Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/hrtimer.h>
31#include <linux/dma-mapping.h>
32#include <linux/netdev_features.h>
33#include <linux/sched.h>
34#include <linux/sched/clock.h>
35#include <net/flow_dissector.h>
36#include <linux/splice.h>
37#include <linux/in6.h>
38#include <linux/if_packet.h>
39#include <net/flow.h>
40#if IS_ENABLED(CONFIG_NF_CONNTRACK)
41#include <linux/netfilter/nf_conntrack_common.h>
42#endif
43
44/* The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * A. IP checksum related features
48 *
49 * Drivers advertise checksum offload capabilities in the features of a device.
50 * From the stack's point of view these are capabilities offered by the driver.
51 * A driver typically only advertises features that it is capable of offloading
52 * to its device.
53 *
54 * The checksum related features are:
55 *
56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
57 * IP (one's complement) checksum for any combination
58 * of protocols or protocol layering. The checksum is
59 * computed and set in a packet per the CHECKSUM_PARTIAL
60 * interface (see below).
61 *
62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63 * TCP or UDP packets over IPv4. These are specifically
64 * unencapsulated packets of the form IPv4|TCP or
65 * IPv4|UDP where the Protocol field in the IPv4 header
66 * is TCP or UDP. The IPv4 header may contain IP options.
67 * This feature cannot be set in features for a device
68 * with NETIF_F_HW_CSUM also set. This feature is being
69 * DEPRECATED (see below).
70 *
71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72 * TCP or UDP packets over IPv6. These are specifically
73 * unencapsulated packets of the form IPv6|TCP or
74 * IPv6|UDP where the Next Header field in the IPv6
75 * header is either TCP or UDP. IPv6 extension headers
76 * are not supported with this feature. This feature
77 * cannot be set in features for a device with
78 * NETIF_F_HW_CSUM also set. This feature is being
79 * DEPRECATED (see below).
80 *
81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82 * This flag is only used to disable the RX checksum
83 * feature for a device. The stack will accept receive
84 * checksum indication in packets received on a device
85 * regardless of whether NETIF_F_RXCSUM is set.
86 *
87 * B. Checksumming of received packets by device. Indication of checksum
88 * verification is set in skb->ip_summed. Possible values are:
89 *
90 * CHECKSUM_NONE:
91 *
92 * Device did not checksum this packet e.g. due to lack of capabilities.
93 * The packet contains full (though not verified) checksum in packet but
94 * not in skb->csum. Thus, skb->csum is undefined in this case.
95 *
96 * CHECKSUM_UNNECESSARY:
97 *
98 * The hardware you're dealing with doesn't calculate the full checksum
99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101 * if their checksums are okay. skb->csum is still undefined in this case
102 * though. A driver or device must never modify the checksum field in the
103 * packet even if checksum is verified.
104 *
105 * CHECKSUM_UNNECESSARY is applicable to following protocols:
106 * TCP: IPv6 and IPv4.
107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108 * zero UDP checksum for either IPv4 or IPv6, the networking stack
109 * may perform further validation in this case.
110 * GRE: only if the checksum is present in the header.
111 * SCTP: indicates the CRC in SCTP header has been validated.
112 * FCOE: indicates the CRC in FC frame has been validated.
113 *
114 * skb->csum_level indicates the number of consecutive checksums found in
115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117 * and a device is able to verify the checksums for UDP (possibly zero),
118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to
119 * two. If the device were only able to verify the UDP checksum and not
120 * GRE, either because it doesn't support GRE checksum or because GRE
121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122 * not considered in this case).
123 *
124 * CHECKSUM_COMPLETE:
125 *
126 * This is the most generic way. The device supplied checksum of the _whole_
127 * packet as seen by netif_rx() and fills in skb->csum. This means the
128 * hardware doesn't need to parse L3/L4 headers to implement this.
129 *
130 * Notes:
131 * - Even if device supports only some protocols, but is able to produce
132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 *
135 * CHECKSUM_PARTIAL:
136 *
137 * A checksum is set up to be offloaded to a device as described in the
138 * output description for CHECKSUM_PARTIAL. This may occur on a packet
139 * received directly from another Linux OS, e.g., a virtualized Linux kernel
140 * on the same host, or it may be set in the input path in GRO or remote
141 * checksum offload. For the purposes of checksum verification, the checksum
142 * referred to by skb->csum_start + skb->csum_offset and any preceding
143 * checksums in the packet are considered verified. Any checksums in the
144 * packet that are after the checksum being offloaded are not considered to
145 * be verified.
146 *
147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148 * in the skb->ip_summed for a packet. Values are:
149 *
150 * CHECKSUM_PARTIAL:
151 *
152 * The driver is required to checksum the packet as seen by hard_start_xmit()
153 * from skb->csum_start up to the end, and to record/write the checksum at
154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
155 * csum_start and csum_offset values are valid values given the length and
156 * offset of the packet, but it should not attempt to validate that the
157 * checksum refers to a legitimate transport layer checksum -- it is the
158 * purview of the stack to validate that csum_start and csum_offset are set
159 * correctly.
160 *
161 * When the stack requests checksum offload for a packet, the driver MUST
162 * ensure that the checksum is set correctly. A driver can either offload the
163 * checksum calculation to the device, or call skb_checksum_help (in the case
164 * that the device does not support offload for a particular checksum).
165 *
166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 * checksum offload capability.
169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170 * on network device checksumming capabilities: if a packet does not match
171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
172 * csum_not_inet, see item D.) is called to resolve the checksum.
173 *
174 * CHECKSUM_NONE:
175 *
176 * The skb was already checksummed by the protocol, or a checksum is not
177 * required.
178 *
179 * CHECKSUM_UNNECESSARY:
180 *
181 * This has the same meaning as CHECKSUM_NONE for checksum offload on
182 * output.
183 *
184 * CHECKSUM_COMPLETE:
185 * Not used in checksum output. If a driver observes a packet with this value
186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
187 *
188 * D. Non-IP checksum (CRC) offloads
189 *
190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191 * offloading the SCTP CRC in a packet. To perform this offload the stack
192 * will set csum_start and csum_offset accordingly, set ip_summed to
193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195 * A driver that supports both IP checksum offload and SCTP CRC32c offload
196 * must verify which offload is configured for a packet by testing the
197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 *
200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201 * offloading the FCOE CRC in a packet. To perform this offload the stack
202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203 * accordingly. Note that there is no indication in the skbuff that the
204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
205 * both IP checksum offload and FCOE CRC offload must verify which offload
206 * is configured for a packet, presumably by inspecting packet headers.
207 *
208 * E. Checksumming on output with GSO.
209 *
210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213 * part of the GSO operation is implied. If a checksum is being offloaded
214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
215 * csum_offset are set to refer to the outermost checksum being offloaded
216 * (two offloaded checksums are possible with UDP encapsulation).
217 */
218
219/* Don't change this without changing skb_csum_unnecessary! */
220#define CHECKSUM_NONE 0
221#define CHECKSUM_UNNECESSARY 1
222#define CHECKSUM_COMPLETE 2
223#define CHECKSUM_PARTIAL 3
224
225/* Maximum value in skb->csum_level */
226#define SKB_MAX_CSUM_LEVEL 3
227
228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
229#define SKB_WITH_OVERHEAD(X) \
230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231#define SKB_MAX_ORDER(X, ORDER) \
232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
235
236/* return minimum truesize of one skb containing X bytes of data */
237#define SKB_TRUESIZE(X) ((X) + \
238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240
241struct ahash_request;
242struct net_device;
243struct scatterlist;
244struct pipe_inode_info;
245struct iov_iter;
246struct napi_struct;
247struct bpf_prog;
248union bpf_attr;
249struct skb_ext;
250
251#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
252struct nf_bridge_info {
253 enum {
254 BRNF_PROTO_UNCHANGED,
255 BRNF_PROTO_8021Q,
256 BRNF_PROTO_PPPOE
257 } orig_proto:8;
258 u8 pkt_otherhost:1;
259 u8 in_prerouting:1;
260 u8 bridged_dnat:1;
261 __u16 frag_max_size;
262 struct net_device *physindev;
263
264 /* always valid & non-NULL from FORWARD on, for physdev match */
265 struct net_device *physoutdev;
266 union {
267 /* prerouting: detect dnat in orig/reply direction */
268 __be32 ipv4_daddr;
269 struct in6_addr ipv6_daddr;
270
271 /* after prerouting + nat detected: store original source
272 * mac since neigh resolution overwrites it, only used while
273 * skb is out in neigh layer.
274 */
275 char neigh_header[8];
276 };
277};
278#endif
279
280#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
281/* Chain in tc_skb_ext will be used to share the tc chain with
282 * ovs recirc_id. It will be set to the current chain by tc
283 * and read by ovs to recirc_id.
284 */
285struct tc_skb_ext {
286 __u32 chain;
287 __u16 mru;
288};
289#endif
290
291struct sk_buff_head {
292 /* These two members must be first. */
293 struct sk_buff *next;
294 struct sk_buff *prev;
295
296 __u32 qlen;
297 spinlock_t lock;
298};
299
300struct sk_buff;
301
302/* To allow 64K frame to be packed as single skb without frag_list we
303 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
304 * buffers which do not start on a page boundary.
305 *
306 * Since GRO uses frags we allocate at least 16 regardless of page
307 * size.
308 */
309#if (65536/PAGE_SIZE + 1) < 16
310#define MAX_SKB_FRAGS 16UL
311#else
312#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
313#endif
314extern int sysctl_max_skb_frags;
315
316/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
317 * segment using its current segmentation instead.
318 */
319#define GSO_BY_FRAGS 0xFFFF
320
321typedef struct bio_vec skb_frag_t;
322
323/**
324 * skb_frag_size() - Returns the size of a skb fragment
325 * @frag: skb fragment
326 */
327static inline unsigned int skb_frag_size(const skb_frag_t *frag)
328{
329 return frag->bv_len;
330}
331
332/**
333 * skb_frag_size_set() - Sets the size of a skb fragment
334 * @frag: skb fragment
335 * @size: size of fragment
336 */
337static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
338{
339 frag->bv_len = size;
340}
341
342/**
343 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
344 * @frag: skb fragment
345 * @delta: value to add
346 */
347static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
348{
349 frag->bv_len += delta;
350}
351
352/**
353 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
354 * @frag: skb fragment
355 * @delta: value to subtract
356 */
357static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
358{
359 frag->bv_len -= delta;
360}
361
362/**
363 * skb_frag_must_loop - Test if %p is a high memory page
364 * @p: fragment's page
365 */
366static inline bool skb_frag_must_loop(struct page *p)
367{
368#if defined(CONFIG_HIGHMEM)
369 if (PageHighMem(p))
370 return true;
371#endif
372 return false;
373}
374
375/**
376 * skb_frag_foreach_page - loop over pages in a fragment
377 *
378 * @f: skb frag to operate on
379 * @f_off: offset from start of f->bv_page
380 * @f_len: length from f_off to loop over
381 * @p: (temp var) current page
382 * @p_off: (temp var) offset from start of current page,
383 * non-zero only on first page.
384 * @p_len: (temp var) length in current page,
385 * < PAGE_SIZE only on first and last page.
386 * @copied: (temp var) length so far, excluding current p_len.
387 *
388 * A fragment can hold a compound page, in which case per-page
389 * operations, notably kmap_atomic, must be called for each
390 * regular page.
391 */
392#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
393 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
394 p_off = (f_off) & (PAGE_SIZE - 1), \
395 p_len = skb_frag_must_loop(p) ? \
396 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
397 copied = 0; \
398 copied < f_len; \
399 copied += p_len, p++, p_off = 0, \
400 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
401
402#define HAVE_HW_TIME_STAMP
403
404/**
405 * struct skb_shared_hwtstamps - hardware time stamps
406 * @hwtstamp: hardware time stamp transformed into duration
407 * since arbitrary point in time
408 *
409 * Software time stamps generated by ktime_get_real() are stored in
410 * skb->tstamp.
411 *
412 * hwtstamps can only be compared against other hwtstamps from
413 * the same device.
414 *
415 * This structure is attached to packets as part of the
416 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
417 */
418struct skb_shared_hwtstamps {
419 ktime_t hwtstamp;
420};
421
422/* Definitions for tx_flags in struct skb_shared_info */
423enum {
424 /* generate hardware time stamp */
425 SKBTX_HW_TSTAMP = 1 << 0,
426
427 /* generate software time stamp when queueing packet to NIC */
428 SKBTX_SW_TSTAMP = 1 << 1,
429
430 /* device driver is going to provide hardware time stamp */
431 SKBTX_IN_PROGRESS = 1 << 2,
432
433 /* device driver supports TX zero-copy buffers */
434 SKBTX_DEV_ZEROCOPY = 1 << 3,
435
436 /* generate wifi status information (where possible) */
437 SKBTX_WIFI_STATUS = 1 << 4,
438
439 /* This indicates at least one fragment might be overwritten
440 * (as in vmsplice(), sendfile() ...)
441 * If we need to compute a TX checksum, we'll need to copy
442 * all frags to avoid possible bad checksum
443 */
444 SKBTX_SHARED_FRAG = 1 << 5,
445
446 /* generate software time stamp when entering packet scheduling */
447 SKBTX_SCHED_TSTAMP = 1 << 6,
448};
449
450#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
451#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
452 SKBTX_SCHED_TSTAMP)
453#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
454
455/*
456 * The callback notifies userspace to release buffers when skb DMA is done in
457 * lower device, the skb last reference should be 0 when calling this.
458 * The zerocopy_success argument is true if zero copy transmit occurred,
459 * false on data copy or out of memory error caused by data copy attempt.
460 * The ctx field is used to track device context.
461 * The desc field is used to track userspace buffer index.
462 */
463struct ubuf_info {
464 void (*callback)(struct ubuf_info *, bool zerocopy_success);
465 union {
466 struct {
467 unsigned long desc;
468 void *ctx;
469 };
470 struct {
471 u32 id;
472 u16 len;
473 u16 zerocopy:1;
474 u32 bytelen;
475 };
476 };
477 refcount_t refcnt;
478
479 struct mmpin {
480 struct user_struct *user;
481 unsigned int num_pg;
482 } mmp;
483};
484
485#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
486
487int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
488void mm_unaccount_pinned_pages(struct mmpin *mmp);
489
490struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
491struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
492 struct ubuf_info *uarg);
493
494static inline void sock_zerocopy_get(struct ubuf_info *uarg)
495{
496 refcount_inc(&uarg->refcnt);
497}
498
499void sock_zerocopy_put(struct ubuf_info *uarg);
500void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
501
502void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
503
504int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
505int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
506 struct msghdr *msg, int len,
507 struct ubuf_info *uarg);
508
509/* This data is invariant across clones and lives at
510 * the end of the header data, ie. at skb->end.
511 */
512struct skb_shared_info {
513 __u8 __unused;
514 __u8 meta_len;
515 __u8 nr_frags;
516 __u8 tx_flags;
517 unsigned short gso_size;
518 /* Warning: this field is not always filled in (UFO)! */
519 unsigned short gso_segs;
520 struct sk_buff *frag_list;
521 struct skb_shared_hwtstamps hwtstamps;
522 unsigned int gso_type;
523 u32 tskey;
524
525 /*
526 * Warning : all fields before dataref are cleared in __alloc_skb()
527 */
528 atomic_t dataref;
529
530 /* Intermediate layers must ensure that destructor_arg
531 * remains valid until skb destructor */
532 void * destructor_arg;
533
534 /* must be last field, see pskb_expand_head() */
535 skb_frag_t frags[MAX_SKB_FRAGS];
536};
537
538/* We divide dataref into two halves. The higher 16 bits hold references
539 * to the payload part of skb->data. The lower 16 bits hold references to
540 * the entire skb->data. A clone of a headerless skb holds the length of
541 * the header in skb->hdr_len.
542 *
543 * All users must obey the rule that the skb->data reference count must be
544 * greater than or equal to the payload reference count.
545 *
546 * Holding a reference to the payload part means that the user does not
547 * care about modifications to the header part of skb->data.
