at v5.10 59 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/kcov.h> 18#include <linux/mutex.h> 19#include <linux/plist.h> 20#include <linux/hrtimer.h> 21#include <linux/irqflags.h> 22#include <linux/seccomp.h> 23#include <linux/nodemask.h> 24#include <linux/rcupdate.h> 25#include <linux/refcount.h> 26#include <linux/resource.h> 27#include <linux/latencytop.h> 28#include <linux/sched/prio.h> 29#include <linux/sched/types.h> 30#include <linux/signal_types.h> 31#include <linux/mm_types_task.h> 32#include <linux/task_io_accounting.h> 33#include <linux/posix-timers.h> 34#include <linux/rseq.h> 35#include <linux/seqlock.h> 36#include <linux/kcsan.h> 37 38/* task_struct member predeclarations (sorted alphabetically): */ 39struct audit_context; 40struct backing_dev_info; 41struct bio_list; 42struct blk_plug; 43struct capture_control; 44struct cfs_rq; 45struct fs_struct; 46struct futex_pi_state; 47struct io_context; 48struct mempolicy; 49struct nameidata; 50struct nsproxy; 51struct perf_event_context; 52struct pid_namespace; 53struct pipe_inode_info; 54struct rcu_node; 55struct reclaim_state; 56struct robust_list_head; 57struct root_domain; 58struct rq; 59struct sched_attr; 60struct sched_param; 61struct seq_file; 62struct sighand_struct; 63struct signal_struct; 64struct task_delay_info; 65struct task_group; 66struct io_uring_task; 67 68/* 69 * Task state bitmask. NOTE! These bits are also 70 * encoded in fs/proc/array.c: get_task_state(). 71 * 72 * We have two separate sets of flags: task->state 73 * is about runnability, while task->exit_state are 74 * about the task exiting. Confusing, but this way 75 * modifying one set can't modify the other one by 76 * mistake. 77 */ 78 79/* Used in tsk->state: */ 80#define TASK_RUNNING 0x0000 81#define TASK_INTERRUPTIBLE 0x0001 82#define TASK_UNINTERRUPTIBLE 0x0002 83#define __TASK_STOPPED 0x0004 84#define __TASK_TRACED 0x0008 85/* Used in tsk->exit_state: */ 86#define EXIT_DEAD 0x0010 87#define EXIT_ZOMBIE 0x0020 88#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 89/* Used in tsk->state again: */ 90#define TASK_PARKED 0x0040 91#define TASK_DEAD 0x0080 92#define TASK_WAKEKILL 0x0100 93#define TASK_WAKING 0x0200 94#define TASK_NOLOAD 0x0400 95#define TASK_NEW 0x0800 96#define TASK_STATE_MAX 0x1000 97 98/* Convenience macros for the sake of set_current_state: */ 99#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 100#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 101#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 102 103#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 104 105/* Convenience macros for the sake of wake_up(): */ 106#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 107 108/* get_task_state(): */ 109#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 110 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 111 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 112 TASK_PARKED) 113 114#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 115 116#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 117 118#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 119 120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122/* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126#define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129#define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136#define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143#define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 151 } while (0) 152#else 153/* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (CONDITION) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * CONDITION test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * CONDITION = 1; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 177 * accessing p->state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190#define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193#define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196/* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202#define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 208 } while (0) 209 210#endif 211 212/* Task command name length: */ 213#define TASK_COMM_LEN 16 214 215extern void scheduler_tick(void); 216 217#define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219extern long schedule_timeout(long timeout); 220extern long schedule_timeout_interruptible(long timeout); 221extern long schedule_timeout_killable(long timeout); 222extern long schedule_timeout_uninterruptible(long timeout); 223extern long schedule_timeout_idle(long timeout); 224asmlinkage void schedule(void); 225extern void schedule_preempt_disabled(void); 226asmlinkage void preempt_schedule_irq(void); 227 228extern int __must_check io_schedule_prepare(void); 229extern void io_schedule_finish(int token); 230extern long io_schedule_timeout(long timeout); 231extern void io_schedule(void); 232 233/** 234 * struct prev_cputime - snapshot of system and user cputime 235 * @utime: time spent in user mode 236 * @stime: time spent in system mode 237 * @lock: protects the above two fields 238 * 239 * Stores previous user/system time values such that we can guarantee 240 * monotonicity. 241 */ 242struct prev_cputime { 243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 244 u64 utime; 245 u64 stime; 246 raw_spinlock_t lock; 247#endif 248}; 249 250enum vtime_state { 251 /* Task is sleeping or running in a CPU with VTIME inactive: */ 252 VTIME_INACTIVE = 0, 253 /* Task is idle */ 254 VTIME_IDLE, 255 /* Task runs in kernelspace in a CPU with VTIME active: */ 256 VTIME_SYS, 257 /* Task runs in userspace in a CPU with VTIME active: */ 258 VTIME_USER, 259 /* Task runs as guests in a CPU with VTIME active: */ 260 VTIME_GUEST, 261}; 262 263struct vtime { 264 seqcount_t seqcount; 265 unsigned long long starttime; 266 enum vtime_state state; 267 unsigned int cpu; 268 u64 utime; 269 u64 stime; 270 u64 gtime; 271}; 272 273/* 274 * Utilization clamp constraints. 275 * @UCLAMP_MIN: Minimum utilization 276 * @UCLAMP_MAX: Maximum utilization 277 * @UCLAMP_CNT: Utilization clamp constraints count 278 */ 279enum uclamp_id { 280 UCLAMP_MIN = 0, 281 UCLAMP_MAX, 282 UCLAMP_CNT 283}; 284 285#ifdef CONFIG_SMP 286extern struct root_domain def_root_domain; 287extern struct mutex sched_domains_mutex; 288#endif 289 290struct sched_info { 291#ifdef CONFIG_SCHED_INFO 292 /* Cumulative counters: */ 293 294 /* # of times we have run on this CPU: */ 295 unsigned long pcount; 296 297 /* Time spent waiting on a runqueue: */ 298 unsigned long long run_delay; 299 300 /* Timestamps: */ 301 302 /* When did we last run on a CPU? */ 303 unsigned long long last_arrival; 304 305 /* When were we last queued to run? */ 306 unsigned long long last_queued; 307 308#endif /* CONFIG_SCHED_INFO */ 309}; 310 311/* 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair 313 * has a few: load, load_avg, util_avg, freq, and capacity. 314 * 315 * We define a basic fixed point arithmetic range, and then formalize 316 * all these metrics based on that basic range. 317 */ 318# define SCHED_FIXEDPOINT_SHIFT 10 319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 320 321/* Increase resolution of cpu_capacity calculations */ 322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 324 325struct load_weight { 326 unsigned long weight; 327 u32 inv_weight; 328}; 329 330/** 331 * struct util_est - Estimation utilization of FAIR tasks 332 * @enqueued: instantaneous estimated utilization of a task/cpu 333 * @ewma: the Exponential Weighted Moving Average (EWMA) 334 * utilization of a task 335 * 336 * Support data structure to track an Exponential Weighted Moving Average 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 338 * average each time a task completes an activation. Sample's weight is chosen 339 * so that the EWMA will be relatively insensitive to transient changes to the 340 * task's workload. 