Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15
16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19#endif
20
21/*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27#ifndef USER_PGTABLES_CEILING
28#define USER_PGTABLES_CEILING 0UL
29#endif
30
31/*
32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
33 *
34 * The pXx_index() functions return the index of the entry in the page
35 * table page which would control the given virtual address
36 *
37 * As these functions may be used by the same code for different levels of
38 * the page table folding, they are always available, regardless of
39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
40 * because in such cases PTRS_PER_PxD equals 1.
41 */
42
43static inline unsigned long pte_index(unsigned long address)
44{
45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
46}
47
48#ifndef pmd_index
49static inline unsigned long pmd_index(unsigned long address)
50{
51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
52}
53#define pmd_index pmd_index
54#endif
55
56#ifndef pud_index
57static inline unsigned long pud_index(unsigned long address)
58{
59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
60}
61#define pud_index pud_index
62#endif
63
64#ifndef pgd_index
65/* Must be a compile-time constant, so implement it as a macro */
66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
67#endif
68
69#ifndef pte_offset_kernel
70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
71{
72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
73}
74#define pte_offset_kernel pte_offset_kernel
75#endif
76
77#if defined(CONFIG_HIGHPTE)
78#define pte_offset_map(dir, address) \
79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
80 pte_index((address)))
81#define pte_unmap(pte) kunmap_atomic((pte))
82#else
83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
84#define pte_unmap(pte) ((void)(pte)) /* NOP */
85#endif
86
87/* Find an entry in the second-level page table.. */
88#ifndef pmd_offset
89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
90{
91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
92}
93#define pmd_offset pmd_offset
94#endif
95
96#ifndef pud_offset
97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
98{
99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
100}
101#define pud_offset pud_offset
102#endif
103
104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
105{
106 return (pgd + pgd_index(address));
107};
108
109/*
110 * a shortcut to get a pgd_t in a given mm
111 */
112#ifndef pgd_offset
113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
114#endif
115
116/*
117 * a shortcut which implies the use of the kernel's pgd, instead
118 * of a process's
119 */
120#ifndef pgd_offset_k
121#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
122#endif
123
124/*
125 * In many cases it is known that a virtual address is mapped at PMD or PTE
126 * level, so instead of traversing all the page table levels, we can get a
127 * pointer to the PMD entry in user or kernel page table or translate a virtual
128 * address to the pointer in the PTE in the kernel page tables with simple
129 * helpers.
130 */
131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
132{
133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
134}
135
136static inline pmd_t *pmd_off_k(unsigned long va)
137{
138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
139}
140
141static inline pte_t *virt_to_kpte(unsigned long vaddr)
142{
143 pmd_t *pmd = pmd_off_k(vaddr);
144
145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
146}
147
148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
149extern int ptep_set_access_flags(struct vm_area_struct *vma,
150 unsigned long address, pte_t *ptep,
151 pte_t entry, int dirty);
152#endif
153
154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
156extern int pmdp_set_access_flags(struct vm_area_struct *vma,
157 unsigned long address, pmd_t *pmdp,
158 pmd_t entry, int dirty);
159extern int pudp_set_access_flags(struct vm_area_struct *vma,
160 unsigned long address, pud_t *pudp,
161 pud_t entry, int dirty);
162#else
163static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
164 unsigned long address, pmd_t *pmdp,
165 pmd_t entry, int dirty)
166{
167 BUILD_BUG();
168 return 0;
169}
170static inline int pudp_set_access_flags(struct vm_area_struct *vma,
171 unsigned long address, pud_t *pudp,
172 pud_t entry, int dirty)
173{
174 BUILD_BUG();
175 return 0;
176}
177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178#endif
179
180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
182 unsigned long address,
183 pte_t *ptep)
184{
185 pte_t pte = *ptep;
186 int r = 1;
187 if (!pte_young(pte))
188 r = 0;
189 else
190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
191 return r;
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
198 unsigned long address,
199 pmd_t *pmdp)
200{
201 pmd_t pmd = *pmdp;
202 int r = 1;
203 if (!pmd_young(pmd))
204 r = 0;
205 else
206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
207 return r;
208}
209#else
210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
211 unsigned long address,
212 pmd_t *pmdp)
213{
214 BUILD_BUG();
215 return 0;
216}
217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
218#endif
219
220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
221int ptep_clear_flush_young(struct vm_area_struct *vma,
222 unsigned long address, pte_t *ptep);
223#endif
224
225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
227extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
228 unsigned long address, pmd_t *pmdp);
229#else
230/*
231 * Despite relevant to THP only, this API is called from generic rmap code
232 * under PageTransHuge(), hence needs a dummy implementation for !THP
233 */
234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
235 unsigned long address, pmd_t *pmdp)
236{
237 BUILD_BUG();
238 return 0;
239}
240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
241#endif
242
243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
244static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
245 unsigned long address,
246 pte_t *ptep)
247{
248 pte_t pte = *ptep;
249 pte_clear(mm, address, ptep);
250 return pte;
251}
252#endif
253
254#ifndef __HAVE_ARCH_PTEP_GET
255static inline pte_t ptep_get(pte_t *ptep)
256{
257 return READ_ONCE(*ptep);
258}
259#endif
260
261#ifdef CONFIG_TRANSPARENT_HUGEPAGE
262#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
