at v5.10 41 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 33 * 34 * The pXx_index() functions return the index of the entry in the page 35 * table page which would control the given virtual address 36 * 37 * As these functions may be used by the same code for different levels of 38 * the page table folding, they are always available, regardless of 39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 40 * because in such cases PTRS_PER_PxD equals 1. 41 */ 42 43static inline unsigned long pte_index(unsigned long address) 44{ 45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 46} 47 48#ifndef pmd_index 49static inline unsigned long pmd_index(unsigned long address) 50{ 51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 52} 53#define pmd_index pmd_index 54#endif 55 56#ifndef pud_index 57static inline unsigned long pud_index(unsigned long address) 58{ 59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 60} 61#define pud_index pud_index 62#endif 63 64#ifndef pgd_index 65/* Must be a compile-time constant, so implement it as a macro */ 66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 67#endif 68 69#ifndef pte_offset_kernel 70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 71{ 72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 73} 74#define pte_offset_kernel pte_offset_kernel 75#endif 76 77#if defined(CONFIG_HIGHPTE) 78#define pte_offset_map(dir, address) \ 79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 80 pte_index((address))) 81#define pte_unmap(pte) kunmap_atomic((pte)) 82#else 83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 84#define pte_unmap(pte) ((void)(pte)) /* NOP */ 85#endif 86 87/* Find an entry in the second-level page table.. */ 88#ifndef pmd_offset 89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 90{ 91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 92} 93#define pmd_offset pmd_offset 94#endif 95 96#ifndef pud_offset 97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 98{ 99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 100} 101#define pud_offset pud_offset 102#endif 103 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 105{ 106 return (pgd + pgd_index(address)); 107}; 108 109/* 110 * a shortcut to get a pgd_t in a given mm 111 */ 112#ifndef pgd_offset 113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 114#endif 115 116/* 117 * a shortcut which implies the use of the kernel's pgd, instead 118 * of a process's 119 */ 120#ifndef pgd_offset_k 121#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 122#endif 123 124/* 125 * In many cases it is known that a virtual address is mapped at PMD or PTE 126 * level, so instead of traversing all the page table levels, we can get a 127 * pointer to the PMD entry in user or kernel page table or translate a virtual 128 * address to the pointer in the PTE in the kernel page tables with simple 129 * helpers. 130 */ 131static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 132{ 133 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 134} 135 136static inline pmd_t *pmd_off_k(unsigned long va) 137{ 138 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 139} 140 141static inline pte_t *virt_to_kpte(unsigned long vaddr) 142{ 143 pmd_t *pmd = pmd_off_k(vaddr); 144 145 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 146} 147 148#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 149extern int ptep_set_access_flags(struct vm_area_struct *vma, 150 unsigned long address, pte_t *ptep, 151 pte_t entry, int dirty); 152#endif 153 154#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 155#ifdef CONFIG_TRANSPARENT_HUGEPAGE 156extern int pmdp_set_access_flags(struct vm_area_struct *vma, 157 unsigned long address, pmd_t *pmdp, 158 pmd_t entry, int dirty); 159extern int pudp_set_access_flags(struct vm_area_struct *vma, 160 unsigned long address, pud_t *pudp, 161 pud_t entry, int dirty); 162#else 163static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 164 unsigned long address, pmd_t *pmdp, 165 pmd_t entry, int dirty) 166{ 167 BUILD_BUG(); 168 return 0; 169} 170static inline int pudp_set_access_flags(struct vm_area_struct *vma, 171 unsigned long address, pud_t *pudp, 172 pud_t entry, int dirty) 173{ 174 BUILD_BUG(); 175 return 0; 176} 177#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 178#endif 179 180#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 181static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 182 unsigned long address, 183 pte_t *ptep) 184{ 185 pte_t pte = *ptep; 186 int r = 1; 187 if (!pte_young(pte)) 188 r = 0; 189 else 190 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 191 return r; 192} 193#endif 194 195#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 196#ifdef CONFIG_TRANSPARENT_HUGEPAGE 197static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 198 unsigned long address, 199 pmd_t *pmdp) 200{ 201 pmd_t pmd = *pmdp; 202 int r = 1; 203 if (!pmd_young(pmd)) 204 r = 0; 205 else 206 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 207 return r; 208} 209#else 210static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 211 unsigned long address, 212 pmd_t *pmdp) 213{ 214 BUILD_BUG(); 215 return 0; 216} 217#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 218#endif 219 220#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 221int ptep_clear_flush_young(struct vm_area_struct *vma, 222 unsigned long address, pte_t *ptep); 223#endif 224 