at v5.10 102 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34 35struct mempolicy; 36struct anon_vma; 37struct anon_vma_chain; 38struct file_ra_state; 39struct user_struct; 40struct writeback_control; 41struct bdi_writeback; 42struct pt_regs; 43 44extern int sysctl_page_lock_unfairness; 45 46void init_mm_internals(void); 47 48#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 49extern unsigned long max_mapnr; 50 51static inline void set_max_mapnr(unsigned long limit) 52{ 53 max_mapnr = limit; 54} 55#else 56static inline void set_max_mapnr(unsigned long limit) { } 57#endif 58 59extern atomic_long_t _totalram_pages; 60static inline unsigned long totalram_pages(void) 61{ 62 return (unsigned long)atomic_long_read(&_totalram_pages); 63} 64 65static inline void totalram_pages_inc(void) 66{ 67 atomic_long_inc(&_totalram_pages); 68} 69 70static inline void totalram_pages_dec(void) 71{ 72 atomic_long_dec(&_totalram_pages); 73} 74 75static inline void totalram_pages_add(long count) 76{ 77 atomic_long_add(count, &_totalram_pages); 78} 79 80extern void * high_memory; 81extern int page_cluster; 82 83#ifdef CONFIG_SYSCTL 84extern int sysctl_legacy_va_layout; 85#else 86#define sysctl_legacy_va_layout 0 87#endif 88 89#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90extern const int mmap_rnd_bits_min; 91extern const int mmap_rnd_bits_max; 92extern int mmap_rnd_bits __read_mostly; 93#endif 94#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95extern const int mmap_rnd_compat_bits_min; 96extern const int mmap_rnd_compat_bits_max; 97extern int mmap_rnd_compat_bits __read_mostly; 98#endif 99 100#include <asm/page.h> 101#include <asm/processor.h> 102 103/* 104 * Architectures that support memory tagging (assigning tags to memory regions, 105 * embedding these tags into addresses that point to these memory regions, and 106 * checking that the memory and the pointer tags match on memory accesses) 107 * redefine this macro to strip tags from pointers. 108 * It's defined as noop for arcitectures that don't support memory tagging. 109 */ 110#ifndef untagged_addr 111#define untagged_addr(addr) (addr) 112#endif 113 114#ifndef __pa_symbol 115#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 116#endif 117 118#ifndef page_to_virt 119#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 120#endif 121 122#ifndef lm_alias 123#define lm_alias(x) __va(__pa_symbol(x)) 124#endif 125 126/* 127 * To prevent common memory management code establishing 128 * a zero page mapping on a read fault. 129 * This macro should be defined within <asm/pgtable.h>. 130 * s390 does this to prevent multiplexing of hardware bits 131 * related to the physical page in case of virtualization. 132 */ 133#ifndef mm_forbids_zeropage 134#define mm_forbids_zeropage(X) (0) 135#endif 136 137/* 138 * On some architectures it is expensive to call memset() for small sizes. 139 * If an architecture decides to implement their own version of 140 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 141 * define their own version of this macro in <asm/pgtable.h> 142 */ 143#if BITS_PER_LONG == 64 144/* This function must be updated when the size of struct page grows above 80 145 * or reduces below 56. The idea that compiler optimizes out switch() 146 * statement, and only leaves move/store instructions. Also the compiler can 147 * combine write statments if they are both assignments and can be reordered, 148 * this can result in several of the writes here being dropped. 149 */ 150#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 151static inline void __mm_zero_struct_page(struct page *page) 152{ 153 unsigned long *_pp = (void *)page; 154 155 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 156 BUILD_BUG_ON(sizeof(struct page) & 7); 157 BUILD_BUG_ON(sizeof(struct page) < 56); 158 BUILD_BUG_ON(sizeof(struct page) > 80); 159 160 switch (sizeof(struct page)) { 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179} 180#else 181#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182#endif 183 184/* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200#define MAPCOUNT_ELF_CORE_MARGIN (5) 201#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203extern int sysctl_max_map_count; 204 205extern unsigned long sysctl_user_reserve_kbytes; 206extern unsigned long sysctl_admin_reserve_kbytes; 207 208extern int sysctl_overcommit_memory; 209extern int sysctl_overcommit_ratio; 210extern unsigned long sysctl_overcommit_kbytes; 211 212int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218 219#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 220 221/* to align the pointer to the (next) page boundary */ 222#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 225#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 226 227#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 228 229/* 230 * Linux kernel virtual memory manager primitives. 231 * The idea being to have a "virtual" mm in the same way 232 * we have a virtual fs - giving a cleaner interface to the 233 * mm details, and allowing different kinds of memory mappings 234 * (from shared memory to executable loading to arbitrary 235 * mmap() functions). 236 */ 237 238struct vm_area_struct *vm_area_alloc(struct mm_struct *); 239struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 240void vm_area_free(struct vm_area_struct *); 241 242#ifndef CONFIG_MMU 243extern struct rb_root nommu_region_tree; 244extern struct rw_semaphore nommu_region_sem; 245 246extern unsigned int kobjsize(const void *objp); 247#endif 248 249/* 250 * vm_flags in vm_area_struct, see mm_types.h. 251 * When changing, update also include/trace/events/mmflags.h 252 */ 253#define VM_NONE 0x00000000 254 255#define VM_READ 0x00000001 /* currently active flags */ 256#define VM_WRITE 0x00000002 257#define VM_EXEC 0x00000004 258#define VM_SHARED 0x00000008 259 260/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 261#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 262#define VM_MAYWRITE 0x00000020 263#define VM_MAYEXEC 0x00000040 264#define VM_MAYSHARE 0x00000080 265 266#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 267#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 268#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 270#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 271 272#define VM_LOCKED 0x00002000 273#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 274 275 /* Used by sys_madvise() */ 276#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 277#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 278 279#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 280#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 281#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 282#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 283#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 284#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 285#define VM_SYNC 0x00800000 /* Synchronous page faults */ 286#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 287#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 288#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 289 290#ifdef CONFIG_MEM_SOFT_DIRTY 291# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 292#else 293# define VM_SOFTDIRTY 0 294#endif 295 296#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 297#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 298#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 299#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 300 301#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 302#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 303#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 304#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 305#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 306#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 307#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 308#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 309#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 310#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 311#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 312#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 313 314#ifdef CONFIG_ARCH_HAS_PKEYS 315# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 316# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 317# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 318# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 319# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 320#ifdef CONFIG_PPC 321# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 322#else 323# define VM_PKEY_BIT4 0 324#endif 325#endif /* CONFIG_ARCH_HAS_PKEYS */ 326 327#if defined(CONFIG_X86) 328# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 329#elif defined(CONFIG_PPC) 330# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 331#elif defined(CONFIG_PARISC) 332# define VM_GROWSUP VM_ARCH_1 333#elif defined(CONFIG_IA64) 334# define VM_GROWSUP VM_ARCH_1 335#elif defined(CONFIG_SPARC64) 336# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 337# define VM_ARCH_CLEAR VM_SPARC_ADI 338#elif defined(CONFIG_ARM64) 339# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 340# define VM_ARCH_CLEAR VM_ARM64_BTI 341#elif !defined(CONFIG_MMU) 342# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 343#endif 344 345#if defined(CONFIG_ARM64_MTE) 346# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 347# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 348#else 349# define VM_MTE VM_NONE 350# define VM_MTE_ALLOWED VM_NONE 351#endif 352 353#ifndef VM_GROWSUP 354# define VM_GROWSUP VM_NONE 355#endif 356 357/* Bits set in the VMA until the stack is in its final location */ 358#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 359 360#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 361 362/* Common data flag combinations */ 363#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 364 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 365#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 366 VM_MAYWRITE | VM_MAYEXEC) 367#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 368 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 369 370#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 371#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 372#endif 373 374#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 375#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 376#endif 377 378#ifdef CONFIG_STACK_GROWSUP 379#define VM_STACK VM_GROWSUP 380#else 381#define VM_STACK VM_GROWSDOWN 382#endif 383 384#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 385 386/* VMA basic access permission flags */ 387#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 388 389 390/* 391 * Special vmas that are non-mergable, non-mlock()able. 392 */ 393#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 394 395/* This mask prevents VMA from being scanned with khugepaged */ 396#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 397 398/* This mask defines which mm->def_flags a process can inherit its parent */ 399#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 400 401/* This mask is used to clear all the VMA flags used by mlock */ 402#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 403 404/* Arch-specific flags to clear when updating VM flags on protection change */ 405#ifndef VM_ARCH_CLEAR 406# define VM_ARCH_CLEAR VM_NONE 407#endif 408#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 409 410/* 411 * mapping from the currently active vm_flags protection bits (the 412 * low four bits) to a page protection mask.. 413 */ 414extern pgprot_t protection_map[16]; 415 416/** 417 * Fault flag definitions. 