at v5.10 29 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88/* 89 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 90 * locked- and dirty-page accounting. 91 * 92 * The page flags field is split into two parts, the main flags area 93 * which extends from the low bits upwards, and the fields area which 94 * extends from the high bits downwards. 95 * 96 * | FIELD | ... | FLAGS | 97 * N-1 ^ 0 98 * (NR_PAGEFLAGS) 99 * 100 * The fields area is reserved for fields mapping zone, node (for NUMA) and 101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 103 */ 104enum pageflags { 105 PG_locked, /* Page is locked. Don't touch. */ 106 PG_referenced, 107 PG_uptodate, 108 PG_dirty, 109 PG_lru, 110 PG_active, 111 PG_workingset, 112 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 113 PG_error, 114 PG_slab, 115 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 116 PG_arch_1, 117 PG_reserved, 118 PG_private, /* If pagecache, has fs-private data */ 119 PG_private_2, /* If pagecache, has fs aux data */ 120 PG_writeback, /* Page is under writeback */ 121 PG_head, /* A head page */ 122 PG_mappedtodisk, /* Has blocks allocated on-disk */ 123 PG_reclaim, /* To be reclaimed asap */ 124 PG_swapbacked, /* Page is backed by RAM/swap */ 125 PG_unevictable, /* Page is "unevictable" */ 126#ifdef CONFIG_MMU 127 PG_mlocked, /* Page is vma mlocked */ 128#endif 129#ifdef CONFIG_ARCH_USES_PG_UNCACHED 130 PG_uncached, /* Page has been mapped as uncached */ 131#endif 132#ifdef CONFIG_MEMORY_FAILURE 133 PG_hwpoison, /* hardware poisoned page. Don't touch */ 134#endif 135#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 136 PG_young, 137 PG_idle, 138#endif 139#ifdef CONFIG_64BIT 140 PG_arch_2, 141#endif 142 __NR_PAGEFLAGS, 143 144 /* Filesystems */ 145 PG_checked = PG_owner_priv_1, 146 147 /* SwapBacked */ 148 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 149 150 /* Two page bits are conscripted by FS-Cache to maintain local caching 151 * state. These bits are set on pages belonging to the netfs's inodes 152 * when those inodes are being locally cached. 153 */ 154 PG_fscache = PG_private_2, /* page backed by cache */ 155 156 /* XEN */ 157 /* Pinned in Xen as a read-only pagetable page. */ 158 PG_pinned = PG_owner_priv_1, 159 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 160 PG_savepinned = PG_dirty, 161 /* Has a grant mapping of another (foreign) domain's page. */ 162 PG_foreign = PG_owner_priv_1, 163 /* Remapped by swiotlb-xen. */ 164 PG_xen_remapped = PG_owner_priv_1, 165 166 /* SLOB */ 167 PG_slob_free = PG_private, 168 169 /* Compound pages. Stored in first tail page's flags */ 170 PG_double_map = PG_workingset, 171 172 /* non-lru isolated movable page */ 173 PG_isolated = PG_reclaim, 174 175 /* Only valid for buddy pages. Used to track pages that are reported */ 176 PG_reported = PG_uptodate, 177}; 178 179#ifndef __GENERATING_BOUNDS_H 180 181struct page; /* forward declaration */ 182 183static inline struct page *compound_head(struct page *page) 184{ 185 unsigned long head = READ_ONCE(page->compound_head); 186 187 if (unlikely(head & 1)) 188 return (struct page *) (head - 1); 189 return page; 190} 191 192static __always_inline int PageTail(struct page *page) 193{ 194 return READ_ONCE(page->compound_head) & 1; 195} 196 197static __always_inline int PageCompound(struct page *page) 198{ 199 return test_bit(PG_head, &page->flags) || PageTail(page); 200} 201 202#define PAGE_POISON_PATTERN -1l 203static inline int PagePoisoned(const struct page *page) 204{ 205 return page->flags == PAGE_POISON_PATTERN; 206} 207 208#ifdef CONFIG_DEBUG_VM 209void page_init_poison(struct page *page, size_t size); 210#else 211static inline void page_init_poison(struct page *page, size_t size) 212{ 213} 214#endif 215 216/* 217 * Page flags policies wrt compound pages 218 * 219 * PF_POISONED_CHECK 220 * check if this struct page poisoned/uninitialized 221 * 222 * PF_ANY: 223 * the page flag is relevant for small, head and tail pages. 224 * 225 * PF_HEAD: 226 * for compound page all operations related to the page flag applied to 227 * head page. 228 * 229 * PF_ONLY_HEAD: 230 * for compound page, callers only ever operate on the head page. 231 * 232 * PF_NO_TAIL: 233 * modifications of the page flag must be done on small or head pages, 234 * checks can be done on tail pages too. 235 * 236 * PF_NO_COMPOUND: 237 * the page flag is not relevant for compound pages. 