225#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 226#ifdef CONFIG_TRANSPARENT_HUGEPAGE 227extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 228 unsigned long address, pmd_t *pmdp); 229#else 230/* 231 * Despite relevant to THP only, this API is called from generic rmap code 232 * under PageTransHuge(), hence needs a dummy implementation for !THP 233 */ 234static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 235 unsigned long address, pmd_t *pmdp) 236{ 237 BUILD_BUG(); 238 return 0; 239} 240#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 241#endif 242 243#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 244static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 245 unsigned long address, 246 pte_t *ptep) 247{ 248 pte_t pte = *ptep; 249 pte_clear(mm, address, ptep); 250 return pte; 251} 252#endif 253 254#ifndef __HAVE_ARCH_PTEP_GET 255static inline pte_t ptep_get(pte_t *ptep) 256{ 257 return READ_ONCE(*ptep); 258} 259#endif 260 261#ifdef CONFIG_TRANSPARENT_HUGEPAGE 262#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 263static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 264 unsigned long address, 265 pmd_t *pmdp) 266{ 267 pmd_t pmd = *pmdp; 268 pmd_clear(pmdp); 269 return pmd; 270} 271#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 272#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 273static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 274 unsigned long address, 275 pud_t *pudp) 276{ 277 pud_t pud = *pudp; 278 279 pud_clear(pudp); 280 return pud; 281} 282#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 283#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 284 285#ifdef CONFIG_TRANSPARENT_HUGEPAGE 286#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 287static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 288 unsigned long address, pmd_t *pmdp, 289 int full) 290{ 291 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 292} 293#endif 294 295#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 296static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 297 unsigned long address, pud_t *pudp, 298 int full) 299{ 300 return pudp_huge_get_and_clear(mm, address, pudp); 301} 302#endif 303#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 304 305#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 306static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 307 unsigned long address, pte_t *ptep, 308 int full) 309{ 310 pte_t pte; 311 pte = ptep_get_and_clear(mm, address, ptep); 312 return pte; 313} 314#endif 315 316 317/* 318 * If two threads concurrently fault at the same page, the thread that 319 * won the race updates the PTE and its local TLB/Cache. The other thread 320 * gives up, simply does nothing, and continues; on architectures where 321 * software can update TLB, local TLB can be updated here to avoid next page 322 * fault. This function updates TLB only, do nothing with cache or others. 323 * It is the difference with function update_mmu_cache. 324 */ 325#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 326static inline void update_mmu_tlb(struct vm_area_struct *vma, 327 unsigned long address, pte_t *ptep) 328{ 329} 330#define __HAVE_ARCH_UPDATE_MMU_TLB 331#endif 332 333/* 334 * Some architectures may be able to avoid expensive synchronization 335 * primitives when modifications are made to PTE's which are already 336 * not present, or in the process of an address space destruction. 337 */ 338#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 339static inline void pte_clear_not_present_full(struct mm_struct *mm, 340 unsigned long address, 341 pte_t *ptep, 342 int full) 343{ 344 pte_clear(mm, address, ptep); 345} 346#endif 347 348#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 349extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 350 unsigned long address, 351 pte_t *ptep); 352#endif 353 354#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 355extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 356 unsigned long address, 357 pmd_t *pmdp); 358extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 359 unsigned long address, 360 pud_t *pudp); 361#endif 362 363#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 364struct mm_struct; 365static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 366{ 367 pte_t old_pte = *ptep; 368 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 369} 370#endif 371 372/* 373 * On some architectures hardware does not set page access bit when accessing 374 * memory page, it is responsibilty of software setting this bit. It brings 375 * out extra page fault penalty to track page access bit. For optimization page 376 * access bit can be set during all page fault flow on these arches. 