341 * 342 * The enqueued attribute has a slightly different meaning for tasks and cpus: 343 * - task: the task's util_avg at last task dequeue time 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 345 * Thus, the util_est.enqueued of a task represents the contribution on the 346 * estimated utilization of the CPU where that task is currently enqueued. 347 * 348 * Only for tasks we track a moving average of the past instantaneous 349 * estimated utilization. This allows to absorb sporadic drops in utilization 350 * of an otherwise almost periodic task. 351 */ 352struct util_est { 353 unsigned int enqueued; 354 unsigned int ewma; 355#define UTIL_EST_WEIGHT_SHIFT 2 356} __attribute__((__aligned__(sizeof(u64)))); 357 358/* 359 * The load/runnable/util_avg accumulates an infinite geometric series 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 361 * 362 * [load_avg definition] 363 * 364 * load_avg = runnable% * scale_load_down(load) 365 * 366 * [runnable_avg definition] 367 * 368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 369 * 370 * [util_avg definition] 371 * 372 * util_avg = running% * SCHED_CAPACITY_SCALE 373 * 374 * where runnable% is the time ratio that a sched_entity is runnable and 375 * running% the time ratio that a sched_entity is running. 376 * 377 * For cfs_rq, they are the aggregated values of all runnable and blocked 378 * sched_entities. 379 * 380 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 382 * for computing those signals (see update_rq_clock_pelt()) 383 * 384 * N.B., the above ratios (runnable% and running%) themselves are in the 385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 386 * to as large a range as necessary. This is for example reflected by 387 * util_avg's SCHED_CAPACITY_SCALE. 388 * 389 * [Overflow issue] 390 * 391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 392 * with the highest load (=88761), always runnable on a single cfs_rq, 393 * and should not overflow as the number already hits PID_MAX_LIMIT. 394 * 395 * For all other cases (including 32-bit kernels), struct load_weight's 396 * weight will overflow first before we do, because: 397 * 398 * Max(load_avg) <= Max(load.weight) 399 * 400 * Then it is the load_weight's responsibility to consider overflow 401 * issues. 402 */ 403struct sched_avg { 404 u64 last_update_time; 405 u64 load_sum; 406 u64 runnable_sum; 407 u32 util_sum; 408 u32 period_contrib; 409 unsigned long load_avg; 410 unsigned long runnable_avg; 411 unsigned long util_avg; 412 struct util_est util_est; 413} ____cacheline_aligned; 414 415struct sched_statistics { 416#ifdef CONFIG_SCHEDSTATS 417 u64 wait_start; 418 u64 wait_max; 419 u64 wait_count; 420 u64 wait_sum; 421 u64 iowait_count; 422 u64 iowait_sum; 423 424 u64 sleep_start; 425 u64 sleep_max; 426 s64 sum_sleep_runtime; 427 428 u64 block_start; 429 u64 block_max; 430 u64 exec_max; 431 u64 slice_max; 432 433 u64 nr_migrations_cold; 434 u64 nr_failed_migrations_affine; 435 u64 nr_failed_migrations_running; 436 u64 nr_failed_migrations_hot; 437 u64 nr_forced_migrations; 438 439 u64 nr_wakeups; 440 u64 nr_wakeups_sync; 441 u64 nr_wakeups_migrate; 442 u64 nr_wakeups_local; 443 u64 nr_wakeups_remote; 444 u64 nr_wakeups_affine; 445 u64 nr_wakeups_affine_attempts; 446 u64 nr_wakeups_passive; 447 u64 nr_wakeups_idle; 448#endif 449}; 450 451struct sched_entity { 452 /* For load-balancing: */ 453 struct load_weight load; 454 struct rb_node run_node; 455 struct list_head group_node; 456 unsigned int on_rq; 457 458 u64 exec_start; 459 u64 sum_exec_runtime; 460 u64 vruntime; 461 u64 prev_sum_exec_runtime; 462 463 u64 nr_migrations; 464 465 struct sched_statistics statistics; 466 467#ifdef CONFIG_FAIR_GROUP_SCHED 468 int depth; 469 struct sched_entity *parent; 470 /* rq on which this entity is (to be) queued: */ 471 struct cfs_rq *cfs_rq; 472 /* rq "owned" by this entity/group: */ 473 struct cfs_rq *my_q; 474 /* cached value of my_q->h_nr_running */ 475 unsigned long runnable_weight; 476#endif 477 478#ifdef CONFIG_SMP 479 /* 480 * Per entity load average tracking. 481 * 482 * Put into separate cache line so it does not 483 * collide with read-mostly values above. 484 */ 485 struct sched_avg avg; 486#endif 487}; 488 489struct sched_rt_entity { 490 struct list_head run_list; 491 unsigned long timeout; 492 unsigned long watchdog_stamp; 493 unsigned int time_slice; 494 unsigned short on_rq; 495 unsigned short on_list; 496 497 struct sched_rt_entity *back; 498#ifdef CONFIG_RT_GROUP_SCHED 499 struct sched_rt_entity *parent; 500 /* rq on which this entity is (to be) queued: */ 501 struct rt_rq *rt_rq; 502 /* rq "owned" by this entity/group: */ 503 struct rt_rq *my_q; 504#endif 505} __randomize_layout; 506 507struct sched_dl_entity { 508 struct rb_node rb_node; 509 510 /* 511 * Original scheduling parameters. Copied here from sched_attr 512 * during sched_setattr(), they will remain the same until 513 * the next sched_setattr(). 514 */ 515 u64 dl_runtime; /* Maximum runtime for each instance */ 516 u64 dl_deadline; /* Relative deadline of each instance */ 517 u64 dl_period; /* Separation of two instances (period) */ 518 u64 dl_bw; /* dl_runtime / dl_period */ 519 u64 dl_density; /* dl_runtime / dl_deadline */ 520 521 /* 522 * Actual scheduling parameters. Initialized with the values above, 523 * they are continuously updated during task execution. Note that 524 * the remaining runtime could be < 0 in case we are in overrun. 525 */ 526 s64 runtime; /* Remaining runtime for this instance */ 527 u64 deadline; /* Absolute deadline for this instance */ 528 unsigned int flags; /* Specifying the scheduler behaviour */ 529 530 /* 531 * Some bool flags: 532 * 533 * @dl_throttled tells if we exhausted the runtime. If so, the 534 * task has to wait for a replenishment to be performed at the 535 * next firing of dl_timer. 536 * 537 * @dl_boosted tells if we are boosted due to DI. If so we are 538 * outside bandwidth enforcement mechanism (but only until we 539 * exit the critical section); 540 * 541 * @dl_yielded tells if task gave up the CPU before consuming 542 * all its available runtime during the last job. 543 * 544 * @dl_non_contending tells if the task is inactive while still 545 * contributing to the active utilization. In other words, it 546 * indicates if the inactive timer has been armed and its handler 547 * has not been executed yet. This flag is useful to avoid race 548 * conditions between the inactive timer handler and the wakeup 549 * code. 550 * 551 * @dl_overrun tells if the task asked to be informed about runtime 552 * overruns. 553 */ 554 unsigned int dl_throttled : 1; 555 unsigned int dl_yielded : 1; 556 unsigned int dl_non_contending : 1; 557 unsigned int dl_overrun : 1; 558 559 /* 560 * Bandwidth enforcement timer. Each -deadline task has its 561 * own bandwidth to be enforced, thus we need one timer per task. 562 */ 563 struct hrtimer dl_timer; 564 565 /* 566 * Inactive timer, responsible for decreasing the active utilization 567 * at the "0-lag time". When a -deadline task blocks, it contributes 568 * to GRUB's active utilization until the "0-lag time", hence a 569 * timer is needed to decrease the active utilization at the correct 570 * time. 571 */ 572 struct hrtimer inactive_timer; 573 574#ifdef CONFIG_RT_MUTEXES 575 /* 576 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 577 * pi_se points to the donor, otherwise points to the dl_se it belongs 578 * to (the original one/itself). 