238 * 239 * PF_SECOND: 240 * the page flag is stored in the first tail page. 241 */ 242#define PF_POISONED_CHECK(page) ({ \ 243 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 244 page; }) 245#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 246#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 247#define PF_ONLY_HEAD(page, enforce) ({ \ 248 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 249 PF_POISONED_CHECK(page); }) 250#define PF_NO_TAIL(page, enforce) ({ \ 251 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 252 PF_POISONED_CHECK(compound_head(page)); }) 253#define PF_NO_COMPOUND(page, enforce) ({ \ 254 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 255 PF_POISONED_CHECK(page); }) 256#define PF_SECOND(page, enforce) ({ \ 257 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 258 PF_POISONED_CHECK(&page[1]); }) 259 260/* 261 * Macros to create function definitions for page flags 262 */ 263#define TESTPAGEFLAG(uname, lname, policy) \ 264static __always_inline int Page##uname(struct page *page) \ 265 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 266 267#define SETPAGEFLAG(uname, lname, policy) \ 268static __always_inline void SetPage##uname(struct page *page) \ 269 { set_bit(PG_##lname, &policy(page, 1)->flags); } 270 271#define CLEARPAGEFLAG(uname, lname, policy) \ 272static __always_inline void ClearPage##uname(struct page *page) \ 273 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 274 275#define __SETPAGEFLAG(uname, lname, policy) \ 276static __always_inline void __SetPage##uname(struct page *page) \ 277 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 278 279#define __CLEARPAGEFLAG(uname, lname, policy) \ 280static __always_inline void __ClearPage##uname(struct page *page) \ 281 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 282 283#define TESTSETFLAG(uname, lname, policy) \ 284static __always_inline int TestSetPage##uname(struct page *page) \ 285 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 286 287#define TESTCLEARFLAG(uname, lname, policy) \ 288static __always_inline int TestClearPage##uname(struct page *page) \ 289 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 290 291#define PAGEFLAG(uname, lname, policy) \ 292 TESTPAGEFLAG(uname, lname, policy) \ 293 SETPAGEFLAG(uname, lname, policy) \ 294 CLEARPAGEFLAG(uname, lname, policy) 295 296#define __PAGEFLAG(uname, lname, policy) \ 297 TESTPAGEFLAG(uname, lname, policy) \ 298 __SETPAGEFLAG(uname, lname, policy) \ 299 __CLEARPAGEFLAG(uname, lname, policy) 300 301#define TESTSCFLAG(uname, lname, policy) \ 302 TESTSETFLAG(uname, lname, policy) \ 303 TESTCLEARFLAG(uname, lname, policy) 304 305#define TESTPAGEFLAG_FALSE(uname) \ 306static inline int Page##uname(const struct page *page) { return 0; } 307 308#define SETPAGEFLAG_NOOP(uname) \ 309static inline void SetPage##uname(struct page *page) { } 310 311#define CLEARPAGEFLAG_NOOP(uname) \ 312static inline void ClearPage##uname(struct page *page) { } 313 314#define __CLEARPAGEFLAG_NOOP(uname) \ 315static inline void __ClearPage##uname(struct page *page) { } 316 317#define TESTSETFLAG_FALSE(uname) \ 318static inline int TestSetPage##uname(struct page *page) { return 0; } 319 320#define TESTCLEARFLAG_FALSE(uname) \ 321static inline int TestClearPage##uname(struct page *page) { return 0; } 322 323#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 324 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 325 326#define TESTSCFLAG_FALSE(uname) \ 327 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 328 329__PAGEFLAG(Locked, locked, PF_NO_TAIL) 330PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 331PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 332PAGEFLAG(Referenced, referenced, PF_HEAD) 333 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 334 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 335PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 336 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 337PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 338PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 339 TESTCLEARFLAG(Active, active, PF_HEAD) 340PAGEFLAG(Workingset, workingset, PF_HEAD) 341 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 342__PAGEFLAG(Slab, slab, PF_NO_TAIL) 343__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 344PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 345 346/* Xen */ 347PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 348 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 349PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 350PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 351PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 352 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 353 354PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 355 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 356 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 357PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 358 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 359 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 360 361/* 362 * Private page markings that may be used by the filesystem that owns the page 363 * for its own purposes. 364 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 365 */ 366PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 367 __CLEARPAGEFLAG(Private, private, PF_ANY) 368PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 369PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 370 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 371 372/* 373 * Only test-and-set exist for PG_writeback. The unconditional operators are 374 * risky: they bypass page accounting. 375 */ 376TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 377 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 378PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 379 380/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 381PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 382 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 383PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 384 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 385 386#ifdef CONFIG_HIGHMEM 387/* 388 * Must use a macro here due to header dependency issues. page_zone() is not 389 * available at this point. 390 */ 391#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 392#else 393PAGEFLAG_FALSE(HighMem) 394#endif 395 396#ifdef CONFIG_SWAP 397static __always_inline int PageSwapCache(struct page *page) 398{ 399#ifdef CONFIG_THP_SWAP 400 page = compound_head(page); 401#endif 402 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 403 404} 405SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 406CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 407#else 408PAGEFLAG_FALSE(SwapCache) 409#endif 410 411PAGEFLAG(Unevictable, unevictable, PF_HEAD) 412 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 413 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 414 415#ifdef CONFIG_MMU 416PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 417 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 418 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 419#else 420PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 421 TESTSCFLAG_FALSE(Mlocked) 422#endif 423 424#ifdef CONFIG_ARCH_USES_PG_UNCACHED 425PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 426#else 427PAGEFLAG_FALSE(Uncached) 428#endif 429 430#ifdef CONFIG_MEMORY_FAILURE 431PAGEFLAG(HWPoison, hwpoison, PF_ANY) 432TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 433#define __PG_HWPOISON (1UL << PG_hwpoison) 434extern bool take_page_off_buddy(struct page *page); 435#else 436PAGEFLAG_FALSE(HWPoison) 437#define __PG_HWPOISON 0 438#endif 439 440#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 441TESTPAGEFLAG(Young, young, PF_ANY) 442SETPAGEFLAG(Young, young, PF_ANY) 443TESTCLEARFLAG(Young, young, PF_ANY) 444PAGEFLAG(Idle, idle, PF_ANY) 445#endif 446 447/* 448 * PageReported() is used to track reported free pages within the Buddy 449 * allocator. We can use the non-atomic version of the test and set 450 * operations as both should be shielded with the zone lock to prevent 451 * any possible races on the setting or clearing of the bit. 452 */ 453__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 454 455/* 456 * On an anonymous page mapped into a user virtual memory area, 457 * page->mapping points to its anon_vma, not to a struct address_space; 458 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 459 * 460 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 461 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 462 * bit; and then page->mapping points, not to an anon_vma, but to a private 463 * structure which KSM associates with that merged page. See ksm.h. 464 * 465 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 466 * page and then page->mapping points a struct address_space. 