418 * 419 * @FAULT_FLAG_WRITE: Fault was a write fault. 420 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 421 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 422 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 423 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 424 * @FAULT_FLAG_TRIED: The fault has been tried once. 425 * @FAULT_FLAG_USER: The fault originated in userspace. 426 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 427 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 428 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 429 * 430 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 431 * whether we would allow page faults to retry by specifying these two 432 * fault flags correctly. Currently there can be three legal combinations: 433 * 434 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 435 * this is the first try 436 * 437 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 438 * we've already tried at least once 439 * 440 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 441 * 442 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 443 * be used. Note that page faults can be allowed to retry for multiple times, 444 * in which case we'll have an initial fault with flags (a) then later on 445 * continuous faults with flags (b). We should always try to detect pending 446 * signals before a retry to make sure the continuous page faults can still be 447 * interrupted if necessary. 448 */ 449#define FAULT_FLAG_WRITE 0x01 450#define FAULT_FLAG_MKWRITE 0x02 451#define FAULT_FLAG_ALLOW_RETRY 0x04 452#define FAULT_FLAG_RETRY_NOWAIT 0x08 453#define FAULT_FLAG_KILLABLE 0x10 454#define FAULT_FLAG_TRIED 0x20 455#define FAULT_FLAG_USER 0x40 456#define FAULT_FLAG_REMOTE 0x80 457#define FAULT_FLAG_INSTRUCTION 0x100 458#define FAULT_FLAG_INTERRUPTIBLE 0x200 459 460/* 461 * The default fault flags that should be used by most of the 462 * arch-specific page fault handlers. 463 */ 464#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 465 FAULT_FLAG_KILLABLE | \ 466 FAULT_FLAG_INTERRUPTIBLE) 467 468/** 469 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 470 * 471 * This is mostly used for places where we want to try to avoid taking 472 * the mmap_lock for too long a time when waiting for another condition 473 * to change, in which case we can try to be polite to release the 474 * mmap_lock in the first round to avoid potential starvation of other 475 * processes that would also want the mmap_lock. 476 * 477 * Return: true if the page fault allows retry and this is the first 478 * attempt of the fault handling; false otherwise. 479 */ 480static inline bool fault_flag_allow_retry_first(unsigned int flags) 481{ 482 return (flags & FAULT_FLAG_ALLOW_RETRY) && 483 (!(flags & FAULT_FLAG_TRIED)); 484} 485 486#define FAULT_FLAG_TRACE \ 487 { FAULT_FLAG_WRITE, "WRITE" }, \ 488 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 489 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 490 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 491 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 492 { FAULT_FLAG_TRIED, "TRIED" }, \ 493 { FAULT_FLAG_USER, "USER" }, \ 494 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 495 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 496 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 497 498/* 499 * vm_fault is filled by the pagefault handler and passed to the vma's 500 * ->fault function. The vma's ->fault is responsible for returning a bitmask 501 * of VM_FAULT_xxx flags that give details about how the fault was handled. 502 * 503 * MM layer fills up gfp_mask for page allocations but fault handler might 504 * alter it if its implementation requires a different allocation context. 505 * 506 * pgoff should be used in favour of virtual_address, if possible. 507 */ 508struct vm_fault { 509 struct vm_area_struct *vma; /* Target VMA */ 510 unsigned int flags; /* FAULT_FLAG_xxx flags */ 511 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 512 pgoff_t pgoff; /* Logical page offset based on vma */ 513 unsigned long address; /* Faulting virtual address */ 514 pmd_t *pmd; /* Pointer to pmd entry matching 515 * the 'address' */ 516 pud_t *pud; /* Pointer to pud entry matching 517 * the 'address' 518 */ 519 pte_t orig_pte; /* Value of PTE at the time of fault */ 520 521 struct page *cow_page; /* Page handler may use for COW fault */ 522 struct page *page; /* ->fault handlers should return a 523 * page here, unless VM_FAULT_NOPAGE 524 * is set (which is also implied by 525 * VM_FAULT_ERROR). 526 */ 527 /* These three entries are valid only while holding ptl lock */ 528 pte_t *pte; /* Pointer to pte entry matching 529 * the 'address'. NULL if the page 530 * table hasn't been allocated. 531 */ 532 spinlock_t *ptl; /* Page table lock. 533 * Protects pte page table if 'pte' 534 * is not NULL, otherwise pmd. 535 */ 536 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 537 * vm_ops->map_pages() calls 538 * alloc_set_pte() from atomic context. 539 * do_fault_around() pre-allocates 540 * page table to avoid allocation from 541 * atomic context. 542 */ 543}; 544 545/* page entry size for vm->huge_fault() */ 546enum page_entry_size { 547 PE_SIZE_PTE = 0, 548 PE_SIZE_PMD, 549 PE_SIZE_PUD, 550}; 551 552/* 553 * These are the virtual MM functions - opening of an area, closing and 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer 555 * to the functions called when a no-page or a wp-page exception occurs. 556 */ 557struct vm_operations_struct { 558 void (*open)(struct vm_area_struct * area); 559 void (*close)(struct vm_area_struct * area); 560 int (*split)(struct vm_area_struct * area, unsigned long addr); 561 int (*mremap)(struct vm_area_struct * area); 562 vm_fault_t (*fault)(struct vm_fault *vmf); 563 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 564 enum page_entry_size pe_size); 565 void (*map_pages)(struct vm_fault *vmf, 566 pgoff_t start_pgoff, pgoff_t end_pgoff); 567 unsigned long (*pagesize)(struct vm_area_struct * area); 568 569 /* notification that a previously read-only page is about to become 570 * writable, if an error is returned it will cause a SIGBUS */ 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 572 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 575 576 /* called by access_process_vm when get_user_pages() fails, typically 577 * for use by special VMAs that can switch between memory and hardware 578 */ 579 int (*access)(struct vm_area_struct *vma, unsigned long addr, 580 void *buf, int len, int write); 581 582 /* Called by the /proc/PID/maps code to ask the vma whether it 583 * has a special name. Returning non-NULL will also cause this 584 * vma to be dumped unconditionally. */ 585 const char *(*name)(struct vm_area_struct *vma); 586 587#ifdef CONFIG_NUMA 588 /* 589 * set_policy() op must add a reference to any non-NULL @new mempolicy 590 * to hold the policy upon return. Caller should pass NULL @new to 591 * remove a policy and fall back to surrounding context--i.e. do not 592 * install a MPOL_DEFAULT policy, nor the task or system default 593 * mempolicy. 594 */ 595 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 596 597 /* 598 * get_policy() op must add reference [mpol_get()] to any policy at 599 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 600 * in mm/mempolicy.c will do this automatically. 601 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 602 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 603 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 604 * must return NULL--i.e., do not "fallback" to task or system default 605 * policy. 606 */ 607 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 608 unsigned long addr); 609#endif 610 /* 611 * Called by vm_normal_page() for special PTEs to find the 612 * page for @addr. This is useful if the default behavior 613 * (using pte_page()) would not find the correct page. 614 */ 615 struct page *(*find_special_page)(struct vm_area_struct *vma, 616 unsigned long addr); 617}; 618 619static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 620{ 621 static const struct vm_operations_struct dummy_vm_ops = {}; 622 623 memset(vma, 0, sizeof(*vma)); 624 vma->vm_mm = mm; 625 vma->vm_ops = &dummy_vm_ops; 626 INIT_LIST_HEAD(&vma->anon_vma_chain); 627} 628 629static inline void vma_set_anonymous(struct vm_area_struct *vma) 630{ 631 vma->vm_ops = NULL; 632} 633 634static inline bool vma_is_anonymous(struct vm_area_struct *vma) 635{ 636 return !vma->vm_ops; 637} 638 639static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 640{ 641 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 642 643 if (!maybe_stack) 644 return false; 645 646 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 647 VM_STACK_INCOMPLETE_SETUP) 648 return true; 649 650 return false; 651} 652 653static inline bool vma_is_foreign(struct vm_area_struct *vma) 654{ 655 if (!current->mm) 656 return true; 657 658 if (current->mm != vma->vm_mm) 659 return true; 660 661 return false; 662} 663 664static inline bool vma_is_accessible(struct vm_area_struct *vma) 665{ 666 return vma->vm_flags & VM_ACCESS_FLAGS; 667} 668 669#ifdef CONFIG_SHMEM 670/* 671 * The vma_is_shmem is not inline because it is used only by slow 672 * paths in userfault. 