377 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 378 * where software maintains page access bit. 379 */ 380#ifndef pte_sw_mkyoung 381static inline pte_t pte_sw_mkyoung(pte_t pte) 382{ 383 return pte; 384} 385#define pte_sw_mkyoung pte_sw_mkyoung 386#endif 387 388#ifndef pte_savedwrite 389#define pte_savedwrite pte_write 390#endif 391 392#ifndef pte_mk_savedwrite 393#define pte_mk_savedwrite pte_mkwrite 394#endif 395 396#ifndef pte_clear_savedwrite 397#define pte_clear_savedwrite pte_wrprotect 398#endif 399 400#ifndef pmd_savedwrite 401#define pmd_savedwrite pmd_write 402#endif 403 404#ifndef pmd_mk_savedwrite 405#define pmd_mk_savedwrite pmd_mkwrite 406#endif 407 408#ifndef pmd_clear_savedwrite 409#define pmd_clear_savedwrite pmd_wrprotect 410#endif 411 412#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 413#ifdef CONFIG_TRANSPARENT_HUGEPAGE 414static inline void pmdp_set_wrprotect(struct mm_struct *mm, 415 unsigned long address, pmd_t *pmdp) 416{ 417 pmd_t old_pmd = *pmdp; 418 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 419} 420#else 421static inline void pmdp_set_wrprotect(struct mm_struct *mm, 422 unsigned long address, pmd_t *pmdp) 423{ 424 BUILD_BUG(); 425} 426#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 427#endif 428#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 429#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 430static inline void pudp_set_wrprotect(struct mm_struct *mm, 431 unsigned long address, pud_t *pudp) 432{ 433 pud_t old_pud = *pudp; 434 435 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 436} 437#else 438static inline void pudp_set_wrprotect(struct mm_struct *mm, 439 unsigned long address, pud_t *pudp) 440{ 441 BUILD_BUG(); 442} 443#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 444#endif 445 446#ifndef pmdp_collapse_flush 447#ifdef CONFIG_TRANSPARENT_HUGEPAGE 448extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 449 unsigned long address, pmd_t *pmdp); 450#else 451static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 452 unsigned long address, 453 pmd_t *pmdp) 454{ 455 BUILD_BUG(); 456 return *pmdp; 457} 458#define pmdp_collapse_flush pmdp_collapse_flush 459#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 460#endif 461 462#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 463extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 464 pgtable_t pgtable); 465#endif 466 467#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 468extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 469#endif 470 471#ifdef CONFIG_TRANSPARENT_HUGEPAGE 472/* 473 * This is an implementation of pmdp_establish() that is only suitable for an 474 * architecture that doesn't have hardware dirty/accessed bits. In this case we 475 * can't race with CPU which sets these bits and non-atomic aproach is fine. 476 */ 477static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 478 unsigned long address, pmd_t *pmdp, pmd_t pmd) 479{ 480 pmd_t old_pmd = *pmdp; 481 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 482 return old_pmd; 483} 484#endif 485 486#ifndef __HAVE_ARCH_PMDP_INVALIDATE 487extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 488 pmd_t *pmdp); 489#endif 490 491#ifndef __HAVE_ARCH_PTE_SAME 492static inline int pte_same(pte_t pte_a, pte_t pte_b) 493{ 494 return pte_val(pte_a) == pte_val(pte_b); 495} 496#endif 497 498#ifndef __HAVE_ARCH_PTE_UNUSED 499/* 500 * Some architectures provide facilities to virtualization guests 501 * so that they can flag allocated pages as unused. This allows the 502 * host to transparently reclaim unused pages. This function returns 503 * whether the pte's page is unused. 504 */ 505static inline int pte_unused(pte_t pte) 506{ 507 return 0; 508} 509#endif 510 511#ifndef pte_access_permitted 512#define pte_access_permitted(pte, write) \ 513 (pte_present(pte) && (!(write) || pte_write(pte))) 514#endif 515 516#ifndef pmd_access_permitted 517#define pmd_access_permitted(pmd, write) \ 518 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 519#endif 520 521#ifndef pud_access_permitted 522#define pud_access_permitted(pud, write) \ 523 (pud_present(pud) && (!(write) || pud_write(pud))) 524#endif 525 526#ifndef p4d_access_permitted 527#define p4d_access_permitted(p4d, write) \ 528 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 529#endif 530 531#ifndef pgd_access_permitted 532#define pgd_access_permitted(pgd, write) \ 533 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 534#endif 535 536#ifndef __HAVE_ARCH_PMD_SAME 537static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 538{ 539 return pmd_val(pmd_a) == pmd_val(pmd_b); 540} 541 542static inline int pud_same(pud_t pud_a, pud_t pud_b) 543{ 544 return pud_val(pud_a) == pud_val(pud_b); 545} 546#endif 547 548#ifndef __HAVE_ARCH_P4D_SAME 549static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 550{ 551 return p4d_val(p4d_a) == p4d_val(p4d_b); 552} 553#endif 554 555#ifndef __HAVE_ARCH_PGD_SAME 556static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 557{ 558 return pgd_val(pgd_a) == pgd_val(pgd_b); 559} 560#endif 561 562/* 563 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 564 * TLB flush will be required as a result of the "set". For example, use 565 * in scenarios where it is known ahead of time that the routine is 566 * setting non-present entries, or re-setting an existing entry to the 567 * same value. Otherwise, use the typical "set" helpers and flush the 568 * TLB. 569 */ 570#define set_pte_safe(ptep, pte) \ 571({ \ 572 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 573 set_pte(ptep, pte); \ 574}) 575 576#define set_pmd_safe(pmdp, pmd) \ 577({ \ 578 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 579 set_pmd(pmdp, pmd); \ 580}) 581 582#define set_pud_safe(pudp, pud) \ 583({ \ 584 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 585 set_pud(pudp, pud); \ 586}) 587 588#define set_p4d_safe(p4dp, p4d) \ 589({ \ 590 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 591 set_p4d(p4dp, p4d); \ 592}) 593 594#define set_pgd_safe(pgdp, pgd) \ 595({ \ 596 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 597 set_pgd(pgdp, pgd); \ 598}) 599 600#ifndef __HAVE_ARCH_DO_SWAP_PAGE 601/* 602 * Some architectures support metadata associated with a page. When a 603 * page is being swapped out, this metadata must be saved so it can be 604 * restored when the page is swapped back in. SPARC M7 and newer 605 * processors support an ADI (Application Data Integrity) tag for the 606 * page as metadata for the page. arch_do_swap_page() can restore this 607 * metadata when a page is swapped back in. 608 */ 609static inline void arch_do_swap_page(struct mm_struct *mm, 610 struct vm_area_struct *vma, 611 unsigned long addr, 612 pte_t pte, pte_t oldpte) 613{ 614 615} 616#endif 617 618#ifndef __HAVE_ARCH_UNMAP_ONE 619/* 620 * Some architectures support metadata associated with a page. When a 621 * page is being swapped out, this metadata must be saved so it can be 622 * restored when the page is swapped back in. SPARC M7 and newer 623 * processors support an ADI (Application Data Integrity) tag for the 624 * page as metadata for the page. arch_unmap_one() can save this 625 * metadata on a swap-out of a page. 626 */ 627static inline int arch_unmap_one(struct mm_struct *mm, 628 struct vm_area_struct *vma, 629 unsigned long addr, 630 pte_t orig_pte) 631{ 632 return 0; 633} 634#endif 635 636/* 637 * Allow architectures to preserve additional metadata associated with 638 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 639 * prototypes must be defined in the arch-specific asm/pgtable.h file. 640 */ 641#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 642static inline int arch_prepare_to_swap(struct page *page) 643{ 644 return 0; 645} 646#endif 647 648#ifndef __HAVE_ARCH_SWAP_INVALIDATE 649static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 650{ 651} 652 653static inline void arch_swap_invalidate_area(int type) 654{ 655} 656#endif 657 658#ifndef __HAVE_ARCH_SWAP_RESTORE 659static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 660{ 661} 662#endif 663 664#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 665#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 666#endif 667 668#ifndef __HAVE_ARCH_MOVE_PTE 669#define move_pte(pte, prot, old_addr, new_addr) (pte) 670#endif 671 672#ifndef pte_accessible 673# define pte_accessible(mm, pte) ((void)(pte), 1) 674#endif 675 676#ifndef flush_tlb_fix_spurious_fault 677#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 678#endif 679 680/* 681 * When walking page tables, get the address of the next boundary, 682 * or the end address of the range if that comes earlier. Although no 683 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 684 */ 685 686#define pgd_addr_end(addr, end) \ 687({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 688 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 689}) 690 691#ifndef p4d_addr_end 692#define p4d_addr_end(addr, end) \ 693({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 694 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 695}) 696#endif 697 698#ifndef pud_addr_end 699#define pud_addr_end(addr, end) \ 700({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 701 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 702}) 703#endif 704 705#ifndef pmd_addr_end 706#define pmd_addr_end(addr, end) \ 707({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 708 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 709}) 710#endif 711 712/* 713 * When walking page tables, we usually want to skip any p?d_none entries; 714 * and any p?d_bad entries - reporting the error before resetting to none. 715 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 716 */ 717void pgd_clear_bad(pgd_t *); 718 719#ifndef __PAGETABLE_P4D_FOLDED 720void p4d_clear_bad(p4d_t *); 721#else 722#define p4d_clear_bad(p4d) do { } while (0) 723#endif 724 725#ifndef __PAGETABLE_PUD_FOLDED 726void pud_clear_bad(pud_t *); 727#else 728#define pud_clear_bad(p4d) do { } while (0) 729#endif 730 731void pmd_clear_bad(pmd_t *); 732 733static inline int pgd_none_or_clear_bad(pgd_t *pgd) 734{ 735 if (pgd_none(*pgd)) 736 return 1; 737 if (unlikely(pgd_bad(*pgd))) { 738 pgd_clear_bad(pgd); 739 return 1; 740 } 741 return 0; 742} 743 744static inline int p4d_none_or_clear_bad(p4d_t *p4d) 745{ 746 if (p4d_none(*p4d)) 747 return 1; 748 if (unlikely(p4d_bad(*p4d))) { 749 p4d_clear_bad(p4d); 750 return 1; 751 } 752 return 0; 753} 754 755static inline int pud_none_or_clear_bad(pud_t *pud) 756{ 757 if (pud_none(*pud)) 758 return 1; 759 if (unlikely(pud_bad(*pud))) { 760 pud_clear_bad(pud); 761 return 1; 762 } 763 return 0; 764} 765 766static inline int pmd_none_or_clear_bad(pmd_t *pmd) 767{ 768 if (pmd_none(*pmd)) 769 return 1; 770 if (unlikely(pmd_bad(*pmd))) { 771 pmd_clear_bad(pmd); 772 return 1; 773 } 774 return 0; 775} 776 777static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 778 unsigned long addr, 779 pte_t *ptep) 780{ 781 /* 782 * Get the current pte state, but zero it out to make it 783 * non-present, preventing the hardware from asynchronously 784 * updating it. 785 */ 786 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 787} 788 789static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 790 unsigned long addr, 791 pte_t *ptep, pte_t pte) 792{ 793 /* 794 * The pte is non-present, so there's no hardware state to 795 * preserve. 