263static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
264 unsigned long address,
265 pmd_t *pmdp)
266{
267 pmd_t pmd = *pmdp;
268 pmd_clear(pmdp);
269 return pmd;
270}
271#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
272#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
273static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
274 unsigned long address,
275 pud_t *pudp)
276{
277 pud_t pud = *pudp;
278
279 pud_clear(pudp);
280 return pud;
281}
282#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
283#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
284
285#ifdef CONFIG_TRANSPARENT_HUGEPAGE
286#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
287static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
288 unsigned long address, pmd_t *pmdp,
289 int full)
290{
291 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
292}
293#endif
294
295#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
296static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
297 unsigned long address, pud_t *pudp,
298 int full)
299{
300 return pudp_huge_get_and_clear(mm, address, pudp);
301}
302#endif
303#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
304
305#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
306static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
307 unsigned long address, pte_t *ptep,
308 int full)
309{
310 pte_t pte;
311 pte = ptep_get_and_clear(mm, address, ptep);
312 return pte;
313}
314#endif
315
316
317/*
318 * If two threads concurrently fault at the same page, the thread that
319 * won the race updates the PTE and its local TLB/Cache. The other thread
320 * gives up, simply does nothing, and continues; on architectures where
321 * software can update TLB, local TLB can be updated here to avoid next page
322 * fault. This function updates TLB only, do nothing with cache or others.
323 * It is the difference with function update_mmu_cache.
324 */
325#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
326static inline void update_mmu_tlb(struct vm_area_struct *vma,
327 unsigned long address, pte_t *ptep)
328{
329}
330#define __HAVE_ARCH_UPDATE_MMU_TLB
331#endif
332
333/*
334 * Some architectures may be able to avoid expensive synchronization
335 * primitives when modifications are made to PTE's which are already
336 * not present, or in the process of an address space destruction.
337 */
338#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
339static inline void pte_clear_not_present_full(struct mm_struct *mm,
340 unsigned long address,
341 pte_t *ptep,
342 int full)
343{
344 pte_clear(mm, address, ptep);
345}
346#endif
347
348#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
349extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
350 unsigned long address,
351 pte_t *ptep);
352#endif
353
354#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
355extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
356 unsigned long address,
357 pmd_t *pmdp);
358extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
359 unsigned long address,
360 pud_t *pudp);
361#endif
362
363#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
364struct mm_struct;
365static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
366{
367 pte_t old_pte = *ptep;
368 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
369}
370#endif
371
372/*
373 * On some architectures hardware does not set page access bit when accessing
374 * memory page, it is responsibilty of software setting this bit. It brings
375 * out extra page fault penalty to track page access bit. For optimization page
376 * access bit can be set during all page fault flow on these arches.
377 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
378 * where software maintains page access bit.
379 */
380#ifndef pte_sw_mkyoung
381static inline pte_t pte_sw_mkyoung(pte_t pte)
382{
383 return pte;
384}
385#define pte_sw_mkyoung pte_sw_mkyoung
386#endif
387
388#ifndef pte_savedwrite
389#define pte_savedwrite pte_write
390#endif
391
392#ifndef pte_mk_savedwrite
393#define pte_mk_savedwrite pte_mkwrite
394#endif
395
396#ifndef pte_clear_savedwrite
397#define pte_clear_savedwrite pte_wrprotect
398#endif
399
400#ifndef pmd_savedwrite
401#define pmd_savedwrite pmd_write
402#endif
403
404#ifndef pmd_mk_savedwrite
405#define pmd_mk_savedwrite pmd_mkwrite
406#endif
407
408#ifndef pmd_clear_savedwrite
409#define pmd_clear_savedwrite pmd_wrprotect
410#endif
411
412#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
414static inline void pmdp_set_wrprotect(struct mm_struct *mm,
415 unsigned long address, pmd_t *pmdp)
416{
417 pmd_t old_pmd = *pmdp;
418 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
419}
420#else
421static inline void pmdp_set_wrprotect(struct mm_struct *mm,
422 unsigned long address, pmd_t *pmdp)
423{
424 BUILD_BUG();
425}
426#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
427#endif
428#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
429#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
430static inline void pudp_set_wrprotect(struct mm_struct *mm,
431 unsigned long address, pud_t *pudp)
432{
433 pud_t old_pud = *pudp;
434
435 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
436}
437#else
438static inline void pudp_set_wrprotect(struct mm_struct *mm,
439 unsigned long address, pud_t *pudp)
440{
441 BUILD_BUG();
442}
443#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
444#endif
445
446#ifndef pmdp_collapse_flush
447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
448extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
449 unsigned long address, pmd_t *pmdp);
450#else
451static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
452 unsigned long address,
453 pmd_t *pmdp)
454{
455 BUILD_BUG();
456 return *pmdp;
457}
458#define pmdp_collapse_flush pmdp_collapse_flush
459#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
460#endif
461
462#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
463extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
464 pgtable_t pgtable);
465#endif
466
467#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
468extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
469#endif
470
471#ifdef CONFIG_TRANSPARENT_HUGEPAGE
472/*
473 * This is an implementation of pmdp_establish() that is only suitable for an
474 * architecture that doesn't have hardware dirty/accessed bits. In this case we
475 * can't race with CPU which sets these bits and non-atomic aproach is fine.