673 */ 674bool vma_is_shmem(struct vm_area_struct *vma); 675#else 676static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 677#endif 678 679int vma_is_stack_for_current(struct vm_area_struct *vma); 680 681/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 682#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 683 684struct mmu_gather; 685struct inode; 686 687#include <linux/huge_mm.h> 688 689/* 690 * Methods to modify the page usage count. 691 * 692 * What counts for a page usage: 693 * - cache mapping (page->mapping) 694 * - private data (page->private) 695 * - page mapped in a task's page tables, each mapping 696 * is counted separately 697 * 698 * Also, many kernel routines increase the page count before a critical 699 * routine so they can be sure the page doesn't go away from under them. 700 */ 701 702/* 703 * Drop a ref, return true if the refcount fell to zero (the page has no users) 704 */ 705static inline int put_page_testzero(struct page *page) 706{ 707 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 708 return page_ref_dec_and_test(page); 709} 710 711/* 712 * Try to grab a ref unless the page has a refcount of zero, return false if 713 * that is the case. 714 * This can be called when MMU is off so it must not access 715 * any of the virtual mappings. 716 */ 717static inline int get_page_unless_zero(struct page *page) 718{ 719 return page_ref_add_unless(page, 1, 0); 720} 721 722extern int page_is_ram(unsigned long pfn); 723 724enum { 725 REGION_INTERSECTS, 726 REGION_DISJOINT, 727 REGION_MIXED, 728}; 729 730int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 731 unsigned long desc); 732 733/* Support for virtually mapped pages */ 734struct page *vmalloc_to_page(const void *addr); 735unsigned long vmalloc_to_pfn(const void *addr); 736 737/* 738 * Determine if an address is within the vmalloc range 739 * 740 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 741 * is no special casing required. 742 */ 743 744#ifndef is_ioremap_addr 745#define is_ioremap_addr(x) is_vmalloc_addr(x) 746#endif 747 748#ifdef CONFIG_MMU 749extern bool is_vmalloc_addr(const void *x); 750extern int is_vmalloc_or_module_addr(const void *x); 751#else 752static inline bool is_vmalloc_addr(const void *x) 753{ 754 return false; 755} 756static inline int is_vmalloc_or_module_addr(const void *x) 757{ 758 return 0; 759} 760#endif 761 762extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 763static inline void *kvmalloc(size_t size, gfp_t flags) 764{ 765 return kvmalloc_node(size, flags, NUMA_NO_NODE); 766} 767static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 768{ 769 return kvmalloc_node(size, flags | __GFP_ZERO, node); 770} 771static inline void *kvzalloc(size_t size, gfp_t flags) 772{ 773 return kvmalloc(size, flags | __GFP_ZERO); 774} 775 776static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 777{ 778 size_t bytes; 779 780 if (unlikely(check_mul_overflow(n, size, &bytes))) 781 return NULL; 782 783 return kvmalloc(bytes, flags); 784} 785 786static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 787{ 788 return kvmalloc_array(n, size, flags | __GFP_ZERO); 789} 790 791extern void kvfree(const void *addr); 792extern void kvfree_sensitive(const void *addr, size_t len); 793 794static inline int head_compound_mapcount(struct page *head) 795{ 796 return atomic_read(compound_mapcount_ptr(head)) + 1; 797} 798 799/* 800 * Mapcount of compound page as a whole, does not include mapped sub-pages. 801 * 802 * Must be called only for compound pages or any their tail sub-pages. 803 */ 804static inline int compound_mapcount(struct page *page) 805{ 806 VM_BUG_ON_PAGE(!PageCompound(page), page); 807 page = compound_head(page); 808 return head_compound_mapcount(page); 809} 810 811/* 812 * The atomic page->_mapcount, starts from -1: so that transitions 813 * both from it and to it can be tracked, using atomic_inc_and_test 814 * and atomic_add_negative(-1). 815 */ 816static inline void page_mapcount_reset(struct page *page) 817{ 818 atomic_set(&(page)->_mapcount, -1); 819} 820 821int __page_mapcount(struct page *page); 822 823/* 824 * Mapcount of 0-order page; when compound sub-page, includes 825 * compound_mapcount(). 826 * 827 * Result is undefined for pages which cannot be mapped into userspace. 828 * For example SLAB or special types of pages. See function page_has_type(). 829 * They use this place in struct page differently. 830 */ 831static inline int page_mapcount(struct page *page) 832{ 833 if (unlikely(PageCompound(page))) 834 return __page_mapcount(page); 835 return atomic_read(&page->_mapcount) + 1; 836} 837 838#ifdef CONFIG_TRANSPARENT_HUGEPAGE 839int total_mapcount(struct page *page); 840int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 841#else 842static inline int total_mapcount(struct page *page) 843{ 844 return page_mapcount(page); 845} 846static inline int page_trans_huge_mapcount(struct page *page, 847 int *total_mapcount) 848{ 849 int mapcount = page_mapcount(page); 850 if (total_mapcount) 851 *total_mapcount = mapcount; 852 return mapcount; 853} 854#endif 855 856static inline struct page *virt_to_head_page(const void *x) 857{ 858 struct page *page = virt_to_page(x); 859 860 return compound_head(page); 861} 862 863void __put_page(struct page *page); 864 865void put_pages_list(struct list_head *pages); 866 867void split_page(struct page *page, unsigned int order); 868 869/* 870 * Compound pages have a destructor function. Provide a 871 * prototype for that function and accessor functions. 872 * These are _only_ valid on the head of a compound page. 873 */ 874typedef void compound_page_dtor(struct page *); 875 876/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 877enum compound_dtor_id { 878 NULL_COMPOUND_DTOR, 879 COMPOUND_PAGE_DTOR, 880#ifdef CONFIG_HUGETLB_PAGE 881 HUGETLB_PAGE_DTOR, 882#endif 883#ifdef CONFIG_TRANSPARENT_HUGEPAGE 884 TRANSHUGE_PAGE_DTOR, 885#endif 886 NR_COMPOUND_DTORS, 887}; 888extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 889 890static inline void set_compound_page_dtor(struct page *page, 891 enum compound_dtor_id compound_dtor) 892{ 893 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 894 page[1].compound_dtor = compound_dtor; 895} 896 897static inline void destroy_compound_page(struct page *page) 898{ 899 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 900 compound_page_dtors[page[1].compound_dtor](page); 901} 902 903static inline unsigned int compound_order(struct page *page) 904{ 905 if (!PageHead(page)) 906 return 0; 907 return page[1].compound_order; 908} 909 910static inline bool hpage_pincount_available(struct page *page) 911{ 912 /* 913 * Can the page->hpage_pinned_refcount field be used? That field is in 914 * the 3rd page of the compound page, so the smallest (2-page) compound 915 * pages cannot support it. 916 */ 917 page = compound_head(page); 918 return PageCompound(page) && compound_order(page) > 1; 919} 920 921static inline int head_compound_pincount(struct page *head) 922{ 923 return atomic_read(compound_pincount_ptr(head)); 924} 925 926static inline int compound_pincount(struct page *page) 927{ 928 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 929 page = compound_head(page); 930 return head_compound_pincount(page); 931} 932 933static inline void set_compound_order(struct page *page, unsigned int order) 934{ 935 page[1].compound_order = order; 936 page[1].compound_nr = 1U << order; 937} 938 939/* Returns the number of pages in this potentially compound page. */ 940static inline unsigned long compound_nr(struct page *page) 941{ 942 if (!PageHead(page)) 943 return 1; 944 return page[1].compound_nr; 945} 946 947/* Returns the number of bytes in this potentially compound page. */ 948static inline unsigned long page_size(struct page *page) 949{ 950 return PAGE_SIZE << compound_order(page); 951} 952 953/* Returns the number of bits needed for the number of bytes in a page */ 954static inline unsigned int page_shift(struct page *page) 955{ 956 return PAGE_SHIFT + compound_order(page); 957} 958 959void free_compound_page(struct page *page); 960 961#ifdef CONFIG_MMU 962/* 963 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 964 * servicing faults for write access. In the normal case, do always want 965 * pte_mkwrite. But get_user_pages can cause write faults for mappings 966 * that do not have writing enabled, when used by access_process_vm. 967 */ 968static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 969{ 970 if (likely(vma->vm_flags & VM_WRITE)) 971 pte = pte_mkwrite(pte); 972 return pte; 973} 974 975vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 976vm_fault_t finish_fault(struct vm_fault *vmf); 977vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 978#endif 979 980/* 981 * Multiple processes may "see" the same page. E.g. for untouched 982 * mappings of /dev/null, all processes see the same page full of 983 * zeroes, and text pages of executables and shared libraries have 984 * only one copy in memory, at most, normally. 985 * 986 * For the non-reserved pages, page_count(page) denotes a reference count. 987 * page_count() == 0 means the page is free. page->lru is then used for 988 * freelist management in the buddy allocator. 989 * page_count() > 0 means the page has been allocated. 990 * 991 * Pages are allocated by the slab allocator in order to provide memory 992 * to kmalloc and kmem_cache_alloc. In this case, the management of the 993 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 994 * unless a particular usage is carefully commented. (the responsibility of 995 * freeing the kmalloc memory is the caller's, of course). 996 * 997 * A page may be used by anyone else who does a __get_free_page(). 998 * In this case, page_count still tracks the references, and should only 999 * be used through the normal accessor functions. The top bits of page->flags 1000 * and page->virtual store page management information, but all other fields 1001 * are unused and could be used privately, carefully. The management of this 1002 * page is the responsibility of the one who allocated it, and those who have 1003 * subsequently been given references to it. 1004 * 1005 * The other pages (we may call them "pagecache pages") are completely 1006 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1007 * The following discussion applies only to them. 1008 * 1009 * A pagecache page contains an opaque `private' member, which belongs to the 1010 * page's address_space. Usually, this is the address of a circular list of 1011 * the page's disk buffers. PG_private must be set to tell the VM to call 1012 * into the filesystem to release these pages. 