796 */ 797 set_pte_at(vma->vm_mm, addr, ptep, pte); 798} 799 800#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 801/* 802 * Start a pte protection read-modify-write transaction, which 803 * protects against asynchronous hardware modifications to the pte. 804 * The intention is not to prevent the hardware from making pte 805 * updates, but to prevent any updates it may make from being lost. 806 * 807 * This does not protect against other software modifications of the 808 * pte; the appropriate pte lock must be held over the transation. 809 * 810 * Note that this interface is intended to be batchable, meaning that 811 * ptep_modify_prot_commit may not actually update the pte, but merely 812 * queue the update to be done at some later time. The update must be 813 * actually committed before the pte lock is released, however. 814 */ 815static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 816 unsigned long addr, 817 pte_t *ptep) 818{ 819 return __ptep_modify_prot_start(vma, addr, ptep); 820} 821 822/* 823 * Commit an update to a pte, leaving any hardware-controlled bits in 824 * the PTE unmodified. 825 */ 826static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 827 unsigned long addr, 828 pte_t *ptep, pte_t old_pte, pte_t pte) 829{ 830 __ptep_modify_prot_commit(vma, addr, ptep, pte); 831} 832#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 833#endif /* CONFIG_MMU */ 834 835/* 836 * No-op macros that just return the current protection value. Defined here 837 * because these macros can be used even if CONFIG_MMU is not defined. 838 */ 839 840#ifndef pgprot_nx 841#define pgprot_nx(prot) (prot) 842#endif 843 844#ifndef pgprot_noncached 845#define pgprot_noncached(prot) (prot) 846#endif 847 848#ifndef pgprot_writecombine 849#define pgprot_writecombine pgprot_noncached 850#endif 851 852#ifndef pgprot_writethrough 853#define pgprot_writethrough pgprot_noncached 854#endif 855 856#ifndef pgprot_device 857#define pgprot_device pgprot_noncached 858#endif 859 860#ifdef CONFIG_MMU 861#ifndef pgprot_modify 862#define pgprot_modify pgprot_modify 863static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 864{ 865 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 866 newprot = pgprot_noncached(newprot); 867 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 868 newprot = pgprot_writecombine(newprot); 869 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 870 newprot = pgprot_device(newprot); 871 return newprot; 872} 873#endif 874#endif /* CONFIG_MMU */ 875 876#ifndef pgprot_encrypted 877#define pgprot_encrypted(prot) (prot) 878#endif 879 880#ifndef pgprot_decrypted 881#define pgprot_decrypted(prot) (prot) 882#endif 883 884/* 885 * A facility to provide lazy MMU batching. This allows PTE updates and 886 * page invalidations to be delayed until a call to leave lazy MMU mode 887 * is issued. Some architectures may benefit from doing this, and it is 888 * beneficial for both shadow and direct mode hypervisors, which may batch 889 * the PTE updates which happen during this window. Note that using this 890 * interface requires that read hazards be removed from the code. A read 891 * hazard could result in the direct mode hypervisor case, since the actual 892 * write to the page tables may not yet have taken place, so reads though 893 * a raw PTE pointer after it has been modified are not guaranteed to be 894 * up to date. This mode can only be entered and left under the protection of 895 * the page table locks for all page tables which may be modified. In the UP 896 * case, this is required so that preemption is disabled, and in the SMP case, 897 * it must synchronize the delayed page table writes properly on other CPUs. 898 */ 899#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 900#define arch_enter_lazy_mmu_mode() do {} while (0) 901#define arch_leave_lazy_mmu_mode() do {} while (0) 902#define arch_flush_lazy_mmu_mode() do {} while (0) 903#endif 904 905/* 906 * A facility to provide batching of the reload of page tables and 907 * other process state with the actual context switch code for 908 * paravirtualized guests. By convention, only one of the batched 909 * update (lazy) modes (CPU, MMU) should be active at any given time, 910 * entry should never be nested, and entry and exits should always be 911 * paired. This is for sanity of maintaining and reasoning about the 912 * kernel code. In this case, the exit (end of the context switch) is 913 * in architecture-specific code, and so doesn't need a generic 914 * definition. 915 */ 916#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 917#define arch_start_context_switch(prev) do {} while (0) 918#endif 919 920#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 921#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 922static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 923{ 924 return pmd; 925} 926 927static inline int pmd_swp_soft_dirty(pmd_t pmd) 928{ 929 return 0; 930} 931 932static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 933{ 934 return pmd; 935} 936#endif 937#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 938static inline int pte_soft_dirty(pte_t pte) 939{ 940 return 0; 941} 942 943static inline int pmd_soft_dirty(pmd_t pmd) 944{ 945 return 0; 946} 947 948static inline pte_t pte_mksoft_dirty(pte_t pte) 949{ 950 return pte; 951} 952 953static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 954{ 955 return pmd; 956} 957 958static inline pte_t pte_clear_soft_dirty(pte_t pte) 959{ 960 return pte; 961} 962 963static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 964{ 965 return pmd; 966} 967 968static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 969{ 970 return pte; 971} 972 973static