476 */
477static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
478 unsigned long address, pmd_t *pmdp, pmd_t pmd)
479{
480 pmd_t old_pmd = *pmdp;
481 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
482 return old_pmd;
483}
484#endif
485
486#ifndef __HAVE_ARCH_PMDP_INVALIDATE
487extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
488 pmd_t *pmdp);
489#endif
490
491#ifndef __HAVE_ARCH_PTE_SAME
492static inline int pte_same(pte_t pte_a, pte_t pte_b)
493{
494 return pte_val(pte_a) == pte_val(pte_b);
495}
496#endif
497
498#ifndef __HAVE_ARCH_PTE_UNUSED
499/*
500 * Some architectures provide facilities to virtualization guests
501 * so that they can flag allocated pages as unused. This allows the
502 * host to transparently reclaim unused pages. This function returns
503 * whether the pte's page is unused.
504 */
505static inline int pte_unused(pte_t pte)
506{
507 return 0;
508}
509#endif
510
511#ifndef pte_access_permitted
512#define pte_access_permitted(pte, write) \
513 (pte_present(pte) && (!(write) || pte_write(pte)))
514#endif
515
516#ifndef pmd_access_permitted
517#define pmd_access_permitted(pmd, write) \
518 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
519#endif
520
521#ifndef pud_access_permitted
522#define pud_access_permitted(pud, write) \
523 (pud_present(pud) && (!(write) || pud_write(pud)))
524#endif
525
526#ifndef p4d_access_permitted
527#define p4d_access_permitted(p4d, write) \
528 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
529#endif
530
531#ifndef pgd_access_permitted
532#define pgd_access_permitted(pgd, write) \
533 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
534#endif
535
536#ifndef __HAVE_ARCH_PMD_SAME
537static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
538{
539 return pmd_val(pmd_a) == pmd_val(pmd_b);
540}
541
542static inline int pud_same(pud_t pud_a, pud_t pud_b)
543{
544 return pud_val(pud_a) == pud_val(pud_b);
545}
546#endif
547
548#ifndef __HAVE_ARCH_P4D_SAME
549static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
550{
551 return p4d_val(p4d_a) == p4d_val(p4d_b);
552}
553#endif
554
555#ifndef __HAVE_ARCH_PGD_SAME
556static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
557{
558 return pgd_val(pgd_a) == pgd_val(pgd_b);
559}
560#endif
561
562/*
563 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
564 * TLB flush will be required as a result of the "set". For example, use
565 * in scenarios where it is known ahead of time that the routine is
566 * setting non-present entries, or re-setting an existing entry to the
567 * same value. Otherwise, use the typical "set" helpers and flush the
568 * TLB.
569 */
570#define set_pte_safe(ptep, pte) \
571({ \
572 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
573 set_pte(ptep, pte); \
574})
575
576#define set_pmd_safe(pmdp, pmd) \
577({ \
578 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
579 set_pmd(pmdp, pmd); \
580})
581
582#define set_pud_safe(pudp, pud) \
583({ \
584 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
585 set_pud(pudp, pud); \
586})
587
588#define set_p4d_safe(p4dp, p4d) \
589({ \
590 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
591 set_p4d(p4dp, p4d); \
592})
593
594#define set_pgd_safe(pgdp, pgd) \
595({ \
596 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
597 set_pgd(pgdp, pgd); \
598})
599
600#ifndef __HAVE_ARCH_DO_SWAP_PAGE
601/*
602 * Some architectures support metadata associated with a page. When a
603 * page is being swapped out, this metadata must be saved so it can be
604 * restored when the page is swapped back in. SPARC M7 and newer
605 * processors support an ADI (Application Data Integrity) tag for the
606 * page as metadata for the page. arch_do_swap_page() can restore this
607 * metadata when a page is swapped back in.
