, end);
1554 }
1555
1556 if (machine__create_extra_kernel_maps(machine, kernel))
1557 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1558
1559 if (end == ~0ULL) {
1560 /* update end address of the kernel map using adjacent module address */
1561 map = map__next(machine__kernel_map(machine));
1562 if (map)
1563 machine__set_kernel_mmap(machine, start, map->start);
1564 }
1565
1566out_put:
1567 dso__put(kernel);
1568 return ret;
1569}
1570
1571static bool machine__uses_kcore(struct machine *machine)
1572{
1573 struct dso *dso;
1574
1575 list_for_each_entry(dso, &machine->dsos.head, node) {
1576 if (dso__is_kcore(dso))
1577 return true;
1578 }
1579
1580 return false;
1581}
1582
1583static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1584 struct extra_kernel_map *xm)
1585{
1586 return machine__is(machine, "x86_64") &&
1587 is_entry_trampoline(xm->name);
1588}
1589
1590static int machine__process_extra_kernel_map(struct machine *machine,
1591 struct extra_kernel_map *xm)
1592{
1593 struct dso *kernel = machine__kernel_dso(machine);
1594
1595 if (kernel == NULL)
1596 return -1;
1597
1598 return machine__create_extra_kernel_map(machine, kernel, xm);
1599}
1600
1601static int machine__process_kernel_mmap_event(struct machine *machine,
1602 struct extra_kernel_map *xm)
1603{
1604 struct map *map;
1605 enum dso_space_type dso_space;
1606 bool is_kernel_mmap;
1607
1608 /* If we have maps from kcore then we do not need or want any others */
1609 if (machine__uses_kcore(machine))
1610 return 0;
1611
1612 if (machine__is_host(machine))
1613 dso_space = DSO_SPACE__KERNEL;
1614 else
1615 dso_space = DSO_SPACE__KERNEL_GUEST;
1616
1617 is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1618 strlen(machine->mmap_name) - 1) == 0;
1619 if (xm->name[0] == '/' ||
1620 (!is_kernel_mmap && xm->name[0] == '[')) {
1621 map = machine__addnew_module_map(machine, xm->start,
1622 xm->name);
1623 if (map == NULL)
1624 goto out_problem;
1625
1626 map->end = map->start + xm->end - xm->start;
1627 } else if (is_kernel_mmap) {
1628 const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1629 /*
1630 * Should be there already, from the build-id table in
1631 * the header.
1632 */
1633 struct dso *kernel = NULL;
1634 struct dso *dso;
1635
1636 down_read(&machine->dsos.lock);
1637
1638 list_for_each_entry(dso, &machine->dsos.head, node) {
1639
1640 /*
1641 * The cpumode passed to is_kernel_module is not the
1642 * cpumode of *this* event. If we insist on passing
1643 * correct cpumode to is_kernel_module, we should
1644 * record the cpumode when we adding this dso to the
1645 * linked list.
1646 *
1647 * However we don't really need passing correct
1648 * cpumode. We know the correct cpumode must be kernel
1649 * mode (if not, we should not link it onto kernel_dsos
1650 * list).
1651 *
1652 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1653 * is_kernel_module() treats it as a kernel cpumode.
1654 */
1655
1656 if (!dso->kernel ||
1657 is_kernel_module(dso->long_name,
1658 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1659 continue;
1660
1661
1662 kernel = dso;
1663 break;
1664 }
1665
1666 up_read(&machine->dsos.lock);
1667
1668 if (kernel == NULL)
1669 kernel = machine__findnew_dso(machine, machine->mmap_name);
1670 if (kernel == NULL)
1671 goto out_problem;
1672
1673 kernel->kernel = dso_space;
1674 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1675 dso__put(kernel);
1676 goto out_problem;
1677 }
1678
1679 if (strstr(kernel->long_name, "vmlinux"))
1680 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1681
1682 machine__update_kernel_mmap(machine, xm->start, xm->end);
1683
1684 /*
1685 * Avoid using a zero address (kptr_restrict) for the ref reloc
1686 * symbol. Effectively having zero here means that at record
1687 * time /proc/sys/kernel/kptr_restrict was non zero.
1688 */
1689 if (xm->pgoff != 0) {
1690 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1691 symbol_name,
1692 xm->pgoff);
1693 }
1694
1695 if (machine__is_default_guest(machine)) {
1696 /*
1697 * preload dso of guest kernel and modules
1698 */
1699 dso__load(kernel, machine__kernel_map(machine));
1700 }
1701 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1702 return machine__process_extra_kernel_map(machine, xm);
1703 }
1704 return 0;
1705out_problem:
1706 return -1;
1707}
1708
1709int machine__process_mmap2_event(struct machine *machine,
1710 union perf_event *event,
1711 struct perf_sample *sample)
1712{
1713 struct thread *thread;
1714 struct map *map;
1715 struct dso_id dso_id = {
1716 .maj = event->mmap2.maj,
1717 .min = event->mmap2.min,
1718 .ino = event->mmap2.ino,
1719 .ino_generation = event->mmap2.ino_generation,
1720 };
1721 int ret = 0;
1722
1723 if (dump_trace)
1724 perf_event__fprintf_mmap2(event, stdout);
1725
1726 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1727 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1728 struct extra_kernel_map xm = {
1729 .start = event->mmap2.start,
1730 .end = event->mmap2.start + event->mmap2.len,
1731 .pgoff = event->mmap2.pgoff,
1732 };
1733
1734 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1735 ret = machine__process_kernel_mmap_event(machine, &xm);
1736 if (ret < 0)
1737 goto out_problem;
1738 return 0;
1739 }
1740
1741 thread = machine__findnew_thread(machine, event->mmap2.pid,