548 */
549#define SKB_DATAREF_SHIFT 16
550#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
551
552
553enum {
554 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
555 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
556 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
557};
558
559enum {
560 SKB_GSO_TCPV4 = 1 << 0,
561
562 /* This indicates the skb is from an untrusted source. */
563 SKB_GSO_DODGY = 1 << 1,
564
565 /* This indicates the tcp segment has CWR set. */
566 SKB_GSO_TCP_ECN = 1 << 2,
567
568 SKB_GSO_TCP_FIXEDID = 1 << 3,
569
570 SKB_GSO_TCPV6 = 1 << 4,
571
572 SKB_GSO_FCOE = 1 << 5,
573
574 SKB_GSO_GRE = 1 << 6,
575
576 SKB_GSO_GRE_CSUM = 1 << 7,
577
578 SKB_GSO_IPXIP4 = 1 << 8,
579
580 SKB_GSO_IPXIP6 = 1 << 9,
581
582 SKB_GSO_UDP_TUNNEL = 1 << 10,
583
584 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
585
586 SKB_GSO_PARTIAL = 1 << 12,
587
588 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
589
590 SKB_GSO_SCTP = 1 << 14,
591
592 SKB_GSO_ESP = 1 << 15,
593
594 SKB_GSO_UDP = 1 << 16,
595
596 SKB_GSO_UDP_L4 = 1 << 17,
597
598 SKB_GSO_FRAGLIST = 1 << 18,
599};
600
601#if BITS_PER_LONG > 32
602#define NET_SKBUFF_DATA_USES_OFFSET 1
603#endif
604
605#ifdef NET_SKBUFF_DATA_USES_OFFSET
606typedef unsigned int sk_buff_data_t;
607#else
608typedef unsigned char *sk_buff_data_t;
609#endif
610
611/**
612 * struct sk_buff - socket buffer
613 * @next: Next buffer in list
614 * @prev: Previous buffer in list
615 * @tstamp: Time we arrived/left
616 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
617 * for retransmit timer
618 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
619 * @list: queue head
620 * @sk: Socket we are owned by
621 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
622 * fragmentation management
623 * @dev: Device we arrived on/are leaving by
624 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
625 * @cb: Control buffer. Free for use by every layer. Put private vars here
626 * @_skb_refdst: destination entry (with norefcount bit)
627 * @sp: the security path, used for xfrm
628 * @len: Length of actual data
629 * @data_len: Data length
630 * @mac_len: Length of link layer header
631 * @hdr_len: writable header length of cloned skb
632 * @csum: Checksum (must include start/offset pair)
633 * @csum_start: Offset from skb->head where checksumming should start
634 * @csum_offset: Offset from csum_start where checksum should be stored
635 * @priority: Packet queueing priority
636 * @ignore_df: allow local fragmentation
637 * @cloned: Head may be cloned (check refcnt to be sure)
638 * @ip_summed: Driver fed us an IP checksum
639 * @nohdr: Payload reference only, must not modify header
640 * @pkt_type: Packet class
641 * @fclone: skbuff clone status
642 * @ipvs_property: skbuff is owned by ipvs
643 * @inner_protocol_type: whether the inner protocol is
644 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
645 * @remcsum_offload: remote checksum offload is enabled
646 * @offload_fwd_mark: Packet was L2-forwarded in hardware
647 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
648 * @tc_skip_classify: do not classify packet. set by IFB device
649 * @tc_at_ingress: used within tc_classify to distinguish in/egress
650 * @redirected: packet was redirected by packet classifier
651 * @from_ingress: packet was redirected from the ingress path
652 * @peeked: this packet has been seen already, so stats have been
653 * done for it, don't do them again
654 * @nf_trace: netfilter packet trace flag
655 * @protocol: Packet protocol from driver
656 * @destructor: Destruct function
657 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
658 * @_nfct: Associated connection, if any (with nfctinfo bits)
659 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
660 * @skb_iif: ifindex of device we arrived on
661 * @tc_index: Traffic control index
662 * @hash: the packet hash
663 * @queue_mapping: Queue mapping for multiqueue devices
664 * @head_frag: skb was allocated from page fragments,
665 * not allocated by kmalloc() or vmalloc().
666 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
667 * @active_extensions: active extensions (skb_ext_id types)
668 * @ndisc_nodetype: router type (from link layer)
669 * @ooo_okay: allow the mapping of a socket to a queue to be changed
670 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
671 * ports.
672 * @sw_hash: indicates hash was computed in software stack
673 * @wifi_acked_valid: wifi_acked was set
674 * @wifi_acked: whether frame was acked on wifi or not
675 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
676 * @encapsulation: indicates the inner headers in the skbuff are valid
677 * @encap_hdr_csum: software checksum is needed
678 * @csum_valid: checksum is already valid
679 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
680 * @csum_complete_sw: checksum was completed by software
681 * @csum_level: indicates the number of consecutive checksums found in
682 * the packet minus one that have been verified as
683 * CHECKSUM_UNNECESSARY (max 3)
684 * @dst_pending_confirm: need to confirm neighbour
685 * @decrypted: Decrypted SKB
686 * @napi_id: id of the NAPI struct this skb came from
687 * @sender_cpu: (aka @napi_id) source CPU in XPS
688 * @secmark: security marking
689 * @mark: Generic packet mark
690 * @reserved_tailroom: (aka @mark) number of bytes of free space available
691 * at the tail of an sk_buff
692 * @vlan_present: VLAN tag is present
693 * @vlan_proto: vlan encapsulation protocol
694 * @vlan_tci: vlan tag control information
695 * @inner_protocol: Protocol (encapsulation)
696 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
697 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
698 * @inner_transport_header: Inner transport layer header (encapsulation)
699 * @inner_network_header: Network layer header (encapsulation)
700 * @inner_mac_header: Link layer header (encapsulation)
701 * @transport_header: Transport layer header
702 * @network_header: Network layer header
703 * @mac_header: Link layer header
704 * @kcov_handle: KCOV remote handle for remote coverage collection
705 * @tail: Tail pointer
706 * @end: End pointer
707 * @head: Head of buffer
708 * @data: Data head pointer
709 * @truesize: Buffer size
710 * @users: User count - see {datagram,tcp}.c
711 * @extensions: allocated extensions, valid if active_extensions is nonzero
712 */
713
714struct sk_buff {
715 union {
716 struct {
717 /* These two members must be first. */
718 struct sk_buff *next;
719 struct sk_buff *prev;
720
721 union {
722 struct net_device *dev;
723 /* Some protocols might use this space to store information,
724 * while device pointer would be NULL.
725 * UDP receive path is one user.
726 */
727 unsigned long dev_scratch;
728 };
729 };
730 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
731 struct list_head list;
732 };
733
734 union {
735 struct sock *sk;
736 int ip_defrag_offset;
737 };
738
739 union {
740 ktime_t tstamp;
741 u64 skb_mstamp_ns; /* earliest departure time */
742 };
743 /*
744 * This is the control buffer. It is free to use for every
745 * layer. Please put your private variables there. If you
746 * want to keep them across layers you have to do a skb_clone()
747 * first. This is owned by whoever has the skb queued ATM.
748 */
749 char cb[48] __aligned(8);
750
751 union {
752 struct {
753 unsigned long _skb_refdst;
754 void (*destructor)(struct sk_buff *skb);
755 };
756 struct list_head tcp_tsorted_anchor;
757 };
758
759#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
760 unsigned long _nfct;
761#endif
762 unsigned int len,
763 data_len;
764 __u16 mac_len,
765 hdr_len;
766
767 /* Following fields are _not_ copied in __copy_skb_header()
768 * Note that queue_mapping is here mostly to fill a hole.
769 */
770 __u16 queue_mapping;
771
772/* if you move cloned around you also must adapt those constants */
773#ifdef __BIG_ENDIAN_BITFIELD
774#define CLONED_MASK (1 << 7)
775#else
776#define CLONED_MASK 1
777#endif
778#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
779
780 /* private: */
781 __u8 __cloned_offset[0];
782 /* public: */
783 __u8 cloned:1,
784 nohdr:1,
785 fclone:2,
786 peeked:1,
787 head_frag:1,
788 pfmemalloc:1;
789#ifdef CONFIG_SKB_EXTENSIONS
790 __u8 active_extensions;
791#endif
792 /* fields enclosed in headers_start/headers_end are copied
793 * using a single memcpy() in __copy_skb_header()
794 */
795 /* private: */
796 __u32 headers_start[0];
797 /* public: */
798
799/* if you move pkt_type around you also must adapt those constants */
800#ifdef __BIG_ENDIAN_BITFIELD
801#define PKT_TYPE_MAX (7 << 5)
802#else
803#define PKT_TYPE_MAX 7
804#endif
805#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
806
807 /* private: */
808 __u8 __pkt_type_offset[0];
809 /* public: */
810 __u8 pkt_type:3;
811 __u8 ignore_df:1;
812 __u8 nf_trace:1;
813 __u8 ip_summed:2;
814 __u8 ooo_okay:1;
815
816 __u8 l4_hash:1;
817 __u8 sw_hash:1;
818 __u8 wifi_acked_valid:1;
819 __u8 wifi_acked:1;
820 __u8 no_fcs:1;
821 /* Indicates the inner headers are valid in the skbuff. */
822 __u8 encapsulation:1;
823 __u8 encap_hdr_csum:1;
824 __u8 csum_valid:1;
825
826#ifdef __BIG_ENDIAN_BITFIELD
827#define PKT_VLAN_PRESENT_BIT 7
828#else
829#define PKT_VLAN_PRESENT_BIT 0
830#endif
831#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
832 /* private: */
833 __u8 __pkt_vlan_present_offset[0];
834 /* public: */
835 __u8 vlan_present:1;
836 __u8 csum_complete_sw:1;
837 __u8 csum_level:2;
838 __u8 csum_not_inet:1;
839 __u8 dst_pending_confirm:1;
840#ifdef CONFIG_IPV6_NDISC_NODETYPE
841 __u8 ndisc_nodetype:2;
842#endif
843
844 __u8 ipvs_property:1;
845 __u8 inner_protocol_type:1;
846 __u8 remcsum_offload:1;
847#ifdef CONFIG_NET_SWITCHDEV
848 __u8 offload_fwd_mark:1;
849 __u8 offload_l3_fwd_mark:1;
850#endif
851#ifdef CONFIG_NET_CLS_ACT
852 __u8 tc_skip_classify:1;
853 __u8 tc_at_ingress:1;
854#endif
855#ifdef CONFIG_NET_REDIRECT
856 __u8 redirected:1;
857 __u8 from_ingress:1;
858#endif
859#ifdef CONFIG_TLS_DEVICE
860 __u8 decrypted:1;
861#endif
862
863#ifdef CONFIG_NET_SCHED
864 __u16 tc_index; /* traffic control index */
865#endif
866
867 union {
868 __wsum csum;
869 struct {
870 __u16 csum_start;
871 __u16 csum_offset;
872 };
873 };
874 __u32 priority;
875 int skb_iif;
876 __u32 hash;
877 __be16 vlan_proto;
878 __u16 vlan_tci;
879#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
880 union {
881 unsigned int napi_id;
882 unsigned int sender_cpu;
883 };
884#endif
885#ifdef CONFIG_NETWORK_SECMARK
886 __u32 secmark;
887#endif
888
889 union {
890 __u32 mark;
891 __u32 reserved_tailroom;
892 };
893
894 union {
895 __be16 inner_protocol;
896 __u8 inner_ipproto;
897 };
898
899 __u16 inner_transport_header;
900 __u16 inner_network_header;
901 __u16 inner_mac_header;
902
903 __be16 protocol;
904 __u16 transport_header;
905 __u16 network_header;
906 __u16 mac_header;
907
908#ifdef CONFIG_KCOV
909 u64 kcov_handle;
910#endif
911
912 /* private: */
913 __u32 headers_end[0];
914 /* public: */
915
916 /* These elements must be at the end, see alloc_skb() for details. */
917 sk_buff_data_t tail;
918 sk_buff_data_t end;
919 unsigned char *head,
920 *data;
921 unsigned int truesize;
922 refcount_t users;
923
924#ifdef CONFIG_SKB_EXTENSIONS
925 /* only useable after checking ->active_extensions != 0 */
926 struct skb_ext *extensions;
927#endif
928};
929
930#ifdef __KERNEL__
931/*
932 * Handling routines are only of interest to the kernel
933 */
934
935#define SKB_ALLOC_FCLONE 0x01
936#define SKB_ALLOC_RX 0x02
937#define SKB_ALLOC_NAPI 0x04
938
939/**
940 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
941 * @skb: buffer
942 */
943static inline bool skb_pfmemalloc(const struct sk_buff *skb)
944{
945 return unlikely(skb->pfmemalloc);
946}
947
948/*
949 * skb might have a dst pointer attached, refcounted or not.
950 * _skb_refdst low order bit is set if refcount was _not_ taken
951 */
952#define SKB_DST_NOREF 1UL
953#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
954
955/**
956 * skb_dst - returns skb dst_entry
957 * @skb: buffer
958 *
959 * Returns skb dst_entry, regardless of reference taken or not.
960 */
961static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
962{
963 /* If refdst was not refcounted, check we still are in a
964 * rcu_read_lock section
965 */
966 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
967 !rcu_read_lock_held() &&
968 !rcu_read_lock_bh_held());
969 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
970}
971
972/**
973 * skb_dst_set - sets skb dst
974 * @skb: buffer
975 * @dst: dst entry
976 *
977 * Sets skb dst, assuming a reference was taken on dst and should
978 * be released by skb_dst_drop()
979 */
980static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
981{
982 skb->_skb_refdst = (unsigned long)dst;
983}
984
985/**
986 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
987 * @skb: buffer
988 * @dst: dst entry
989 *
990 * Sets skb dst, assuming a reference was not taken on dst.
991 * If dst entry is cached, we do not take reference and dst_release
992 * will be avoided by refdst_drop. If dst entry is not cached, we take
993 * reference, so that last dst_release can destroy the dst immediately.
994 */
995static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
996{
997 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
998 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
999}
1000
1001/**
1002 * skb_dst_is_noref - Test if skb dst isn't refcounted
1003 * @skb: buffer
1004 */
1005static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1006{
1007 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1008}
1009
1010/**
1011 * skb_rtable - Returns the skb &rtable
1012 * @skb: buffer
1013 */
1014static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1015{
1016 return (struct rtable *)skb_dst(skb);
1017}
1018
1019/* For mangling skb->pkt_type from user space side from applications
1020 * such as nft, tc, etc, we only allow a conservative subset of
1021 * possible pkt_types to be set.
1022*/
1023static inline bool skb_pkt_type_ok(u32 ptype)
1024{
1025 return ptype <= PACKET_OTHERHOST;
1026}
1027
1028/**
1029 * skb_napi_id - Returns the skb's NAPI id
1030 * @skb: buffer
1031 */
1032static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1033{
1034#ifdef CONFIG_NET_RX_BUSY_POLL
1035 return skb->napi_id;
1036#else
1037 return 0;
1038#endif
1039}
1040
1041/**
1042 * skb_unref - decrement the skb's reference count
1043 * @skb: buffer
1044 *
1045 * Returns true if we can free the skb.
1046 */
1047static inline bool skb_unref(struct sk_buff *skb)
1048{
1049 if (unlikely(!skb))
1050 return false;
1051 if (likely(refcount_read(&skb->users) == 1))
1052 smp_rmb();
1053 else if (likely(!refcount_dec_and_test(&skb->users)))
1054 return false;
1055
1056 return true;
1057}
1058
1059void skb_release_head_state(struct sk_buff *skb);
1060void kfree_skb(struct sk_buff *skb);
1061void kfree_skb_list(struct sk_buff *segs);
1062void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1063void skb_tx_error(struct sk_buff *skb);
1064
1065#ifdef CONFIG_TRACEPOINTS
1066void consume_skb(struct sk_buff *skb);
1067#else
1068static inline void consume_skb(struct sk_buff *skb)
1069{
1070 return kfree_skb(skb);
1071}
1072#endif
1073
1074void __consume_stateless_skb(struct sk_buff *skb);
1075void __kfree_skb(struct sk_buff *skb);
1076extern struct kmem_cache *skbuff_head_cache;
1077
1078void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1079bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1080 bool *fragstolen, int *delta_truesize);
1081
1082struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1083 int node);
1084struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1085struct sk_buff *build_skb(void *data, unsigned int frag_size);
1086struct sk_buff *build_skb_around(struct sk_buff *skb,
1087 void *data, unsigned int frag_size);
1088
1089/**
1090 * alloc_skb - allocate a network buffer
1091 * @size: size to allocate
1092 * @priority: allocation mask
1093 *
1094 * This function is a convenient wrapper around __alloc_skb().