579 */ 580 struct sched_dl_entity *pi_se; 581#endif 582}; 583 584#ifdef CONFIG_UCLAMP_TASK 585/* Number of utilization clamp buckets (shorter alias) */ 586#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 587 588/* 589 * Utilization clamp for a scheduling entity 590 * @value: clamp value "assigned" to a se 591 * @bucket_id: bucket index corresponding to the "assigned" value 592 * @active: the se is currently refcounted in a rq's bucket 593 * @user_defined: the requested clamp value comes from user-space 594 * 595 * The bucket_id is the index of the clamp bucket matching the clamp value 596 * which is pre-computed and stored to avoid expensive integer divisions from 597 * the fast path. 598 * 599 * The active bit is set whenever a task has got an "effective" value assigned, 600 * which can be different from the clamp value "requested" from user-space. 601 * This allows to know a task is refcounted in the rq's bucket corresponding 602 * to the "effective" bucket_id. 603 * 604 * The user_defined bit is set whenever a task has got a task-specific clamp 605 * value requested from userspace, i.e. the system defaults apply to this task 606 * just as a restriction. This allows to relax default clamps when a less 607 * restrictive task-specific value has been requested, thus allowing to 608 * implement a "nice" semantic. For example, a task running with a 20% 609 * default boost can still drop its own boosting to 0%. 610 */ 611struct uclamp_se { 612 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 613 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 614 unsigned int active : 1; 615 unsigned int user_defined : 1; 616}; 617#endif /* CONFIG_UCLAMP_TASK */ 618 619union rcu_special { 620 struct { 621 u8 blocked; 622 u8 need_qs; 623 u8 exp_hint; /* Hint for performance. */ 624 u8 need_mb; /* Readers need smp_mb(). */ 625 } b; /* Bits. */ 626 u32 s; /* Set of bits. */ 627}; 628 629enum perf_event_task_context { 630 perf_invalid_context = -1, 631 perf_hw_context = 0, 632 perf_sw_context, 633 perf_nr_task_contexts, 634}; 635 636struct wake_q_node { 637 struct wake_q_node *next; 638}; 639 640struct task_struct { 641#ifdef CONFIG_THREAD_INFO_IN_TASK 642 /* 643 * For reasons of header soup (see current_thread_info()), this 644 * must be the first element of task_struct. 645 */ 646 struct thread_info thread_info; 647#endif 648 /* -1 unrunnable, 0 runnable, >0 stopped: */ 649 volatile long state; 650 651 /* 652 * This begins the randomizable portion of task_struct. Only 653 * scheduling-critical items should be added above here. 654 */ 655 randomized_struct_fields_start 656 657 void *stack; 658 refcount_t usage; 659 /* Per task flags (PF_*), defined further below: */ 660 unsigned int flags; 661 unsigned int ptrace; 662 663#ifdef CONFIG_SMP 664 int on_cpu; 665 struct __call_single_node wake_entry; 666#ifdef CONFIG_THREAD_INFO_IN_TASK 667 /* Current CPU: */ 668 unsigned int cpu; 669#endif 670 unsigned int wakee_flips; 671 unsigned long wakee_flip_decay_ts; 672 struct task_struct *last_wakee; 673 674 /* 675 * recent_used_cpu is initially set as the last CPU used by a task 676 * that wakes affine another task. Waker/wakee relationships can 677 * push tasks around a CPU where each wakeup moves to the next one. 678 * Tracking a recently used CPU allows a quick search for a recently 679 * used CPU that may be idle. 680 */ 681 int recent_used_cpu; 682 int wake_cpu; 683#endif 684 int on_rq; 685 686 int prio; 687 int static_prio; 688 int normal_prio; 689 unsigned int rt_priority; 690 691 const struct sched_class *sched_class; 692 struct sched_entity se; 693 struct sched_rt_entity rt; 694#ifdef CONFIG_CGROUP_SCHED 695 struct task_group *sched_task_group; 696#endif 697 struct sched_dl_entity dl; 698 699#ifdef CONFIG_UCLAMP_TASK 700 /* 701 * Clamp values requested for a scheduling entity. 702 * Must be updated with task_rq_lock() held. 703 */ 704 struct uclamp_se uclamp_req[UCLAMP_CNT]; 705 /* 706 * Effective clamp values used for a scheduling entity. 707 * Must be updated with task_rq_lock() held. 708 */ 709 struct uclamp_se uclamp[UCLAMP_CNT]; 710#endif 711 712#ifdef CONFIG_PREEMPT_NOTIFIERS 713 /* List of struct preempt_notifier: */ 714 struct hlist_head preempt_notifiers; 715#endif 716 717#ifdef CONFIG_BLK_DEV_IO_TRACE 718 unsigned int btrace_seq; 719#endif 720 721 unsigned int policy; 722 int nr_cpus_allowed; 723 const cpumask_t *cpus_ptr; 724 cpumask_t cpus_mask; 725 726#ifdef CONFIG_PREEMPT_RCU 727 int rcu_read_lock_nesting; 728 union rcu_special rcu_read_unlock_special; 729 struct list_head rcu_node_entry; 730 struct rcu_node *rcu_blocked_node; 731#endif /* #ifdef CONFIG_PREEMPT_RCU */ 732 733#ifdef CONFIG_TASKS_RCU 734 unsigned long rcu_tasks_nvcsw; 735 u8 rcu_tasks_holdout; 736 u8 rcu_tasks_idx; 737 int rcu_tasks_idle_cpu; 738 struct list_head rcu_tasks_holdout_list; 739#endif /* #ifdef CONFIG_TASKS_RCU */ 740 741#ifdef CONFIG_TASKS_TRACE_RCU 742 int trc_reader_nesting; 743 int trc_ipi_to_cpu; 744 union rcu_special trc_reader_special; 745 bool trc_reader_checked; 746 struct list_head trc_holdout_list; 747#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 748 749 struct sched_info sched_info; 750 751 struct list_head tasks; 752#ifdef CONFIG_SMP 753 struct plist_node pushable_tasks; 754 struct rb_node pushable_dl_tasks; 755#endif 756 757 struct mm_struct *mm; 758 struct mm_struct *active_mm; 759 760 /* Per-thread vma caching: */ 761 struct vmacache vmacache; 762 763#ifdef SPLIT_RSS_COUNTING 764 struct task_rss_stat rss_stat; 765#endif 766 int exit_state; 767 int exit_code; 768 int exit_signal; 769 /* The signal sent when the parent dies: */ 770 int pdeath_signal; 771 /* JOBCTL_*, siglock protected: */ 772 unsigned long jobctl; 773 774 /* Used for emulating ABI behavior of previous Linux versions: */ 775 unsigned int personality; 776 777 /* Scheduler bits, serialized by scheduler locks: */ 778 unsigned sched_reset_on_fork:1; 779 unsigned sched_contributes_to_load:1; 780 unsigned sched_migrated:1; 781#ifdef CONFIG_PSI 782 unsigned sched_psi_wake_requeue:1; 783#endif 784 785 /* Force alignment to the next boundary: */ 786 unsigned :0; 787 788 /* Unserialized, strictly 'current' */ 789 790 /* 791 * This field must not be in the scheduler word above due to wakelist 792 * queueing no longer being serialized by p->on_cpu. However: 793 * 794 * p->XXX = X; ttwu() 795 * schedule() if (p->on_rq && ..) // false 796 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 797 * deactivate_task() ttwu_queue_wakelist()) 798 * p->on_rq = 0; p->sched_remote_wakeup = Y; 799 * 800 * guarantees all stores of 'current' are visible before 801 * ->sched_remote_wakeup gets used, so it can be in this word. 802 */ 803 unsigned sched_remote_wakeup:1; 804 805 /* Bit to tell LSMs we're in execve(): */ 806 unsigned in_execve:1; 807 unsigned in_iowait:1; 808#ifndef TIF_RESTORE_SIGMASK 809 unsigned restore_sigmask:1; 810#endif 811#ifdef CONFIG_MEMCG 812 unsigned in_user_fault:1; 813#endif 814#ifdef CONFIG_COMPAT_BRK 815 unsigned brk_randomized:1; 816#endif 817#ifdef CONFIG_CGROUPS 818 /* disallow userland-initiated cgroup migration */ 819 unsigned no_cgroup_migration:1; 820 /* task is frozen/stopped (used by the cgroup freezer) */ 821 unsigned frozen:1; 822#endif 823#ifdef CONFIG_BLK_CGROUP 824 unsigned use_memdelay:1; 825#endif 826#ifdef CONFIG_PSI 827 /* Stalled due to lack of memory */ 828 unsigned in_memstall:1; 829#endif 830 831 unsigned long atomic_flags; /* Flags requiring atomic access. */ 832 833 struct restart_block restart_block; 834 835 pid_t pid; 836 pid_t tgid; 837 838#ifdef CONFIG_STACKPROTECTOR 839 /* Canary value for the -fstack-protector GCC feature: */ 840 unsigned long stack_canary; 841#endif 842 /* 843 * Pointers to the (original) parent process, youngest child, younger sibling, 844 * older sibling, respectively. (p->father can be replaced with 845 * p->real_parent->pid) 846 */ 847 848 /* Real parent process: */ 849 struct task_struct __rcu *real_parent; 850 851 /* Recipient of SIGCHLD, wait4() reports: */ 852 struct task_struct __rcu *parent; 853 854 /* 855 * Children/sibling form the list of natural children: 856 */ 857 struct list_head children; 858 struct list_head sibling; 859 struct task_struct *group_leader; 860 861 /* 862 * 'ptraced' is the list of tasks this task is using ptrace() on. 863 * 864 * This includes both natural children and PTRACE_ATTACH targets. 865 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 866 */ 867 struct list_head ptraced; 868 struct list_head ptrace_entry; 869 870 /* PID/PID hash table linkage. */ 871 struct pid *thread_pid; 872 struct hlist_node pid_links[PIDTYPE_MAX]; 873 struct list_head thread_group; 874 struct list_head thread_node; 875 876 struct completion *vfork_done; 877 878 /* CLONE_CHILD_SETTID: */ 879 int __user *set_child_tid; 880 881 /* CLONE_CHILD_CLEARTID: */ 882 int __user *clear_child_tid; 883 884 u64 utime; 885 u64 stime; 886#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 887 u64 utimescaled; 888 u64 stimescaled; 889#endif 890 u64 gtime; 891 struct prev_cputime prev_cputime; 892#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 893 struct vtime vtime; 894#endif 895 896#ifdef CONFIG_NO_HZ_FULL 897 atomic_t tick_dep_mask; 898#endif 899 /* Context switch counts: */ 900 unsigned long nvcsw; 901 unsigned long nivcsw; 902 903 /* Monotonic time in nsecs: */ 904 u64 start_time; 905 906 /* Boot based time in nsecs: */ 907 u64 start_boottime; 908 909 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 910 unsigned long min_flt; 911 unsigned long maj_flt; 912 913 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 914 struct posix_cputimers posix_cputimers; 915 916#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 917 struct posix_cputimers_work posix_cputimers_work; 918#endif 919 920 /* Process credentials: */ 921 922 /* Tracer's credentials at attach: */ 923 const struct cred __rcu *ptracer_cred; 924 925 /* Objective and real subjective task credentials (COW): */ 926 const struct cred __rcu *real_cred; 927 928 /* Effective (overridable) subjective task credentials (COW): */ 929 const struct cred __rcu *cred; 930 931#ifdef CONFIG_KEYS 932 /* Cached requested key. */ 933 struct key *cached_requested_key; 934#endif 935 936 /* 937 * executable name, excluding path. 938 * 939 * - normally initialized setup_new_exec() 940 * - access it with [gs]et_task_comm() 941 * - lock it with task_lock() 942 */ 943 char comm[TASK_COMM_LEN]; 944 945 struct nameidata *nameidata; 946 947#ifdef CONFIG_SYSVIPC 948 struct sysv_sem sysvsem; 949 struct sysv_shm sysvshm; 950#endif 951#ifdef CONFIG_DETECT_HUNG_TASK 952 unsigned long last_switch_count; 953 unsigned long last_switch_time; 954#endif 955 /* Filesystem information: */ 956 struct fs_struct *fs; 957 958 /* Open file information: */ 959 struct files_struct *files; 960 961#ifdef CONFIG_IO_URING 962 struct io_uring_task *io_uring; 963#endif 964 965 /* Namespaces: */ 966 struct nsproxy *nsproxy; 967 968 /* Signal handlers: */ 969 struct signal_struct *signal; 970 struct sighand_struct __rcu *sighand; 971 sigset_t blocked; 972 sigset_t real_blocked; 973 /* Restored if set_restore_sigmask() was used: */ 974 sigset_t saved_sigmask; 975 struct sigpending pending; 976 unsigned long sas_ss_sp; 977 size_t sas_ss_size; 978 unsigned int sas_ss_flags; 979 980 struct callback_head *task_works; 981 982#ifdef CONFIG_AUDIT 983#ifdef CONFIG_AUDITSYSCALL 984 struct audit_context *audit_context; 985#endif 986 kuid_t loginuid; 987 unsigned int sessionid; 988#endif 989 struct seccomp seccomp; 990 991 /* Thread group tracking: */ 992 u64 parent_exec_id; 993 u64 self_exec_id; 994 995 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 996 spinlock_t alloc_lock; 997 998 /* Protection of the PI data structures: */ 999 raw_spinlock_t pi_lock; 1000 1001 struct wake_q_node wake_q; 1002 1003#ifdef CONFIG_RT_MUTEXES 1004 /* PI waiters blocked on a rt_mutex held by this task: */ 1005 struct rb_root_cached pi_waiters; 1006 /* Updated under owner's pi_lock and rq lock */ 1007 struct task_struct *pi_top_task; 1008 /* Deadlock detection and priority inheritance handling: */ 1009 struct rt_mutex_waiter *pi_blocked_on; 1010#endif 1011 1012#ifdef CONFIG_DEBUG_MUTEXES 1013 /* Mutex deadlock detection: */ 1014 struct mutex_waiter *blocked_on; 1015#endif 1016 1017#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1018 int non_block_count; 1019#endif 1020 1021#ifdef CONFIG_TRACE_IRQFLAGS 1022 struct irqtrace_events irqtrace; 1023 unsigned int hardirq_threaded; 1024 u64 hardirq_chain_key; 1025 int softirqs_enabled; 1026 int softirq_context; 1027 int irq_config; 1028#endif 1029 1030#ifdef CONFIG_LOCKDEP 1031# define MAX_LOCK_DEPTH 48UL 1032 u64 curr_chain_key; 1033 int lockdep_depth; 1034 unsigned int lockdep_recursion; 1035 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1036#endif 1037 1038#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1039 unsigned int in_ubsan; 1040#endif 1041 1042 /* Journalling filesystem info: */ 1043 void *journal_info; 1044 1045 /* Stacked block device info: */ 1046 struct bio_list *bio_list; 1047 1048#ifdef CONFIG_BLOCK 1049 /* Stack plugging: */ 1050 struct blk_plug *plug; 1051#endif 1052 1053 /* VM state: */ 1054 struct reclaim_state *reclaim_state; 1055 1056 struct backing_dev_info *backing_dev_info; 1057 1058 struct io_context *io_context; 1059 1060#ifdef CONFIG_COMPACTION 1061 struct capture_control *capture_control; 1062#endif 1063 /* Ptrace state: */ 1064 unsigned long ptrace_message; 1065 kernel_siginfo_t *last_siginfo; 1066 1067 struct task_io_accounting ioac; 1068#ifdef CONFIG_PSI 1069 /* Pressure stall state */ 1070 unsigned int psi_flags; 1071#endif 1072#ifdef CONFIG_TASK_XACCT 1073 /* Accumulated RSS usage: */ 1074 u64 acct_rss_mem1; 1075 /* Accumulated virtual memory usage: */ 1076 u64 acct_vm_mem1; 1077 /* stime + utime since last update: */ 1078 u64 acct_timexpd; 1079#endif 1080#ifdef CONFIG_CPUSETS 1081 /* Protected by ->alloc_lock: */ 1082 nodemask_t mems_allowed; 1083 /* Seqence number to catch updates: */ 1084 seqcount_spinlock_t mems_allowed_seq; 1085 int cpuset_mem_spread_rotor; 1086 int cpuset_slab_spread_rotor; 1087#endif 1088#ifdef CONFIG_CGROUPS 1089 /* Control Group info protected by css_set_lock: */ 1090 struct css_set __rcu *cgroups; 1091 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1092 struct list_head cg_list; 1093#endif 1094#ifdef CONFIG_X86_CPU_RESCTRL 1095 u32 closid; 1096 u32 rmid; 1097#endif 1098#ifdef CONFIG_FUTEX 1099 struct robust_list_head __user *robust_list; 1100#ifdef CONFIG_COMPAT 1101 struct compat_robust_list_head __user *compat_robust_list; 1102#endif 1103 struct list_head pi_state_list; 1104 