467 * 468 * Please note that, confusingly, "page_mapping" refers to the inode 469 * address_space which maps the page from disk; whereas "page_mapped" 470 * refers to user virtual address space into which the page is mapped. 471 */ 472#define PAGE_MAPPING_ANON 0x1 473#define PAGE_MAPPING_MOVABLE 0x2 474#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 475#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 476 477static __always_inline int PageMappingFlags(struct page *page) 478{ 479 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 480} 481 482static __always_inline int PageAnon(struct page *page) 483{ 484 page = compound_head(page); 485 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 486} 487 488static __always_inline int __PageMovable(struct page *page) 489{ 490 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 491 PAGE_MAPPING_MOVABLE; 492} 493 494#ifdef CONFIG_KSM 495/* 496 * A KSM page is one of those write-protected "shared pages" or "merged pages" 497 * which KSM maps into multiple mms, wherever identical anonymous page content 498 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 499 * anon_vma, but to that page's node of the stable tree. 500 */ 501static __always_inline int PageKsm(struct page *page) 502{ 503 page = compound_head(page); 504 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 505 PAGE_MAPPING_KSM; 506} 507#else 508TESTPAGEFLAG_FALSE(Ksm) 509#endif 510 511u64 stable_page_flags(struct page *page); 512 513static inline int PageUptodate(struct page *page) 514{ 515 int ret; 516 page = compound_head(page); 517 ret = test_bit(PG_uptodate, &(page)->flags); 518 /* 519 * Must ensure that the data we read out of the page is loaded 520 * _after_ we've loaded page->flags to check for PageUptodate. 521 * We can skip the barrier if the page is not uptodate, because 522 * we wouldn't be reading anything from it. 523 * 524 * See SetPageUptodate() for the other side of the story. 525 */ 526 if (ret) 527 smp_rmb(); 528 529 return ret; 530} 531 532static __always_inline void __SetPageUptodate(struct page *page) 533{ 534 VM_BUG_ON_PAGE(PageTail(page), page); 535 smp_wmb(); 536 __set_bit(PG_uptodate, &page->flags); 537} 538 539static __always_inline void SetPageUptodate(struct page *page) 540{ 541 VM_BUG_ON_PAGE(PageTail(page), page); 542 /* 543 * Memory barrier must be issued before setting the PG_uptodate bit, 544 * so that all previous stores issued in order to bring the page 545 * uptodate are actually visible before PageUptodate becomes true. 546 */ 547 smp_wmb(); 548 set_bit(PG_uptodate, &page->flags); 549} 550 551CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 552 553int test_clear_page_writeback(struct page *page); 554int __test_set_page_writeback(struct page *page, bool keep_write); 555 556#define test_set_page_writeback(page) \ 557 __test_set_page_writeback(page, false) 558#define test_set_page_writeback_keepwrite(page) \ 559 __test_set_page_writeback(page, true) 560 561static inline void set_page_writeback(struct page *page) 562{ 563 test_set_page_writeback(page); 564} 565 566static inline void set_page_writeback_keepwrite(struct page *page) 567{ 568 test_set_page_writeback_keepwrite(page); 569} 570 571__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 572 573static __always_inline void set_compound_head(struct page *page, struct page *head) 574{ 575 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 576} 577 578static __always_inline void clear_compound_head(struct page *page) 579{ 580 WRITE_ONCE(page->compound_head, 0); 581} 582 583#ifdef CONFIG_TRANSPARENT_HUGEPAGE 584static inline void ClearPageCompound(struct page *page) 585{ 586 BUG_ON(!PageHead(page)); 587 ClearPageHead(page); 588} 589#endif 590 591#define PG_head_mask ((1UL << PG_head)) 592 593#ifdef CONFIG_HUGETLB_PAGE 594int PageHuge(struct page *page); 595int PageHeadHuge(struct page *page); 596bool page_huge_active(struct page *page); 597#else 598TESTPAGEFLAG_FALSE(Huge) 599TESTPAGEFLAG_FALSE(HeadHuge) 600 601static inline bool page_huge_active(struct page *page) 602{ 603 return 0; 604} 605#endif 606 607 608#ifdef CONFIG_TRANSPARENT_HUGEPAGE 609/* 610 * PageHuge() only returns true for hugetlbfs pages, but not for 611 * normal or transparent huge pages. 