1742 event->mmap2.tid);
1743 if (thread == NULL)
1744 goto out_problem;
1745
1746 map = map__new(machine, event->mmap2.start,
1747 event->mmap2.len, event->mmap2.pgoff,
1748 &dso_id, event->mmap2.prot,
1749 event->mmap2.flags,
1750 event->mmap2.filename, thread);
1751
1752 if (map == NULL)
1753 goto out_problem_map;
1754
1755 ret = thread__insert_map(thread, map);
1756 if (ret)
1757 goto out_problem_insert;
1758
1759 thread__put(thread);
1760 map__put(map);
1761 return 0;
1762
1763out_problem_insert:
1764 map__put(map);
1765out_problem_map:
1766 thread__put(thread);
1767out_problem:
1768 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1769 return 0;
1770}
1771
1772int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1773 struct perf_sample *sample)
1774{
1775 struct thread *thread;
1776 struct map *map;
1777 u32 prot = 0;
1778 int ret = 0;
1779
1780 if (dump_trace)
1781 perf_event__fprintf_mmap(event, stdout);
1782
1783 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1784 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1785 struct extra_kernel_map xm = {
1786 .start = event->mmap.start,
1787 .end = event->mmap.start + event->mmap.len,
1788 .pgoff = event->mmap.pgoff,
1789 };
1790
1791 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1792 ret = machine__process_kernel_mmap_event(machine, &xm);
1793 if (ret < 0)
1794 goto out_problem;
1795 return 0;
1796 }
1797
1798 thread = machine__findnew_thread(machine, event->mmap.pid,
1799 event->mmap.tid);
1800 if (thread == NULL)
1801 goto out_problem;
1802
1803 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1804 prot = PROT_EXEC;
1805
1806 map = map__new(machine, event->mmap.start,
1807 event->mmap.len, event->mmap.pgoff,
1808 NULL, prot, 0, event->mmap.filename, thread);
1809
1810 if (map == NULL)
1811 goto out_problem_map;
1812
1813 ret = thread__insert_map(thread, map);
1814 if (ret)
1815 goto out_problem_insert;
1816
1817 thread__put(thread);
1818 map__put(map);
1819 return 0;
1820
1821out_problem_insert:
1822 map__put(map);
1823out_problem_map:
1824 thread__put(thread);
1825out_problem:
1826 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1827 return 0;
1828}
1829
1830static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1831{
1832 struct threads *threads = machine__threads(machine, th->tid);
1833
1834 if (threads->last_match == th)
1835 threads__set_last_match(threads, NULL);
1836
1837 if (lock)
1838 down_write(&threads->lock);
1839
1840 BUG_ON(refcount_read(&th->refcnt) == 0);
1841
1842 rb_erase_cached(&th->rb_node, &threads->entries);
1843 RB_CLEAR_NODE(&th->rb_node);
1844 --threads->nr;
1845 /*
1846 * Move it first to the dead_threads list, then drop the reference,
1847 * if this is the last reference, then the thread__delete destructor
1848 * will be called and we will remove it from the dead_threads list.
1849 */
1850 list_add_tail(&th->node, &threads->dead);
1851
1852 /*
1853 * We need to do the put here because if this is the last refcount,
1854 * then we will be touching the threads->dead head when removing the
1855 * thread.
1856 */
1857 thread__put(th);
1858
1859 if (lock)
1860 up_write(&threads->lock);
1861}
1862
1863void machine__remove_thread(struct machine *machine, struct thread *th)
1864{
1865 return __machine__remove_thread(machine, th, true);
1866}
1867
1868int machine__process_fork_event(struct machine *machine, union perf_event *event,
1869 struct perf_sample *sample)
1870{
1871 struct thread *thread = machine__find_thread(machine,
1872 event->fork.pid,
1873 event->fork.tid);
1874 struct thread *parent = machine__findnew_thread(machine,
1875 event->fork.ppid,
1876 event->fork.ptid);
1877 bool do_maps_clone = true;
1878 int err = 0;
1879
1880 if (dump_trace)
1881 perf_event__fprintf_task(event, stdout);
1882
1883 /*
1884 * There may be an existing thread that is not actually the parent,
1885 * either because we are processing events out of order, or because the
1886 * (fork) event that would have removed the thread was lost. Assume the
1887 * latter case and continue on as best we can.
1888 */
1889 if (parent->pid_ != (pid_t)event->fork.ppid) {
1890 dump_printf("removing erroneous parent thread %d/%d\n",
1891 parent->pid_, parent->tid);
1892 machine__remove_thread(machine, parent);
1893 thread__put(parent);
1894 parent = machine__findnew_thread(machine, event->fork.ppid,
1895 event->fork.ptid);
1896 }
1897
1898 /* if a thread currently exists for the thread id remove it */
1899 if (thread != NULL) {
1900 machine__remove_thread(machine, thread);
1901 thread__put(thread);
1902 }
1903
1904 thread = machine__findnew_thread(machine, event->fork.pid,
1905 event->fork.tid);
1906 /*
1907 * When synthesizing FORK events, we are trying to create thread
1908 * objects for the already running tasks on the machine.
1909 *
1910 * Normally, for a kernel FORK event, we want to clone the parent's
1911 * maps because that is what the kernel just did.
1912 *
1913 * But when synthesizing, this should not be done. If we do, we end up
1914 * with overlapping maps as we process the sythesized MMAP2 events that
1915 * get delivered shortly thereafter.
1916 *
1917 * Use the FORK event misc flags in an internal way to signal this
1918 * situation, so we can elide the map clone when appropriate.