608 */
609static inline void arch_do_swap_page(struct mm_struct *mm,
610 struct vm_area_struct *vma,
611 unsigned long addr,
612 pte_t pte, pte_t oldpte)
613{
614
615}
616#endif
617
618#ifndef __HAVE_ARCH_UNMAP_ONE
619/*
620 * Some architectures support metadata associated with a page. When a
621 * page is being swapped out, this metadata must be saved so it can be
622 * restored when the page is swapped back in. SPARC M7 and newer
623 * processors support an ADI (Application Data Integrity) tag for the
624 * page as metadata for the page. arch_unmap_one() can save this
625 * metadata on a swap-out of a page.
626 */
627static inline int arch_unmap_one(struct mm_struct *mm,
628 struct vm_area_struct *vma,
629 unsigned long addr,
630 pte_t orig_pte)
631{
632 return 0;
633}
634#endif
635
636/*
637 * Allow architectures to preserve additional metadata associated with
638 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
639 * prototypes must be defined in the arch-specific asm/pgtable.h file.
640 */
641#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
642static inline int arch_prepare_to_swap(struct page *page)
643{
644 return 0;
645}
646#endif
647
648#ifndef __HAVE_ARCH_SWAP_INVALIDATE
649static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
650{
651}
652
653static inline void arch_swap_invalidate_area(int type)
654{
655}
656#endif
657
658#ifndef __HAVE_ARCH_SWAP_RESTORE
659static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
660{
661}
662#endif
663
664#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
665#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
666#endif
667
668#ifndef __HAVE_ARCH_MOVE_PTE
669#define move_pte(pte, prot, old_addr, new_addr) (pte)
670#endif
671
672#ifndef pte_accessible
673# define pte_accessible(mm, pte) ((void)(pte), 1)
674#endif
675
676#ifndef flush_tlb_fix_spurious_fault
677#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
678#endif
679
680/*
681 * When walking page tables, get the address of the next boundary,
682 * or the end address of the range if that comes earlier. Although no
683 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
684 */
685
686#define pgd_addr_end(addr, end) \
687({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
688 (__boundary - 1 < (end) - 1)? __boundary: (end); \
689})
690
691#ifndef p4d_addr_end
692#define p4d_addr_end(addr, end) \
693({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
694 (__boundary - 1 < (end) - 1)? __boundary: (end); \
695})
696#endif
697
698#ifndef pud_addr_end
699#define pud_addr_end(addr, end) \
700({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
701 (__boundary - 1 < (end) - 1)? __boundary: (end); \
702})
703#endif
704
705#ifndef pmd_addr_end
706#define pmd_addr_end(addr, end) \
707({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
708 (__boundary - 1 < (end) - 1)? __boundary: (end); \
709})
710#endif
711
712/*
713 * When walking page tables, we usually want to skip any p?d_none entries;
714 * and any p?d_bad entries - reporting the error before resetting to none.
715 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
716 */
717void pgd_clear_bad(pgd_t *);
718
719#ifndef __PAGETABLE_P4D_FOLDED
720void p4d_clear_bad(p4d_t *);
721#else
722#define p4d_clear_bad(p4d) do { } while (0)
723#endif
724
725#ifndef __PAGETABLE_PUD_FOLDED
726void pud_clear_bad(pud_t *);
727#else
728#define pud_clear_bad(p4d) do { } while (0)
729#endif
730
731void pmd_clear_bad(pmd_t *);
732
733static inline int pgd_none_or_clear_bad(pgd_t *pgd)
734{
735 if (pgd_none(*pgd))
736 return 1;
737 if (unlikely(pgd_bad(*pgd))) {
738 pgd_clear_bad(pgd);
739 return 1;
740 }
741 return 0;
742}
743
744static inline int p4d_none_or_clear_bad(p4d_t *p4d)
745{
746 if (p4d_none(*p4d))
747 return 1;
748 if (unlikely(p4d_bad(*p4d))) {
749 p4d_clear_bad(p4d);
750 return 1;
751 }
752 return 0;
753}
754
755static inline int pud_none_or_clear_bad(pud_t *pud)
756{
757 if (pud_none(*pud))
758 return 1;
759 if (unlikely(pud_bad(*pud))) {
760 pud_clear_bad(pud);
761 return 1;
762 }
763 return 0;
764}
765
766static inline int pmd_none_or_clear_bad(pmd_t *pmd)
767{
768 if (pmd_none(*pmd))
769 return 1;
770 if (unlikely(pmd_bad(*pmd))) {
771 pmd_clear_bad(pmd);
772 return 1;
773 }
774 return 0;
775}
776
777static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
778 unsigned long addr,
779 pte_t *ptep)
780{
781 /*
782 * Get the current pte state, but zero it out to make it
783 * non-present, preventing the hardware from asynchronously
784 * updating it.
785 */
786 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
787}
788
789static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
790 unsigned long addr,
791 pte_t *ptep, pte_t pte)
792{
793 /*
794 * The pte is non-present, so there's no hardware state to
795 * preserve.