612 * 613 * PageTransHuge() returns true for both transparent huge and 614 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 615 * called only in the core VM paths where hugetlbfs pages can't exist. 616 */ 617static inline int PageTransHuge(struct page *page) 618{ 619 VM_BUG_ON_PAGE(PageTail(page), page); 620 return PageHead(page); 621} 622 623/* 624 * PageTransCompound returns true for both transparent huge pages 625 * and hugetlbfs pages, so it should only be called when it's known 626 * that hugetlbfs pages aren't involved. 627 */ 628static inline int PageTransCompound(struct page *page) 629{ 630 return PageCompound(page); 631} 632 633/* 634 * PageTransCompoundMap is the same as PageTransCompound, but it also 635 * guarantees the primary MMU has the entire compound page mapped 636 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 637 * can also map the entire compound page. This allows the secondary 638 * MMUs to call get_user_pages() only once for each compound page and 639 * to immediately map the entire compound page with a single secondary 640 * MMU fault. If there will be a pmd split later, the secondary MMUs 641 * will get an update through the MMU notifier invalidation through 642 * split_huge_pmd(). 643 * 644 * Unlike PageTransCompound, this is safe to be called only while 645 * split_huge_pmd() cannot run from under us, like if protected by the 646 * MMU notifier, otherwise it may result in page->_mapcount check false 647 * positives. 648 * 649 * We have to treat page cache THP differently since every subpage of it 650 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE 651 * mapped in the current process so comparing subpage's _mapcount to 652 * compound_mapcount to filter out PTE mapped case. 653 */ 654static inline int PageTransCompoundMap(struct page *page) 655{ 656 struct page *head; 657 658 if (!PageTransCompound(page)) 659 return 0; 660 661 if (PageAnon(page)) 662 return atomic_read(&page->_mapcount) < 0; 663 664 head = compound_head(page); 665 /* File THP is PMD mapped and not PTE mapped */ 666 return atomic_read(&page->_mapcount) == 667 atomic_read(compound_mapcount_ptr(head)); 668} 669 670/* 671 * PageTransTail returns true for both transparent huge pages 672 * and hugetlbfs pages, so it should only be called when it's known 673 * that hugetlbfs pages aren't involved. 674 */ 675static inline int PageTransTail(struct page *page) 676{ 677 return PageTail(page); 678} 679 680/* 681 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 682 * as PMDs. 683 * 684 * This is required for optimization of rmap operations for THP: we can postpone 685 * per small page mapcount accounting (and its overhead from atomic operations) 686 * until the first PMD split. 687 * 688 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 689 * by one. This reference will go away with last compound_mapcount. 690 * 691 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 692 */ 693PAGEFLAG(DoubleMap, double_map, PF_SECOND) 694 TESTSCFLAG(DoubleMap, double_map, PF_SECOND) 695#else 696TESTPAGEFLAG_FALSE(TransHuge) 697TESTPAGEFLAG_FALSE(TransCompound) 698TESTPAGEFLAG_FALSE(TransCompoundMap) 699TESTPAGEFLAG_FALSE(TransTail) 700PAGEFLAG_FALSE(DoubleMap) 701 TESTSCFLAG_FALSE(DoubleMap) 702#endif 703 704/* 705 * For pages that are never mapped to userspace (and aren't PageSlab), 706 * page_type may be used. Because it is initialised to -1, we invert the 707 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 708 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 709 * low bits so that an underflow or overflow of page_mapcount() won't be 710 * mistaken for a page type value. 711 */ 712 713#define PAGE_TYPE_BASE 0xf0000000 714/* Reserve 0x0000007f to catch underflows of page_mapcount */ 715#define PAGE_MAPCOUNT_RESERVE -128 716#define PG_buddy 0x00000080 717#define PG_offline 0x00000100 718#define PG_kmemcg 0x00000200 719#define PG_table 0x00000400 720#define PG_guard 0x00000800 721 722#define PageType(page, flag) \ 723 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 724 725static inline int page_has_type(struct page *page) 726{ 727 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 728} 729 730#define PAGE_TYPE_OPS(uname, lname) \ 731static __always_inline int Page##uname(struct page *page) \ 732{ \ 733 return PageType(page, PG_##lname); \ 734} \ 735static __always_inline void __SetPage##uname(struct page *page) \ 736{ \ 737 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 738 page->page_type &= ~PG_##lname; \ 739} \ 740static __always_inline void __ClearPage##uname(struct page *page) \ 741{ \ 742 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 743 page->page_type |= PG_##lname; \ 744} 745 746/* 747 * PageBuddy() indicates that the page is free and in the buddy system 748 * (see mm/page_alloc.c). 