inline int pte_swp_soft_dirty(pte_t pte) 974{ 975 return 0; 976} 977 978static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 979{ 980 return pte; 981} 982 983static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 984{ 985 return pmd; 986} 987 988static inline int pmd_swp_soft_dirty(pmd_t pmd) 989{ 990 return 0; 991} 992 993static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 994{ 995 return pmd; 996} 997#endif 998 999#ifndef __HAVE_PFNMAP_TRACKING 1000/* 1001 * Interfaces that can be used by architecture code to keep track of 1002 * memory type of pfn mappings specified by the remap_pfn_range, 1003 * vmf_insert_pfn. 1004 */ 1005 1006/* 1007 * track_pfn_remap is called when a _new_ pfn mapping is being established 1008 * by remap_pfn_range() for physical range indicated by pfn and size. 1009 */ 1010static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1011 unsigned long pfn, unsigned long addr, 1012 unsigned long size) 1013{ 1014 return 0; 1015} 1016 1017/* 1018 * track_pfn_insert is called when a _new_ single pfn is established 1019 * by vmf_insert_pfn(). 1020 */ 1021static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1022 pfn_t pfn) 1023{ 1024} 1025 1026/* 1027 * track_pfn_copy is called when vma that is covering the pfnmap gets 1028 * copied through copy_page_range(). 1029 */ 1030static inline int track_pfn_copy(struct vm_area_struct *vma) 1031{ 1032 return 0; 1033} 1034 1035/* 1036 * untrack_pfn is called while unmapping a pfnmap for a region. 1037 * untrack can be called for a specific region indicated by pfn and size or 1038 * can be for the entire vma (in which case pfn, size are zero). 1039 */ 1040static inline void untrack_pfn(struct vm_area_struct *vma, 1041 unsigned long pfn, unsigned long size) 1042{ 1043} 1044 1045/* 1046 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1047 */ 1048static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1049{ 1050} 1051#else 1052extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1053 unsigned long pfn, unsigned long addr, 1054 unsigned long size); 1055extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1056 pfn_t pfn); 1057extern int track_pfn_copy(struct vm_area_struct *vma); 1058extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1059 unsigned long size); 1060extern void untrack_pfn_moved(struct vm_area_struct *vma); 1061#endif 1062 1063#ifdef __HAVE_COLOR_ZERO_PAGE 1064static inline int is_zero_pfn(unsigned long pfn) 1065{ 1066 extern unsigned long zero_pfn; 1067 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1068 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1069} 1070 1071#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1072 1073#else 1074static inline int is_zero_pfn(unsigned long pfn) 1075{ 1076 extern unsigned long zero_pfn; 1077 return pfn == zero_pfn; 1078} 1079 1080static inline unsigned long my_zero_pfn(unsigned long addr) 1081{ 1082 extern unsigned long zero_pfn; 1083 return zero_pfn; 1084} 1085#endif 1086 1087#ifdef CONFIG_MMU 1088 1089#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1090static inline int pmd_trans_huge(pmd_t pmd) 1091{ 1092 return 0; 1093} 1094#ifndef pmd_write 1095static inline int pmd_write(pmd_t pmd) 1096{ 1097 BUG(); 1098 return 0; 1099} 1100#endif /* pmd_write */ 1101#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1102 1103#ifndef pud_write 1104static inline int pud_write(pud_t pud) 1105{ 1106 BUG(); 1107 return 0; 1108} 1109#endif /* pud_write */ 1110 1111#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1112static inline int pmd_devmap(pmd_t pmd) 1113{ 1114 return 0; 1115} 1116static inline int pud_devmap(pud_t pud) 1117{ 1118 return 0; 1119} 1120static inline int pgd_devmap(pgd_t pgd) 1121{ 1122 return 0; 1123} 1124#endif 1125 1126#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1127 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1128 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1129static inline int pud_trans_huge(pud_t pud) 1130{ 1131 return 0; 1132} 1133#endif 1134 1135/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1136static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1137{ 1138 pud_t pudval = READ_ONCE(*pud); 1139 1140 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1141 return 1; 1142 if (unlikely(pud_bad(pudval))) { 1143 pud_clear_bad(pud); 1144 return 1; 1145 } 1146 return 0; 1147} 1148 1149/* See pmd_trans_unstable for discussion. */ 1150static inline int pud_trans_unstable(pud_t *pud) 1151{ 1152#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1153 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1154 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1155#else 1156 return 0; 1157#endif 1158} 1159 1160#ifndef pmd_read_atomic 1161static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1162{ 1163 /* 1164 * Depend on compiler for an atomic pmd read. NOTE: this is 1165 * only going to work, if the pmdval_t isn't larger than 1166 * an unsigned long. 1167 */ 1168 return *pmdp; 1169} 1170#endif 1171 1172#ifndef arch_needs_pgtable_deposit 1173#define arch_needs_pgtable_deposit() (false) 1174#endif 1175/* 1176 * This function is meant to be used by sites walking pagetables with 1177 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1178 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1179 * into a null pmd and the transhuge page fault can convert a null pmd 1180 * into an hugepmd or into a regular pmd (if the hugepage allocation 1181 * fails). While holding the mmap_lock in read mode the pmd becomes 1182 * stable and stops changing under us only if it's not null and not a 1183 * transhuge pmd. When those races occurs and this function makes a 1184 * difference vs the standard pmd_none_or_clear_bad, the result is 1185 * undefined so behaving like if the pmd was none is safe (because it 1186 * can return none anyway). The compiler level barrier() is critically 1187 * important to compute the two checks atomically on the same pmdval. 