796 */
797 set_pte_at(vma->vm_mm, addr, ptep, pte);
798}
799
800#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
801/*
802 * Start a pte protection read-modify-write transaction, which
803 * protects against asynchronous hardware modifications to the pte.
804 * The intention is not to prevent the hardware from making pte
805 * updates, but to prevent any updates it may make from being lost.
806 *
807 * This does not protect against other software modifications of the
808 * pte; the appropriate pte lock must be held over the transation.
809 *
810 * Note that this interface is intended to be batchable, meaning that
811 * ptep_modify_prot_commit may not actually update the pte, but merely
812 * queue the update to be done at some later time. The update must be
813 * actually committed before the pte lock is released, however.
814 */
815static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
816 unsigned long addr,
817 pte_t *ptep)
818{
819 return __ptep_modify_prot_start(vma, addr, ptep);
820}
821
822/*
823 * Commit an update to a pte, leaving any hardware-controlled bits in
824 * the PTE unmodified.
825 */
826static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
827 unsigned long addr,
828 pte_t *ptep, pte_t old_pte, pte_t pte)
829{
830 __ptep_modify_prot_commit(vma, addr, ptep, pte);
831}
832#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
833#endif /* CONFIG_MMU */
834
835/*
836 * No-op macros that just return the current protection value. Defined here
837 * because these macros can be used even if CONFIG_MMU is not defined.
838 */
839
840#ifndef pgprot_nx
841#define pgprot_nx(prot) (prot)
842#endif
843
844#ifndef pgprot_noncached
845#define pgprot_noncached(prot) (prot)
846#endif
847
848#ifndef pgprot_writecombine
849#define pgprot_writecombine pgprot_noncached
850#endif
851
852#ifndef pgprot_writethrough
853#define pgprot_writethrough pgprot_noncached
854#endif
855
856#ifndef pgprot_device
857#define pgprot_device pgprot_noncached
858#endif
859
860#ifdef CONFIG_MMU
861#ifndef pgprot_modify
862#define pgprot_modify pgprot_modify
863static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
864{
865 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
866 newprot = pgprot_noncached(newprot);
867 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
868 newprot = pgprot_writecombine(newprot);
869 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
870 newprot = pgprot_device(newprot);
871 return newprot;
872}
873#endif
874#endif /* CONFIG_MMU */
875
876#ifndef pgprot_encrypted
877#define pgprot_encrypted(prot) (prot)
878#endif
879
880#ifndef pgprot_decrypted
881#define pgprot_decrypted(prot) (prot)
882#endif
883
884/*
885 * A facility to provide lazy MMU batching. This allows PTE updates and
886 * page invalidations to be delayed until a call to leave lazy MMU mode
887 * is issued. Some architectures may benefit from doing this, and it is
888 * beneficial for both shadow and direct mode hypervisors, which may batch
889 * the PTE updates which happen during this window. Note that using this
890 * interface requires that read hazards be removed from the code. A read
891 * hazard could result in the direct mode hypervisor case, since the actual
892 * write to the page tables may not yet have taken place, so reads though
893 * a raw PTE pointer after it has been modified are not guaranteed to be
894 * up to date. This mode can only be entered and left under the protection of
895 * the page table locks for all page tables which may be modified. In the UP
896 * case, this is required so that preemption is disabled, and in the SMP case,
897 * it must synchronize the delayed page table writes properly on other CPUs.
898 */
899#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
900#define arch_enter_lazy_mmu_mode() do {} while (0)
901#define arch_leave_lazy_mmu_mode() do {} while (0)
902#define arch_flush_lazy_mmu_mode() do {} while (0)
903#endif
904
905/*
906 * A facility to provide batching of the reload of page tables and
907 * other process state with the actual context switch code for
908 * paravirtualized guests. By convention, only one of the batched
909 * update (lazy) modes (CPU, MMU) should be active at any given time,
910 * entry should never be nested, and entry and exits should always be
911 * paired. This is for sanity of maintaining and reasoning about the
912 * kernel code. In this case, the exit (end of the context switch) is
913 * in architecture-specific code, and so doesn't need a generic
914 * definition.