1013 * 1014 * A page may belong to an inode's memory mapping. In this case, page->mapping 1015 * is the pointer to the inode, and page->index is the file offset of the page, 1016 * in units of PAGE_SIZE. 1017 * 1018 * If pagecache pages are not associated with an inode, they are said to be 1019 * anonymous pages. These may become associated with the swapcache, and in that 1020 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1021 * 1022 * In either case (swapcache or inode backed), the pagecache itself holds one 1023 * reference to the page. Setting PG_private should also increment the 1024 * refcount. The each user mapping also has a reference to the page. 1025 * 1026 * The pagecache pages are stored in a per-mapping radix tree, which is 1027 * rooted at mapping->i_pages, and indexed by offset. 1028 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1029 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1030 * 1031 * All pagecache pages may be subject to I/O: 1032 * - inode pages may need to be read from disk, 1033 * - inode pages which have been modified and are MAP_SHARED may need 1034 * to be written back to the inode on disk, 1035 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1036 * modified may need to be swapped out to swap space and (later) to be read 1037 * back into memory. 1038 */ 1039 1040/* 1041 * The zone field is never updated after free_area_init_core() 1042 * sets it, so none of the operations on it need to be atomic. 1043 */ 1044 1045/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1046#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1047#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1048#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1049#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1050#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1051 1052/* 1053 * Define the bit shifts to access each section. For non-existent 1054 * sections we define the shift as 0; that plus a 0 mask ensures 1055 * the compiler will optimise away reference to them. 1056 */ 1057#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1058#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1059#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1060#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1061#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1062 1063/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1064#ifdef NODE_NOT_IN_PAGE_FLAGS 1065#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1066#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1067 SECTIONS_PGOFF : ZONES_PGOFF) 1068#else 1069#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1070#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1071 NODES_PGOFF : ZONES_PGOFF) 1072#endif 1073 1074#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1075 1076#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1077#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1078#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1079#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1080#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1081#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1082 1083static inline enum zone_type page_zonenum(const struct page *page) 1084{ 1085 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1086 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1087} 1088 1089#ifdef CONFIG_ZONE_DEVICE 1090static inline bool is_zone_device_page(const struct page *page) 1091{ 1092 return page_zonenum(page) == ZONE_DEVICE; 1093} 1094extern void memmap_init_zone_device(struct zone *, unsigned long, 1095 unsigned long, struct dev_pagemap *); 1096#else 1097static inline bool is_zone_device_page(const struct page *page) 1098{ 1099 return false; 1100} 1101#endif 1102 1103#ifdef CONFIG_DEV_PAGEMAP_OPS 1104void free_devmap_managed_page(struct page *page); 1105DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1106 1107static inline bool page_is_devmap_managed(struct page *page) 1108{ 1109 if (!static_branch_unlikely(&devmap_managed_key)) 1110 return false; 1111 if (!is_zone_device_page(page)) 1112 return false; 1113 switch (page->pgmap->type) { 1114 case MEMORY_DEVICE_PRIVATE: 1115 case MEMORY_DEVICE_FS_DAX: 1116 return true; 1117 default: 1118 break; 1119 } 1120 return false; 1121} 1122 1123void put_devmap_managed_page(struct page *page); 1124 1125#else /* CONFIG_DEV_PAGEMAP_OPS */ 1126static inline bool page_is_devmap_managed(struct page *page) 1127{ 1128 return false; 1129} 1130 1131static inline void put_devmap_managed_page(struct page *page) 1132{ 1133} 1134#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1135 1136static inline bool is_device_private_page(const struct page *page) 1137{ 1138 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1139 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1140 is_zone_device_page(page) && 1141 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1142} 1143 1144static inline bool is_pci_p2pdma_page(const struct page *page) 1145{ 1146 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1147 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1148 is_zone_device_page(page) && 1149 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1150} 1151 1152/* 127: arbitrary random number, small enough to assemble well */ 1153#define page_ref_zero_or_close_to_overflow(page) \ 1154 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1155 1156static inline void get_page(struct page *page) 1157{ 1158 page = compound_head(page); 1159 /* 1160 * Getting a normal page or the head of a compound page 1161 * requires to already have an elevated page->_refcount. 1162 */ 1163 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1164 page_ref_inc(page); 1165} 1166 1167bool __must_check try_grab_page(struct page *page, unsigned int flags); 1168 1169static inline __must_check bool try_get_page(struct page *page) 1170{ 1171 page = compound_head(page); 1172 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1173 return false; 1174 page_ref_inc(page); 1175 return true; 1176} 1177 1178static inline void put_page(struct page *page) 1179{ 1180 page = compound_head(page); 1181 1182 /* 1183 * For devmap managed pages we need to catch refcount transition from 1184 * 2 to 1, when refcount reach one it means the page is free and we 1185 * need to inform the device driver through callback. See 1186 * include/linux/memremap.h and HMM for details. 1187 */ 1188 if (page_is_devmap_managed(page)) { 1189 put_devmap_managed_page(page); 1190 return; 1191 } 1192 1193 if (put_page_testzero(page)) 1194 __put_page(page); 1195} 1196 1197/* 1198 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1199 * the page's refcount so that two separate items are tracked: the original page 1200 * reference count, and also a new count of how many pin_user_pages() calls were 1201 * made against the page. ("gup-pinned" is another term for the latter). 1202 * 1203 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1204 * distinct from normal pages. As such, the unpin_user_page() call (and its 1205 * variants) must be used in order to release gup-pinned pages. 1206 * 1207 * Choice of value: 1208 * 1209 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1210 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1211 * simpler, due to the fact that adding an even power of two to the page 1212 * refcount has the effect of using only the upper N bits, for the code that 1213 * counts up using the bias value. This means that the lower bits are left for 1214 * the exclusive use of the original code that increments and decrements by one 1215 * (or at least, by much smaller values than the bias value). 1216 * 1217 * Of course, once the lower bits overflow into the upper bits (and this is 1218 * OK, because subtraction recovers the original values), then visual inspection 1219 * no longer suffices to directly view the separate counts. However, for normal 1220 * applications that don't have huge page reference counts, this won't be an 1221 * issue. 1222 * 1223 * Locking: the lockless algorithm described in page_cache_get_speculative() 1224 * and page_cache_gup_pin_speculative() provides safe operation for 1225 * get_user_pages and page_mkclean and other calls that race to set up page 1226 * table entries. 1227 */ 1228#define GUP_PIN_COUNTING_BIAS (1U << 10) 1229 1230void unpin_user_page(struct page *page); 1231void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1232 bool make_dirty); 1233void unpin_user_pages(struct page **pages, unsigned long npages); 1234 1235/** 1236 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1237 * 1238 * This function checks if a page has been pinned via a call to 1239 * pin_user_pages*(). 1240 * 1241 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1242 * because it means "definitely not pinned for DMA", but true means "probably 1243 * pinned for DMA, but possibly a false positive due to having at least 1244 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1245 * 1246 * False positives are OK, because: a) it's unlikely for a page to get that many 1247 * refcounts, and b) all the callers of this routine are expected to be able to 1248 * deal gracefully with a false positive. 1249 * 1250 * For huge pages, the result will be exactly correct. That's because we have 1251 * more tracking data available: the 3rd struct page in the compound page is 1252 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1253 * scheme). 1254 * 1255 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1256 * 1257 * @page: pointer to page to be queried. 1258 * @Return: True, if it is likely that the page has been "dma-pinned". 1259 * False, if the page is definitely not dma-pinned. 1260 */ 1261static inline bool page_maybe_dma_pinned(struct page *page) 1262{ 1263 if (hpage_pincount_available(page)) 1264 return compound_pincount(page) > 0; 1265 1266 /* 1267 * page_ref_count() is signed. If that refcount overflows, then 1268 * page_ref_count() returns a negative value, and callers will avoid 1269 * further incrementing the refcount. 1270 * 1271 * Here, for that overflow case, use the signed bit to count a little 1272 * bit higher via unsigned math, and thus still get an accurate result. 1273 */ 1274 return ((unsigned int)page_ref_count(compound_head(page))) >= 1275 GUP_PIN_COUNTING_BIAS; 1276} 1277 1278#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1279#define SECTION_IN_PAGE_FLAGS 1280#endif 1281 1282/* 1283 * The identification function is mainly used by the buddy allocator for 1284 * determining if two pages could be buddies. We are not really identifying 1285 * the zone since we could be using the section number id if we do not have 1286 * node id available in page flags. 