1095 */
1096static inline struct sk_buff *alloc_skb(unsigned int size,
1097 gfp_t priority)
1098{
1099 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1100}
1101
1102struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1103 unsigned long data_len,
1104 int max_page_order,
1105 int *errcode,
1106 gfp_t gfp_mask);
1107struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1108
1109/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1110struct sk_buff_fclones {
1111 struct sk_buff skb1;
1112
1113 struct sk_buff skb2;
1114
1115 refcount_t fclone_ref;
1116};
1117
1118/**
1119 * skb_fclone_busy - check if fclone is busy
1120 * @sk: socket
1121 * @skb: buffer
1122 *
1123 * Returns true if skb is a fast clone, and its clone is not freed.
1124 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1125 * so we also check that this didnt happen.
1126 */
1127static inline bool skb_fclone_busy(const struct sock *sk,
1128 const struct sk_buff *skb)
1129{
1130 const struct sk_buff_fclones *fclones;
1131
1132 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1133
1134 return skb->fclone == SKB_FCLONE_ORIG &&
1135 refcount_read(&fclones->fclone_ref) > 1 &&
1136 fclones->skb2.sk == sk;
1137}
1138
1139/**
1140 * alloc_skb_fclone - allocate a network buffer from fclone cache
1141 * @size: size to allocate
1142 * @priority: allocation mask
1143 *
1144 * This function is a convenient wrapper around __alloc_skb().
1145 */
1146static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1147 gfp_t priority)
1148{
1149 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1150}
1151
1152struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1153void skb_headers_offset_update(struct sk_buff *skb, int off);
1154int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1155struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1156void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1157struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1158struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1159 gfp_t gfp_mask, bool fclone);
1160static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1161 gfp_t gfp_mask)
1162{
1163 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1164}
1165
1166int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1167struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1168 unsigned int headroom);
1169struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1170 int newtailroom, gfp_t priority);
1171int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1172 int offset, int len);
1173int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1174 int offset, int len);
1175int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1176int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1177
1178/**
1179 * skb_pad - zero pad the tail of an skb
1180 * @skb: buffer to pad
1181 * @pad: space to pad
1182 *
1183 * Ensure that a buffer is followed by a padding area that is zero
1184 * filled. Used by network drivers which may DMA or transfer data
1185 * beyond the buffer end onto the wire.
1186 *
1187 * May return error in out of memory cases. The skb is freed on error.
1188 */
1189static inline int skb_pad(struct sk_buff *skb, int pad)
1190{
1191 return __skb_pad(skb, pad, true);
1192}
1193#define dev_kfree_skb(a) consume_skb(a)
1194
1195int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1196 int offset, size_t size);
1197
1198struct skb_seq_state {
1199 __u32 lower_offset;
1200 __u32 upper_offset;
1201 __u32 frag_idx;
1202 __u32 stepped_offset;
1203 struct sk_buff *root_skb;
1204 struct sk_buff *cur_skb;
1205 __u8 *frag_data;
1206};
1207
1208void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1209 unsigned int to, struct skb_seq_state *st);
1210unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1211 struct skb_seq_state *st);
1212void skb_abort_seq_read(struct skb_seq_state *st);
1213
1214unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1215 unsigned int to, struct ts_config *config);
1216
1217/*
1218 * Packet hash types specify the type of hash in skb_set_hash.
1219 *
1220 * Hash types refer to the protocol layer addresses which are used to
1221 * construct a packet's hash. The hashes are used to differentiate or identify
1222 * flows of the protocol layer for the hash type. Hash types are either
1223 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1224 *
1225 * Properties of hashes:
1226 *
1227 * 1) Two packets in different flows have different hash values
1228 * 2) Two packets in the same flow should have the same hash value
1229 *
1230 * A hash at a higher layer is considered to be more specific. A driver should
1231 * set the most specific hash possible.
1232 *
1233 * A driver cannot indicate a more specific hash than the layer at which a hash
1234 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1235 *
1236 * A driver may indicate a hash level which is less specific than the
1237 * actual layer the hash was computed on. For instance, a hash computed
1238 * at L4 may be considered an L3 hash. This should only be done if the
1239 * driver can't unambiguously determine that the HW computed the hash at
1240 * the higher layer. Note that the "should" in the second property above
1241 * permits this.
1242 */
1243enum pkt_hash_types {
1244 PKT_HASH_TYPE_NONE, /* Undefined type */
1245 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1246 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1247 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1248};
1249
1250static inline void skb_clear_hash(struct sk_buff *skb)
1251{
1252 skb->hash = 0;
1253 skb->sw_hash = 0;
1254 skb->l4_hash = 0;
1255}
1256
1257static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1258{
1259 if (!skb->l4_hash)
1260 skb_clear_hash(skb);
1261}
1262
1263static inline void
1264__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1265{
1266 skb->l4_hash = is_l4;
1267 skb->sw_hash = is_sw;
1268 skb->hash = hash;
1269}
1270
1271static inline void
1272skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1273{
1274 /* Used by drivers to set hash from HW */
1275 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1276}
1277
1278static inline void
1279__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1280{
1281 __skb_set_hash(skb, hash, true, is_l4);
1282}
1283
1284void __skb_get_hash(struct sk_buff *skb);
1285u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1286u32 skb_get_poff(const struct sk_buff *skb);
1287u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1288 const struct flow_keys_basic *keys, int hlen);
1289__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1290 void *data, int hlen_proto);
1291
1292static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1293 int thoff, u8 ip_proto)
1294{
1295 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1296}
1297
1298void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1299 const struct flow_dissector_key *key,
1300 unsigned int key_count);
1301
1302struct bpf_flow_dissector;
1303bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1304 __be16 proto, int nhoff, int hlen, unsigned int flags);
1305
1306bool __skb_flow_dissect(const struct net *net,
1307 const struct sk_buff *skb,
1308 struct flow_dissector *flow_dissector,
1309 void *target_container,
1310 void *data, __be16 proto, int nhoff, int hlen,
1311 unsigned int flags);
1312
1313static inline bool skb_flow_dissect(const struct sk_buff *skb,
1314 struct flow_dissector *flow_dissector,
1315 void *target_container, unsigned int flags)
1316{
1317 return __skb_flow_dissect(NULL, skb, flow_dissector,
1318 target_container, NULL, 0, 0, 0, flags);
1319}
1320
1321static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1322 struct flow_keys *flow,
1323 unsigned int flags)
1324{
1325 memset(flow, 0, sizeof(*flow));
1326 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1327 flow, NULL, 0, 0, 0, flags);
1328}
1329
1330static inline bool
1331skb_flow_dissect_flow_keys_basic(const struct net *net,
1332 const struct sk_buff *skb,
1333 struct flow_keys_basic *flow, void *data,
1334 __be16 proto, int nhoff, int hlen,
1335 unsigned int flags)
1336{
1337 memset(flow, 0, sizeof(*flow));
1338 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1339 data, proto, nhoff, hlen, flags);
1340}
1341
1342void skb_flow_dissect_meta(const struct sk_buff *skb,
1343 struct flow_dissector *flow_dissector,
1344 void *target_container);
1345
1346/* Gets a skb connection tracking info, ctinfo map should be a
1347 * map of mapsize to translate enum ip_conntrack_info states
1348 * to user states.
1349 */
1350void
1351skb_flow_dissect_ct(const struct sk_buff *skb,
1352 struct flow_dissector *flow_dissector,
1353 void *target_container,
1354 u16 *ctinfo_map,
1355 size_t mapsize);
1356void
1357skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1358 struct flow_dissector *flow_dissector,
1359 void *target_container);
1360
1361void skb_flow_dissect_hash(const struct sk_buff *skb,
1362 struct flow_dissector *flow_dissector,
1363 void *target_container);
1364
1365static inline __u32 skb_get_hash(struct sk_buff *skb)
1366{
1367 if (!skb->l4_hash && !skb->sw_hash)
1368 __skb_get_hash(skb);
1369
1370 return skb->hash;
1371}
1372
1373static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1374{
1375 if (!skb->l4_hash && !skb->sw_hash) {
1376 struct flow_keys keys;
1377 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1378
1379 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1380 }
1381
1382 return skb->hash;
1383}
1384
1385__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1386 const siphash_key_t *perturb);
1387
1388static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1389{
1390 return skb->hash;
1391}
1392
1393static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1394{
1395 to->hash = from->hash;
1396 to->sw_hash = from->sw_hash;
1397 to->l4_hash = from->l4_hash;
1398};
1399
1400static inline void skb_copy_decrypted(struct sk_buff *to,
1401 const struct sk_buff *from)
1402{
1403#ifdef CONFIG_TLS_DEVICE
1404 to->decrypted = from->decrypted;
1405#endif
1406}
1407
1408#ifdef NET_SKBUFF_DATA_USES_OFFSET
1409static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1410{
1411 return skb->head + skb->end;
1412}
1413
1414static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1415{
1416 return skb->end;
1417}
1418#else
1419static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1420{
1421 return skb->end;
1422}
1423
1424static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1425{
1426 return skb->end - skb->head;
1427}
1428#endif
1429
1430/* Internal */
1431#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1432
1433static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1434{
1435 return &skb_shinfo(skb)->hwtstamps;
1436}
1437
1438static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1439{
1440 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1441
1442 return is_zcopy ? skb_uarg(skb) : NULL;
1443}
1444
1445static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1446 bool *have_ref)
1447{
1448 if (skb && uarg && !skb_zcopy(skb)) {
1449 if (unlikely(have_ref && *have_ref))
1450 *have_ref = false;
1451 else
1452 sock_zerocopy_get(uarg);
1453 skb_shinfo(skb)->destructor_arg = uarg;
1454 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1455 }
1456}
1457
1458static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1459{
1460 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1461 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1462}
1463
1464static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1465{
1466 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1467}
1468
1469static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1470{
1471 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1472}
1473
1474/* Release a reference on a zerocopy structure */
1475static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1476{
1477 struct ubuf_info *uarg = skb_zcopy(skb);
1478
1479 if (uarg) {
1480 if (skb_zcopy_is_nouarg(skb)) {
1481 /* no notification callback */
1482 } else if (uarg->callback == sock_zerocopy_callback) {
1483 uarg->zerocopy = uarg->zerocopy && zerocopy;
1484 sock_zerocopy_put(uarg);
1485 } else {
1486 uarg->callback(uarg, zerocopy);
1487 }
1488
1489 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1490 }
1491}
1492
1493/* Abort a zerocopy operation and revert zckey on error in send syscall */
1494static inline void skb_zcopy_abort(struct sk_buff *skb)
1495{
1496 struct ubuf_info *uarg = skb_zcopy(skb);
1497
1498 if (uarg) {
1499 sock_zerocopy_put_abort(uarg, false);
1500 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1501 }
1502}
1503
1504static inline void skb_mark_not_on_list(struct sk_buff *skb)
1505{
1506 skb->next = NULL;
1507}
1508
1509/* Iterate through singly-linked GSO fragments of an skb. */
1510#define skb_list_walk_safe(first, skb, next_skb) \
1511 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1512 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1513
1514static inline void skb_list_del_init(struct sk_buff *skb)
1515{
1516 __list_del_entry(&skb->list);
1517 skb_mark_not_on_list(skb);
1518}
1519
1520/**
1521 * skb_queue_empty - check if a queue is empty
1522 * @list: queue head
1523 *
1524 * Returns true if the queue is empty, false otherwise.
1525 */
1526static inline int skb_queue_empty(const struct sk_buff_head *list)
1527{
1528 return list->next == (const struct sk_buff *) list;
1529}
1530
1531/**
1532 * skb_queue_empty_lockless - check if a queue is empty
1533 * @list: queue head
1534 *
1535 * Returns true if the queue is empty, false otherwise.
1536 * This variant can be used in lockless contexts.
1537 */
1538static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1539{
1540 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1541}
1542
1543
1544/**
1545 * skb_queue_is_last - check if skb is the last entry in the queue
1546 * @list: queue head
1547 * @skb: buffer
1548 *
1549 * Returns true if @skb is the last buffer on the list.
1550 */
1551static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1552 const struct sk_buff *skb)
1553{
1554 return skb->next == (const struct sk_buff *) list;
1555}
1556
1557/**
1558 * skb_queue_is_first - check if skb is the first entry in the queue
1559 * @list: queue head
1560 * @skb: buffer
1561 *
1562 * Returns true if @skb is the first buffer on the list.
1563 */
1564static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1565 const struct sk_buff *skb)
1566{
1567 return skb->prev == (const struct sk_buff *) list;
1568}
1569
1570/**
1571 * skb_queue_next - return the next packet in the queue
1572 * @list: queue head
1573 * @skb: current buffer
1574 *
1575 * Return the next packet in @list after @skb. It is only valid to
1576 * call this if skb_queue_is_last() evaluates to false.
1577 */
1578static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1579 const struct sk_buff *skb)
1580{
1581 /* This BUG_ON may seem severe, but if we just return then we
1582 * are going to dereference garbage.
1583 */
1584 BUG_ON(skb_queue_is_last(list, skb));
1585 return skb->next;
1586}
1587
1588/**
1589 * skb_queue_prev - return the prev packet in the queue
1590 * @list: queue head
1591 * @skb: current buffer
1592 *
1593 * Return the prev packet in @list before @skb. It is only valid to
1594 * call this if skb_queue_is_first() evaluates to false.
1595 */
1596static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1597 const struct sk_buff *skb)
1598{
1599 /* This BUG_ON may seem severe, but if we just return then we
1600 * are going to dereference garbage.
1601 */
1602 BUG_ON(skb_queue_is_first(list, skb));
1603 return skb->prev;
1604}
1605
1606/**
1607 * skb_get - reference buffer
1608 * @skb: buffer to reference
1609 *
1610 * Makes another reference to a socket buffer and returns a pointer
1611 * to the buffer.
1612 */
1613static inline struct sk_buff *skb_get(struct sk_buff *skb)
1614{
1615 refcount_inc(&skb->users);
1616 return skb;
1617}
1618
1619/*
1620 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1621 */
1622
1623/**
1624 * skb_cloned - is the buffer a clone
1625 * @skb: buffer to check
1626 *
1627 * Returns true if the buffer was generated with skb_clone() and is
1628 * one of multiple shared copies of the buffer. Cloned buffers are
1629 * shared data so must not be written to under normal circumstances.
1630 */
1631static inline int skb_cloned(const struct sk_buff *skb)
1632{
1633 return skb->cloned &&
1634 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1635}
1636
1637static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1638{
1639 might_sleep_if(gfpflags_allow_blocking(pri));
1640
1641 if (skb_cloned(skb))
1642 return pskb_expand_head(skb, 0, 0, pri);
1643
1644 return 0;
1645}
1646
1647/**
1648 * skb_header_cloned - is the header a clone
1649 * @skb: buffer to check
1650 *
1651 * Returns true if modifying the header part of the buffer requires
1652 * the data to be copied.
1653 */
1654static inline int skb_header_cloned(const struct sk_buff *skb)
1655{
1656 int dataref;
1657
1658 if (!skb->cloned)
1659 return 0;
1660
1661 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1662 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1663 return dataref != 1;
1664}
1665
1666static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1667{
1668 might_sleep_if(gfpflags_allow_blocking(pri));
1669
1670 if (skb_header_cloned(skb))
1671 return pskb_expand_head(skb, 0, 0, pri);
1672
1673 return 0;
1674}
1675
1676/**
1677 * __skb_header_release - release reference to header
1678 * @skb: buffer to operate on
1679 */
1680static inline void __skb_header_release(struct sk_buff *skb)
1681{
1682 skb->nohdr = 1;
1683 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1684}
1685
1686
1687/**
1688 * skb_shared - is the buffer shared
1689 * @skb: buffer to check
1690 *
1691 * Returns true if more than one person has a reference to this
1692 * buffer.