915 */
916#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
917#define arch_start_context_switch(prev) do {} while (0)
918#endif
919
920#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
921#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
922static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
923{
924 return pmd;
925}
926
927static inline int pmd_swp_soft_dirty(pmd_t pmd)
928{
929 return 0;
930}
931
932static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
933{
934 return pmd;
935}
936#endif
937#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
938static inline int pte_soft_dirty(pte_t pte)
939{
940 return 0;
941}
942
943static inline int pmd_soft_dirty(pmd_t pmd)
944{
945 return 0;
946}
947
948static inline pte_t pte_mksoft_dirty(pte_t pte)
949{
950 return pte;
951}
952
953static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
954{
955 return pmd;
956}
957
958static inline pte_t pte_clear_soft_dirty(pte_t pte)
959{
960 return pte;
961}
962
963static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
964{
965 return pmd;
966}
967
968static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
969{
970 return pte;
971}
972
973static inline int pte_swp_soft_dirty(pte_t pte)
974{
975 return 0;
976}
977
978static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
979{
980 return pte;
981}
982
983static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
984{
985 return pmd;
986}
987
988static inline int pmd_swp_soft_dirty(pmd_t pmd)
989{
990 return 0;
991}
992
993static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
994{
995 return pmd;
996}
997#endif
998
999#ifndef __HAVE_PFNMAP_TRACKING
1000/*
1001 * Interfaces that can be used by architecture code to keep track of
1002 * memory type of pfn mappings specified by the remap_pfn_range,
1003 * vmf_insert_pfn.
1004 */
1005
1006/*
1007 * track_pfn_remap is called when a _new_ pfn mapping is being established
1008 * by remap_pfn_range() for physical range indicated by pfn and size.
1009 */
1010static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1011 unsigned long pfn, unsigned long addr,
1012 unsigned long size)
1013{
1014 return 0;
1015}
1016
1017/*
1018 * track_pfn_insert is called when a _new_ single pfn is established
1019 * by vmf_insert_pfn().
1020 */
1021static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1022 pfn_t pfn)
1023{
1024}
1025
1026/*
1027 * track_pfn_copy is called when vma that is covering the pfnmap gets
1028 * copied through copy_page_range().
1029 */
1030static inline int track_pfn_copy(struct vm_area_struct *vma)
1031{
1032 return 0;
1033}
1034
1035/*
1036 * untrack_pfn is called while unmapping a pfnmap for a region.
1037 * untrack can be called for a specific region indicated by pfn and size or
1038 * can be for the entire vma (in which case pfn, size are zero).
1039 */
1040static inline void untrack_pfn(struct vm_area_struct *vma,
1041 unsigned long pfn, unsigned long size)
1042{
1043}
1044
1045/*
1046 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1047 */
1048static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1049{
1050}
1051#else
1052extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1053 unsigned long pfn, unsigned long addr,
1054 unsigned long size);
1055extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1056 pfn_t pfn);
1057extern int track_pfn_copy(struct vm_area_struct *vma);
1058extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1059 unsigned long size);
1060extern void untrack_pfn_moved(struct vm_area_struct *vma);
1061#endif
1062
1063#ifdef __HAVE_COLOR_ZERO_PAGE
1064static inline int is_zero_pfn(unsigned long pfn)
1065{
1066 extern unsigned long zero_pfn;
1067 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1068 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1069}
1070
1071#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1072
1073#else
1074static inline int is_zero_pfn(unsigned long pfn)
1075{
1076 extern unsigned long zero_pfn;
1077 return pfn == zero_pfn;
1078}
1079
1080static inline unsigned long my_zero_pfn(unsigned long addr)
1081{
1082 extern unsigned long zero_pfn;
1083 return zero_pfn;
1084}
1085#endif
1086
1087#ifdef CONFIG_MMU
1088
1089#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1090static inline int pmd_trans_huge(pmd_t pmd)
1091{
1092 return 0;
1093}
1094#ifndef pmd_write
1095static inline int pmd_write(pmd_t pmd)
1096{
1097 BUG();
1098 return 0;
1099}
1100#endif /* pmd_write */
1101#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1102
1103#ifndef pud_write
1104static inline int pud_write(pud_t pud)
1105{
1106 BUG();
1107 return 0;
1108}
1109#endif /* pud_write */
1110
1111#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1112static inline int pmd_devmap(pmd_t pmd)
1113{
1114 return 0;
1115}
1116static inline int pud_devmap(pud_t pud)
1117{
1118 return 0;
1119}
1120static inline int pgd_devmap(pgd_t pgd)
1121{
1122 return 0;
1123}
1124#endif
1125
1126#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1127 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1128 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1129static inline int pud_trans_huge(pud_t pud)
1130{
1131 return 0;
1132}
1133#endif
1134
1135/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1136static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1137{
1138 pud_t pudval = READ_ONCE(*pud);
1139
1140 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1141 return 1;
1142 if (unlikely(pud_bad(pudval))) {
1143 pud_clear_bad(pud);
1144 return 1;
1145 }
1146 return 0;
1147}
1148
1149/* See pmd_trans_unstable for discussion. */
1150static inline int pud_trans_unstable(pud_t *pud)
1151{
1152#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1153 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1154 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1155#else
1156 return 0;
1157#endif
1158}
1159
1160#ifndef pmd_read_atomic
1161static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1162{
1163 /*
1164 * Depend on compiler for an atomic pmd read. NOTE: this is
1165 * only going to work, if the pmdval_t isn't larger than
1166 * an unsigned long.