1919 */
1920 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1921 do_maps_clone = false;
1922
1923 if (thread == NULL || parent == NULL ||
1924 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1925 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1926 err = -1;
1927 }
1928 thread__put(thread);
1929 thread__put(parent);
1930
1931 return err;
1932}
1933
1934int machine__process_exit_event(struct machine *machine, union perf_event *event,
1935 struct perf_sample *sample __maybe_unused)
1936{
1937 struct thread *thread = machine__find_thread(machine,
1938 event->fork.pid,
1939 event->fork.tid);
1940
1941 if (dump_trace)
1942 perf_event__fprintf_task(event, stdout);
1943
1944 if (thread != NULL) {
1945 thread__exited(thread);
1946 thread__put(thread);
1947 }
1948
1949 return 0;
1950}
1951
1952int machine__process_event(struct machine *machine, union perf_event *event,
1953 struct perf_sample *sample)
1954{
1955 int ret;
1956
1957 switch (event->header.type) {
1958 case PERF_RECORD_COMM:
1959 ret = machine__process_comm_event(machine, event, sample); break;
1960 case PERF_RECORD_MMAP:
1961 ret = machine__process_mmap_event(machine, event, sample); break;
1962 case PERF_RECORD_NAMESPACES:
1963 ret = machine__process_namespaces_event(machine, event, sample); break;
1964 case PERF_RECORD_CGROUP:
1965 ret = machine__process_cgroup_event(machine, event, sample); break;
1966 case PERF_RECORD_MMAP2:
1967 ret = machine__process_mmap2_event(machine, event, sample); break;
1968 case PERF_RECORD_FORK:
1969 ret = machine__process_fork_event(machine, event, sample); break;
1970 case PERF_RECORD_EXIT:
1971 ret = machine__process_exit_event(machine, event, sample); break;
1972 case PERF_RECORD_LOST:
1973 ret = machine__process_lost_event(machine, event, sample); break;
1974 case PERF_RECORD_AUX:
1975 ret = machine__process_aux_event(machine, event); break;
1976 case PERF_RECORD_ITRACE_START:
1977 ret = machine__process_itrace_start_event(machine, event); break;
1978 case PERF_RECORD_LOST_SAMPLES:
1979 ret = machine__process_lost_samples_event(machine, event, sample); break;
1980 case PERF_RECORD_SWITCH:
1981 case PERF_RECORD_SWITCH_CPU_WIDE:
1982 ret = machine__process_switch_event(machine, event); break;
1983 case PERF_RECORD_KSYMBOL:
1984 ret = machine__process_ksymbol(machine, event, sample); break;
1985 case PERF_RECORD_BPF_EVENT:
1986 ret = machine__process_bpf(machine, event, sample); break;
1987 case PERF_RECORD_TEXT_POKE:
1988 ret = machine__process_text_poke(machine, event, sample); break;
1989 default:
1990 ret = -1;
1991 break;
1992 }
1993
1994 return ret;
1995}
1996
1997static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1998{
1999 if (!regexec(regex, sym->name, 0, NULL, 0))
2000 return 1;
2001 return 0;
2002}
2003
2004static void ip__resolve_ams(struct thread *thread,
2005 struct addr_map_symbol *ams,
2006 u64 ip)
2007{
2008 struct addr_location al;
2009
2010 memset(&al, 0, sizeof(al));
2011 /*
2012 * We cannot use the header.misc hint to determine whether a
2013 * branch stack address is user, kernel, guest, hypervisor.
2014 * Branches may straddle the kernel/user/hypervisor boundaries.
2015 * Thus, we have to try consecutively until we find a match
2016 * or else, the symbol is unknown
2017 */
2018 thread__find_cpumode_addr_location(thread, ip, &al);
2019
2020 ams->addr = ip;
2021 ams->al_addr = al.addr;
2022 ams->ms.maps = al.maps;
2023 ams->ms.sym = al.sym;
2024 ams->ms.map = al.map;
2025 ams->phys_addr = 0;
2026 ams->data_page_size = 0;
2027}
2028
2029static void ip__resolve_data(struct thread *thread,
2030 u8 m, struct addr_map_symbol *ams,
2031 u64 addr, u64 phys_addr, u64 daddr_page_size)
2032{
2033 struct addr_location al;
2034
2035 memset(&al, 0, sizeof(al));
2036
2037 thread__find_symbol(thread, m, addr, &al);
2038
2039 ams->addr = addr;
2040 ams->al_addr = al.addr;
2041 ams->ms.maps = al.maps;
2042 ams->ms.sym = al.sym;
2043 ams->ms.map = al.map;
2044 ams->phys_addr = phys_addr;
2045 ams->data_page_size = daddr_page_size;
2046}
2047
2048struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2049 struct addr_location *al)
2050{
2051 struct mem_info *mi = mem_info__new();
2052
2053 if (!mi)
2054 return NULL;
2055
2056 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2057 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2058 sample->addr, sample->phys_addr,
2059 sample->data_page_size);
2060 mi->data_src.val = sample->data_src;
2061
2062 return mi;
2063}
2064
2065static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2066{
2067 struct map *map = ms->map;
2068 char *srcline = NULL;
2069
2070 if (!map || callchain_param.key == CCKEY_FUNCTION)
2071 return srcline;
2072
2073 srcline = srcline__tree_find(&map->dso->srclines, ip);
2074 if (!srcline) {
2075 bool show_sym = false;
2076 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2077
2078 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2079 ms->sym, show_sym, show_addr, ip);
2080 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2081 }
2082
2083 return srcline;
2084}
2085
2086struct iterations {
2087 int nr_loop_iter;
2088 u64 cycles;
2089};
2090
2091static int add_callchain_ip(struct thread *thread,
2092 struct callchain_cursor *cursor,
2093 struct symbol **parent,
2094 struct addr_location *root_al,
2095 u8 *cpumode,
2096 u64 ip,
2097 bool branch,
2098 struct branch_flags *flags,
2099 struct iterations *iter,
2100 u64 branch_from)
2101{
2102 struct map_symbol ms;
2103 struct addr_location al;
2104 int nr_loop_iter = 0;
2105 u64 iter_cycles = 0;
2106 const char *srcline = NULL;
2107
2108 al.filtered = 0;
2109 al.sym = NULL;
2110 if (!cpumode) {
2111 thread__find_cpumode_addr_location(thread, ip, &al);
2112 } else {
2113 if (ip >= PERF_CONTEXT_MAX) {
2114 switch (ip) {
2115 case PERF_CONTEXT_HV:
2116 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2117 break;
2118 case PERF_CONTEXT_KERNEL:
2119 *cpumode = PERF_RECORD_MISC_KERNEL;
2120 break;
2121 case PERF_CONTEXT_USER:
2122 *cpumode = PERF_RECORD_MISC_USER;
2123 break;
2124 default:
2125 pr_debug("invalid callchain context: "
2126 "%"PRId64"\n", (s64) ip);
2127 /*
2128 * It seems the callchain is corrupted.