1693 */
1694static inline int skb_shared(const struct sk_buff *skb)
1695{
1696 return refcount_read(&skb->users) != 1;
1697}
1698
1699/**
1700 * skb_share_check - check if buffer is shared and if so clone it
1701 * @skb: buffer to check
1702 * @pri: priority for memory allocation
1703 *
1704 * If the buffer is shared the buffer is cloned and the old copy
1705 * drops a reference. A new clone with a single reference is returned.
1706 * If the buffer is not shared the original buffer is returned. When
1707 * being called from interrupt status or with spinlocks held pri must
1708 * be GFP_ATOMIC.
1709 *
1710 * NULL is returned on a memory allocation failure.
1711 */
1712static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1713{
1714 might_sleep_if(gfpflags_allow_blocking(pri));
1715 if (skb_shared(skb)) {
1716 struct sk_buff *nskb = skb_clone(skb, pri);
1717
1718 if (likely(nskb))
1719 consume_skb(skb);
1720 else
1721 kfree_skb(skb);
1722 skb = nskb;
1723 }
1724 return skb;
1725}
1726
1727/*
1728 * Copy shared buffers into a new sk_buff. We effectively do COW on
1729 * packets to handle cases where we have a local reader and forward
1730 * and a couple of other messy ones. The normal one is tcpdumping
1731 * a packet thats being forwarded.
1732 */
1733
1734/**
1735 * skb_unshare - make a copy of a shared buffer
1736 * @skb: buffer to check
1737 * @pri: priority for memory allocation
1738 *
1739 * If the socket buffer is a clone then this function creates a new
1740 * copy of the data, drops a reference count on the old copy and returns
1741 * the new copy with the reference count at 1. If the buffer is not a clone
1742 * the original buffer is returned. When called with a spinlock held or
1743 * from interrupt state @pri must be %GFP_ATOMIC
1744 *
1745 * %NULL is returned on a memory allocation failure.
1746 */
1747static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1748 gfp_t pri)
1749{
1750 might_sleep_if(gfpflags_allow_blocking(pri));
1751 if (skb_cloned(skb)) {
1752 struct sk_buff *nskb = skb_copy(skb, pri);
1753
1754 /* Free our shared copy */
1755 if (likely(nskb))
1756 consume_skb(skb);
1757 else
1758 kfree_skb(skb);
1759 skb = nskb;
1760 }
1761 return skb;
1762}
1763
1764/**
1765 * skb_peek - peek at the head of an &sk_buff_head
1766 * @list_: list to peek at
1767 *
1768 * Peek an &sk_buff. Unlike most other operations you _MUST_
1769 * be careful with this one. A peek leaves the buffer on the
1770 * list and someone else may run off with it. You must hold
1771 * the appropriate locks or have a private queue to do this.
1772 *
1773 * Returns %NULL for an empty list or a pointer to the head element.
1774 * The reference count is not incremented and the reference is therefore
1775 * volatile. Use with caution.
1776 */
1777static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1778{
1779 struct sk_buff *skb = list_->next;
1780
1781 if (skb == (struct sk_buff *)list_)
1782 skb = NULL;
1783 return skb;
1784}
1785
1786/**
1787 * __skb_peek - peek at the head of a non-empty &sk_buff_head
1788 * @list_: list to peek at
1789 *
1790 * Like skb_peek(), but the caller knows that the list is not empty.
1791 */
1792static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1793{
1794 return list_->next;
1795}
1796
1797/**
1798 * skb_peek_next - peek skb following the given one from a queue
1799 * @skb: skb to start from
1800 * @list_: list to peek at
1801 *
1802 * Returns %NULL when the end of the list is met or a pointer to the
1803 * next element. The reference count is not incremented and the
1804 * reference is therefore volatile. Use with caution.
1805 */
1806static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1807 const struct sk_buff_head *list_)
1808{
1809 struct sk_buff *next = skb->next;
1810
1811 if (next == (struct sk_buff *)list_)
1812 next = NULL;
1813 return next;
1814}
1815
1816/**
1817 * skb_peek_tail - peek at the tail of an &sk_buff_head
1818 * @list_: list to peek at
1819 *
1820 * Peek an &sk_buff. Unlike most other operations you _MUST_
1821 * be careful with this one. A peek leaves the buffer on the
1822 * list and someone else may run off with it. You must hold
1823 * the appropriate locks or have a private queue to do this.
1824 *
1825 * Returns %NULL for an empty list or a pointer to the tail element.
1826 * The reference count is not incremented and the reference is therefore
1827 * volatile. Use with caution.
1828 */
1829static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1830{
1831 struct sk_buff *skb = READ_ONCE(list_->prev);
1832
1833 if (skb == (struct sk_buff *)list_)
1834 skb = NULL;
1835 return skb;
1836
1837}
1838
1839/**
1840 * skb_queue_len - get queue length
1841 * @list_: list to measure
1842 *
1843 * Return the length of an &sk_buff queue.
1844 */
1845static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1846{
1847 return list_->qlen;
1848}
1849
1850/**
1851 * skb_queue_len_lockless - get queue length
1852 * @list_: list to measure
1853 *
1854 * Return the length of an &sk_buff queue.
1855 * This variant can be used in lockless contexts.
1856 */
1857static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1858{
1859 return READ_ONCE(list_->qlen);
1860}
1861
1862/**
1863 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1864 * @list: queue to initialize
1865 *
1866 * This initializes only the list and queue length aspects of
1867 * an sk_buff_head object. This allows to initialize the list
1868 * aspects of an sk_buff_head without reinitializing things like
1869 * the spinlock. It can also be used for on-stack sk_buff_head
1870 * objects where the spinlock is known to not be used.
1871 */
1872static inline void __skb_queue_head_init(struct sk_buff_head *list)
1873{
1874 list->prev = list->next = (struct sk_buff *)list;
1875 list->qlen = 0;
1876}
1877
1878/*
1879 * This function creates a split out lock class for each invocation;
1880 * this is needed for now since a whole lot of users of the skb-queue
1881 * infrastructure in drivers have different locking usage (in hardirq)
1882 * than the networking core (in softirq only). In the long run either the
1883 * network layer or drivers should need annotation to consolidate the
1884 * main types of usage into 3 classes.
1885 */
1886static inline void skb_queue_head_init(struct sk_buff_head *list)
1887{
1888 spin_lock_init(&list->lock);
1889 __skb_queue_head_init(list);
1890}
1891
1892static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1893 struct lock_class_key *class)
1894{
1895 skb_queue_head_init(list);
1896 lockdep_set_class(&list->lock, class);
1897}
1898
1899/*
1900 * Insert an sk_buff on a list.
1901 *
1902 * The "__skb_xxxx()" functions are the non-atomic ones that
1903 * can only be called with interrupts disabled.
1904 */
1905static inline void __skb_insert(struct sk_buff *newsk,
1906 struct sk_buff *prev, struct sk_buff *next,
1907 struct sk_buff_head *list)
1908{
1909 /* See skb_queue_empty_lockless() and skb_peek_tail()
1910 * for the opposite READ_ONCE()
1911 */
1912 WRITE_ONCE(newsk->next, next);
1913 WRITE_ONCE(newsk->prev, prev);
1914 WRITE_ONCE(next->prev, newsk);
1915 WRITE_ONCE(prev->next, newsk);
1916 list->qlen++;
1917}
1918
1919static inline void __skb_queue_splice(const struct sk_buff_head *list,
1920 struct sk_buff *prev,
1921 struct sk_buff *next)
1922{
1923 struct sk_buff *first = list->next;
1924 struct sk_buff *last = list->prev;
1925
1926 WRITE_ONCE(first->prev, prev);
1927 WRITE_ONCE(prev->next, first);
1928
1929 WRITE_ONCE(last->next, next);
1930 WRITE_ONCE(next->prev, last);
1931}
1932
1933/**
1934 * skb_queue_splice - join two skb lists, this is designed for stacks
1935 * @list: the new list to add
1936 * @head: the place to add it in the first list
1937 */
1938static inline void skb_queue_splice(const struct sk_buff_head *list,
1939 struct sk_buff_head *head)
1940{
1941 if (!skb_queue_empty(list)) {
1942 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1943 head->qlen += list->qlen;
1944 }
1945}
1946
1947/**
1948 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1949 * @list: the new list to add
1950 * @head: the place to add it in the first list
1951 *
1952 * The list at @list is reinitialised
1953 */
1954static inline void skb_queue_splice_init(struct sk_buff_head *list,
1955 struct sk_buff_head *head)
1956{
1957 if (!skb_queue_empty(list)) {
1958 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1959 head->qlen += list->qlen;
1960 __skb_queue_head_init(list);
1961 }
1962}
1963
1964/**
1965 * skb_queue_splice_tail - join two skb lists, each list being a queue
1966 * @list: the new list to add
1967 * @head: the place to add it in the first list
1968 */
1969static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1970 struct sk_buff_head *head)
1971{
1972 if (!skb_queue_empty(list)) {
1973 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1974 head->qlen += list->qlen;
1975 }
1976}
1977
1978/**
1979 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1980 * @list: the new list to add
1981 * @head: the place to add it in the first list
1982 *
1983 * Each of the lists is a queue.
1984 * The list at @list is reinitialised
1985 */
1986static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1987 struct sk_buff_head *head)
1988{
1989 if (!skb_queue_empty(list)) {
1990 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1991 head->qlen += list->qlen;
1992 __skb_queue_head_init(list);
1993 }
1994}
1995
1996/**
1997 * __skb_queue_after - queue a buffer at the list head
1998 * @list: list to use
1999 * @prev: place after this buffer
2000 * @newsk: buffer to queue
2001 *
2002 * Queue a buffer int the middle of a list. This function takes no locks
2003 * and you must therefore hold required locks before calling it.
2004 *
2005 * A buffer cannot be placed on two lists at the same time.
2006 */
2007static inline void __skb_queue_after(struct sk_buff_head *list,
2008 struct sk_buff *prev,
2009 struct sk_buff *newsk)
2010{
2011 __skb_insert(newsk, prev, prev->next, list);
2012}
2013
2014void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2015 struct sk_buff_head *list);
2016
2017static inline void __skb_queue_before(struct sk_buff_head *list,
2018 struct sk_buff *next,
2019 struct sk_buff *newsk)
2020{
2021 __skb_insert(newsk, next->prev, next, list);
2022}
2023
2024/**
2025 * __skb_queue_head - queue a buffer at the list head
2026 * @list: list to use
2027 * @newsk: buffer to queue
2028 *
2029 * Queue a buffer at the start of a list. This function takes no locks
2030 * and you must therefore hold required locks before calling it.
2031 *
2032 * A buffer cannot be placed on two lists at the same time.
2033 */
2034static inline void __skb_queue_head(struct sk_buff_head *list,
2035 struct sk_buff *newsk)
2036{
2037 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2038}
2039void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2040
2041/**
2042 * __skb_queue_tail - queue a buffer at the list tail
2043 * @list: list to use
2044 * @newsk: buffer to queue
2045 *
2046 * Queue a buffer at the end of a list. This function takes no locks
2047 * and you must therefore hold required locks before calling it.
2048 *
2049 * A buffer cannot be placed on two lists at the same time.
2050 */
2051static inline void __skb_queue_tail(struct sk_buff_head *list,
2052 struct sk_buff *newsk)
2053{
2054 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2055}
2056void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2057
2058/*
2059 * remove sk_buff from list. _Must_ be called atomically, and with
2060 * the list known..
2061 */
2062void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2063static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2064{
2065 struct sk_buff *next, *prev;
2066
2067 WRITE_ONCE(list->qlen, list->qlen - 1);
2068 next = skb->next;
2069 prev = skb->prev;
2070 skb->next = skb->prev = NULL;
2071 WRITE_ONCE(next->prev, prev);
2072 WRITE_ONCE(prev->next, next);
2073}
2074
2075/**
2076 * __skb_dequeue - remove from the head of the queue
2077 * @list: list to dequeue from
2078 *
2079 * Remove the head of the list. This function does not take any locks
2080 * so must be used with appropriate locks held only. The head item is
2081 * returned or %NULL if the list is empty.
2082 */
2083static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2084{
2085 struct sk_buff *skb = skb_peek(list);
2086 if (skb)
2087 __skb_unlink(skb, list);
2088 return skb;
2089}
2090struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2091
2092/**
2093 * __skb_dequeue_tail - remove from the tail of the queue
2094 * @list: list to dequeue from
2095 *
2096 * Remove the tail of the list. This function does not take any locks
2097 * so must be used with appropriate locks held only. The tail item is
2098 * returned or %NULL if the list is empty.
2099 */
2100static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2101{
2102 struct sk_buff *skb = skb_peek_tail(list);
2103 if (skb)
2104 __skb_unlink(skb, list);
2105 return skb;
2106}
2107struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2108
2109
2110static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2111{
2112 return skb->data_len;
2113}
2114
2115static inline unsigned int skb_headlen(const struct sk_buff *skb)
2116{
2117 return skb->len - skb->data_len;
2118}
2119
2120static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2121{
2122 unsigned int i, len = 0;
2123
2124 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2125 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2126 return len;
2127}
2128
2129static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2130{
2131 return skb_headlen(skb) + __skb_pagelen(skb);
2132}
2133
2134/**
2135 * __skb_fill_page_desc - initialise a paged fragment in an skb
2136 * @skb: buffer containing fragment to be initialised
2137 * @i: paged fragment index to initialise
2138 * @page: the page to use for this fragment
2139 * @off: the offset to the data with @page
2140 * @size: the length of the data
2141 *
2142 * Initialises the @i'th fragment of @skb to point to &size bytes at
2143 * offset @off within @page.
2144 *
2145 * Does not take any additional reference on the fragment.
2146 */
2147static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2148 struct page *page, int off, int size)
2149{
2150 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2151
2152 /*
2153 * Propagate page pfmemalloc to the skb if we can. The problem is
2154 * that not all callers have unique ownership of the page but rely
2155 * on page_is_pfmemalloc doing the right thing(tm).
2156 */
2157 frag->bv_page = page;
2158 frag->bv_offset = off;
2159 skb_frag_size_set(frag, size);
2160
2161 page = compound_head(page);
2162 if (page_is_pfmemalloc(page))
2163 skb->pfmemalloc = true;
2164}
2165
2166/**
2167 * skb_fill_page_desc - initialise a paged fragment in an skb
2168 * @skb: buffer containing fragment to be initialised
2169 * @i: paged fragment index to initialise
2170 * @page: the page to use for this fragment
2171 * @off: the offset to the data with @page
2172 * @size: the length of the data
2173 *
2174 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2175 * @skb to point to @size bytes at offset @off within @page. In
2176 * addition updates @skb such that @i is the last fragment.
2177 *
2178 * Does not take any additional reference on the fragment.