1287 * We only guarantee that it will return the same value for two combinable 1288 * pages in a zone. 1289 */ 1290static inline int page_zone_id(struct page *page) 1291{ 1292 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1293} 1294 1295#ifdef NODE_NOT_IN_PAGE_FLAGS 1296extern int page_to_nid(const struct page *page); 1297#else 1298static inline int page_to_nid(const struct page *page) 1299{ 1300 struct page *p = (struct page *)page; 1301 1302 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1303} 1304#endif 1305 1306#ifdef CONFIG_NUMA_BALANCING 1307static inline int cpu_pid_to_cpupid(int cpu, int pid) 1308{ 1309 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1310} 1311 1312static inline int cpupid_to_pid(int cpupid) 1313{ 1314 return cpupid & LAST__PID_MASK; 1315} 1316 1317static inline int cpupid_to_cpu(int cpupid) 1318{ 1319 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1320} 1321 1322static inline int cpupid_to_nid(int cpupid) 1323{ 1324 return cpu_to_node(cpupid_to_cpu(cpupid)); 1325} 1326 1327static inline bool cpupid_pid_unset(int cpupid) 1328{ 1329 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1330} 1331 1332static inline bool cpupid_cpu_unset(int cpupid) 1333{ 1334 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1335} 1336 1337static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1338{ 1339 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1340} 1341 1342#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1343#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1344static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1345{ 1346 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1347} 1348 1349static inline int page_cpupid_last(struct page *page) 1350{ 1351 return page->_last_cpupid; 1352} 1353static inline void page_cpupid_reset_last(struct page *page) 1354{ 1355 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1356} 1357#else 1358static inline int page_cpupid_last(struct page *page) 1359{ 1360 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1361} 1362 1363extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1364 1365static inline void page_cpupid_reset_last(struct page *page) 1366{ 1367 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1368} 1369#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1370#else /* !CONFIG_NUMA_BALANCING */ 1371static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1372{ 1373 return page_to_nid(page); /* XXX */ 1374} 1375 1376static inline int page_cpupid_last(struct page *page) 1377{ 1378 return page_to_nid(page); /* XXX */ 1379} 1380 1381static inline int cpupid_to_nid(int cpupid) 1382{ 1383 return -1; 1384} 1385 1386static inline int cpupid_to_pid(int cpupid) 1387{ 1388 return -1; 1389} 1390 1391static inline int cpupid_to_cpu(int cpupid) 1392{ 1393 return -1; 1394} 1395 1396static inline int cpu_pid_to_cpupid(int nid, int pid) 1397{ 1398 return -1; 1399} 1400 1401static inline bool cpupid_pid_unset(int cpupid) 1402{ 1403 return true; 1404} 1405 1406static inline void page_cpupid_reset_last(struct page *page) 1407{ 1408} 1409 1410static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1411{ 1412 return false; 1413} 1414#endif /* CONFIG_NUMA_BALANCING */ 1415 1416#ifdef CONFIG_KASAN_SW_TAGS 1417static inline u8 page_kasan_tag(const struct page *page) 1418{ 1419 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1420} 1421 1422static inline void page_kasan_tag_set(struct page *page, u8 tag) 1423{ 1424 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1425 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1426} 1427 1428static inline void page_kasan_tag_reset(struct page *page) 1429{ 1430 page_kasan_tag_set(page, 0xff); 1431} 1432#else 1433static inline u8 page_kasan_tag(const struct page *page) 1434{ 1435 return 0xff; 1436} 1437 1438static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1439static inline void page_kasan_tag_reset(struct page *page) { } 1440#endif 1441 1442static inline struct zone *page_zone(const struct page *page) 1443{ 1444 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1445} 1446 1447static inline pg_data_t *page_pgdat(const struct page *page) 1448{ 1449 return NODE_DATA(page_to_nid(page)); 1450} 1451 1452#ifdef SECTION_IN_PAGE_FLAGS 1453static inline void set_page_section(struct page *page, unsigned long section) 1454{ 1455 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1456 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1457} 1458 1459static inline unsigned long page_to_section(const struct page *page) 1460{ 1461 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1462} 1463#endif 1464 1465static inline void set_page_zone(struct page *page, enum zone_type zone) 1466{ 1467 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1468 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1469} 1470 1471static inline void set_page_node(struct page *page, unsigned long node) 1472{ 1473 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1474 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1475} 1476 1477static inline void set_page_links(struct page *page, enum zone_type zone, 1478 unsigned long node, unsigned long pfn) 1479{ 1480 set_page_zone(page, zone); 1481 set_page_node(page, node); 1482#ifdef SECTION_IN_PAGE_FLAGS 1483 set_page_section(page, pfn_to_section_nr(pfn)); 1484#endif 1485} 1486 1487#ifdef CONFIG_MEMCG 1488static inline struct mem_cgroup *page_memcg(struct page *page) 1489{ 1490 return page->mem_cgroup; 1491} 1492static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1493{ 1494 WARN_ON_ONCE(!rcu_read_lock_held()); 1495 return READ_ONCE(page->mem_cgroup); 1496} 1497#else 1498static inline struct mem_cgroup *page_memcg(struct page *page) 1499{ 1500 return NULL; 1501} 1502static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1503{ 1504 WARN_ON_ONCE(!rcu_read_lock_held()); 1505 return NULL; 1506} 1507#endif 1508 1509/* 1510 * Some inline functions in vmstat.h depend on page_zone() 1511 */ 1512#include <linux/vmstat.h> 1513 1514static __always_inline void *lowmem_page_address(const struct page *page) 1515{ 1516 return page_to_virt(page); 1517} 1518 1519#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1520#define HASHED_PAGE_VIRTUAL 1521#endif 1522 1523#if defined(WANT_PAGE_VIRTUAL) 1524static inline void *page_address(const struct page *page) 1525{ 1526 return page->virtual; 1527} 1528static inline void set_page_address(struct page *page, void *address) 1529{ 1530 page->virtual = address; 1531} 1532#define page_address_init() do { } while(0) 1533#endif 1534 1535#if defined(HASHED_PAGE_VIRTUAL) 1536void *page_address(const struct page *page); 1537void set_page_address(struct page *page, void *virtual); 1538void page_address_init(void); 1539#endif 1540 1541#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1542#define page_address(page) lowmem_page_address(page) 1543#define set_page_address(page, address) do { } while(0) 1544#define page_address_init() do { } while(0) 1545#endif 1546 1547extern void *page_rmapping(struct page *page); 1548extern struct anon_vma *page_anon_vma(struct page *page); 1549extern struct address_space *page_mapping(struct page *page); 1550 1551extern struct address_space *__page_file_mapping(struct page *); 1552 1553static inline 1554struct address_space *page_file_mapping(struct page *page) 1555{ 1556 if (unlikely(PageSwapCache(page))) 1557 return __page_file_mapping(page); 1558 1559 return page->mapping; 1560} 1561 1562extern pgoff_t __page_file_index(struct page *page); 1563 1564/* 1565 * Return the pagecache index of the passed page. Regular pagecache pages 1566 * use ->index whereas swapcache pages use swp_offset(->private) 1567 */ 1568static inline pgoff_t page_index(struct page *page) 1569{ 1570 if (unlikely(PageSwapCache(page))) 1571 return __page_file_index(page); 1572 return page->index; 1573} 1574 1575bool page_mapped(struct page *page); 1576struct address_space *page_mapping(struct page *page); 1577struct address_space *page_mapping_file(struct page *page); 1578 1579/* 1580 * Return true only if the page has been allocated with 1581 * ALLOC_NO_WATERMARKS and the low watermark was not 1582 * met implying that the system is under some pressure. 1583 */ 1584static inline bool page_is_pfmemalloc(struct page *page) 1585{ 1586 /* 1587 * Page index cannot be this large so this must be 1588 * a pfmemalloc page. 1589 */ 1590 return page->index == -1UL; 1591} 1592 1593/* 1594 * Only to be called by the page allocator on a freshly allocated 1595 * page. 1596 */ 1597static inline void set_page_pfmemalloc(struct page *page) 1598{ 1599 page->index = -1UL; 1600} 1601 1602static inline void clear_page_pfmemalloc(struct page *page) 1603{ 1604 page->index = 0; 1605} 1606 1607/* 1608 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1609 */ 1610extern void pagefault_out_of_memory(void); 1611 1612#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1613#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1614 1615/* 1616 * Flags passed to show_mem() and show_free_areas() to suppress output in 1617 * various contexts. 1618 */ 1619#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1620 1621extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1622 1623#ifdef CONFIG_MMU 1624extern bool can_do_mlock(void); 1625#else 1626static inline bool can_do_mlock(void) { return false; } 1627#endif 1628extern int user_shm_lock(size_t, struct user_struct *); 1629extern void user_shm_unlock(size_t, struct user_struct *); 1630 1631/* 1632 * Parameter block passed down to zap_pte_range in exceptional cases. 