1188 * 1189 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1190 * care of reading the pmd atomically to avoid SMP race conditions 1191 * against pmd_populate() when the mmap_lock is hold for reading by the 1192 * caller (a special atomic read not done by "gcc" as in the generic 1193 * version above, is also needed when THP is disabled because the page 1194 * fault can populate the pmd from under us). 1195 */ 1196static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1197{ 1198 pmd_t pmdval = pmd_read_atomic(pmd); 1199 /* 1200 * The barrier will stabilize the pmdval in a register or on 1201 * the stack so that it will stop changing under the code. 1202 * 1203 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1204 * pmd_read_atomic is allowed to return a not atomic pmdval 1205 * (for example pointing to an hugepage that has never been 1206 * mapped in the pmd). The below checks will only care about 1207 * the low part of the pmd with 32bit PAE x86 anyway, with the 1208 * exception of pmd_none(). So the important thing is that if 1209 * the low part of the pmd is found null, the high part will 1210 * be also null or the pmd_none() check below would be 1211 * confused. 1212 */ 1213#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1214 barrier(); 1215#endif 1216 /* 1217 * !pmd_present() checks for pmd migration entries 1218 * 1219 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1220 * But using that requires moving current function and pmd_trans_unstable() 1221 * to linux/swapops.h to resovle dependency, which is too much code move. 1222 * 1223 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1224 * because !pmd_present() pages can only be under migration not swapped 1225 * out. 1226 * 1227 * pmd_none() is preseved for future condition checks on pmd migration 1228 * entries and not confusing with this function name, although it is 1229 * redundant with !pmd_present(). 1230 */ 1231 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1232 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1233 return 1; 1234 if (unlikely(pmd_bad(pmdval))) { 1235 pmd_clear_bad(pmd); 1236 return 1; 1237 } 1238 return 0; 1239} 1240 1241/* 1242 * This is a noop if Transparent Hugepage Support is not built into 1243 * the kernel. Otherwise it is equivalent to 1244 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1245 * places that already verified the pmd is not none and they want to 1246 * walk ptes while holding the mmap sem in read mode (write mode don't 1247 * need this). If THP is not enabled, the pmd can't go away under the 1248 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1249 * run a pmd_trans_unstable before walking the ptes after 1250 * split_huge_pmd returns (because it may have run when the pmd become 1251 * null, but then a page fault can map in a THP and not a regular page). 1252 */ 1253static inline int pmd_trans_unstable(pmd_t *pmd) 1254{ 1255#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1256 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1257#else 1258 return 0; 1259#endif 1260} 1261 1262#ifndef CONFIG_NUMA_BALANCING 1263/* 1264 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1265 * the only case the kernel cares is for NUMA balancing and is only ever set 1266 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1267 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1268 * is the responsibility of the caller to distinguish between PROT_NONE 1269 * protections and NUMA hinting fault protections. 1270 */ 1271static inline int pte_protnone(pte_t pte) 1272{ 1273 return 0; 1274} 1275 1276static inline int pmd_protnone(pmd_t pmd) 1277{ 1278 return 0; 1279} 1280#endif /* CONFIG_NUMA_BALANCING */ 1281 1282#endif /* CONFIG_MMU */ 1283 1284#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1285 1286#ifndef __PAGETABLE_P4D_FOLDED 1287int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1288int p4d_clear_huge(p4d_t *p4d); 1289#else 1290static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1291{ 1292 return 0; 1293} 1294static inline int p4d_clear_huge(p4d_t *p4d) 1295{ 1296 return 0; 1297} 1298#endif /* !__PAGETABLE_P4D_FOLDED */ 1299 1300int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1301int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1302int pud_clear_huge(pud_t *pud); 1303int pmd_clear_huge(pmd_t *pmd); 1304int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1305int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1306int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1307#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1308static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1309{ 1310 return 0; 1311} 1312static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1313{ 1314 return 0; 1315} 1316static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1317{ 1318 return 0; 1319} 1320static inline int p4d_clear_huge(p4d_t *p4d) 1321{ 1322 return 0; 1323} 1324static inline int