2179 */
2180static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2181 struct page *page, int off, int size)
2182{
2183 __skb_fill_page_desc(skb, i, page, off, size);
2184 skb_shinfo(skb)->nr_frags = i + 1;
2185}
2186
2187void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2188 int size, unsigned int truesize);
2189
2190void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2191 unsigned int truesize);
2192
2193#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2194
2195#ifdef NET_SKBUFF_DATA_USES_OFFSET
2196static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2197{
2198 return skb->head + skb->tail;
2199}
2200
2201static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2202{
2203 skb->tail = skb->data - skb->head;
2204}
2205
2206static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2207{
2208 skb_reset_tail_pointer(skb);
2209 skb->tail += offset;
2210}
2211
2212#else /* NET_SKBUFF_DATA_USES_OFFSET */
2213static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2214{
2215 return skb->tail;
2216}
2217
2218static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2219{
2220 skb->tail = skb->data;
2221}
2222
2223static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2224{
2225 skb->tail = skb->data + offset;
2226}
2227
2228#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2229
2230/*
2231 * Add data to an sk_buff
2232 */
2233void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2234void *skb_put(struct sk_buff *skb, unsigned int len);
2235static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2236{
2237 void *tmp = skb_tail_pointer(skb);
2238 SKB_LINEAR_ASSERT(skb);
2239 skb->tail += len;
2240 skb->len += len;
2241 return tmp;
2242}
2243
2244static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2245{
2246 void *tmp = __skb_put(skb, len);
2247
2248 memset(tmp, 0, len);
2249 return tmp;
2250}
2251
2252static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2253 unsigned int len)
2254{
2255 void *tmp = __skb_put(skb, len);
2256
2257 memcpy(tmp, data, len);
2258 return tmp;
2259}
2260
2261static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2262{
2263 *(u8 *)__skb_put(skb, 1) = val;
2264}
2265
2266static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2267{
2268 void *tmp = skb_put(skb, len);
2269
2270 memset(tmp, 0, len);
2271
2272 return tmp;
2273}
2274
2275static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2276 unsigned int len)
2277{
2278 void *tmp = skb_put(skb, len);
2279
2280 memcpy(tmp, data, len);
2281
2282 return tmp;
2283}
2284
2285static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2286{
2287 *(u8 *)skb_put(skb, 1) = val;
2288}
2289
2290void *skb_push(struct sk_buff *skb, unsigned int len);
2291static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2292{
2293 skb->data -= len;
2294 skb->len += len;
2295 return skb->data;
2296}
2297
2298void *skb_pull(struct sk_buff *skb, unsigned int len);
2299static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2300{
2301 skb->len -= len;
2302 BUG_ON(skb->len < skb->data_len);
2303 return skb->data += len;
2304}
2305
2306static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2307{
2308 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2309}
2310
2311void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2312
2313static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2314{
2315 if (len > skb_headlen(skb) &&
2316 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2317 return NULL;
2318 skb->len -= len;
2319 return skb->data += len;
2320}
2321
2322static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2323{
2324 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2325}
2326
2327static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2328{
2329 if (likely(len <= skb_headlen(skb)))
2330 return true;
2331 if (unlikely(len > skb->len))
2332 return false;
2333 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2334}
2335
2336void skb_condense(struct sk_buff *skb);
2337
2338/**
2339 * skb_headroom - bytes at buffer head
2340 * @skb: buffer to check
2341 *
2342 * Return the number of bytes of free space at the head of an &sk_buff.
2343 */
2344static inline unsigned int skb_headroom(const struct sk_buff *skb)
2345{
2346 return skb->data - skb->head;
2347}
2348
2349/**
2350 * skb_tailroom - bytes at buffer end
2351 * @skb: buffer to check
2352 *
2353 * Return the number of bytes of free space at the tail of an sk_buff
2354 */
2355static inline int skb_tailroom(const struct sk_buff *skb)
2356{
2357 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2358}
2359
2360/**
2361 * skb_availroom - bytes at buffer end
2362 * @skb: buffer to check
2363 *
2364 * Return the number of bytes of free space at the tail of an sk_buff
2365 * allocated by sk_stream_alloc()
2366 */
2367static inline int skb_availroom(const struct sk_buff *skb)
2368{
2369 if (skb_is_nonlinear(skb))
2370 return 0;
2371
2372 return skb->end - skb->tail - skb->reserved_tailroom;
2373}
2374
2375/**
2376 * skb_reserve - adjust headroom
2377 * @skb: buffer to alter
2378 * @len: bytes to move
2379 *
2380 * Increase the headroom of an empty &sk_buff by reducing the tail
2381 * room. This is only allowed for an empty buffer.
2382 */
2383static inline void skb_reserve(struct sk_buff *skb, int len)
2384{
2385 skb->data += len;
2386 skb->tail += len;
2387}
2388
2389/**
2390 * skb_tailroom_reserve - adjust reserved_tailroom
2391 * @skb: buffer to alter
2392 * @mtu: maximum amount of headlen permitted
2393 * @needed_tailroom: minimum amount of reserved_tailroom
2394 *
2395 * Set reserved_tailroom so that headlen can be as large as possible but
2396 * not larger than mtu and tailroom cannot be smaller than
2397 * needed_tailroom.
2398 * The required headroom should already have been reserved before using
2399 * this function.
2400 */
2401static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2402 unsigned int needed_tailroom)
2403{
2404 SKB_LINEAR_ASSERT(skb);
2405 if (mtu < skb_tailroom(skb) - needed_tailroom)
2406 /* use at most mtu */
2407 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2408 else
2409 /* use up to all available space */
2410 skb->reserved_tailroom = needed_tailroom;
2411}
2412
2413#define ENCAP_TYPE_ETHER 0
2414#define ENCAP_TYPE_IPPROTO 1
2415
2416static inline void skb_set_inner_protocol(struct sk_buff *skb,
2417 __be16 protocol)
2418{
2419 skb->inner_protocol = protocol;
2420 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2421}
2422
2423static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2424 __u8 ipproto)
2425{
2426 skb->inner_ipproto = ipproto;
2427 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2428}
2429
2430static inline void skb_reset_inner_headers(struct sk_buff *skb)
2431{
2432 skb->inner_mac_header = skb->mac_header;
2433 skb->inner_network_header = skb->network_header;
2434 skb->inner_transport_header = skb->transport_header;
2435}
2436
2437static inline void skb_reset_mac_len(struct sk_buff *skb)
2438{
2439 skb->mac_len = skb->network_header - skb->mac_header;
2440}
2441
2442static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2443 *skb)
2444{
2445 return skb->head + skb->inner_transport_header;
2446}
2447
2448static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2449{
2450 return skb_inner_transport_header(skb) - skb->data;
2451}
2452
2453static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2454{
2455 skb->inner_transport_header = skb->data - skb->head;
2456}
2457
2458static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2459 const int offset)
2460{
2461 skb_reset_inner_transport_header(skb);
2462 skb->inner_transport_header += offset;
2463}
2464
2465static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2466{
2467 return skb->head + skb->inner_network_header;
2468}
2469
2470static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2471{
2472 skb->inner_network_header = skb->data - skb->head;
2473}
2474
2475static inline void skb_set_inner_network_header(struct sk_buff *skb,
2476 const int offset)
2477{
2478 skb_reset_inner_network_header(skb);
2479 skb->inner_network_header += offset;
2480}
2481
2482static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2483{
2484 return skb->head + skb->inner_mac_header;
2485}
2486
2487static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2488{
2489 skb->inner_mac_header = skb->data - skb->head;
2490}
2491
2492static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2493 const int offset)
2494{
2495 skb_reset_inner_mac_header(skb);
2496 skb->inner_mac_header += offset;
2497}
2498static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2499{
2500 return skb->transport_header != (typeof(skb->transport_header))~0U;
2501}
2502
2503static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2504{
2505 return skb->head + skb->transport_header;
2506}
2507
2508static inline void skb_reset_transport_header(struct sk_buff *skb)
2509{
2510 skb->transport_header = skb->data - skb->head;
2511}
2512
2513static inline void skb_set_transport_header(struct sk_buff *skb,
2514 const int offset)
2515{
2516 skb_reset_transport_header(skb);
2517 skb->transport_header += offset;
2518}
2519
2520static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2521{
2522 return skb->head + skb->network_header;
2523}
2524
2525static inline void skb_reset_network_header(struct sk_buff *skb)
2526{
2527 skb->network_header = skb->data - skb->head;
2528}
2529
2530static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2531{
2532 skb_reset_network_header(skb);
2533 skb->network_header += offset;
2534}
2535
2536static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2537{
2538 return skb->head + skb->mac_header;
2539}
2540
2541static inline int skb_mac_offset(const struct sk_buff *skb)
2542{
2543 return skb_mac_header(skb) - skb->data;
2544}
2545
2546static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2547{
2548 return skb->network_header - skb->mac_header;
2549}
2550
2551static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2552{
2553 return skb->mac_header != (typeof(skb->mac_header))~0U;
2554}
2555
2556static inline void skb_unset_mac_header(struct sk_buff *skb)
2557{
2558 skb->mac_header = (typeof(skb->mac_header))~0U;
2559}
2560
2561static inline void skb_reset_mac_header(struct sk_buff *skb)
2562{
2563 skb->mac_header = skb->data - skb->head;
2564}
2565
2566static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2567{
2568 skb_reset_mac_header(skb);
2569 skb->mac_header += offset;
2570}
2571
2572static inline void skb_pop_mac_header(struct sk_buff *skb)
2573{
2574 skb->mac_header = skb->network_header;
2575}
2576
2577static inline void skb_probe_transport_header(struct sk_buff *skb)
2578{
2579 struct flow_keys_basic keys;
2580
2581 if (skb_transport_header_was_set(skb))
2582 return;
2583
2584 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2585 NULL, 0, 0, 0, 0))
2586 skb_set_transport_header(skb, keys.control.thoff);
2587}
2588
2589static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2590{
2591 if (skb_mac_header_was_set(skb)) {
2592 const unsigned char *old_mac = skb_mac_header(skb);
2593
2594 skb_set_mac_header(skb, -skb->mac_len);
2595 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2596 }
2597}
2598
2599static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2600{
2601 return skb->csum_start - skb_headroom(skb);
2602}
2603
2604static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2605{
2606 return skb->head + skb->csum_start;
2607}
2608
2609static inline int skb_transport_offset(const struct sk_buff *skb)
2610{
2611 return skb_transport_header(skb) - skb->data;
2612}
2613
2614static inline u32 skb_network_header_len(const struct sk_buff *skb)
2615{
2616 return skb->transport_header - skb->network_header;
2617}
2618
2619static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2620{
2621 return skb->inner_transport_header - skb->inner_network_header;
2622}
2623
2624static inline int skb_network_offset(const struct sk_buff *skb)
2625{
2626 return skb_network_header(skb) - skb->data;
2627}
2628
2629static inline int skb_inner_network_offset(const struct sk_buff *skb)
2630{
2631 return skb_inner_network_header(skb) - skb->data;
2632}
2633
2634static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2635{
2636 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2637}
2638
2639/*
2640 * CPUs often take a performance hit when accessing unaligned memory
2641 * locations. The actual performance hit varies, it can be small if the
2642 * hardware handles it or large if we have to take an exception and fix it
2643 * in software.
2644 *
2645 * Since an ethernet header is 14 bytes network drivers often end up with
2646 * the IP header at an unaligned offset. The IP header can be aligned by
2647 * shifting the start of the packet by 2 bytes. Drivers should do this
2648 * with:
2649 *
2650 * skb_reserve(skb, NET_IP_ALIGN);
2651 *
2652 * The downside to this alignment of the IP header is that the DMA is now
2653 * unaligned. On some architectures the cost of an unaligned DMA is high
2654 * and this cost outweighs the gains made by aligning the IP header.
2655 *
2656 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2657 * to be overridden.
2658 */
2659#ifndef NET_IP_ALIGN
2660#define NET_IP_ALIGN 2
2661#endif
2662
2663/*
2664 * The networking layer reserves some headroom in skb data (via
2665 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2666 * the header has to grow. In the default case, if the header has to grow
2667 * 32 bytes or less we avoid the reallocation.
2668 *
2669 * Unfortunately this headroom changes the DMA alignment of the resulting
2670 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2671 * on some architectures. An architecture can override this value,
2672 * perhaps setting it to a cacheline in size (since that will maintain
2673 * cacheline alignment of the DMA). It must be a power of 2.
2674 *
2675 * Various parts of the networking layer expect at least 32 bytes of
2676 * headroom, you should not reduce this.
2677 *
2678 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2679 * to reduce average number of cache lines per packet.
2680 * get_rps_cpu() for example only access one 64 bytes aligned block :
2681 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2682 */
2683#ifndef NET_SKB_PAD
2684#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2685#endif
2686
2687int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2688
2689static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2690{
2691 if (WARN_ON(skb_is_nonlinear(skb)))
2692 return;
2693 skb->len = len;
2694 skb_set_tail_pointer(skb, len);
2695}
2696
2697static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2698{
2699 __skb_set_length(skb, len);
2700}
2701
2702void skb_trim(struct sk_buff *skb, unsigned int len);
2703
2704static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2705{
2706 if (skb->data_len)
2707 return ___pskb_trim(skb, len);
2708 __skb_trim(skb, len);
2709 return 0;
2710}
2711
2712static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2713{
2714 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2715}
2716
2717/**
2718 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2719 * @skb: buffer to alter
2720 * @len: new length
2721 *
2722 * This is identical to pskb_trim except that the caller knows that
2723 * the skb is not cloned so we should never get an error due to out-
2724 * of-memory.
2725 */
2726static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2727{
2728 int err = pskb_trim(skb, len);
2729 BUG_ON(err);
2730}
2731
2732static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2733{
2734 unsigned int diff = len - skb->len;
2735
2736 if (skb_tailroom(skb) < diff) {
2737 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2738 GFP_ATOMIC);
2739 if (ret)
2740 return ret;
2741 }
2742 __skb_set_length(skb, len);
2743 return 0;
2744}
2745
2746/**
2747 * skb_orphan - orphan a buffer
2748 * @skb: buffer to orphan
2749 *
2750 * If a buffer currently has an owner then we call the owner's
2751 * destructor function and make the @skb unowned. The buffer continues
2752 * to exist but is no longer charged to its former owner.
2753 */
2754static inline void skb_orphan(struct sk_buff *skb)
2755{
2756 if (skb->destructor) {
2757 skb->destructor(skb);
2758 skb->destructor = NULL;
2759 skb->sk = NULL;
2760 } else {
2761 BUG_ON(skb->sk);
2762 }
2763}
2764
2765/**
2766 * skb_orphan_frags - orphan the frags contained in a buffer
2767 * @skb: buffer to orphan frags from
2768 * @gfp_mask: allocation mask for replacement pages
2769 *
2770 * For each frag in the SKB which needs a destructor (i.e. has an
2771 * owner) create a copy of that frag and release the original
2772 * page by calling the destructor.
2773 */
2774static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2775{
2776 if (likely(!skb_zcopy(skb)))
2777 return 0;
2778 if (!skb_zcopy_is_nouarg(skb) &&
2779 skb_uarg(skb)->callback == sock_zerocopy_callback)
2780 return 0;
2781 return skb_copy_ubufs(skb, gfp_mask);
2782}
2783
2784/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2785static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2786{
2787 if (likely(!skb_zcopy(skb)))
2788 return 0;
2789 return skb_copy_ubufs(skb, gfp_mask);
2790}
2791
2792/**
2793 * __skb_queue_purge - empty a list
2794 * @list: list to empty
2795 *
2796 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2797 * the list and one reference dropped. This function does not take the
2798 * list lock and the caller must hold the relevant locks to use it.
2799 */
2800static inline void __skb_queue_purge(struct sk_buff_head *list)
2801{
2802 struct sk_buff *skb;
2803 while ((skb = __skb_dequeue(list)) != NULL)
2804 kfree_skb(skb);
2805}
2806void skb_queue_purge(struct sk_buff_head *list);
2807
2808unsigned int skb_rbtree_purge(struct rb_root *root);
2809
2810void *netdev_alloc_frag(unsigned int fragsz);
2811
2812struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2813 gfp_t gfp_mask);
2814
2815/**
2816 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2817 * @dev: network device to receive on
2818 * @length: length to allocate
2819 *
2820 * Allocate a new &sk_buff and assign it a usage count of one. The
2821 * buffer has unspecified headroom built in. Users should allocate
2822 * the headroom they think they need without accounting for the
2823 * built in space. The built in space is used for optimisations.
2824 *
2825 * %NULL is returned if there is no free memory. Although this function
2826 * allocates memory it can be called from an interrupt.