struct futex_pi_state *pi_state_cache; 1105 struct mutex futex_exit_mutex; 1106 unsigned int futex_state; 1107#endif 1108#ifdef CONFIG_PERF_EVENTS 1109 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1110 struct mutex perf_event_mutex; 1111 struct list_head perf_event_list; 1112#endif 1113#ifdef CONFIG_DEBUG_PREEMPT 1114 unsigned long preempt_disable_ip; 1115#endif 1116#ifdef CONFIG_NUMA 1117 /* Protected by alloc_lock: */ 1118 struct mempolicy *mempolicy; 1119 short il_prev; 1120 short pref_node_fork; 1121#endif 1122#ifdef CONFIG_NUMA_BALANCING 1123 int numa_scan_seq; 1124 unsigned int numa_scan_period; 1125 unsigned int numa_scan_period_max; 1126 int numa_preferred_nid; 1127 unsigned long numa_migrate_retry; 1128 /* Migration stamp: */ 1129 u64 node_stamp; 1130 u64 last_task_numa_placement; 1131 u64 last_sum_exec_runtime; 1132 struct callback_head numa_work; 1133 1134 /* 1135 * This pointer is only modified for current in syscall and 1136 * pagefault context (and for tasks being destroyed), so it can be read 1137 * from any of the following contexts: 1138 * - RCU read-side critical section 1139 * - current->numa_group from everywhere 1140 * - task's runqueue locked, task not running 1141 */ 1142 struct numa_group __rcu *numa_group; 1143 1144 /* 1145 * numa_faults is an array split into four regions: 1146 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1147 * in this precise order. 1148 * 1149 * faults_memory: Exponential decaying average of faults on a per-node 1150 * basis. Scheduling placement decisions are made based on these 1151 * counts. The values remain static for the duration of a PTE scan. 1152 * faults_cpu: Track the nodes the process was running on when a NUMA 1153 * hinting fault was incurred. 1154 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1155 * during the current scan window. When the scan completes, the counts 1156 * in faults_memory and faults_cpu decay and these values are copied. 1157 */ 1158 unsigned long *numa_faults; 1159 unsigned long total_numa_faults; 1160 1161 /* 1162 * numa_faults_locality tracks if faults recorded during the last 1163 * scan window were remote/local or failed to migrate. The task scan 1164 * period is adapted based on the locality of the faults with different 1165 * weights depending on whether they were shared or private faults 1166 */ 1167 unsigned long numa_faults_locality[3]; 1168 1169 unsigned long numa_pages_migrated; 1170#endif /* CONFIG_NUMA_BALANCING */ 1171 1172#ifdef CONFIG_RSEQ 1173 struct rseq __user *rseq; 1174 u32 rseq_sig; 1175 /* 1176 * RmW on rseq_event_mask must be performed atomically 1177 * with respect to preemption. 1178 */ 1179 unsigned long rseq_event_mask; 1180#endif 1181 1182 struct tlbflush_unmap_batch tlb_ubc; 1183 1184 union { 1185 refcount_t rcu_users; 1186 struct rcu_head rcu; 1187 }; 1188 1189 /* Cache last used pipe for splice(): */ 1190 struct pipe_inode_info *splice_pipe; 1191 1192 struct page_frag task_frag; 1193 1194#ifdef CONFIG_TASK_DELAY_ACCT 1195 struct task_delay_info *delays; 1196#endif 1197 1198#ifdef CONFIG_FAULT_INJECTION 1199 int make_it_fail; 1200 unsigned int fail_nth; 1201#endif 1202 /* 1203 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1204 * balance_dirty_pages() for a dirty throttling pause: 1205 */ 1206 int nr_dirtied; 1207 int nr_dirtied_pause; 1208 /* Start of a write-and-pause period: */ 1209 unsigned long dirty_paused_when; 1210 1211#ifdef CONFIG_LATENCYTOP 1212 int latency_record_count; 1213 struct latency_record latency_record[LT_SAVECOUNT]; 1214#endif 1215 /* 1216 * Time slack values; these are used to round up poll() and 1217 * select() etc timeout values. These are in nanoseconds. 1218 */ 1219 u64 timer_slack_ns; 1220 u64 default_timer_slack_ns; 1221 1222#ifdef CONFIG_KASAN 1223 unsigned int kasan_depth; 1224#endif 1225 1226#ifdef CONFIG_KCSAN 1227 struct kcsan_ctx kcsan_ctx; 1228#ifdef CONFIG_TRACE_IRQFLAGS 1229 struct irqtrace_events kcsan_save_irqtrace; 1230#endif 1231#endif 1232 1233#if IS_ENABLED(CONFIG_KUNIT) 1234 struct kunit *kunit_test; 1235#endif 1236 1237#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1238 /* Index of current stored address in ret_stack: */ 1239 int curr_ret_stack; 1240 int curr_ret_depth; 1241 1242 /* Stack of return addresses for return function tracing: */ 1243 struct ftrace_ret_stack *ret_stack; 1244 1245 /* Timestamp for last schedule: */ 1246 unsigned long long ftrace_timestamp; 1247 1248 /* 1249 * Number of functions that haven't been traced 1250 * because of depth overrun: 1251 */ 1252 atomic_t trace_overrun; 1253 1254 /* Pause tracing: */ 1255 atomic_t tracing_graph_pause; 1256#endif 1257 1258#ifdef CONFIG_TRACING 1259 /* State flags for use by tracers: */ 1260 unsigned long trace; 1261 1262 /* Bitmask and counter of trace recursion: */ 1263 unsigned long trace_recursion; 1264#endif /* CONFIG_TRACING */ 1265 1266#ifdef CONFIG_KCOV 1267 /* See kernel/kcov.c for more details. */ 1268 1269 /* Coverage collection mode enabled for this task (0 if disabled): */ 1270 unsigned int kcov_mode; 1271 1272 /* Size of the kcov_area: */ 1273 unsigned int kcov_size; 1274 1275 /* Buffer for coverage collection: */ 1276 void *kcov_area; 1277 1278 /* KCOV descriptor wired with this task or NULL: */ 1279 struct kcov *kcov; 1280 1281 /* KCOV common handle for remote coverage collection: */ 1282 u64 kcov_handle; 1283 1284 /* KCOV sequence number: */ 1285 int kcov_sequence; 1286 1287 /* Collect coverage from softirq context: */ 1288 unsigned int kcov_softirq; 1289#endif 1290 1291#ifdef CONFIG_MEMCG 1292 struct mem_cgroup *memcg_in_oom; 1293 gfp_t memcg_oom_gfp_mask; 1294 int memcg_oom_order; 1295 1296 /* Number of pages to reclaim on returning to userland: */ 1297 unsigned int memcg_nr_pages_over_high; 1298 1299 /* Used by memcontrol for targeted memcg charge: */ 1300 struct mem_cgroup *active_memcg; 1301#endif 1302 1303#ifdef CONFIG_BLK_CGROUP 1304 struct request_queue *throttle_queue; 1305#endif 1306 1307#ifdef CONFIG_UPROBES 1308 struct uprobe_task *utask; 1309#endif 1310#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1311 unsigned int sequential_io; 1312 unsigned int sequential_io_avg; 1313#endif 1314#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1315 unsigned long task_state_change; 1316#endif 1317 int pagefault_disabled; 1318#ifdef CONFIG_MMU 1319 struct task_struct *oom_reaper_list; 1320#endif 1321#ifdef CONFIG_VMAP_STACK 1322 struct vm_struct *stack_vm_area; 1323#endif 1324#ifdef CONFIG_THREAD_INFO_IN_TASK 1325 /* A live task holds one reference: */ 1326 refcount_t stack_refcount; 1327#endif 1328#ifdef CONFIG_LIVEPATCH 1329 int patch_state; 1330#endif 1331#ifdef CONFIG_SECURITY 1332 /* Used by LSM modules for access restriction: */ 1333 void *security; 1334#endif 1335 1336#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1337 unsigned long lowest_stack; 1338 unsigned long prev_lowest_stack; 1339#endif 1340 1341#ifdef CONFIG_X86_MCE 1342 void __user *mce_vaddr; 1343 __u64 mce_kflags; 1344 u64 mce_addr; 1345 __u64 mce_ripv : 1, 1346 mce_whole_page : 1, 1347 __mce_reserved : 62; 1348 struct callback_head mce_kill_me; 1349#endif 1350 1351 /* 1352 * New fields for task_struct should be added above here, so that 1353 * they are included in the randomized portion of task_struct. 1354 */ 1355 randomized_struct_fields_end 1356 1357 /* CPU-specific state of this task: */ 1358 struct thread_struct thread; 1359 1360 /* 1361 * WARNING: on x86, 'thread_struct' contains a variable-sized 1362 * structure. It *MUST* be at the end of 'task_struct'. 