749 */ 750PAGE_TYPE_OPS(Buddy, buddy) 751 752/* 753 * PageOffline() indicates that the page is logically offline although the 754 * containing section is online. (e.g. inflated in a balloon driver or 755 * not onlined when onlining the section). 756 * The content of these pages is effectively stale. Such pages should not 757 * be touched (read/write/dump/save) except by their owner. 758 * 759 * If a driver wants to allow to offline unmovable PageOffline() pages without 760 * putting them back to the buddy, it can do so via the memory notifier by 761 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 762 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 763 * pages (now with a reference count of zero) are treated like free pages, 764 * allowing the containing memory block to get offlined. A driver that 765 * relies on this feature is aware that re-onlining the memory block will 766 * require to re-set the pages PageOffline() and not giving them to the 767 * buddy via online_page_callback_t. 768 */ 769PAGE_TYPE_OPS(Offline, offline) 770 771/* 772 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 773 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 774 */ 775PAGE_TYPE_OPS(Kmemcg, kmemcg) 776 777/* 778 * Marks pages in use as page tables. 779 */ 780PAGE_TYPE_OPS(Table, table) 781 782/* 783 * Marks guardpages used with debug_pagealloc. 784 */ 785PAGE_TYPE_OPS(Guard, guard) 786 787extern bool is_free_buddy_page(struct page *page); 788 789__PAGEFLAG(Isolated, isolated, PF_ANY); 790 791/* 792 * If network-based swap is enabled, sl*b must keep track of whether pages 793 * were allocated from pfmemalloc reserves. 794 */ 795static inline int PageSlabPfmemalloc(struct page *page) 796{ 797 VM_BUG_ON_PAGE(!PageSlab(page), page); 798 return PageActive(page); 799} 800 801static inline void SetPageSlabPfmemalloc(struct page *page) 802{ 803 VM_BUG_ON_PAGE(!PageSlab(page), page); 804 SetPageActive(page); 805} 806 807static inline void __ClearPageSlabPfmemalloc(struct page *page) 808{ 809 VM_BUG_ON_PAGE(!PageSlab(page), page); 810 __ClearPageActive(page); 811} 812 813static inline void ClearPageSlabPfmemalloc(struct page *page) 814{ 815 VM_BUG_ON_PAGE(!PageSlab(page), page); 816 ClearPageActive(page); 817} 818 819#ifdef CONFIG_MMU 820#define __PG_MLOCKED (1UL << PG_mlocked) 821#else 822#define __PG_MLOCKED 0 823#endif 824 825/* 826 * Flags checked when a page is freed. Pages being freed should not have 827 * these flags set. It they are, there is a problem. 828 */ 829#define PAGE_FLAGS_CHECK_AT_FREE \ 830 (1UL << PG_lru | 1UL << PG_locked | \ 831 1UL << PG_private | 1UL << PG_private_2 | \ 832 1UL << PG_writeback | 1UL << PG_reserved | \ 833 1UL << PG_slab | 1UL << PG_active | \ 834 1UL << PG_unevictable | __PG_MLOCKED) 835 836/* 837 * Flags checked when a page is prepped for return by the page allocator. 838 * Pages being prepped should not have these flags set. It they are set, 839 * there has been a kernel bug or struct page corruption. 840 * 841 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 842 * alloc-free cycle to prevent from reusing the page. 843 */ 844#define PAGE_FLAGS_CHECK_AT_PREP \ 845 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 846 847#define PAGE_FLAGS_PRIVATE \ 848 (1UL << PG_private | 1UL << PG_private_2) 849/** 850 * page_has_private - Determine if page has private stuff 851 * @page: The page to be checked 852 * 853 * Determine if a page has private stuff, indicating that release routines 854 * should be invoked upon it. 855 */ 856static inline int page_has_private(struct page *page) 857{ 858 return !!(page->flags & PAGE_FLAGS_PRIVATE); 859} 860 861#undef PF_ANY 862#undef PF_HEAD 863#undef PF_ONLY_HEAD 864#undef PF_NO_TAIL 865#undef PF_NO_COMPOUND 866#undef PF_SECOND 867#endif /* !__GENERATING_BOUNDS_H */ 868 869#endif /* PAGE_FLAGS_H */