2827 */
2828static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2829 unsigned int length)
2830{
2831 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2832}
2833
2834/* legacy helper around __netdev_alloc_skb() */
2835static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2836 gfp_t gfp_mask)
2837{
2838 return __netdev_alloc_skb(NULL, length, gfp_mask);
2839}
2840
2841/* legacy helper around netdev_alloc_skb() */
2842static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2843{
2844 return netdev_alloc_skb(NULL, length);
2845}
2846
2847
2848static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2849 unsigned int length, gfp_t gfp)
2850{
2851 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2852
2853 if (NET_IP_ALIGN && skb)
2854 skb_reserve(skb, NET_IP_ALIGN);
2855 return skb;
2856}
2857
2858static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2859 unsigned int length)
2860{
2861 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2862}
2863
2864static inline void skb_free_frag(void *addr)
2865{
2866 page_frag_free(addr);
2867}
2868
2869void *napi_alloc_frag(unsigned int fragsz);
2870struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2871 unsigned int length, gfp_t gfp_mask);
2872static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2873 unsigned int length)
2874{
2875 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2876}
2877void napi_consume_skb(struct sk_buff *skb, int budget);
2878
2879void __kfree_skb_flush(void);
2880void __kfree_skb_defer(struct sk_buff *skb);
2881
2882/**
2883 * __dev_alloc_pages - allocate page for network Rx
2884 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2885 * @order: size of the allocation
2886 *
2887 * Allocate a new page.
2888 *
2889 * %NULL is returned if there is no free memory.
2890*/
2891static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2892 unsigned int order)
2893{
2894 /* This piece of code contains several assumptions.
2895 * 1. This is for device Rx, therefor a cold page is preferred.
2896 * 2. The expectation is the user wants a compound page.
2897 * 3. If requesting a order 0 page it will not be compound
2898 * due to the check to see if order has a value in prep_new_page
2899 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2900 * code in gfp_to_alloc_flags that should be enforcing this.
2901 */
2902 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2903
2904 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2905}
2906
2907static inline struct page *dev_alloc_pages(unsigned int order)
2908{
2909 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2910}
2911
2912/**
2913 * __dev_alloc_page - allocate a page for network Rx
2914 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2915 *
2916 * Allocate a new page.
2917 *
2918 * %NULL is returned if there is no free memory.
2919 */
2920static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2921{
2922 return __dev_alloc_pages(gfp_mask, 0);
2923}
2924
2925static inline struct page *dev_alloc_page(void)
2926{
2927 return dev_alloc_pages(0);
2928}
2929
2930/**
2931 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2932 * @page: The page that was allocated from skb_alloc_page
2933 * @skb: The skb that may need pfmemalloc set
2934 */
2935static inline void skb_propagate_pfmemalloc(struct page *page,
2936 struct sk_buff *skb)
2937{
2938 if (page_is_pfmemalloc(page))
2939 skb->pfmemalloc = true;
2940}
2941
2942/**
2943 * skb_frag_off() - Returns the offset of a skb fragment
2944 * @frag: the paged fragment
2945 */
2946static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2947{
2948 return frag->bv_offset;
2949}
2950
2951/**
2952 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2953 * @frag: skb fragment
2954 * @delta: value to add
2955 */
2956static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2957{
2958 frag->bv_offset += delta;
2959}
2960
2961/**
2962 * skb_frag_off_set() - Sets the offset of a skb fragment
2963 * @frag: skb fragment
2964 * @offset: offset of fragment
2965 */
2966static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2967{
2968 frag->bv_offset = offset;
2969}
2970
2971/**
2972 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2973 * @fragto: skb fragment where offset is set
2974 * @fragfrom: skb fragment offset is copied from
2975 */
2976static inline void skb_frag_off_copy(skb_frag_t *fragto,
2977 const skb_frag_t *fragfrom)
2978{
2979 fragto->bv_offset = fragfrom->bv_offset;
2980}
2981
2982/**
2983 * skb_frag_page - retrieve the page referred to by a paged fragment
2984 * @frag: the paged fragment
2985 *
2986 * Returns the &struct page associated with @frag.
2987 */
2988static inline struct page *skb_frag_page(const skb_frag_t *frag)
2989{
2990 return frag->bv_page;
2991}
2992
2993/**
2994 * __skb_frag_ref - take an addition reference on a paged fragment.
2995 * @frag: the paged fragment
2996 *
2997 * Takes an additional reference on the paged fragment @frag.
2998 */
2999static inline void __skb_frag_ref(skb_frag_t *frag)
3000{
3001 get_page(skb_frag_page(frag));
3002}
3003
3004/**
3005 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3006 * @skb: the buffer
3007 * @f: the fragment offset.
3008 *
3009 * Takes an additional reference on the @f'th paged fragment of @skb.
3010 */
3011static inline void skb_frag_ref(struct sk_buff *skb, int f)
3012{
3013 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3014}
3015
3016/**
3017 * __skb_frag_unref - release a reference on a paged fragment.
3018 * @frag: the paged fragment
3019 *
3020 * Releases a reference on the paged fragment @frag.
3021 */
3022static inline void __skb_frag_unref(skb_frag_t *frag)
3023{
3024 put_page(skb_frag_page(frag));
3025}
3026
3027/**
3028 * skb_frag_unref - release a reference on a paged fragment of an skb.
3029 * @skb: the buffer
3030 * @f: the fragment offset
3031 *
3032 * Releases a reference on the @f'th paged fragment of @skb.
3033 */
3034static inline void skb_frag_unref(struct sk_buff *skb, int f)
3035{
3036 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
3037}
3038
3039/**
3040 * skb_frag_address - gets the address of the data contained in a paged fragment
3041 * @frag: the paged fragment buffer
3042 *
3043 * Returns the address of the data within @frag. The page must already
3044 * be mapped.
3045 */
3046static inline void *skb_frag_address(const skb_frag_t *frag)
3047{
3048 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3049}
3050
3051/**
3052 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3053 * @frag: the paged fragment buffer
3054 *
3055 * Returns the address of the data within @frag. Checks that the page
3056 * is mapped and returns %NULL otherwise.
3057 */
3058static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3059{
3060 void *ptr = page_address(skb_frag_page(frag));
3061 if (unlikely(!ptr))
3062 return NULL;
3063
3064 return ptr + skb_frag_off(frag);
3065}
3066
3067/**
3068 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3069 * @fragto: skb fragment where page is set
3070 * @fragfrom: skb fragment page is copied from
3071 */
3072static inline void skb_frag_page_copy(skb_frag_t *fragto,
3073 const skb_frag_t *fragfrom)
3074{
3075 fragto->bv_page = fragfrom->bv_page;
3076}
3077
3078/**
3079 * __skb_frag_set_page - sets the page contained in a paged fragment
3080 * @frag: the paged fragment
3081 * @page: the page to set
3082 *
3083 * Sets the fragment @frag to contain @page.
3084 */
3085static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3086{
3087 frag->bv_page = page;
3088}
3089
3090/**
3091 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3092 * @skb: the buffer
3093 * @f: the fragment offset
3094 * @page: the page to set
3095 *
3096 * Sets the @f'th fragment of @skb to contain @page.
3097 */
3098static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3099 struct page *page)
3100{
3101 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3102}
3103
3104bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3105
3106/**
3107 * skb_frag_dma_map - maps a paged fragment via the DMA API
3108 * @dev: the device to map the fragment to
3109 * @frag: the paged fragment to map
3110 * @offset: the offset within the fragment (starting at the
3111 * fragment's own offset)
3112 * @size: the number of bytes to map
3113 * @dir: the direction of the mapping (``PCI_DMA_*``)
3114 *
3115 * Maps the page associated with @frag to @device.
3116 */
3117static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3118 const skb_frag_t *frag,
3119 size_t offset, size_t size,
3120 enum dma_data_direction dir)
3121{
3122 return dma_map_page(dev, skb_frag_page(frag),
3123 skb_frag_off(frag) + offset, size, dir);
3124}
3125
3126static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3127 gfp_t gfp_mask)
3128{
3129 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3130}
3131
3132
3133static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3134 gfp_t gfp_mask)
3135{
3136 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3137}
3138
3139
3140/**
3141 * skb_clone_writable - is the header of a clone writable
3142 * @skb: buffer to check
3143 * @len: length up to which to write
3144 *
3145 * Returns true if modifying the header part of the cloned buffer
3146 * does not requires the data to be copied.
3147 */
3148static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3149{
3150 return !skb_header_cloned(skb) &&
3151 skb_headroom(skb) + len <= skb->hdr_len;
3152}
3153
3154static inline int skb_try_make_writable(struct sk_buff *skb,
3155 unsigned int write_len)
3156{
3157 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3158 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3159}
3160
3161static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3162 int cloned)
3163{
3164 int delta = 0;
3165
3166 if (headroom > skb_headroom(skb))
3167 delta = headroom - skb_headroom(skb);
3168
3169 if (delta || cloned)
3170 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3171 GFP_ATOMIC);
3172 return 0;
3173}
3174
3175/**
3176 * skb_cow - copy header of skb when it is required
3177 * @skb: buffer to cow
3178 * @headroom: needed headroom
3179 *
3180 * If the skb passed lacks sufficient headroom or its data part
3181 * is shared, data is reallocated. If reallocation fails, an error
3182 * is returned and original skb is not changed.
3183 *
3184 * The result is skb with writable area skb->head...skb->tail
3185 * and at least @headroom of space at head.
3186 */
3187static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3188{
3189 return __skb_cow(skb, headroom, skb_cloned(skb));
3190}
3191
3192/**
3193 * skb_cow_head - skb_cow but only making the head writable
3194 * @skb: buffer to cow
3195 * @headroom: needed headroom
3196 *
3197 * This function is identical to skb_cow except that we replace the
3198 * skb_cloned check by skb_header_cloned. It should be used when
3199 * you only need to push on some header and do not need to modify
3200 * the data.
3201 */
3202static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3203{
3204 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3205}
3206
3207/**
3208 * skb_padto - pad an skbuff up to a minimal size
3209 * @skb: buffer to pad
3210 * @len: minimal length
3211 *
3212 * Pads up a buffer to ensure the trailing bytes exist and are
3213 * blanked. If the buffer already contains sufficient data it
3214 * is untouched. Otherwise it is extended. Returns zero on
3215 * success. The skb is freed on error.
3216 */
3217static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3218{
3219 unsigned int size = skb->len;
3220 if (likely(size >= len))
3221 return 0;
3222 return skb_pad(skb, len - size);
3223}
3224
3225/**
3226 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3227 * @skb: buffer to pad
3228 * @len: minimal length
3229 * @free_on_error: free buffer on error
3230 *
3231 * Pads up a buffer to ensure the trailing bytes exist and are
3232 * blanked. If the buffer already contains sufficient data it
3233 * is untouched. Otherwise it is extended. Returns zero on
3234 * success. The skb is freed on error if @free_on_error is true.
3235 */
3236static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3237 unsigned int len,
3238 bool free_on_error)
3239{
3240 unsigned int size = skb->len;
3241
3242 if (unlikely(size < len)) {
3243 len -= size;
3244 if (__skb_pad(skb, len, free_on_error))
3245 return -ENOMEM;
3246 __skb_put(skb, len);
3247 }
3248 return 0;
3249}
3250
3251/**
3252 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3253 * @skb: buffer to pad
3254 * @len: minimal length
3255 *
3256 * Pads up a buffer to ensure the trailing bytes exist and are
3257 * blanked. If the buffer already contains sufficient data it
3258 * is untouched. Otherwise it is extended. Returns zero on
3259 * success. The skb is freed on error.
3260 */
3261static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3262{
3263 return __skb_put_padto(skb, len, true);
3264}
3265
3266static inline int skb_add_data(struct sk_buff *skb,
3267 struct iov_iter *from, int copy)
3268{
3269 const int off = skb->len;
3270
3271 if (skb->ip_summed == CHECKSUM_NONE) {
3272 __wsum csum = 0;
3273 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3274 &csum, from)) {
3275 skb->csum = csum_block_add(skb->csum, csum, off);
3276 return 0;
3277 }
3278 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3279 return 0;
3280
3281 __skb_trim(skb, off);
3282 return -EFAULT;
3283}
3284
3285static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3286 const struct page *page, int off)
3287{
3288 if (skb_zcopy(skb))
3289 return false;
3290 if (i) {
3291 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3292
3293 return page == skb_frag_page(frag) &&
3294 off == skb_frag_off(frag) + skb_frag_size(frag);
3295 }
3296 return false;
3297}
3298
3299static inline int __skb_linearize(struct sk_buff *skb)
3300{
3301 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3302}
3303
3304/**
3305 * skb_linearize - convert paged skb to linear one
3306 * @skb: buffer to linarize
3307 *
3308 * If there is no free memory -ENOMEM is returned, otherwise zero
3309 * is returned and the old skb data released.
3310 */
3311static inline int skb_linearize(struct sk_buff *skb)
3312{
3313 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3314}
3315
3316/**
3317 * skb_has_shared_frag - can any frag be overwritten
3318 * @skb: buffer to test
3319 *
3320 * Return true if the skb has at least one frag that might be modified
3321 * by an external entity (as in vmsplice()/sendfile())
3322 */
3323static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3324{
3325 return skb_is_nonlinear(skb) &&
3326 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3327}
3328
3329/**
3330 * skb_linearize_cow - make sure skb is linear and writable
3331 * @skb: buffer to process
3332 *
3333 * If there is no free memory -ENOMEM is returned, otherwise zero
3334 * is returned and the old skb data released.
3335 */
3336static inline int skb_linearize_cow(struct sk_buff *skb)
3337{
3338 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3339 __skb_linearize(skb) : 0;
3340}
3341
3342static __always_inline void
3343__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3344 unsigned int off)
3345{
3346 if (skb->ip_summed == CHECKSUM_COMPLETE)
3347 skb->csum = csum_block_sub(skb->csum,
3348 csum_partial(start, len, 0), off);
3349 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3350 skb_checksum_start_offset(skb) < 0)
3351 skb->ip_summed = CHECKSUM_NONE;
3352}
3353
3354/**
3355 * skb_postpull_rcsum - update checksum for received skb after pull
3356 * @skb: buffer to update
3357 * @start: start of data before pull
3358 * @len: length of data pulled
3359 *
3360 * After doing a pull on a received packet, you need to call this to
3361 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3362 * CHECKSUM_NONE so that it can be recomputed from scratch.
3363 */
3364static inline void skb_postpull_rcsum(struct sk_buff *skb,
3365 const void *start, unsigned int len)
3366{
3367 __skb_postpull_rcsum(skb, start, len, 0);
3368}
3369
3370static __always_inline void
3371__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3372 unsigned int off)
3373{
3374 if (skb->ip_summed == CHECKSUM_COMPLETE)
3375 skb->csum = csum_block_add(skb->csum,
3376 csum_partial(start, len, 0), off);
3377}
3378
3379/**
3380 * skb_postpush_rcsum - update checksum for received skb after push
3381 * @skb: buffer to update
3382 * @start: start of data after push
3383 * @len: length of data pushed
3384 *
3385 * After doing a push on a received packet, you need to call this to
3386 * update the CHECKSUM_COMPLETE checksum.
3387 */
3388static inline void skb_postpush_rcsum(struct sk_buff *skb,
3389 const void *start, unsigned int len)
3390{
3391 __skb_postpush_rcsum(skb, start, len, 0);
3392}
3393
3394void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3395
3396/**
3397 * skb_push_rcsum - push skb and update receive checksum
3398 * @skb: buffer to update
3399 * @len: length of data pulled
3400 *
3401 * This function performs an skb_push on the packet and updates
3402 * the CHECKSUM_COMPLETE checksum. It should be used on
3403 * receive path processing instead of skb_push unless you know
3404 * that the checksum difference is zero (e.g., a valid IP header)
3405 * or you are setting ip_summed to CHECKSUM_NONE.
3406 */
3407static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3408{
3409 skb_push(skb, len);
3410 skb_postpush_rcsum(skb, skb->data, len);
3411 return skb->data;
3412}
3413
3414int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3415/**
3416 * pskb_trim_rcsum - trim received skb and update checksum
3417 * @skb: buffer to trim
3418 * @len: new length
3419 *
3420 * This is exactly the same as pskb_trim except that it ensures the
3421 * checksum of received packets are still valid after the operation.