2129 * Discard all.
2130 */
2131 callchain_cursor_reset(cursor);
2132 return 1;
2133 }
2134 return 0;
2135 }
2136 thread__find_symbol(thread, *cpumode, ip, &al);
2137 }
2138
2139 if (al.sym != NULL) {
2140 if (perf_hpp_list.parent && !*parent &&
2141 symbol__match_regex(al.sym, &parent_regex))
2142 *parent = al.sym;
2143 else if (have_ignore_callees && root_al &&
2144 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2145 /* Treat this symbol as the root,
2146 forgetting its callees. */
2147 *root_al = al;
2148 callchain_cursor_reset(cursor);
2149 }
2150 }
2151
2152 if (symbol_conf.hide_unresolved && al.sym == NULL)
2153 return 0;
2154
2155 if (iter) {
2156 nr_loop_iter = iter->nr_loop_iter;
2157 iter_cycles = iter->cycles;
2158 }
2159
2160 ms.maps = al.maps;
2161 ms.map = al.map;
2162 ms.sym = al.sym;
2163 srcline = callchain_srcline(&ms, al.addr);
2164 return callchain_cursor_append(cursor, ip, &ms,
2165 branch, flags, nr_loop_iter,
2166 iter_cycles, branch_from, srcline);
2167}
2168
2169struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2170 struct addr_location *al)
2171{
2172 unsigned int i;
2173 const struct branch_stack *bs = sample->branch_stack;
2174 struct branch_entry *entries = perf_sample__branch_entries(sample);
2175 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2176
2177 if (!bi)
2178 return NULL;
2179
2180 for (i = 0; i < bs->nr; i++) {
2181 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2182 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2183 bi[i].flags = entries[i].flags;
2184 }
2185 return bi;
2186}
2187
2188static void save_iterations(struct iterations *iter,
2189 struct branch_entry *be, int nr)
2190{
2191 int i;
2192
2193 iter->nr_loop_iter++;
2194 iter->cycles = 0;
2195
2196 for (i = 0; i < nr; i++)
2197 iter->cycles += be[i].flags.cycles;
2198}
2199
2200#define CHASHSZ 127
2201#define CHASHBITS 7
2202#define NO_ENTRY 0xff
2203
2204#define PERF_MAX_BRANCH_DEPTH 127
2205
2206/* Remove loops. */
2207static int remove_loops(struct branch_entry *l, int nr,
2208 struct iterations *iter)
2209{
2210 int i, j, off;
2211 unsigned char chash[CHASHSZ];
2212
2213 memset(chash, NO_ENTRY, sizeof(chash));
2214
2215 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2216
2217 for (i = 0; i < nr; i++) {
2218 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2219
2220 /* no collision handling for now */
2221 if (chash[h] == NO_ENTRY) {
2222 chash[h] = i;
2223 } else if (l[chash[h]].from == l[i].from) {
2224 bool is_loop = true;
2225 /* check if it is a real loop */
2226 off = 0;
2227 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2228 if (l[j].from != l[i + off].from) {
2229 is_loop = false;
2230 break;
2231 }
2232 if (is_loop) {
2233 j = nr - (i + off);
2234 if (j > 0) {
2235 save_iterations(iter + i + off,
2236 l + i, off);
2237
2238 memmove(iter + i, iter + i + off,
2239 j * sizeof(*iter));
2240
2241 memmove(l + i, l + i + off,
2242 j * sizeof(*l));
2243 }
2244
2245 nr -= off;
2246 }
2247 }
2248 }
2249 return nr;
2250}
2251
2252static int lbr_callchain_add_kernel_ip(struct thread *thread,
2253 struct callchain_cursor *cursor,
2254 struct perf_sample *sample,
2255 struct symbol **parent,
2256 struct addr_location *root_al,
2257 u64 branch_from,
2258 bool callee, int end)
2259{
2260 struct ip_callchain *chain = sample->callchain;
2261 u8 cpumode = PERF_RECORD_MISC_USER;
2262 int err, i;
2263
2264 if (callee) {
2265 for (i = 0; i < end + 1; i++) {
2266 err = add_callchain_ip(thread, cursor, parent,
2267 root_al, &cpumode, chain->ips[i],
2268 false, NULL, NULL, branch_from);
2269 if (err)
2270 return err;
2271 }
2272 return 0;
2273 }
2274
2275 for (i = end; i >= 0; i--) {
2276 err = add_callchain_ip(thread, cursor, parent,
2277 root_al, &cpumode, chain->ips[i],
2278 false, NULL, NULL, branch_from);
2279 if (err)
2280 return err;
2281 }
2282
2283 return 0;
2284}
2285
2286static void save_lbr_cursor_node(struct thread *thread,
2287 struct callchain_cursor *cursor,
2288 int idx)
2289{
2290 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2291
2292 if (!lbr_stitch)
2293 return;
2294
2295 if (cursor->pos == cursor->nr) {
2296 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2297 return;
2298 }
2299
2300 if (!cursor->curr)
2301 cursor->curr = cursor->first;
2302 else
2303 cursor->curr = cursor->curr->next;
2304 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2305 sizeof(struct callchain_cursor_node));
2306
2307 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2308 cursor->pos++;
2309}
2310
2311static int lbr_callchain_add_lbr_ip(struct thread *thread,
2312 struct callchain_cursor *cursor,
2313 struct perf_sample *sample,
2314 struct symbol **parent,
2315 struct addr_location *root_al,
2316 u64 *branch_from,
2317 bool callee)
2318{
2319 struct branch_stack *lbr_stack = sample->branch_stack;
2320 struct branch_entry *entries = perf_sample__branch_entries(sample);
2321 u8 cpumode = PERF_RECORD_MISC_USER;
2322 int lbr_nr = lbr_stack->nr;
2323 struct branch_flags *flags;
2324 int err, i;
2325 u64 ip;
2326
2327 /*
2328 * The curr and pos are not used in writing session. They are cleared
2329 * in callchain_cursor_commit() when the writing session is closed.