1363 * 1364 * Do not put anything below here! 1365 */ 1366}; 1367 1368static inline struct pid *task_pid(struct task_struct *task) 1369{ 1370 return task->thread_pid; 1371} 1372 1373/* 1374 * the helpers to get the task's different pids as they are seen 1375 * from various namespaces 1376 * 1377 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1378 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1379 * current. 1380 * task_xid_nr_ns() : id seen from the ns specified; 1381 * 1382 * see also pid_nr() etc in include/linux/pid.h 1383 */ 1384pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1385 1386static inline pid_t task_pid_nr(struct task_struct *tsk) 1387{ 1388 return tsk->pid; 1389} 1390 1391static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1392{ 1393 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1394} 1395 1396static inline pid_t task_pid_vnr(struct task_struct *tsk) 1397{ 1398 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1399} 1400 1401 1402static inline pid_t task_tgid_nr(struct task_struct *tsk) 1403{ 1404 return tsk->tgid; 1405} 1406 1407/** 1408 * pid_alive - check that a task structure is not stale 1409 * @p: Task structure to be checked. 1410 * 1411 * Test if a process is not yet dead (at most zombie state) 1412 * If pid_alive fails, then pointers within the task structure 1413 * can be stale and must not be dereferenced. 1414 * 1415 * Return: 1 if the process is alive. 0 otherwise. 1416 */ 1417static inline int pid_alive(const struct task_struct *p) 1418{ 1419 return p->thread_pid != NULL; 1420} 1421 1422static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1423{ 1424 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1425} 1426 1427static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1428{ 1429 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1430} 1431 1432 1433static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1434{ 1435 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1436} 1437 1438static inline pid_t task_session_vnr(struct task_struct *tsk) 1439{ 1440 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1441} 1442 1443static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1444{ 1445 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1446} 1447 1448static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1449{ 1450 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1451} 1452 1453static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1454{ 1455 pid_t pid = 0; 1456 1457 rcu_read_lock(); 1458 if (pid_alive(tsk)) 1459 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1460 rcu_read_unlock(); 1461 1462 return pid; 1463} 1464 1465static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1466{ 1467 return task_ppid_nr_ns(tsk, &init_pid_ns); 1468} 1469 1470/* Obsolete, do not use: */ 1471static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1472{ 1473 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1474} 1475 1476#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1477#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1478 1479static inline unsigned int task_state_index(struct task_struct *tsk) 1480{ 1481 unsigned int tsk_state = READ_ONCE(tsk->state); 1482 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1483 1484 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1485 1486 if (tsk_state == TASK_IDLE) 1487 state = TASK_REPORT_IDLE; 1488 1489 return fls(state); 1490} 1491 1492static inline char task_index_to_char(unsigned int state) 1493{ 1494 static const char state_char[] = "RSDTtXZPI"; 1495 1496 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1497 1498 return state_char[state]; 1499} 1500 1501static inline char task_state_to_char(struct task_struct *tsk) 1502{ 1503 return task_index_to_char(task_state_index(tsk)); 1504} 1505 1506/** 1507 * is_global_init - check if a task structure is init. Since init 1508 * is free to have sub-threads we need to check tgid. 1509 * @tsk: Task structure to be checked. 1510 * 1511 * Check if a task structure is the first user space task the kernel created. 1512 * 1513 * Return: 1 if the task structure is init. 0 otherwise. 1514 */ 1515static inline int is_global_init(struct task_struct *tsk) 1516{ 1517 return task_tgid_nr(tsk) == 1; 1518} 1519 1520extern struct pid *cad_pid; 1521 1522/* 1523 * Per process flags 1524 */ 1525#define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1526#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1527#define PF_EXITING 0x00000004 /* Getting shut down */ 1528#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1529#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1530#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1531#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1532#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1533#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1534#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1535#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1536#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1537#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1538#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1539#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1540#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1541#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1542#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1543#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1544#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1545 * I am cleaning dirty pages from some other bdi. */ 1546#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1547#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1548#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1549#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1550#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1551#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1552#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1553#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1554 1555/* 1556 * Only the _current_ task can read/write to tsk->flags, but other 1557 * tasks can access tsk->flags in readonly mode for example 1558 * with tsk_used_math (like during threaded core dumping). 1559 * There is however an exception to this rule during ptrace 1560 * or during fork: the ptracer task is allowed to write to the 1561 * child->flags of its traced child (same goes for fork, the parent 1562 * can write to the child->flags), because we're guaranteed the 1563 * child is not running and in turn not changing child->flags 1564 * at the same time the parent does it. 1565 */ 1566#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1567#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1568#define clear_used_math() clear_stopped_child_used_math(current) 1569#define set_used_math() set_stopped_child_used_math(current) 1570 1571#define conditional_stopped_child_used_math(condition, child) \ 1572 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1573 1574#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1575 1576#define copy_to_stopped_child_used_math(child) \ 1577 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1578 1579/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1580#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1581#define used_math() tsk_used_math(current) 1582 1583static inline bool is_percpu_thread(void) 1584{ 1585#ifdef CONFIG_SMP 1586 return (current->flags & PF_NO_SETAFFINITY) && 1587 (current->nr_cpus_allowed == 1); 1588#else 1589 return true; 1590#endif 1591} 1592 1593/* Per-process atomic flags. */ 1594#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1595#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1596#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1597#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1598#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1599#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1600#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1601#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1602 1603#define TASK_PFA_TEST(name, func) \ 1604 static inline bool task_##func(struct task_struct *p) \ 1605 { return test_bit(PFA_##name, &p->atomic_flags); } 1606 1607#define TASK_PFA_SET(name, func) \ 1608 static inline void task_set_##func(struct task_struct *p) \ 1609 { set_bit(PFA_##name, &p->atomic_flags); } 1610 1611#define TASK_PFA_CLEAR(name, func) \ 1612 static inline void task_clear_##func(struct task_struct *p) \ 1613 { clear_bit(PFA_##name, &p->atomic_flags); } 1614 1615TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1616TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1617 1618TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1619TASK_PFA_SET(SPREAD_PAGE, spread_page) 1620TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1621 1622TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1623TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1624TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1625 1626TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1627TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1628TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1629 1630TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1631TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1632TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1633 1634TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1635TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1636 1637TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1638TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1639TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1640 1641TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1642TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1643 1644static inline void 1645current_restore_flags(unsigned long orig_flags, unsigned long flags) 1646{ 1647 current->flags &= ~flags; 1648 current->flags |= orig_flags & flags; 1649} 1650 1651extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1652extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1653#ifdef CONFIG_SMP 1654extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1655extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1656#else 1657static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1658{ 1659} 1660static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1661{ 1662 if (!cpumask_test_cpu(0, new_mask)) 1663 return -EINVAL; 1664 return 0; 1665} 1666#endif 1667 1668extern int yield_to(struct task_struct *p, bool preempt); 1669extern void set_user_nice(struct task_struct *p, long nice); 1670extern int task_prio(const struct task_struct *p); 1671 1672/** 1673 * task_nice - return the nice value of a given task. 1674 * @p: the task in question. 1675 * 1676 * Return: The nice value [ -20 ... 0 ... 19 ]. 1677 */ 1678static inline int task_nice(const struct task_struct *p) 1679{ 1680 return PRIO_TO_NICE((p)->static_prio); 1681} 1682 1683extern int can_nice(const struct task_struct *p, const int nice); 1684extern int task_curr(const struct task_struct *p); 1685extern int idle_cpu(int cpu); 1686extern int available_idle_cpu(int cpu); 1687extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1688extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1689extern void sched_set_fifo(struct task_struct *p); 1690extern void sched_set_fifo_low(struct task_struct *p); 1691extern void sched_set_normal(struct task_struct *p, int nice); 1692extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1693extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1694extern struct task_struct *idle_task(int cpu); 1695 1696/** 1697 * is_idle_task - is the specified task an idle task? 1698 * @p: the task in question. 1699 * 1700 * Return: 1 if @p is an idle task. 0 otherwise. 1701 */ 1702static __always_inline bool is_idle_task(const struct task_struct *p) 1703{ 1704 return !!(p->flags & PF_IDLE); 1705} 1706 1707extern struct task_struct *curr_task(int cpu); 1708extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1709 1710void yield(void); 1711 1712union thread_union { 1713#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1714 struct task_struct task; 1715#endif 1716#ifndef CONFIG_THREAD_INFO_IN_TASK 1717 struct thread_info thread_info; 1718#endif 1719 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1720}; 1721 1722#ifndef CONFIG_THREAD_INFO_IN_TASK 1723extern struct thread_info init_thread_info; 1724#endif 1725 1726extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1727 1728#ifdef CONFIG_THREAD_INFO_IN_TASK 1729static inline struct thread_info *task_thread_info(struct task_struct *task) 1730{ 1731 return &task->thread_info; 1732} 1733#elif !defined(__HAVE_THREAD_FUNCTIONS) 1734# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1735#endif 1736 1737/* 1738 * find a task by one of its numerical ids 1739 * 1740 * find_task_by_pid_ns(): 1741 * finds a task by its pid in the specified namespace 1742 * find_task_by_vpid(): 1743 * finds a task by its virtual pid 1744 * 1745 * see also find_vpid() etc in include/linux/pid.h 1746 */ 1747 1748extern struct task_struct *find_task_by_vpid(pid_t nr); 1749extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1750 1751/* 1752 * find a task by its virtual pid and get the task struct 1753 */ 1754extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1755 1756extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1757extern int wake_up_process(struct task_struct *tsk); 1758extern void wake_up_new_task(struct task_struct *tsk); 1759 1760#ifdef CONFIG_SMP 1761extern void kick_process(struct task_struct *tsk); 1762#else 1763static inline void kick_process(struct task_struct *tsk) { } 1764#endif 1765 1766extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1767 1768static inline void set_task_comm(struct task_struct *tsk, const char *from) 1769{ 1770 __set_task_comm(tsk, from, false); 1771} 1772 1773extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1774#define get_task_comm(buf, tsk) ({ \ 1775 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1776 __get_task_comm(buf, sizeof(buf), tsk); \ 1777}) 1778 1779#ifdef CONFIG_SMP 1780static __always_inline void scheduler_ipi(void) 1781{ 1782 /* 1783 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1784 * TIF_NEED_RESCHED remotely (for the first time) will also send 1785 * this IPI. 1786 */ 1787 preempt_fold_need_resched(); 1788} 1789extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1790#else 1791static inline void scheduler_ipi(void) { } 1792static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1793{ 1794 return 1; 1795} 1796#endif 1797 1798/* 1799 * Set thread flags in other task's structures. 