pud_clear_huge(pud_t *pud) 1325{ 1326 return 0; 1327} 1328static inline int pmd_clear_huge(pmd_t *pmd) 1329{ 1330 return 0; 1331} 1332static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1333{ 1334 return 0; 1335} 1336static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1337{ 1338 return 0; 1339} 1340static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1341{ 1342 return 0; 1343} 1344#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1345 1346#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1347#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1348/* 1349 * ARCHes with special requirements for evicting THP backing TLB entries can 1350 * implement this. Otherwise also, it can help optimize normal TLB flush in 1351 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1352 * entire TLB if flush span is greater than a threshold, which will 1353 * likely be true for a single huge page. Thus a single THP flush will 1354 * invalidate the entire TLB which is not desirable. 1355 * e.g. see arch/arc: flush_pmd_tlb_range 1356 */ 1357#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1358#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1359#else 1360#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1361#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1362#endif 1363#endif 1364 1365struct file; 1366int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1367 unsigned long size, pgprot_t *vma_prot); 1368 1369#ifndef CONFIG_X86_ESPFIX64 1370static inline void init_espfix_bsp(void) { } 1371#endif 1372 1373extern void __init pgtable_cache_init(void); 1374 1375#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1376static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1377{ 1378 return true; 1379} 1380 1381static inline bool arch_has_pfn_modify_check(void) 1382{ 1383 return false; 1384} 1385#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1386 1387/* 1388 * Architecture PAGE_KERNEL_* fallbacks 1389 * 1390 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1391 * because they really don't support them, or the port needs to be updated to 1392 * reflect the required functionality. Below are a set of relatively safe 1393 * fallbacks, as best effort, which we can count on in lieu of the architectures 1394 * not defining them on their own yet. 1395 */ 1396 1397#ifndef PAGE_KERNEL_RO 1398# define PAGE_KERNEL_RO PAGE_KERNEL 1399#endif 1400 1401#ifndef PAGE_KERNEL_EXEC 1402# define PAGE_KERNEL_EXEC PAGE_KERNEL 1403#endif 1404 1405/* 1406 * Page Table Modification bits for pgtbl_mod_mask. 1407 * 1408 * These are used by the p?d_alloc_track*() set of functions an in the generic 1409 * vmalloc/ioremap code to track at which page-table levels entries have been 1410 * modified. Based on that the code can better decide when vmalloc and ioremap 1411 * mapping changes need to be synchronized to other page-tables in the system. 1412 */ 1413#define __PGTBL_PGD_MODIFIED 0 1414#define __PGTBL_P4D_MODIFIED 1 1415#define __PGTBL_PUD_MODIFIED 2 1416#define __PGTBL_PMD_MODIFIED 3 1417#define __PGTBL_PTE_MODIFIED 4 1418 1419#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1420#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1421#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1422#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1423#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1424 1425/* Page-Table Modification Mask */ 1426typedef unsigned int pgtbl_mod_mask; 1427 1428#endif /* !__ASSEMBLY__ */ 1429 1430#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1431#ifdef CONFIG_PHYS_ADDR_T_64BIT 1432/* 1433 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1434 * with physical address space extension, but falls back to 1435 * BITS_PER_LONG otherwise. 1436 */ 1437#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1438#else 1439#define MAX_POSSIBLE_PHYSMEM_BITS 32 1440#endif 1441#endif 1442 1443#ifndef has_transparent_hugepage 1444#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1445#define has_transparent_hugepage() 1 1446#else 1447#define has_transparent_hugepage() 0 1448#endif 1449#endif 1450 1451/* 1452 * On some architectures it depends on the mm if the p4d/pud or pmd 1453 * layer of the page table hierarchy is folded or not. 1454 */ 1455#ifndef mm_p4d_folded 1456#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1457#endif 1458 1459#ifndef mm_pud_folded 1460#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1461#endif 1462 1463#ifndef mm_pmd_folded 1464#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1465#endif 1466 1467#ifndef p4d_offset_lockless 1468#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1469#endif 1470#ifndef pud_offset_lockless 1471#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1472#endif 1473#ifndef pmd_offset_lockless 1474#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1475#endif 1476 1477/* 1478 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1479 * This differs from p?d_huge() by the fact that they are always available (if 1480 * the architecture supports large pages at the appropriate level) even 1481 * if CONFIG_HUGETLB_PAGE is not defined. 1482 * Only meaningful when called on a valid entry. 1483 */ 1484#ifndef pgd_leaf 1485#define pgd_leaf(x) 0 1486#endif 1487#ifndef p4d_leaf 1488#define p4d_leaf(x) 0 1489#endif 1490#ifndef pud_leaf 1491#define pud_leaf(x) 0 1492#endif 1493#ifndef pmd_leaf 1494#define pmd_leaf(x) 0 1495#endif 1496 1497#endif /* _LINUX_PGTABLE_H */