2330 * Using curr and pos to track the current cursor node.
2331 */
2332 if (thread->lbr_stitch) {
2333 cursor->curr = NULL;
2334 cursor->pos = cursor->nr;
2335 if (cursor->nr) {
2336 cursor->curr = cursor->first;
2337 for (i = 0; i < (int)(cursor->nr - 1); i++)
2338 cursor->curr = cursor->curr->next;
2339 }
2340 }
2341
2342 if (callee) {
2343 /* Add LBR ip from first entries.to */
2344 ip = entries[0].to;
2345 flags = &entries[0].flags;
2346 *branch_from = entries[0].from;
2347 err = add_callchain_ip(thread, cursor, parent,
2348 root_al, &cpumode, ip,
2349 true, flags, NULL,
2350 *branch_from);
2351 if (err)
2352 return err;
2353
2354 /*
2355 * The number of cursor node increases.
2356 * Move the current cursor node.
2357 * But does not need to save current cursor node for entry 0.
2358 * It's impossible to stitch the whole LBRs of previous sample.
2359 */
2360 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2361 if (!cursor->curr)
2362 cursor->curr = cursor->first;
2363 else
2364 cursor->curr = cursor->curr->next;
2365 cursor->pos++;
2366 }
2367
2368 /* Add LBR ip from entries.from one by one. */
2369 for (i = 0; i < lbr_nr; i++) {
2370 ip = entries[i].from;
2371 flags = &entries[i].flags;
2372 err = add_callchain_ip(thread, cursor, parent,
2373 root_al, &cpumode, ip,
2374 true, flags, NULL,
2375 *branch_from);
2376 if (err)
2377 return err;
2378 save_lbr_cursor_node(thread, cursor, i);
2379 }
2380 return 0;
2381 }
2382
2383 /* Add LBR ip from entries.from one by one. */
2384 for (i = lbr_nr - 1; i >= 0; i--) {
2385 ip = entries[i].from;
2386 flags = &entries[i].flags;
2387 err = add_callchain_ip(thread, cursor, parent,
2388 root_al, &cpumode, ip,
2389 true, flags, NULL,
2390 *branch_from);
2391 if (err)
2392 return err;
2393 save_lbr_cursor_node(thread, cursor, i);
2394 }
2395
2396 /* Add LBR ip from first entries.to */
2397 ip = entries[0].to;
2398 flags = &entries[0].flags;
2399 *branch_from = entries[0].from;
2400 err = add_callchain_ip(thread, cursor, parent,
2401 root_al, &cpumode, ip,
2402 true, flags, NULL,
2403 *branch_from);
2404 if (err)
2405 return err;
2406
2407 return 0;
2408}
2409
2410static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2411 struct callchain_cursor *cursor)
2412{
2413 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2414 struct callchain_cursor_node *cnode;
2415 struct stitch_list *stitch_node;
2416 int err;
2417
2418 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2419 cnode = &stitch_node->cursor;
2420
2421 err = callchain_cursor_append(cursor, cnode->ip,
2422 &cnode->ms,
2423 cnode->branch,
2424 &cnode->branch_flags,
2425 cnode->nr_loop_iter,
2426 cnode->iter_cycles,
2427 cnode->branch_from,
2428 cnode->srcline);
2429 if (err)
2430 return err;
2431 }
2432 return 0;
2433}
2434
2435static struct stitch_list *get_stitch_node(struct thread *thread)
2436{
2437 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2438 struct stitch_list *stitch_node;
2439
2440 if (!list_empty(&lbr_stitch->free_lists)) {
2441 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2442 struct stitch_list, node);
2443 list_del(&stitch_node->node);
2444
2445 return stitch_node;
2446 }
2447
2448 return malloc(sizeof(struct stitch_list));
2449}
2450
2451static bool has_stitched_lbr(struct thread *thread,
2452 struct perf_sample *cur,
2453 struct perf_sample *prev,
2454 unsigned int max_lbr,
2455 bool callee)
2456{
2457 struct branch_stack *cur_stack = cur->branch_stack;
2458 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2459 struct branch_stack *prev_stack = prev->branch_stack;
2460 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2461 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2462 int i, j, nr_identical_branches = 0;
2463 struct stitch_list *stitch_node;
2464 u64 cur_base, distance;
2465
2466 if (!cur_stack || !prev_stack)
2467 return false;
2468
2469 /* Find the physical index of the base-of-stack for current sample. */
2470 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2471
2472 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2473 (max_lbr + prev_stack->hw_idx - cur_base);
2474 /* Previous sample has shorter stack. Nothing can be stitched. */
2475 if (distance + 1 > prev_stack->nr)
2476 return false;
2477
2478 /*
2479 * Check if there are identical LBRs between two samples.
2480 * Identicall LBRs must have same from, to and flags values. Also,
2481 * they have to be saved in the same LBR registers (same physical
2482 * index).
2483 *
2484 * Starts from the base-of-stack of current sample.
2485 */
2486 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2487 if ((prev_entries[i].from != cur_entries[j].from) ||
2488 (prev_entries[i].to != cur_entries[j].to) ||
2489 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2490 break;
2491 nr_identical_branches++;
2492 }
2493
2494 if (!nr_identical_branches)
2495 return false;
2496
2497 /*
2498 * Save the LBRs between the base-of-stack of previous sample
2499 * and the base-of-stack of current sample into lbr_stitch->lists.