1167 */
1168 return *pmdp;
1169}
1170#endif
1171
1172#ifndef arch_needs_pgtable_deposit
1173#define arch_needs_pgtable_deposit() (false)
1174#endif
1175/*
1176 * This function is meant to be used by sites walking pagetables with
1177 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1178 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1179 * into a null pmd and the transhuge page fault can convert a null pmd
1180 * into an hugepmd or into a regular pmd (if the hugepage allocation
1181 * fails). While holding the mmap_lock in read mode the pmd becomes
1182 * stable and stops changing under us only if it's not null and not a
1183 * transhuge pmd. When those races occurs and this function makes a
1184 * difference vs the standard pmd_none_or_clear_bad, the result is
1185 * undefined so behaving like if the pmd was none is safe (because it
1186 * can return none anyway). The compiler level barrier() is critically
1187 * important to compute the two checks atomically on the same pmdval.
1188 *
1189 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1190 * care of reading the pmd atomically to avoid SMP race conditions
1191 * against pmd_populate() when the mmap_lock is hold for reading by the
1192 * caller (a special atomic read not done by "gcc" as in the generic
1193 * version above, is also needed when THP is disabled because the page
1194 * fault can populate the pmd from under us).
1195 */
1196static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1197{
1198 pmd_t pmdval = pmd_read_atomic(pmd);
1199 /*
1200 * The barrier will stabilize the pmdval in a register or on
1201 * the stack so that it will stop changing under the code.
1202 *
1203 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1204 * pmd_read_atomic is allowed to return a not atomic pmdval
1205 * (for example pointing to an hugepage that has never been
1206 * mapped in the pmd). The below checks will only care about
1207 * the low part of the pmd with 32bit PAE x86 anyway, with the
1208 * exception of pmd_none(). So the important thing is that if
1209 * the low part of the pmd is found null, the high part will
1210 * be also null or the pmd_none() check below would be
1211 * confused.
1212 */
1213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1214 barrier();
1215#endif
1216 /*
1217 * !pmd_present() checks for pmd migration entries
1218 *
1219 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1220 * But using that requires moving current function and pmd_trans_unstable()
1221 * to linux/swapops.h to resovle dependency, which is too much code move.
1222 *
1223 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1224 * because !pmd_present() pages can only be under migration not swapped
1225 * out.
1226 *
1227 * pmd_none() is preseved for future condition checks on pmd migration
1228 * entries and not confusing with this function name, although it is
1229 * redundant with !pmd_present().
1230 */
1231 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1232 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1233 return 1;
1234 if (unlikely(pmd_bad(pmdval))) {
1235 pmd_clear_bad(pmd);
1236 return 1;
1237 }
1238 return 0;
1239}
1240
1241/*
1242 * This is a noop if Transparent Hugepage Support is not built into
1243 * the kernel. Otherwise it is equivalent to
1244 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1245 * places that already verified the pmd is not none and they want to
1246 * walk ptes while holding the mmap sem in read mode (write mode don't
1247 * need this). If THP is not enabled, the pmd can't go away under the
1248 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1249 * run a pmd_trans_unstable before walking the ptes after
1250 * split_huge_pmd returns (because it may have run when the pmd become
1251 * null, but then a page fault can map in a THP and not a regular page).
1252 */
1253static inline int pmd_trans_unstable(pmd_t *pmd)
1254{
1255#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1257#else
1258 return 0;
1259#endif
1260}
1261
1262#ifndef CONFIG_NUMA_BALANCING
1263/*
1264 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1265 * the only case the kernel cares is for NUMA balancing and is only ever set
1266 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1267 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1268 * is the responsibility of the caller to distinguish between PROT_NONE
1269 * protections and NUMA hinting fault protections.
1270 */
1271static inline int pte_protnone(pte_t pte)
1272{
1273 return 0;
1274}
1275
1276static inline int pmd_protnone(pmd_t pmd)
1277{
1278 return 0;
1279}
1280#endif /* CONFIG_NUMA_BALANCING */
1281
1282#endif /* CONFIG_MMU */
1283
1284#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1285
1286#ifndef __PAGETABLE_P4D_FOLDED
1287int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1288int p4d_clear_huge(p4d_t *p4d);
1289#else
1290static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1291{
1292 return 0;
1293}
1294static inline int p4d_clear_huge(p4d_t *p4d)
1295{
1296 return 0;
1297}
1298#endif /* !__PAGETABLE_P4D_FOLDED */
1299
1300int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1301int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1302int pud_clear_huge(pud_t *pud);
1303int pmd_clear_huge(pmd_t *pmd);
1304int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1305int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1306int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1307#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1308static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1309{
1310 return 0;
1311}
1312static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1313{
1314 return 0;
1315}
1316static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1317{
1318 return 0;
1319}
1320static inline int p4d_clear_huge(p4d_t *p4d)
1321{
1322 return 0;
1323}
1324static inline int pud_clear_huge(pud_t *pud)
1325{
1326 return 0;
1327}
1328static inline int pmd_clear_huge(pmd_t *pmd)
1329{
1330 return 0;
1331}
1332static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1333{
1334 return 0;
1335}
1336static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1337{
1338 return 0;
1339}
1340static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1341{
1342 return 0;
1343}
1344#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1345
1346#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1348/*
1349 * ARCHes with special requirements for evicting THP backing TLB entries can
1350 * implement this. Otherwise also, it can help optimize normal TLB flush in
1351 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1352 * entire TLB if flush span is greater than a threshold, which will
1353 * likely be true for a single huge page. Thus a single THP flush will
1354 * invalidate the entire TLB which is not desirable.