1800 * See asm/thread_info.h for TIF_xxxx flags available: 1801 */ 1802static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1803{ 1804 set_ti_thread_flag(task_thread_info(tsk), flag); 1805} 1806 1807static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1808{ 1809 clear_ti_thread_flag(task_thread_info(tsk), flag); 1810} 1811 1812static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1813 bool value) 1814{ 1815 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1816} 1817 1818static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1819{ 1820 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1821} 1822 1823static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1824{ 1825 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1826} 1827 1828static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1829{ 1830 return test_ti_thread_flag(task_thread_info(tsk), flag); 1831} 1832 1833static inline void set_tsk_need_resched(struct task_struct *tsk) 1834{ 1835 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1836} 1837 1838static inline void clear_tsk_need_resched(struct task_struct *tsk) 1839{ 1840 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1841} 1842 1843static inline int test_tsk_need_resched(struct task_struct *tsk) 1844{ 1845 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1846} 1847 1848/* 1849 * cond_resched() and cond_resched_lock(): latency reduction via 1850 * explicit rescheduling in places that are safe. The return 1851 * value indicates whether a reschedule was done in fact. 1852 * cond_resched_lock() will drop the spinlock before scheduling, 1853 */ 1854#ifndef CONFIG_PREEMPTION 1855extern int _cond_resched(void); 1856#else 1857static inline int _cond_resched(void) { return 0; } 1858#endif 1859 1860#define cond_resched() ({ \ 1861 ___might_sleep(__FILE__, __LINE__, 0); \ 1862 _cond_resched(); \ 1863}) 1864 1865extern int __cond_resched_lock(spinlock_t *lock); 1866 1867#define cond_resched_lock(lock) ({ \ 1868 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1869 __cond_resched_lock(lock); \ 1870}) 1871 1872static inline void cond_resched_rcu(void) 1873{ 1874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1875 rcu_read_unlock(); 1876 cond_resched(); 1877 rcu_read_lock(); 1878#endif 1879} 1880 1881/* 1882 * Does a critical section need to be broken due to another 1883 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1884 * but a general need for low latency) 1885 */ 1886static inline int spin_needbreak(spinlock_t *lock) 1887{ 1888#ifdef CONFIG_PREEMPTION 1889 return spin_is_contended(lock); 1890#else 1891 return 0; 1892#endif 1893} 1894 1895static __always_inline bool need_resched(void) 1896{ 1897 return unlikely(tif_need_resched()); 1898} 1899 1900/* 1901 * Wrappers for p->thread_info->cpu access. No-op on UP. 1902 */ 1903#ifdef CONFIG_SMP 1904 1905static inline unsigned int task_cpu(const struct task_struct *p) 1906{ 1907#ifdef CONFIG_THREAD_INFO_IN_TASK 1908 return READ_ONCE(p->cpu); 1909#else 1910 return READ_ONCE(task_thread_info(p)->cpu); 1911#endif 1912} 1913 1914extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1915 1916#else 1917 1918static inline unsigned int task_cpu(const struct task_struct *p) 1919{ 1920 return 0; 1921} 1922 1923static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1924{ 1925} 1926 1927#endif /* CONFIG_SMP */ 1928 1929/* 1930 * In order to reduce various lock holder preemption latencies provide an 1931 * interface to see if a vCPU is currently running or not. 1932 * 1933 * This allows us to terminate optimistic spin loops and block, analogous to 1934 * the native optimistic spin heuristic of testing if the lock owner task is 1935 * running or not. 1936 */ 1937#ifndef vcpu_is_preempted 1938static inline bool vcpu_is_preempted(int cpu) 1939{ 1940 return false; 1941} 1942#endif 1943 1944extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1945extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1946 1947#ifndef TASK_SIZE_OF 1948#define TASK_SIZE_OF(tsk) TASK_SIZE 1949#endif 1950 1951#ifdef CONFIG_RSEQ 1952 1953/* 1954 * Map the event mask on the user-space ABI enum rseq_cs_flags 1955 * for direct mask checks. 1956 */ 1957enum rseq_event_mask_bits { 1958 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1959 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1960 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1961}; 1962 1963enum rseq_event_mask { 1964 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1965 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1966 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1967}; 1968 1969static inline void rseq_set_notify_resume(struct task_struct *t) 1970{ 1971 if (t->rseq) 1972 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1973} 1974 1975void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1976 1977static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1978 struct pt_regs *regs) 1979{ 1980 if (current->rseq) 1981 __rseq_handle_notify_resume(ksig, regs); 1982} 1983 1984static inline void rseq_signal_deliver(struct ksignal *ksig, 1985 struct pt_regs *regs) 1986{ 1987 preempt_disable(); 1988 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 1989 preempt_enable(); 1990 rseq_handle_notify_resume(ksig, regs); 1991} 1992 1993/* rseq_preempt() requires preemption to be disabled. */ 1994static inline void rseq_preempt(struct task_struct *t) 1995{ 1996 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1997 rseq_set_notify_resume(t); 1998} 1999 2000/* rseq_migrate() requires preemption to be disabled. */ 2001static inline void rseq_migrate(struct task_struct *t) 2002{ 2003 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 2004 rseq_set_notify_resume(t); 2005} 2006 2007/* 2008 * If parent process has a registered restartable sequences area, the 2009 * child inherits. Unregister rseq for a clone with CLONE_VM set. 2010 */ 2011static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2012{ 2013 if (clone_flags & CLONE_VM) { 2014 t->rseq = NULL; 2015 t->rseq_sig = 0; 2016 t->rseq_event_mask = 0; 2017 } else { 2018 t->rseq = current->rseq; 2019 t->rseq_sig = current->rseq_sig; 2020 t->rseq_event_mask = current->rseq_event_mask; 2021 } 2022} 2023 2024static inline void rseq_execve(struct task_struct *t) 2025{ 2026 t->rseq = NULL; 2027 t->rseq_sig = 0; 2028 t->rseq_event_mask = 0; 2029} 2030 2031#else 2032 2033static inline void rseq_set_notify_resume(struct task_struct *t) 2034{ 2035} 2036static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2037 struct pt_regs *regs) 2038{ 2039} 2040static inline void rseq_signal_deliver(struct ksignal *ksig, 2041 struct pt_regs *regs) 2042{ 2043} 2044static inline void rseq_preempt(struct task_struct *t) 2045{ 2046} 2047static inline void rseq_migrate(struct task_struct *t) 2048{ 2049} 2050static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2051{ 2052} 2053static inline void rseq_execve(struct task_struct *t) 2054{ 2055} 2056 2057#endif 2058 2059#ifdef CONFIG_DEBUG_RSEQ 2060 2061void rseq_syscall(struct pt_regs *regs); 2062 2063#else 2064 2065static inline void rseq_syscall(struct pt_regs *regs) 2066{ 2067} 2068 2069#endif 2070 2071const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2072char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2073int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2074 2075const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2076const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2077const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2078 2079int sched_trace_rq_cpu(struct rq *rq); 2080int sched_trace_rq_cpu_capacity(struct rq *rq); 2081int sched_trace_rq_nr_running(struct rq *rq); 2082 2083const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2084 2085#endif