2500 * These LBRs will be stitched later.
2501 */
2502 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2503
2504 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2505 continue;
2506
2507 stitch_node = get_stitch_node(thread);
2508 if (!stitch_node)
2509 return false;
2510
2511 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2512 sizeof(struct callchain_cursor_node));
2513
2514 if (callee)
2515 list_add(&stitch_node->node, &lbr_stitch->lists);
2516 else
2517 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2518 }
2519
2520 return true;
2521}
2522
2523static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2524{
2525 if (thread->lbr_stitch)
2526 return true;
2527
2528 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2529 if (!thread->lbr_stitch)
2530 goto err;
2531
2532 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2533 if (!thread->lbr_stitch->prev_lbr_cursor)
2534 goto free_lbr_stitch;
2535
2536 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2537 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2538
2539 return true;
2540
2541free_lbr_stitch:
2542 zfree(&thread->lbr_stitch);
2543err:
2544 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2545 thread->lbr_stitch_enable = false;
2546 return false;
2547}
2548
2549/*
2550 * Recolve LBR callstack chain sample
2551 * Return:
2552 * 1 on success get LBR callchain information
2553 * 0 no available LBR callchain information, should try fp
2554 * negative error code on other errors.
2555 */
2556static int resolve_lbr_callchain_sample(struct thread *thread,
2557 struct callchain_cursor *cursor,
2558 struct perf_sample *sample,
2559 struct symbol **parent,
2560 struct addr_location *root_al,
2561 int max_stack,
2562 unsigned int max_lbr)
2563{
2564 bool callee = (callchain_param.order == ORDER_CALLEE);
2565 struct ip_callchain *chain = sample->callchain;
2566 int chain_nr = min(max_stack, (int)chain->nr), i;
2567 struct lbr_stitch *lbr_stitch;
2568 bool stitched_lbr = false;
2569 u64 branch_from = 0;
2570 int err;
2571
2572 for (i = 0; i < chain_nr; i++) {
2573 if (chain->ips[i] == PERF_CONTEXT_USER)
2574 break;
2575 }
2576
2577 /* LBR only affects the user callchain */
2578 if (i == chain_nr)
2579 return 0;
2580
2581 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2582 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2583 lbr_stitch = thread->lbr_stitch;
2584
2585 stitched_lbr = has_stitched_lbr(thread, sample,
2586 &lbr_stitch->prev_sample,
2587 max_lbr, callee);
2588
2589 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2590 list_replace_init(&lbr_stitch->lists,
2591 &lbr_stitch->free_lists);
2592 }
2593 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2594 }
2595
2596 if (callee) {
2597 /* Add kernel ip */
2598 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2599 parent, root_al, branch_from,
2600 true, i);
2601 if (err)
2602 goto error;
2603
2604 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2605 root_al, &branch_from, true);
2606 if (err)
2607 goto error;
2608
2609 if (stitched_lbr) {
2610 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2611 if (err)
2612 goto error;
2613 }
2614
2615 } else {
2616 if (stitched_lbr) {
2617 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2618 if (err)
2619 goto error;
2620 }
2621 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2622 root_al, &branch_from, false);
2623 if (err)
2624 goto error;
2625
2626 /* Add kernel ip */
2627 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2628 parent, root_al, branch_from,
2629 false, i);
2630 if (err)
2631 goto error;
2632 }
2633 return 1;
2634
2635error:
2636 return (err < 0) ? err : 0;
2637}
2638
2639static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2640 struct callchain_cursor *cursor,
2641 struct symbol **parent,
2642 struct addr_location *root_al,
2643 u8 *cpumode, int ent)
2644{
2645 int err = 0;
2646
2647 while (--ent >= 0) {
2648 u64 ip = chain->ips[ent];
2649
2650 if (ip >= PERF_CONTEXT_MAX) {
2651 err = add_callchain_ip(thread, cursor, parent,
2652 root_al, cpumode, ip,
2653 false, NULL, NULL, 0);
2654 break;
2655 }
2656 }
2657 return err;
2658}
2659
2660static int thread__resolve_callchain_sample(struct thread *thread,
2661 struct callchain_cursor *cursor,
2662 struct evsel *evsel,
2663 struct perf_sample *sample,
2664 struct symbol **parent,
2665 struct addr_location *root_al,
2666 int max_stack)
2667{
2668 struct branch_stack *branch = sample->branch_stack;
2669 struct branch_entry *entries = perf_sample__branch_entries(sample);
2670 struct ip_callchain *chain = sample->callchain;
2671 int chain_nr = 0;
2672 u8 cpumode = PERF_RECORD_MISC_USER;
2673 int i, j, err, nr_entries;
2674 int skip_idx = -1;
2675 int first_call = 0;
2676
2677 if (chain)
2678 chain_nr = chain->nr;
2679
2680 if (evsel__has_branch_callstack(evsel)) {
2681 struct perf_env *env = evsel__env(evsel);
2682
2683 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2684 root_al, max_stack,
2685 !env ? 0 : env->max_branches);
2686 if (err)
2687 return (err < 0) ? err : 0;
2688 }
2689
2690 /*
2691 * Based on DWARF debug information, some architectures skip
2692 * a callchain entry saved by the kernel.
2693 */
2694 skip_idx = arch_skip_callchain_idx(thread, chain);
2695
2696 /*
2697 * Add branches to call stack for easier browsing. This gives
2698 * more context for a sample than just the callers.
2699 *
2700 * This uses individual histograms of paths compared to the
2701 * aggregated histograms the normal LBR mode uses.