3422 * It can change skb pointers.
3423 */
3424
3425static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3426{
3427 if (likely(len >= skb->len))
3428 return 0;
3429 return pskb_trim_rcsum_slow(skb, len);
3430}
3431
3432static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3433{
3434 if (skb->ip_summed == CHECKSUM_COMPLETE)
3435 skb->ip_summed = CHECKSUM_NONE;
3436 __skb_trim(skb, len);
3437 return 0;
3438}
3439
3440static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3441{
3442 if (skb->ip_summed == CHECKSUM_COMPLETE)
3443 skb->ip_summed = CHECKSUM_NONE;
3444 return __skb_grow(skb, len);
3445}
3446
3447#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3448#define skb_rb_first(root) rb_to_skb(rb_first(root))
3449#define skb_rb_last(root) rb_to_skb(rb_last(root))
3450#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3451#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3452
3453#define skb_queue_walk(queue, skb) \
3454 for (skb = (queue)->next; \
3455 skb != (struct sk_buff *)(queue); \
3456 skb = skb->next)
3457
3458#define skb_queue_walk_safe(queue, skb, tmp) \
3459 for (skb = (queue)->next, tmp = skb->next; \
3460 skb != (struct sk_buff *)(queue); \
3461 skb = tmp, tmp = skb->next)
3462
3463#define skb_queue_walk_from(queue, skb) \
3464 for (; skb != (struct sk_buff *)(queue); \
3465 skb = skb->next)
3466
3467#define skb_rbtree_walk(skb, root) \
3468 for (skb = skb_rb_first(root); skb != NULL; \
3469 skb = skb_rb_next(skb))
3470
3471#define skb_rbtree_walk_from(skb) \
3472 for (; skb != NULL; \
3473 skb = skb_rb_next(skb))
3474
3475#define skb_rbtree_walk_from_safe(skb, tmp) \
3476 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3477 skb = tmp)
3478
3479#define skb_queue_walk_from_safe(queue, skb, tmp) \
3480 for (tmp = skb->next; \
3481 skb != (struct sk_buff *)(queue); \
3482 skb = tmp, tmp = skb->next)
3483
3484#define skb_queue_reverse_walk(queue, skb) \
3485 for (skb = (queue)->prev; \
3486 skb != (struct sk_buff *)(queue); \
3487 skb = skb->prev)
3488
3489#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3490 for (skb = (queue)->prev, tmp = skb->prev; \
3491 skb != (struct sk_buff *)(queue); \
3492 skb = tmp, tmp = skb->prev)
3493
3494#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3495 for (tmp = skb->prev; \
3496 skb != (struct sk_buff *)(queue); \
3497 skb = tmp, tmp = skb->prev)
3498
3499static inline bool skb_has_frag_list(const struct sk_buff *skb)
3500{
3501 return skb_shinfo(skb)->frag_list != NULL;
3502}
3503
3504static inline void skb_frag_list_init(struct sk_buff *skb)
3505{
3506 skb_shinfo(skb)->frag_list = NULL;
3507}
3508
3509#define skb_walk_frags(skb, iter) \
3510 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3511
3512
3513int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3514 int *err, long *timeo_p,
3515 const struct sk_buff *skb);
3516struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3517 struct sk_buff_head *queue,
3518 unsigned int flags,
3519 int *off, int *err,
3520 struct sk_buff **last);
3521struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3522 struct sk_buff_head *queue,
3523 unsigned int flags, int *off, int *err,
3524 struct sk_buff **last);
3525struct sk_buff *__skb_recv_datagram(struct sock *sk,
3526 struct sk_buff_head *sk_queue,
3527 unsigned int flags, int *off, int *err);
3528struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3529 int *err);
3530__poll_t datagram_poll(struct file *file, struct socket *sock,
3531 struct poll_table_struct *wait);
3532int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3533 struct iov_iter *to, int size);
3534static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3535 struct msghdr *msg, int size)
3536{
3537 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3538}
3539int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3540 struct msghdr *msg);
3541int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3542 struct iov_iter *to, int len,
3543 struct ahash_request *hash);
3544int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3545 struct iov_iter *from, int len);
3546int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3547void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3548void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3549static inline void skb_free_datagram_locked(struct sock *sk,
3550 struct sk_buff *skb)
3551{
3552 __skb_free_datagram_locked(sk, skb, 0);
3553}
3554int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3555int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3556int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3557__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3558 int len);
3559int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3560 struct pipe_inode_info *pipe, unsigned int len,
3561 unsigned int flags);
3562int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3563 int len);
3564void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3565unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3566int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3567 int len, int hlen);
3568void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3569int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3570void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3571bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3572bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3573struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3574struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3575 unsigned int offset);
3576struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3577int skb_ensure_writable(struct sk_buff *skb, int write_len);
3578int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3579int skb_vlan_pop(struct sk_buff *skb);
3580int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3581int skb_eth_pop(struct sk_buff *skb);
3582int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3583 const unsigned char *src);
3584int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3585 int mac_len, bool ethernet);
3586int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3587 bool ethernet);
3588int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3589int skb_mpls_dec_ttl(struct sk_buff *skb);
3590struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3591 gfp_t gfp);
3592
3593static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3594{
3595 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3596}
3597
3598static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3599{
3600 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3601}
3602
3603struct skb_checksum_ops {
3604 __wsum (*update)(const void *mem, int len, __wsum wsum);
3605 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3606};
3607
3608extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3609
3610__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3611 __wsum csum, const struct skb_checksum_ops *ops);
3612__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3613 __wsum csum);
3614
3615static inline void * __must_check
3616__skb_header_pointer(const struct sk_buff *skb, int offset,
3617 int len, void *data, int hlen, void *buffer)
3618{
3619 if (hlen - offset >= len)
3620 return data + offset;
3621
3622 if (!skb ||
3623 skb_copy_bits(skb, offset, buffer, len) < 0)
3624 return NULL;
3625
3626 return buffer;
3627}
3628
3629static inline void * __must_check
3630skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3631{
3632 return __skb_header_pointer(skb, offset, len, skb->data,
3633 skb_headlen(skb), buffer);
3634}
3635
3636/**
3637 * skb_needs_linearize - check if we need to linearize a given skb
3638 * depending on the given device features.
3639 * @skb: socket buffer to check
3640 * @features: net device features
3641 *
3642 * Returns true if either:
3643 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3644 * 2. skb is fragmented and the device does not support SG.
3645 */
3646static inline bool skb_needs_linearize(struct sk_buff *skb,
3647 netdev_features_t features)
3648{
3649 return skb_is_nonlinear(skb) &&
3650 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3651 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3652}
3653
3654static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3655 void *to,
3656 const unsigned int len)
3657{
3658 memcpy(to, skb->data, len);
3659}
3660
3661static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3662 const int offset, void *to,
3663 const unsigned int len)
3664{
3665 memcpy(to, skb->data + offset, len);
3666}
3667
3668static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3669 const void *from,
3670 const unsigned int len)
3671{
3672 memcpy(skb->data, from, len);
3673}
3674
3675static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3676 const int offset,
3677 const void *from,
3678 const unsigned int len)
3679{
3680 memcpy(skb->data + offset, from, len);
3681}
3682
3683void skb_init(void);
3684
3685static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3686{
3687 return skb->tstamp;
3688}
3689
3690/**
3691 * skb_get_timestamp - get timestamp from a skb
3692 * @skb: skb to get stamp from
3693 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
3694 *
3695 * Timestamps are stored in the skb as offsets to a base timestamp.
3696 * This function converts the offset back to a struct timeval and stores
3697 * it in stamp.
3698 */
3699static inline void skb_get_timestamp(const struct sk_buff *skb,
3700 struct __kernel_old_timeval *stamp)
3701{
3702 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
3703}
3704
3705static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3706 struct __kernel_sock_timeval *stamp)
3707{
3708 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3709
3710 stamp->tv_sec = ts.tv_sec;
3711 stamp->tv_usec = ts.tv_nsec / 1000;
3712}
3713
3714static inline void skb_get_timestampns(const struct sk_buff *skb,
3715 struct __kernel_old_timespec *stamp)
3716{
3717 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3718
3719 stamp->tv_sec = ts.tv_sec;
3720 stamp->tv_nsec = ts.tv_nsec;
3721}
3722
3723static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3724 struct __kernel_timespec *stamp)
3725{
3726 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3727
3728 stamp->tv_sec = ts.tv_sec;
3729 stamp->tv_nsec = ts.tv_nsec;
3730}
3731
3732static inline void __net_timestamp(struct sk_buff *skb)
3733{
3734 skb->tstamp = ktime_get_real();
3735}
3736
3737static inline ktime_t net_timedelta(ktime_t t)
3738{
3739 return ktime_sub(ktime_get_real(), t);
3740}
3741
3742static inline ktime_t net_invalid_timestamp(void)
3743{
3744 return 0;
3745}
3746
3747static inline u8 skb_metadata_len(const struct sk_buff *skb)
3748{
3749 return skb_shinfo(skb)->meta_len;
3750}
3751
3752static inline void *skb_metadata_end(const struct sk_buff *skb)
3753{
3754 return skb_mac_header(skb);
3755}
3756
3757static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3758 const struct sk_buff *skb_b,
3759 u8 meta_len)
3760{
3761 const void *a = skb_metadata_end(skb_a);
3762 const void *b = skb_metadata_end(skb_b);
3763 /* Using more efficient varaiant than plain call to memcmp(). */
3764#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3765 u64 diffs = 0;
3766
3767 switch (meta_len) {
3768#define __it(x, op) (x -= sizeof(u##op))
3769#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3770 case 32: diffs |= __it_diff(a, b, 64);
3771 fallthrough;
3772 case 24: diffs |= __it_diff(a, b, 64);
3773 fallthrough;
3774 case 16: diffs |= __it_diff(a, b, 64);
3775 fallthrough;
3776 case 8: diffs |= __it_diff(a, b, 64);
3777 break;
3778 case 28: diffs |= __it_diff(a, b, 64);
3779 fallthrough;
3780 case 20: diffs |= __it_diff(a, b, 64);
3781 fallthrough;
3782 case 12: diffs |= __it_diff(a, b, 64);
3783 fallthrough;
3784 case 4: diffs |= __it_diff(a, b, 32);
3785 break;
3786 }
3787 return diffs;
3788#else
3789 return memcmp(a - meta_len, b - meta_len, meta_len);
3790#endif
3791}
3792
3793static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3794 const struct sk_buff *skb_b)
3795{
3796 u8 len_a = skb_metadata_len(skb_a);
3797 u8 len_b = skb_metadata_len(skb_b);
3798
3799 if (!(len_a | len_b))
3800 return false;
3801
3802 return len_a != len_b ?
3803 true : __skb_metadata_differs(skb_a, skb_b, len_a);
3804}
3805
3806static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3807{
3808 skb_shinfo(skb)->meta_len = meta_len;
3809}
3810
3811static inline void skb_metadata_clear(struct sk_buff *skb)
3812{
3813 skb_metadata_set(skb, 0);
3814}
3815
3816struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3817
3818#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3819
3820void skb_clone_tx_timestamp(struct sk_buff *skb);
3821bool skb_defer_rx_timestamp(struct sk_buff *skb);
3822
3823#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3824
3825static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3826{
3827}
3828
3829static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3830{
3831 return false;
3832}
3833
3834#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3835
3836/**
3837 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3838 *
3839 * PHY drivers may accept clones of transmitted packets for
3840 * timestamping via their phy_driver.txtstamp method. These drivers
3841 * must call this function to return the skb back to the stack with a
3842 * timestamp.
3843 *
3844 * @skb: clone of the original outgoing packet
3845 * @hwtstamps: hardware time stamps
3846 *
3847 */
3848void skb_complete_tx_timestamp(struct sk_buff *skb,
3849 struct skb_shared_hwtstamps *hwtstamps);
3850
3851void __skb_tstamp_tx(struct sk_buff *orig_skb,
3852 struct skb_shared_hwtstamps *hwtstamps,
3853 struct sock *sk, int tstype);
3854
3855/**
3856 * skb_tstamp_tx - queue clone of skb with send time stamps
3857 * @orig_skb: the original outgoing packet
3858 * @hwtstamps: hardware time stamps, may be NULL if not available
3859 *
3860 * If the skb has a socket associated, then this function clones the
3861 * skb (thus sharing the actual data and optional structures), stores
3862 * the optional hardware time stamping information (if non NULL) or
3863 * generates a software time stamp (otherwise), then queues the clone
3864 * to the error queue of the socket. Errors are silently ignored.
3865 */
3866void skb_tstamp_tx(struct sk_buff *orig_skb,
3867 struct skb_shared_hwtstamps *hwtstamps);
3868
3869/**
3870 * skb_tx_timestamp() - Driver hook for transmit timestamping
3871 *
3872 * Ethernet MAC Drivers should call this function in their hard_xmit()
3873 * function immediately before giving the sk_buff to the MAC hardware.
3874 *
3875 * Specifically, one should make absolutely sure that this function is
3876 * called before TX completion of this packet can trigger. Otherwise
3877 * the packet could potentially already be freed.
3878 *
3879 * @skb: A socket buffer.
3880 */
3881static inline void skb_tx_timestamp(struct sk_buff *skb)
3882{
3883 skb_clone_tx_timestamp(skb);
3884 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3885 skb_tstamp_tx(skb, NULL);
3886}
3887
3888/**
3889 * skb_complete_wifi_ack - deliver skb with wifi status
3890 *
3891 * @skb: the original outgoing packet
3892 * @acked: ack status
3893 *
3894 */
3895void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3896
3897__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3898__sum16 __skb_checksum_complete(struct sk_buff *skb);
3899
3900static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3901{
3902 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3903 skb->csum_valid ||
3904 (skb->ip_summed == CHECKSUM_PARTIAL &&
3905 skb_checksum_start_offset(skb) >= 0));
3906}
3907
3908/**
3909 * skb_checksum_complete - Calculate checksum of an entire packet
3910 * @skb: packet to process
3911 *
3912 * This function calculates the checksum over the entire packet plus
3913 * the value of skb->csum. The latter can be used to supply the
3914 * checksum of a pseudo header as used by TCP/UDP. It returns the
3915 * checksum.
3916 *
3917 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3918 * this function can be used to verify that checksum on received
3919 * packets. In that case the function should return zero if the
3920 * checksum is correct. In particular, this function will return zero
3921 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3922 * hardware has already verified the correctness of the checksum.
3923 */
3924static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3925{
3926 return skb_csum_unnecessary(skb) ?
3927 0 : __skb_checksum_complete(skb);
3928}
3929
3930static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3931{
3932 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3933 if (skb->csum_level == 0)
3934 skb->ip_summed = CHECKSUM_NONE;
3935 else
3936 skb->csum_level--;
3937 }
3938}
3939
3940static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3941{
3942 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3943 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3944 skb->csum_level++;
3945 } else if (skb->ip_summed == CHECKSUM_NONE) {
3946 skb->ip_summed = CHECKSUM_UNNECESSARY;
3947 skb->csum_level = 0;
3948 }
3949}
3950
3951static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
3952{
3953 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3954 skb->ip_summed = CHECKSUM_NONE;
3955 skb->csum_level = 0;
3956 }
3957}
3958
3959/* Check if we need to perform checksum complete validation.
3960 *
3961 * Returns true if checksum complete is needed, false otherwise
3962 * (either checksum is unnecessary or zero checksum is allowed).
3963 */
3964static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3965 bool zero_okay,
3966 __sum16 check)
3967{
3968 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3969 skb->csum_valid = 1;
3970 __skb_decr_checksum_unnecessary(skb);
3971 return false;
3972 }
3973
3974 return true;
3975}
3976
3977/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3978 * in checksum_init.
3979 */
3980#define CHECKSUM_BREAK 76
3981
3982/* Unset checksum-complete
3983 *
3984 * Unset checksum complete can be done when packet is being modified
3985 * (uncompressed for instance) and checksum-complete value is
3986 * invalidated.