1633 */ 1634struct zap_details { 1635 struct address_space *check_mapping; /* Check page->mapping if set */ 1636 pgoff_t first_index; /* Lowest page->index to unmap */ 1637 pgoff_t last_index; /* Highest page->index to unmap */ 1638}; 1639 1640struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1641 pte_t pte); 1642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1643 pmd_t pmd); 1644 1645void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1646 unsigned long size); 1647void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1648 unsigned long size); 1649void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1650 unsigned long start, unsigned long end); 1651 1652struct mmu_notifier_range; 1653 1654void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1655 unsigned long end, unsigned long floor, unsigned long ceiling); 1656int 1657copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1658int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1659 struct mmu_notifier_range *range, 1660 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1661int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1662 unsigned long *pfn); 1663int follow_phys(struct vm_area_struct *vma, unsigned long address, 1664 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1665int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1666 void *buf, int len, int write); 1667 1668extern void truncate_pagecache(struct inode *inode, loff_t new); 1669extern void truncate_setsize(struct inode *inode, loff_t newsize); 1670void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1671void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1672int truncate_inode_page(struct address_space *mapping, struct page *page); 1673int generic_error_remove_page(struct address_space *mapping, struct page *page); 1674int invalidate_inode_page(struct page *page); 1675 1676#ifdef CONFIG_MMU 1677extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1678 unsigned long address, unsigned int flags, 1679 struct pt_regs *regs); 1680extern int fixup_user_fault(struct mm_struct *mm, 1681 unsigned long address, unsigned int fault_flags, 1682 bool *unlocked); 1683void unmap_mapping_pages(struct address_space *mapping, 1684 pgoff_t start, pgoff_t nr, bool even_cows); 1685void unmap_mapping_range(struct address_space *mapping, 1686 loff_t const holebegin, loff_t const holelen, int even_cows); 1687#else 1688static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1689 unsigned long address, unsigned int flags, 1690 struct pt_regs *regs) 1691{ 1692 /* should never happen if there's no MMU */ 1693 BUG(); 1694 return VM_FAULT_SIGBUS; 1695} 1696static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1697 unsigned int fault_flags, bool *unlocked) 1698{ 1699 /* should never happen if there's no MMU */ 1700 BUG(); 1701 return -EFAULT; 1702} 1703static inline void unmap_mapping_pages(struct address_space *mapping, 1704 pgoff_t start, pgoff_t nr, bool even_cows) { } 1705static inline void unmap_mapping_range(struct address_space *mapping, 1706 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1707#endif 1708 1709static inline void unmap_shared_mapping_range(struct address_space *mapping, 1710 loff_t const holebegin, loff_t const holelen) 1711{ 1712 unmap_mapping_range(mapping, holebegin, holelen, 0); 1713} 1714 1715extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1716 void *buf, int len, unsigned int gup_flags); 1717extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1718 void *buf, int len, unsigned int gup_flags); 1719extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1720 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1721 1722long get_user_pages_remote(struct mm_struct *mm, 1723 unsigned long start, unsigned long nr_pages, 1724 unsigned int gup_flags, struct page **pages, 1725 struct vm_area_struct **vmas, int *locked); 1726long pin_user_pages_remote(struct mm_struct *mm, 1727 unsigned long start, unsigned long nr_pages, 1728 unsigned int gup_flags, struct page **pages, 1729 struct vm_area_struct **vmas, int *locked); 1730long get_user_pages(unsigned long start, unsigned long nr_pages, 1731 unsigned int gup_flags, struct page **pages, 1732 struct vm_area_struct **vmas); 1733long pin_user_pages(unsigned long start, unsigned long nr_pages, 1734 unsigned int gup_flags, struct page **pages, 1735 struct vm_area_struct **vmas); 1736long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1737 unsigned int gup_flags, struct page **pages, int *locked); 1738long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1739 unsigned int gup_flags, struct page **pages, int *locked); 1740long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1741 struct page **pages, unsigned int gup_flags); 1742long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1743 struct page **pages, unsigned int gup_flags); 1744 1745int get_user_pages_fast(unsigned long start, int nr_pages, 1746 unsigned int gup_flags, struct page **pages); 1747int pin_user_pages_fast(unsigned long start, int nr_pages, 1748 unsigned int gup_flags, struct page **pages); 1749 1750int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1751int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1752 struct task_struct *task, bool bypass_rlim); 1753 1754/* Container for pinned pfns / pages */ 1755struct frame_vector { 1756 unsigned int nr_allocated; /* Number of frames we have space for */ 1757 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1758 bool got_ref; /* Did we pin pages by getting page ref? */ 1759 bool is_pfns; /* Does array contain pages or pfns? */ 1760 void *ptrs[]; /* Array of pinned pfns / pages. Use 1761 * pfns_vector_pages() or pfns_vector_pfns() 1762 * for access */ 1763}; 1764 1765struct frame_vector *frame_vector_create(unsigned int nr_frames); 1766void frame_vector_destroy(struct frame_vector *vec); 1767int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1768 unsigned int gup_flags, struct frame_vector *vec); 1769void put_vaddr_frames(struct frame_vector *vec); 1770int frame_vector_to_pages(struct frame_vector *vec); 1771void frame_vector_to_pfns(struct frame_vector *vec); 1772 1773static inline unsigned int frame_vector_count(struct frame_vector *vec) 1774{ 1775 return vec->nr_frames; 1776} 1777 1778static inline struct page **frame_vector_pages(struct frame_vector *vec) 1779{ 1780 if (vec->is_pfns) { 1781 int err = frame_vector_to_pages(vec); 1782 1783 if (err) 1784 return ERR_PTR(err); 1785 } 1786 return (struct page **)(vec->ptrs); 1787} 1788 1789static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1790{ 1791 if (!vec->is_pfns) 1792 frame_vector_to_pfns(vec); 1793 return (unsigned long *)(vec->ptrs); 1794} 1795 1796struct kvec; 1797int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1798 struct page **pages); 1799int get_kernel_page(unsigned long start, int write, struct page **pages); 1800struct page *get_dump_page(unsigned long addr); 1801 1802extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1803extern void do_invalidatepage(struct page *page, unsigned int offset, 1804 unsigned int length); 1805 1806void __set_page_dirty(struct page *, struct address_space *, int warn); 1807int __set_page_dirty_nobuffers(struct page *page); 1808int __set_page_dirty_no_writeback(struct page *page); 1809int redirty_page_for_writepage(struct writeback_control *wbc, 1810 struct page *page); 1811void account_page_dirtied(struct page *page, struct address_space *mapping); 1812void account_page_cleaned(struct page *page, struct address_space *mapping, 1813 struct bdi_writeback *wb); 1814int set_page_dirty(struct page *page); 1815int set_page_dirty_lock(struct page *page); 1816void __cancel_dirty_page(struct page *page); 1817static inline void cancel_dirty_page(struct page *page) 1818{ 1819 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1820 if (PageDirty(page)) 1821 __cancel_dirty_page(page); 1822} 1823int clear_page_dirty_for_io(struct page *page); 1824 1825int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1826 1827extern unsigned long move_page_tables(struct vm_area_struct *vma, 1828 unsigned long old_addr, struct vm_area_struct *new_vma, 1829 unsigned long new_addr, unsigned long len, 1830 bool need_rmap_locks); 1831 1832/* 1833 * Flags used by change_protection(). For now we make it a bitmap so 1834 * that we can pass in multiple flags just like parameters. However 1835 * for now all the callers are only use one of the flags at the same 1836 * time. 1837 */ 1838/* Whether we should allow dirty bit accounting */ 1839#define MM_CP_DIRTY_ACCT (1UL << 0) 1840/* Whether this protection change is for NUMA hints */ 1841#define MM_CP_PROT_NUMA (1UL << 1) 1842/* Whether this change is for write protecting */ 1843#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1844#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1845#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1846 MM_CP_UFFD_WP_RESOLVE) 1847 1848extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1849 unsigned long end, pgprot_t newprot, 1850 unsigned long cp_flags); 1851extern int mprotect_fixup(struct vm_area_struct *vma, 1852 struct vm_area_struct **pprev, unsigned long start, 1853 unsigned long end, unsigned long newflags); 1854 1855/* 1856 * doesn't attempt to fault and will return short. 1857 */ 1858int get_user_pages_fast_only(unsigned long start, int nr_pages, 1859 unsigned int gup_flags, struct page **pages); 1860int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1861 unsigned int gup_flags, struct page **pages); 1862 1863static inline bool get_user_page_fast_only(unsigned long addr, 1864 unsigned int gup_flags, struct page **pagep) 1865{ 1866 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1867} 1868/* 1869 * per-process(per-mm_struct) statistics. 1870 */ 1871static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1872{ 1873 long val = atomic_long_read(&mm->rss_stat.count[member]); 1874 1875#ifdef SPLIT_RSS_COUNTING 1876 /* 1877 * counter is updated in asynchronous manner and may go to minus. 1878 * But it's never be expected number for users. 