2702 *
2703 * Limitations for now:
2704 * - No extra filters
2705 * - No annotations (should annotate somehow)
2706 */
2707
2708 if (branch && callchain_param.branch_callstack) {
2709 int nr = min(max_stack, (int)branch->nr);
2710 struct branch_entry be[nr];
2711 struct iterations iter[nr];
2712
2713 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2714 pr_warning("corrupted branch chain. skipping...\n");
2715 goto check_calls;
2716 }
2717
2718 for (i = 0; i < nr; i++) {
2719 if (callchain_param.order == ORDER_CALLEE) {
2720 be[i] = entries[i];
2721
2722 if (chain == NULL)
2723 continue;
2724
2725 /*
2726 * Check for overlap into the callchain.
2727 * The return address is one off compared to
2728 * the branch entry. To adjust for this
2729 * assume the calling instruction is not longer
2730 * than 8 bytes.
2731 */
2732 if (i == skip_idx ||
2733 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2734 first_call++;
2735 else if (be[i].from < chain->ips[first_call] &&
2736 be[i].from >= chain->ips[first_call] - 8)
2737 first_call++;
2738 } else
2739 be[i] = entries[branch->nr - i - 1];
2740 }
2741
2742 memset(iter, 0, sizeof(struct iterations) * nr);
2743 nr = remove_loops(be, nr, iter);
2744
2745 for (i = 0; i < nr; i++) {
2746 err = add_callchain_ip(thread, cursor, parent,
2747 root_al,
2748 NULL, be[i].to,
2749 true, &be[i].flags,
2750 NULL, be[i].from);
2751
2752 if (!err)
2753 err = add_callchain_ip(thread, cursor, parent, root_al,
2754 NULL, be[i].from,
2755 true, &be[i].flags,
2756 &iter[i], 0);
2757 if (err == -EINVAL)
2758 break;
2759 if (err)
2760 return err;
2761 }
2762
2763 if (chain_nr == 0)
2764 return 0;
2765
2766 chain_nr -= nr;
2767 }
2768
2769check_calls:
2770 if (chain && callchain_param.order != ORDER_CALLEE) {
2771 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2772 &cpumode, chain->nr - first_call);
2773 if (err)
2774 return (err < 0) ? err : 0;
2775 }
2776 for (i = first_call, nr_entries = 0;
2777 i < chain_nr && nr_entries < max_stack; i++) {
2778 u64 ip;
2779
2780 if (callchain_param.order == ORDER_CALLEE)
2781 j = i;
2782 else
2783 j = chain->nr - i - 1;
2784
2785#ifdef HAVE_SKIP_CALLCHAIN_IDX
2786 if (j == skip_idx)
2787 continue;
2788#endif
2789 ip = chain->ips[j];
2790 if (ip < PERF_CONTEXT_MAX)
2791 ++nr_entries;
2792 else if (callchain_param.order != ORDER_CALLEE) {
2793 err = find_prev_cpumode(chain, thread, cursor, parent,
2794 root_al, &cpumode, j);
2795 if (err)
2796 return (err < 0) ? err : 0;
2797 continue;
2798 }
2799
2800 err = add_callchain_ip(thread, cursor, parent,
2801 root_al, &cpumode, ip,
2802 false, NULL, NULL, 0);
2803
2804 if (err)
2805 return (err < 0) ? err : 0;
2806 }
2807
2808 return 0;
2809}
2810
2811static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2812{
2813 struct symbol *sym = ms->sym;
2814 struct map *map = ms->map;
2815 struct inline_node *inline_node;
2816 struct inline_list *ilist;
2817 u64 addr;
2818 int ret = 1;
2819
2820 if (!symbol_conf.inline_name || !map || !sym)
2821 return ret;
2822
2823 addr = map__map_ip(map, ip);
2824 addr = map__rip_2objdump(map, addr);
2825
2826 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2827 if (!inline_node) {
2828 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2829 if (!inline_node)
2830 return ret;
2831 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2832 }
2833
2834 list_for_each_entry(ilist, &inline_node->val, list) {
2835 struct map_symbol ilist_ms = {
2836 .maps = ms->maps,
2837 .map = map,
2838 .sym = ilist->symbol,
2839 };
2840 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2841 NULL, 0, 0, 0, ilist->srcline);
2842
2843 if (ret != 0)
2844 return ret;
2845 }
2846
2847 return ret;
2848}
2849
2850static int unwind_entry(struct unwind_entry *entry, void *arg)
2851{
2852 struct callchain_cursor *cursor = arg;
2853 const char *srcline = NULL;
2854 u64 addr = entry->ip;
2855
2856 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2857 return 0;
2858
2859 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2860 return 0;
2861
2862 /*
2863 * Convert entry->ip from a virtual address to an offset in
2864 * its corresponding binary.