1355 * e.g. see arch/arc: flush_pmd_tlb_range
1356 */
1357#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1358#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1359#else
1360#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1361#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1362#endif
1363#endif
1364
1365struct file;
1366int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1367 unsigned long size, pgprot_t *vma_prot);
1368
1369#ifndef CONFIG_X86_ESPFIX64
1370static inline void init_espfix_bsp(void) { }
1371#endif
1372
1373extern void __init pgtable_cache_init(void);
1374
1375#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1376static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1377{
1378 return true;
1379}
1380
1381static inline bool arch_has_pfn_modify_check(void)
1382{
1383 return false;
1384}
1385#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1386
1387/*
1388 * Architecture PAGE_KERNEL_* fallbacks
1389 *
1390 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1391 * because they really don't support them, or the port needs to be updated to
1392 * reflect the required functionality. Below are a set of relatively safe
1393 * fallbacks, as best effort, which we can count on in lieu of the architectures
1394 * not defining them on their own yet.
1395 */
1396
1397#ifndef PAGE_KERNEL_RO
1398# define PAGE_KERNEL_RO PAGE_KERNEL
1399#endif
1400
1401#ifndef PAGE_KERNEL_EXEC
1402# define PAGE_KERNEL_EXEC PAGE_KERNEL
1403#endif
1404
1405/*
1406 * Page Table Modification bits for pgtbl_mod_mask.
1407 *
1408 * These are used by the p?d_alloc_track*() set of functions an in the generic
1409 * vmalloc/ioremap code to track at which page-table levels entries have been
1410 * modified. Based on that the code can better decide when vmalloc and ioremap
1411 * mapping changes need to be synchronized to other page-tables in the system.
1412 */
1413#define __PGTBL_PGD_MODIFIED 0
1414#define __PGTBL_P4D_MODIFIED 1
1415#define __PGTBL_PUD_MODIFIED 2
1416#define __PGTBL_PMD_MODIFIED 3
1417#define __PGTBL_PTE_MODIFIED 4
1418
1419#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1420#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1421#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1422#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1423#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1424
1425/* Page-Table Modification Mask */
1426typedef unsigned int pgtbl_mod_mask;
1427
1428#endif /* !__ASSEMBLY__ */
1429
1430#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1431#ifdef CONFIG_PHYS_ADDR_T_64BIT
1432/*
1433 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1434 * with physical address space extension, but falls back to
1435 * BITS_PER_LONG otherwise.
1436 */
1437#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1438#else
1439#define MAX_POSSIBLE_PHYSMEM_BITS 32
1440#endif
1441#endif
1442
1443#ifndef has_transparent_hugepage
1444#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1445#define has_transparent_hugepage() 1
1446#else
1447#define has_transparent_hugepage() 0
1448#endif
1449#endif
1450
1451/*
1452 * On some architectures it depends on the mm if the p4d/pud or pmd
1453 * layer of the page table hierarchy is folded or not.
1454 */
1455#ifndef mm_p4d_folded
1456#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1457#endif
1458
1459#ifndef mm_pud_folded
1460#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1461#endif
1462
1463#ifndef mm_pmd_folded
1464#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1465#endif
1466
1467#ifndef p4d_offset_lockless
1468#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1469#endif
1470#ifndef pud_offset_lockless
1471#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1472#endif
1473#ifndef pmd_offset_lockless
1474#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1475#endif
1476
1477/*
1478 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1479 * This differs from p?d_huge() by the fact that they are always available (if
1480 * the architecture supports large pages at the appropriate level) even
1481 * if CONFIG_HUGETLB_PAGE is not defined.
1482 * Only meaningful when called on a valid entry.
1483 */
1484#ifndef pgd_leaf
1485#define pgd_leaf(x) 0
1486#endif
1487#ifndef p4d_leaf
1488#define p4d_leaf(x) 0
1489#endif
1490#ifndef pud_leaf
1491#define pud_leaf(x) 0
1492#endif
1493#ifndef pmd_leaf
1494#define pmd_leaf(x) 0
1495#endif
1496
1497#endif /* _LINUX_PGTABLE_H */