1879 */ 1880 if (val < 0) 1881 val = 0; 1882#endif 1883 return (unsigned long)val; 1884} 1885 1886void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1887 1888static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1889{ 1890 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1891 1892 mm_trace_rss_stat(mm, member, count); 1893} 1894 1895static inline void inc_mm_counter(struct mm_struct *mm, int member) 1896{ 1897 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1898 1899 mm_trace_rss_stat(mm, member, count); 1900} 1901 1902static inline void dec_mm_counter(struct mm_struct *mm, int member) 1903{ 1904 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1905 1906 mm_trace_rss_stat(mm, member, count); 1907} 1908 1909/* Optimized variant when page is already known not to be PageAnon */ 1910static inline int mm_counter_file(struct page *page) 1911{ 1912 if (PageSwapBacked(page)) 1913 return MM_SHMEMPAGES; 1914 return MM_FILEPAGES; 1915} 1916 1917static inline int mm_counter(struct page *page) 1918{ 1919 if (PageAnon(page)) 1920 return MM_ANONPAGES; 1921 return mm_counter_file(page); 1922} 1923 1924static inline unsigned long get_mm_rss(struct mm_struct *mm) 1925{ 1926 return get_mm_counter(mm, MM_FILEPAGES) + 1927 get_mm_counter(mm, MM_ANONPAGES) + 1928 get_mm_counter(mm, MM_SHMEMPAGES); 1929} 1930 1931static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1932{ 1933 return max(mm->hiwater_rss, get_mm_rss(mm)); 1934} 1935 1936static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1937{ 1938 return max(mm->hiwater_vm, mm->total_vm); 1939} 1940 1941static inline void update_hiwater_rss(struct mm_struct *mm) 1942{ 1943 unsigned long _rss = get_mm_rss(mm); 1944 1945 if ((mm)->hiwater_rss < _rss) 1946 (mm)->hiwater_rss = _rss; 1947} 1948 1949static inline void update_hiwater_vm(struct mm_struct *mm) 1950{ 1951 if (mm->hiwater_vm < mm->total_vm) 1952 mm->hiwater_vm = mm->total_vm; 1953} 1954 1955static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1956{ 1957 mm->hiwater_rss = get_mm_rss(mm); 1958} 1959 1960static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1961 struct mm_struct *mm) 1962{ 1963 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1964 1965 if (*maxrss < hiwater_rss) 1966 *maxrss = hiwater_rss; 1967} 1968 1969#if defined(SPLIT_RSS_COUNTING) 1970void sync_mm_rss(struct mm_struct *mm); 1971#else 1972static inline void sync_mm_rss(struct mm_struct *mm) 1973{ 1974} 1975#endif 1976 1977#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1978static inline int pte_special(pte_t pte) 1979{ 1980 return 0; 1981} 1982 1983static inline pte_t pte_mkspecial(pte_t pte) 1984{ 1985 return pte; 1986} 1987#endif 1988 1989#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1990static inline int pte_devmap(pte_t pte) 1991{ 1992 return 0; 1993} 1994#endif 1995 1996int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1997 1998extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1999 spinlock_t **ptl); 2000static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2001 spinlock_t **ptl) 2002{ 2003 pte_t *ptep; 2004 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2005 return ptep; 2006} 2007 2008#ifdef __PAGETABLE_P4D_FOLDED 2009static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2010 unsigned long address) 2011{ 2012 return 0; 2013} 2014#else 2015int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2016#endif 2017 2018#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2019static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2020 unsigned long address) 2021{ 2022 return 0; 2023} 2024static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2025static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2026 2027#else 2028int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2029 2030static inline void mm_inc_nr_puds(struct mm_struct *mm) 2031{ 2032 if (mm_pud_folded(mm)) 2033 return; 2034 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2035} 2036 2037static inline void mm_dec_nr_puds(struct mm_struct *mm) 2038{ 2039 if (mm_pud_folded(mm)) 2040 return; 2041 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2042} 2043#endif 2044 2045#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2046static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2047 unsigned long address) 2048{ 2049 return 0; 2050} 2051 2052static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2053static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2054 2055#else 2056int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2057 2058static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2059{ 2060 if (mm_pmd_folded(mm)) 2061 return; 2062 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2063} 2064 2065static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2066{ 2067 if (mm_pmd_folded(mm)) 2068 return; 2069 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2070} 2071#endif 2072 2073#ifdef CONFIG_MMU 2074static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2075{ 2076 atomic_long_set(&mm->pgtables_bytes, 0); 2077} 2078 2079static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2080{ 2081 return atomic_long_read(&mm->pgtables_bytes); 2082} 2083 2084static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2085{ 2086 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2087} 2088 2089static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2090{ 2091 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2092} 2093#else 2094 2095static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2096static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2097{ 2098 return 0; 2099} 2100 2101static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2102static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2103#endif 2104 2105int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2106int __pte_alloc_kernel(pmd_t *pmd); 2107 2108#if defined(CONFIG_MMU) 2109 2110static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2111 unsigned long address) 2112{ 2113 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2114 NULL : p4d_offset(pgd, address); 2115} 2116 2117static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2118 unsigned long address) 2119{ 2120 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2121 NULL : pud_offset(p4d, address); 2122} 2123 2124static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2125{ 2126 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2127 NULL: pmd_offset(pud, address); 2128} 2129#endif /* CONFIG_MMU */ 2130 2131#if USE_SPLIT_PTE_PTLOCKS 2132#if ALLOC_SPLIT_PTLOCKS 2133void __init ptlock_cache_init(void); 2134extern bool ptlock_alloc(struct page *page); 2135extern void ptlock_free(struct page *page); 2136 2137static inline spinlock_t *ptlock_ptr(struct page *page) 2138{ 2139 return page->ptl; 2140} 2141#else /* ALLOC_SPLIT_PTLOCKS */ 2142static inline void ptlock_cache_init(void) 2143{ 2144} 2145 2146static inline bool ptlock_alloc(struct page *page) 2147{ 2148 return true; 2149} 2150 2151static inline void ptlock_free(struct page *page) 2152{ 2153} 2154 2155static inline spinlock_t *ptlock_ptr(struct page *page) 2156{ 2157 return &page->ptl; 2158} 2159#endif /* ALLOC_SPLIT_PTLOCKS */ 2160 2161static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2162{ 2163 return ptlock_ptr(pmd_page(*pmd)); 2164} 2165 2166static inline bool ptlock_init(struct page *page) 2167{ 2168 /* 2169 * prep_new_page() initialize page->private (and therefore page->ptl) 2170 * with 0. Make sure nobody took it in use in between. 2171 * 2172 * It can happen if arch try to use slab for page table allocation: 2173 * slab code uses page->slab_cache, which share storage with page->ptl. 2174 */ 2175 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2176 if (!ptlock_alloc(page)) 2177 return false; 2178 spin_lock_init(ptlock_ptr(page)); 2179 return true; 2180} 2181 2182#else /* !USE_SPLIT_PTE_PTLOCKS */ 2183/* 2184 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2185 */ 2186static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2187{ 2188 return &mm->page_table_lock; 2189} 2190static inline void ptlock_cache_init(void) {} 2191static inline bool ptlock_init(struct page *page) { return true; } 2192static inline void ptlock_free(struct page *page) {} 2193#endif /* USE_SPLIT_PTE_PTLOCKS */ 2194 2195static inline void pgtable_init(void) 2196{ 2197 ptlock_cache_init(); 2198 pgtable_cache_init(); 2199} 2200 2201static inline bool pgtable_pte_page_ctor(struct page *page) 2202{ 2203 if (!ptlock_init(page)) 2204 return false; 2205 __SetPageTable(page); 2206 inc_zone_page_state(page, NR_PAGETABLE); 2207 return true; 2208} 2209 2210static inline void pgtable_pte_page_dtor(struct page *page) 2211{ 2212 ptlock_free(page); 2213 __ClearPageTable(page); 2214 dec_zone_page_state(page, NR_PAGETABLE); 2215} 2216 2217#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2218({ \ 2219 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2220 pte_t *__pte = pte_offset_map(pmd, address); \ 2221 *(ptlp) = __ptl; \ 2222 spin_lock(__ptl); \ 2223 __pte; \ 2224}) 2225 2226#define pte_unmap_unlock(pte, ptl) do { \ 2227 spin_unlock(ptl); \ 2228 pte_unmap(pte); \ 2229} while (0) 2230 2231#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2232 2233#define pte_alloc_map(mm, pmd, address) \ 2234 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2235 2236#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2237 (pte_alloc(mm, pmd) ? \ 2238 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2239 2240#define pte_alloc_kernel(pmd, address) \ 2241 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2242 NULL: pte_offset_kernel(pmd, address)) 2243 2244#if USE_SPLIT_PMD_PTLOCKS 2245 2246static struct page *pmd_to_page(pmd_t *pmd) 2247{ 2248 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2249 return virt_to_page((void *)((unsigned long) pmd & mask)); 2250} 2251 2252static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2253{ 2254 return ptlock_ptr(pmd_to_page(pmd)); 2255} 2256 2257static inline bool pmd_ptlock_init(struct page *page) 2258{ 2259#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2260 page->pmd_huge_pte = NULL; 2261#endif 2262 return ptlock_init(page); 2263} 2264 2265static inline void pmd_ptlock_free(struct page *page) 2266{ 2267#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2268 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2269#endif 2270 ptlock_free(page); 2271} 2272 2273#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2274 2275#else 2276 2277static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2278{ 2279 return &mm->page_table_lock; 2280} 2281 2282static inline bool pmd_ptlock_init(struct page *page) { return true; } 2283static inline void pmd_ptlock_free(struct page *page) {} 2284 2285#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2286 2287#endif 2288 2289static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2290{ 2291 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2292 spin_lock(ptl); 2293 return ptl; 2294} 2295 2296static inline bool pgtable_pmd_page_ctor(struct page *page) 2297{ 2298 if (!pmd_ptlock_init(page)) 2299 return false; 2300 __SetPageTable(page); 2301 inc_zone_page_state(page, NR_PAGETABLE); 2302 return true; 2303} 2304 2305static inline void pgtable_pmd_page_dtor(struct page *page) 2306{ 2307 pmd_ptlock_free(page); 2308 __ClearPageTable(page); 2309 dec_zone_page_state(page, NR_PAGETABLE); 2310} 2311 2312/* 2313 * No scalability reason to split PUD locks yet, but follow the same pattern 2314 * as the PMD locks to make it easier if we decide to. The VM should not be 2315 * considered ready to switch to split PUD locks yet; there may be places 2316 * which need to be converted from page_table_lock. 2317 */ 2318static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2319{ 2320 return &mm->page_table_lock; 2321} 2322 2323static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2324{ 2325 spinlock_t *ptl = pud_lockptr(mm, pud); 2326 2327 spin_lock(ptl); 2328 return ptl; 2329} 2330 2331extern void __init pagecache_init(void); 2332extern void __init free_area_init_memoryless_node(int nid); 2333extern void free_initmem(void); 2334 2335/* 2336 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2337 * into the buddy system. The freed pages will be poisoned with pattern 2338 * "poison" if it's within range [0, UCHAR_MAX]. 