3987 */
3988static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3989{
3990 if (skb->ip_summed == CHECKSUM_COMPLETE)
3991 skb->ip_summed = CHECKSUM_NONE;
3992}
3993
3994/* Validate (init) checksum based on checksum complete.
3995 *
3996 * Return values:
3997 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3998 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3999 * checksum is stored in skb->csum for use in __skb_checksum_complete
4000 * non-zero: value of invalid checksum
4001 *
4002 */
4003static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4004 bool complete,
4005 __wsum psum)
4006{
4007 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4008 if (!csum_fold(csum_add(psum, skb->csum))) {
4009 skb->csum_valid = 1;
4010 return 0;
4011 }
4012 }
4013
4014 skb->csum = psum;
4015
4016 if (complete || skb->len <= CHECKSUM_BREAK) {
4017 __sum16 csum;
4018
4019 csum = __skb_checksum_complete(skb);
4020 skb->csum_valid = !csum;
4021 return csum;
4022 }
4023
4024 return 0;
4025}
4026
4027static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4028{
4029 return 0;
4030}
4031
4032/* Perform checksum validate (init). Note that this is a macro since we only
4033 * want to calculate the pseudo header which is an input function if necessary.
4034 * First we try to validate without any computation (checksum unnecessary) and
4035 * then calculate based on checksum complete calling the function to compute
4036 * pseudo header.
4037 *
4038 * Return values:
4039 * 0: checksum is validated or try to in skb_checksum_complete
4040 * non-zero: value of invalid checksum
4041 */
4042#define __skb_checksum_validate(skb, proto, complete, \
4043 zero_okay, check, compute_pseudo) \
4044({ \
4045 __sum16 __ret = 0; \
4046 skb->csum_valid = 0; \
4047 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4048 __ret = __skb_checksum_validate_complete(skb, \
4049 complete, compute_pseudo(skb, proto)); \
4050 __ret; \
4051})
4052
4053#define skb_checksum_init(skb, proto, compute_pseudo) \
4054 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4055
4056#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4057 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4058
4059#define skb_checksum_validate(skb, proto, compute_pseudo) \
4060 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4061
4062#define skb_checksum_validate_zero_check(skb, proto, check, \
4063 compute_pseudo) \
4064 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4065
4066#define skb_checksum_simple_validate(skb) \
4067 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4068
4069static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4070{
4071 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4072}
4073
4074static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4075{
4076 skb->csum = ~pseudo;
4077 skb->ip_summed = CHECKSUM_COMPLETE;
4078}
4079
4080#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4081do { \
4082 if (__skb_checksum_convert_check(skb)) \
4083 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4084} while (0)
4085
4086static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4087 u16 start, u16 offset)
4088{
4089 skb->ip_summed = CHECKSUM_PARTIAL;
4090 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4091 skb->csum_offset = offset - start;
4092}
4093
4094/* Update skbuf and packet to reflect the remote checksum offload operation.
4095 * When called, ptr indicates the starting point for skb->csum when
4096 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4097 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4098 */
4099static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4100 int start, int offset, bool nopartial)
4101{
4102 __wsum delta;
4103
4104 if (!nopartial) {
4105 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4106 return;
4107 }
4108
4109 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4110 __skb_checksum_complete(skb);
4111 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4112 }
4113
4114 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4115
4116 /* Adjust skb->csum since we changed the packet */
4117 skb->csum = csum_add(skb->csum, delta);
4118}
4119
4120static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4121{
4122#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4123 return (void *)(skb->_nfct & NFCT_PTRMASK);
4124#else
4125 return NULL;
4126#endif
4127}
4128
4129static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4130{
4131#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4132 return skb->_nfct;
4133#else
4134 return 0UL;
4135#endif
4136}
4137
4138static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4139{
4140#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4141 skb->_nfct = nfct;
4142#endif
4143}
4144
4145#ifdef CONFIG_SKB_EXTENSIONS
4146enum skb_ext_id {
4147#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4148 SKB_EXT_BRIDGE_NF,
4149#endif
4150#ifdef CONFIG_XFRM
4151 SKB_EXT_SEC_PATH,
4152#endif
4153#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4154 TC_SKB_EXT,
4155#endif
4156#if IS_ENABLED(CONFIG_MPTCP)
4157 SKB_EXT_MPTCP,
4158#endif
4159 SKB_EXT_NUM, /* must be last */
4160};
4161
4162/**
4163 * struct skb_ext - sk_buff extensions
4164 * @refcnt: 1 on allocation, deallocated on 0
4165 * @offset: offset to add to @data to obtain extension address
4166 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4167 * @data: start of extension data, variable sized
4168 *
4169 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4170 * to use 'u8' types while allowing up to 2kb worth of extension data.
4171 */
4172struct skb_ext {
4173 refcount_t refcnt;
4174 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4175 u8 chunks; /* same */
4176 char data[] __aligned(8);
4177};
4178
4179struct skb_ext *__skb_ext_alloc(gfp_t flags);
4180void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4181 struct skb_ext *ext);
4182void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4183void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4184void __skb_ext_put(struct skb_ext *ext);
4185
4186static inline void skb_ext_put(struct sk_buff *skb)
4187{
4188 if (skb->active_extensions)
4189 __skb_ext_put(skb->extensions);
4190}
4191
4192static inline void __skb_ext_copy(struct sk_buff *dst,
4193 const struct sk_buff *src)
4194{
4195 dst->active_extensions = src->active_extensions;
4196
4197 if (src->active_extensions) {
4198 struct skb_ext *ext = src->extensions;
4199
4200 refcount_inc(&ext->refcnt);
4201 dst->extensions = ext;
4202 }
4203}
4204
4205static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4206{
4207 skb_ext_put(dst);
4208 __skb_ext_copy(dst, src);
4209}
4210
4211static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4212{
4213 return !!ext->offset[i];
4214}
4215
4216static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4217{
4218 return skb->active_extensions & (1 << id);
4219}
4220
4221static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4222{
4223 if (skb_ext_exist(skb, id))
4224 __skb_ext_del(skb, id);
4225}
4226
4227static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4228{
4229 if (skb_ext_exist(skb, id)) {
4230 struct skb_ext *ext = skb->extensions;
4231
4232 return (void *)ext + (ext->offset[id] << 3);
4233 }
4234
4235 return NULL;
4236}
4237
4238static inline void skb_ext_reset(struct sk_buff *skb)
4239{
4240 if (unlikely(skb->active_extensions)) {
4241 __skb_ext_put(skb->extensions);
4242 skb->active_extensions = 0;
4243 }
4244}
4245
4246static inline bool skb_has_extensions(struct sk_buff *skb)
4247{
4248 return unlikely(skb->active_extensions);
4249}
4250#else
4251static inline void skb_ext_put(struct sk_buff *skb) {}
4252static inline void skb_ext_reset(struct sk_buff *skb) {}
4253static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4254static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4255static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4256static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4257#endif /* CONFIG_SKB_EXTENSIONS */
4258
4259static inline void nf_reset_ct(struct sk_buff *skb)
4260{
4261#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4262 nf_conntrack_put(skb_nfct(skb));
4263 skb->_nfct = 0;
4264#endif
4265}
4266
4267static inline void nf_reset_trace(struct sk_buff *skb)
4268{
4269#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4270 skb->nf_trace = 0;
4271#endif
4272}
4273
4274static inline void ipvs_reset(struct sk_buff *skb)
4275{
4276#if IS_ENABLED(CONFIG_IP_VS)
4277 skb->ipvs_property = 0;
4278#endif
4279}
4280
4281/* Note: This doesn't put any conntrack info in dst. */
4282static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4283 bool copy)
4284{
4285#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4286 dst->_nfct = src->_nfct;
4287 nf_conntrack_get(skb_nfct(src));
4288#endif
4289#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4290 if (copy)
4291 dst->nf_trace = src->nf_trace;
4292#endif
4293}
4294
4295static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4296{
4297#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4298 nf_conntrack_put(skb_nfct(dst));
4299#endif
4300 __nf_copy(dst, src, true);
4301}
4302
4303#ifdef CONFIG_NETWORK_SECMARK
4304static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4305{
4306 to->secmark = from->secmark;
4307}
4308
4309static inline void skb_init_secmark(struct sk_buff *skb)
4310{
4311 skb->secmark = 0;
4312}
4313#else
4314static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4315{ }
4316
4317static inline void skb_init_secmark(struct sk_buff *skb)
4318{ }
4319#endif
4320
4321static inline int secpath_exists(const struct sk_buff *skb)
4322{
4323#ifdef CONFIG_XFRM
4324 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4325#else
4326 return 0;
4327#endif
4328}
4329
4330static inline bool skb_irq_freeable(const struct sk_buff *skb)
4331{
4332 return !skb->destructor &&
4333 !secpath_exists(skb) &&
4334 !skb_nfct(skb) &&
4335 !skb->_skb_refdst &&
4336 !skb_has_frag_list(skb);
4337}
4338
4339static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4340{
4341 skb->queue_mapping = queue_mapping;
4342}
4343
4344static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4345{
4346 return skb->queue_mapping;
4347}
4348
4349static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4350{
4351 to->queue_mapping = from->queue_mapping;
4352}
4353
4354static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4355{
4356 skb->queue_mapping = rx_queue + 1;
4357}
4358
4359static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4360{
4361 return skb->queue_mapping - 1;
4362}
4363
4364static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4365{
4366 return skb->queue_mapping != 0;
4367}
4368
4369static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4370{
4371 skb->dst_pending_confirm = val;
4372}
4373
4374static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4375{
4376 return skb->dst_pending_confirm != 0;
4377}
4378
4379static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4380{
4381#ifdef CONFIG_XFRM
4382 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4383#else
4384 return NULL;
4385#endif
4386}
4387
4388/* Keeps track of mac header offset relative to skb->head.
4389 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4390 * For non-tunnel skb it points to skb_mac_header() and for
4391 * tunnel skb it points to outer mac header.
4392 * Keeps track of level of encapsulation of network headers.
4393 */
4394struct skb_gso_cb {
4395 union {
4396 int mac_offset;
4397 int data_offset;
4398 };
4399 int encap_level;
4400 __wsum csum;
4401 __u16 csum_start;
4402};
4403#define SKB_GSO_CB_OFFSET 32
4404#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4405
4406static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4407{
4408 return (skb_mac_header(inner_skb) - inner_skb->head) -
4409 SKB_GSO_CB(inner_skb)->mac_offset;
4410}
4411
4412static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4413{
4414 int new_headroom, headroom;
4415 int ret;
4416
4417 headroom = skb_headroom(skb);
4418 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4419 if (ret)
4420 return ret;
4421
4422 new_headroom = skb_headroom(skb);
4423 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4424 return 0;
4425}
4426
4427static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4428{
4429 /* Do not update partial checksums if remote checksum is enabled. */
4430 if (skb->remcsum_offload)
4431 return;
4432
4433 SKB_GSO_CB(skb)->csum = res;
4434 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4435}
4436
4437/* Compute the checksum for a gso segment. First compute the checksum value
4438 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4439 * then add in skb->csum (checksum from csum_start to end of packet).
4440 * skb->csum and csum_start are then updated to reflect the checksum of the
4441 * resultant packet starting from the transport header-- the resultant checksum
4442 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4443 * header.
4444 */
4445static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4446{
4447 unsigned char *csum_start = skb_transport_header(skb);
4448 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4449 __wsum partial = SKB_GSO_CB(skb)->csum;
4450
4451 SKB_GSO_CB(skb)->csum = res;
4452 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4453
4454 return csum_fold(csum_partial(csum_start, plen, partial));
4455}
4456
4457static inline bool skb_is_gso(const struct sk_buff *skb)
4458{
4459 return skb_shinfo(skb)->gso_size;
4460}
4461
4462/* Note: Should be called only if skb_is_gso(skb) is true */
4463static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4464{
4465 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4466}
4467
4468/* Note: Should be called only if skb_is_gso(skb) is true */
4469static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4470{
4471 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4472}
4473
4474/* Note: Should be called only if skb_is_gso(skb) is true */
4475static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4476{
4477 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4478}
4479
4480static inline void skb_gso_reset(struct sk_buff *skb)
4481{
4482 skb_shinfo(skb)->gso_size = 0;
4483 skb_shinfo(skb)->gso_segs = 0;
4484 skb_shinfo(skb)->gso_type = 0;
4485}
4486
4487static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4488 u16 increment)
4489{
4490 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4491 return;
4492 shinfo->gso_size += increment;
4493}
4494
4495static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4496 u16 decrement)
4497{
4498 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4499 return;
4500 shinfo->gso_size -= decrement;
4501}
4502
4503void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4504
4505static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4506{
4507 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4508 * wanted then gso_type will be set. */
4509 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4510
4511 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4512 unlikely(shinfo->gso_type == 0)) {
4513 __skb_warn_lro_forwarding(skb);
4514 return true;
4515 }
4516 return false;
4517}
4518
4519static inline void skb_forward_csum(struct sk_buff *skb)
4520{
4521 /* Unfortunately we don't support this one. Any brave souls? */
4522 if (skb->ip_summed == CHECKSUM_COMPLETE)
4523 skb->ip_summed = CHECKSUM_NONE;
4524}
4525
4526/**
4527 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4528 * @skb: skb to check
4529 *
4530 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4531 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4532 * use this helper, to document places where we make this assertion.
4533 */
4534static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4535{
4536#ifdef DEBUG
4537 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4538#endif
4539}
4540
4541bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4542
4543int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4544struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4545 unsigned int transport_len,
4546 __sum16(*skb_chkf)(struct sk_buff *skb));
4547
4548/**
4549 * skb_head_is_locked - Determine if the skb->head is locked down
4550 * @skb: skb to check
4551 *
4552 * The head on skbs build around a head frag can be removed if they are
4553 * not cloned. This function returns true if the skb head is locked down
4554 * due to either being allocated via kmalloc, or by being a clone with
4555 * multiple references to the head.
4556 */
4557static inline bool skb_head_is_locked(const struct sk_buff *skb)
4558{
4559 return !skb->head_frag || skb_cloned(skb);
4560}
4561
4562/* Local Checksum Offload.
4563 * Compute outer checksum based on the assumption that the
4564 * inner checksum will be offloaded later.
4565 * See Documentation/networking/checksum-offloads.rst for
4566 * explanation of how this works.
4567 * Fill in outer checksum adjustment (e.g. with sum of outer
4568 * pseudo-header) before calling.
4569 * Also ensure that inner checksum is in linear data area.
4570 */
4571static inline __wsum lco_csum(struct sk_buff *skb)
4572{
4573 unsigned char *csum_start = skb_checksum_start(skb);
4574 unsigned char *l4_hdr = skb_transport_header(skb);
4575 __wsum partial;
4576
4577 /* Start with complement of inner checksum adjustment */
4578 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4579 skb->csum_offset));
4580
4581 /* Add in checksum of our headers (incl. outer checksum
4582 * adjustment filled in by caller) and return result.
4583 */
4584 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4585}
4586
4587static inline bool skb_is_redirected(const struct sk_buff *skb)
4588{
4589#ifdef CONFIG_NET_REDIRECT
4590 return skb->redirected;
4591#else
4592 return false;
4593#endif
4594}
4595
4596static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4597{
4598#ifdef CONFIG_NET_REDIRECT
4599 skb->redirected = 1;
4600 skb->from_ingress = from_ingress;
4601 if (skb->from_ingress)
4602 skb->tstamp = 0;
4603#endif
4604}
4605
4606static inline void skb_reset_redirect(struct sk_buff *skb)
4607{
4608#ifdef CONFIG_NET_REDIRECT
4609 skb->redirected = 0;
4610#endif
4611}
4612
4613static inline void skb_set_kcov_handle(struct sk_buff *skb,
4614 const u64 kcov_handle)
4615{
4616#ifdef CONFIG_KCOV
4617 skb->kcov_handle = kcov_handle;
4618#endif
4619}
4620
4621static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4622{
4623#ifdef CONFIG_KCOV
4624 return skb->kcov_handle;
4625#else
4626 return 0;
4627#endif
4628}
4629
4630#endif /* __KERNEL__ */
4631#endif /* _LINUX_SKBUFF_H */