2865 */
2866 if (entry->ms.map)
2867 addr = map__map_ip(entry->ms.map, entry->ip);
2868
2869 srcline = callchain_srcline(&entry->ms, addr);
2870 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2871 false, NULL, 0, 0, 0, srcline);
2872}
2873
2874static int thread__resolve_callchain_unwind(struct thread *thread,
2875 struct callchain_cursor *cursor,
2876 struct evsel *evsel,
2877 struct perf_sample *sample,
2878 int max_stack)
2879{
2880 /* Can we do dwarf post unwind? */
2881 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2882 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2883 return 0;
2884
2885 /* Bail out if nothing was captured. */
2886 if ((!sample->user_regs.regs) ||
2887 (!sample->user_stack.size))
2888 return 0;
2889
2890 return unwind__get_entries(unwind_entry, cursor,
2891 thread, sample, max_stack);
2892}
2893
2894int thread__resolve_callchain(struct thread *thread,
2895 struct callchain_cursor *cursor,
2896 struct evsel *evsel,
2897 struct perf_sample *sample,
2898 struct symbol **parent,
2899 struct addr_location *root_al,
2900 int max_stack)
2901{
2902 int ret = 0;
2903
2904 callchain_cursor_reset(cursor);
2905
2906 if (callchain_param.order == ORDER_CALLEE) {
2907 ret = thread__resolve_callchain_sample(thread, cursor,
2908 evsel, sample,
2909 parent, root_al,
2910 max_stack);
2911 if (ret)
2912 return ret;
2913 ret = thread__resolve_callchain_unwind(thread, cursor,
2914 evsel, sample,
2915 max_stack);
2916 } else {
2917 ret = thread__resolve_callchain_unwind(thread, cursor,
2918 evsel, sample,
2919 max_stack);
2920 if (ret)
2921 return ret;
2922 ret = thread__resolve_callchain_sample(thread, cursor,
2923 evsel, sample,
2924 parent, root_al,
2925 max_stack);
2926 }
2927
2928 return ret;
2929}
2930
2931int machine__for_each_thread(struct machine *machine,
2932 int (*fn)(struct thread *thread, void *p),
2933 void *priv)
2934{
2935 struct threads *threads;
2936 struct rb_node *nd;
2937 struct thread *thread;
2938 int rc = 0;
2939 int i;
2940
2941 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2942 threads = &machine->threads[i];
2943 for (nd = rb_first_cached(&threads->entries); nd;
2944 nd = rb_next(nd)) {
2945 thread = rb_entry(nd, struct thread, rb_node);
2946 rc = fn(thread, priv);
2947 if (rc != 0)
2948 return rc;
2949 }
2950
2951 list_for_each_entry(thread, &threads->dead, node) {
2952 rc = fn(thread, priv);
2953 if (rc != 0)
2954 return rc;
2955 }
2956 }
2957 return rc;
2958}
2959
2960int machines__for_each_thread(struct machines *machines,
2961 int (*fn)(struct thread *thread, void *p),
2962 void *priv)
2963{
2964 struct rb_node *nd;
2965 int rc = 0;
2966
2967 rc = machine__for_each_thread(&machines->host, fn, priv);
2968 if (rc != 0)
2969 return rc;
2970
2971 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2972 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2973
2974 rc = machine__for_each_thread(machine, fn, priv);
2975 if (rc != 0)
2976 return rc;
2977 }
2978 return rc;
2979}
2980
2981pid_t machine__get_current_tid(struct machine *machine, int cpu)
2982{
2983 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2984
2985 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2986 return -1;
2987
2988 return machine->current_tid[cpu];
2989}
2990
2991int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2992 pid_t tid)
2993{
2994 struct thread *thread;
2995 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2996
2997 if (cpu < 0)
2998 return -EINVAL;
2999
3000 if (!machine->current_tid) {
3001 int i;
3002
3003 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3004 if (!machine->current_tid)
3005 return -ENOMEM;
3006 for (i = 0; i < nr_cpus; i++)
3007 machine->current_tid[i] = -1;
3008 }
3009
3010 if (cpu >= nr_cpus) {
3011 pr_err("Requested CPU %d too large. ", cpu);
3012 pr_err("Consider raising MAX_NR_CPUS\n");
3013 return -EINVAL;
3014 }
3015
3016 machine->current_tid[cpu] = tid;
3017
3018 thread = machine__findnew_thread(machine, pid, tid);
3019 if (!thread)
3020 return -ENOMEM;
3021
3022 thread->cpu = cpu;
3023 thread__put(thread);
3024
3025 return 0;
3026}
3027
3028/*
3029 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3030 * normalized arch is needed.
3031 */
3032bool machine__is(struct machine *machine, const char *arch)
3033{
3034 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3035}
3036
3037int machine__nr_cpus_avail(struct machine *machine)
3038{
3039 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3040}
3041
3042int machine__get_kernel_start(struct machine *machine)
3043{
3044 struct map *map = machine__kernel_map(machine);
3045 int err = 0;
3046
3047 /*
3048 * The only addresses above 2^63 are kernel addresses of a 64-bit
3049 * kernel. Note that addresses are unsigned so that on a 32-bit system
3050 * all addresses including kernel addresses are less than 2^32. In
3051 * that case (32-bit system), if the kernel mapping is unknown, all
3052 * addresses will be assumed to be in user space - see
3053 * machine__kernel_ip().
3054 */
3055 machine->kernel_start = 1ULL << 63;
3056 if (map) {
3057 err = map__load(map);
3058 /*
3059 * On x86_64, PTI entry trampolines are less than the
3060 * start of kernel text, but still above 2^63. So leave
3061 * kernel_start = 1ULL << 63 for x86_64.
3062 */
3063 if (!err && !machine__is(machine, "x86_64"))
3064 machine->kernel_start = map->start;
3065 }
3066 return err;
3067}
3068
3069u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3070{
3071 u8 addr_cpumode = cpumode;
3072 bool kernel_ip;
3073
3074 if (!machine->single_address_space)
3075 goto out;
3076
3077 kernel_ip = machine__kernel_ip(machine, addr);
3078 switch (cpumode) {
3079 case PERF_RECORD_MISC_KERNEL:
3080 case PERF_RECORD_MISC_USER:
3081 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3082 PERF_RECORD_MISC_USER;
3083 break;
3084 case PERF_RECORD_MISC_GUEST_KERNEL:
3085 case PERF_RECORD_MISC_GUEST_USER:
3086 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3087 PERF_RECORD_MISC_GUEST_USER;
3088 break;
3089 default:
3090 break;
3091 }
3092out:
3093 return addr_cpumode;
3094}
3095
3096struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3097{
3098 return dsos__findnew_id(&machine->dsos, filename, id);
3099}
3100
3101struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3102{
3103 return machine__findnew_dso_id(machine, filename, NULL);
3104}
3105
3106char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3107{
3108 struct machine *machine = vmachine;
3109 struct map *map;
3110 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3111
3112 if (sym == NULL)
3113 return NULL;
3114
3115 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3116 *addrp = map->unmap_ip(map, sym->start);
3117 return sym->name;
3118}
3119
3120int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3121{
3122 struct dso *pos;
3123 int err = 0;
3124
3125 list_for_each_entry(pos, &machine->dsos.head, node) {
3126 if (fn(pos, machine, priv))
3127 err = -1;
3128 }
3129 return err;
3130}