2339 * Return pages freed into the buddy system. 2340 */ 2341extern unsigned long free_reserved_area(void *start, void *end, 2342 int poison, const char *s); 2343 2344#ifdef CONFIG_HIGHMEM 2345/* 2346 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2347 * and totalram_pages. 2348 */ 2349extern void free_highmem_page(struct page *page); 2350#endif 2351 2352extern void adjust_managed_page_count(struct page *page, long count); 2353extern void mem_init_print_info(const char *str); 2354 2355extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2356 2357/* Free the reserved page into the buddy system, so it gets managed. */ 2358static inline void __free_reserved_page(struct page *page) 2359{ 2360 ClearPageReserved(page); 2361 init_page_count(page); 2362 __free_page(page); 2363} 2364 2365static inline void free_reserved_page(struct page *page) 2366{ 2367 __free_reserved_page(page); 2368 adjust_managed_page_count(page, 1); 2369} 2370 2371static inline void mark_page_reserved(struct page *page) 2372{ 2373 SetPageReserved(page); 2374 adjust_managed_page_count(page, -1); 2375} 2376 2377/* 2378 * Default method to free all the __init memory into the buddy system. 2379 * The freed pages will be poisoned with pattern "poison" if it's within 2380 * range [0, UCHAR_MAX]. 2381 * Return pages freed into the buddy system. 2382 */ 2383static inline unsigned long free_initmem_default(int poison) 2384{ 2385 extern char __init_begin[], __init_end[]; 2386 2387 return free_reserved_area(&__init_begin, &__init_end, 2388 poison, "unused kernel"); 2389} 2390 2391static inline unsigned long get_num_physpages(void) 2392{ 2393 int nid; 2394 unsigned long phys_pages = 0; 2395 2396 for_each_online_node(nid) 2397 phys_pages += node_present_pages(nid); 2398 2399 return phys_pages; 2400} 2401 2402/* 2403 * Using memblock node mappings, an architecture may initialise its 2404 * zones, allocate the backing mem_map and account for memory holes in an 2405 * architecture independent manner. 2406 * 2407 * An architecture is expected to register range of page frames backed by 2408 * physical memory with memblock_add[_node]() before calling 2409 * free_area_init() passing in the PFN each zone ends at. At a basic 2410 * usage, an architecture is expected to do something like 2411 * 2412 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2413 * max_highmem_pfn}; 2414 * for_each_valid_physical_page_range() 2415 * memblock_add_node(base, size, nid) 2416 * free_area_init(max_zone_pfns); 2417 */ 2418void free_area_init(unsigned long *max_zone_pfn); 2419unsigned long node_map_pfn_alignment(void); 2420unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2421 unsigned long end_pfn); 2422extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2423 unsigned long end_pfn); 2424extern void get_pfn_range_for_nid(unsigned int nid, 2425 unsigned long *start_pfn, unsigned long *end_pfn); 2426extern unsigned long find_min_pfn_with_active_regions(void); 2427 2428#ifndef CONFIG_NEED_MULTIPLE_NODES 2429static inline int early_pfn_to_nid(unsigned long pfn) 2430{ 2431 return 0; 2432} 2433#else 2434/* please see mm/page_alloc.c */ 2435extern int __meminit early_pfn_to_nid(unsigned long pfn); 2436/* there is a per-arch backend function. */ 2437extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2438 struct mminit_pfnnid_cache *state); 2439#endif 2440 2441extern void set_dma_reserve(unsigned long new_dma_reserve); 2442extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2443 enum meminit_context, struct vmem_altmap *, int migratetype); 2444extern void setup_per_zone_wmarks(void); 2445extern int __meminit init_per_zone_wmark_min(void); 2446extern void mem_init(void); 2447extern void __init mmap_init(void); 2448extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2449extern long si_mem_available(void); 2450extern void si_meminfo(struct sysinfo * val); 2451extern void si_meminfo_node(struct sysinfo *val, int nid); 2452#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2453extern unsigned long arch_reserved_kernel_pages(void); 2454#endif 2455 2456extern __printf(3, 4) 2457void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2458 2459extern void setup_per_cpu_pageset(void); 2460 2461/* page_alloc.c */ 2462extern int min_free_kbytes; 2463extern int watermark_boost_factor; 2464extern int watermark_scale_factor; 2465extern bool arch_has_descending_max_zone_pfns(void); 2466 2467/* nommu.c */ 2468extern atomic_long_t mmap_pages_allocated; 2469extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2470 2471/* interval_tree.c */ 2472void vma_interval_tree_insert(struct vm_area_struct *node, 2473 struct rb_root_cached *root); 2474void vma_interval_tree_insert_after(struct vm_area_struct *node, 2475 struct vm_area_struct *prev, 2476 struct rb_root_cached *root); 2477void vma_interval_tree_remove(struct vm_area_struct *node, 2478 struct rb_root_cached *root); 2479struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2480 unsigned long start, unsigned long last); 2481struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2482 unsigned long start, unsigned long last); 2483 2484#define vma_interval_tree_foreach(vma, root, start, last) \ 2485 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2486 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2487 2488void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2489 struct rb_root_cached *root); 2490void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2491 struct rb_root_cached *root); 2492struct anon_vma_chain * 2493anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2494 unsigned long start, unsigned long last); 2495struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2496 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2497#ifdef CONFIG_DEBUG_VM_RB 2498void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2499#endif 2500 2501#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2502 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2503 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2504 2505/* mmap.c */ 2506extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2507extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2508 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2509 struct vm_area_struct *expand); 2510static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2512{ 2513 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2514} 2515extern struct vm_area_struct *vma_merge(struct mm_struct *, 2516 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2517 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2518 struct mempolicy *, struct vm_userfaultfd_ctx); 2519extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2520extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2521 unsigned long addr, int new_below); 2522extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2523 unsigned long addr, int new_below); 2524extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2525extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2526 struct rb_node **, struct rb_node *); 2527extern void unlink_file_vma(struct vm_area_struct *); 2528extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2529 unsigned long addr, unsigned long len, pgoff_t pgoff, 2530 bool *need_rmap_locks); 2531extern void exit_mmap(struct mm_struct *); 2532 2533static inline int check_data_rlimit(unsigned long rlim, 2534 unsigned long new, 2535 unsigned long start, 2536 unsigned long end_data, 2537 unsigned long start_data) 2538{ 2539 if (rlim < RLIM_INFINITY) { 2540 if (((new - start) + (end_data - start_data)) > rlim) 2541 return -ENOSPC; 2542 } 2543 2544 return 0; 2545} 2546 2547extern int mm_take_all_locks(struct mm_struct *mm); 2548extern void mm_drop_all_locks(struct mm_struct *mm); 2549 2550extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2551extern struct file *get_mm_exe_file(struct mm_struct *mm); 2552extern struct file *get_task_exe_file(struct task_struct *task); 2553 2554extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2555extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2556 2557extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2558 const struct vm_special_mapping *sm); 2559extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2560 unsigned long addr, unsigned long len, 2561 unsigned long flags, 2562 const struct vm_special_mapping *spec); 2563/* This is an obsolete alternative to _install_special_mapping. */ 2564extern int install_special_mapping(struct mm_struct *mm, 2565 unsigned long addr, unsigned long len, 2566 unsigned long flags, struct page **pages); 2567 2568unsigned long randomize_stack_top(unsigned long stack_top); 2569 2570extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2571 2572extern unsigned long mmap_region(struct file *file, unsigned long addr, 2573 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2574 struct list_head *uf); 2575extern unsigned long do_mmap(struct file *file, unsigned long addr, 2576 unsigned long len, unsigned long prot, unsigned long flags, 2577 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2578extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2579 struct list_head *uf, bool downgrade); 2580extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2581 struct list_head *uf); 2582extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2583 2584#ifdef CONFIG_MMU 2585extern int __mm_populate(unsigned long addr, unsigned long len, 2586 int ignore_errors); 2587static inline void mm_populate(unsigned long addr, unsigned long len) 2588{ 2589 /* Ignore errors */ 2590 (void) __mm_populate(addr, len, 1); 2591} 2592#else 2593static inline void mm_populate(unsigned long addr, unsigned long len) {} 2594#endif 2595 2596/* These take the mm semaphore themselves */ 2597extern int __must_check vm_brk(unsigned long, unsigned long); 2598extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2599extern int vm_munmap(unsigned long, size_t); 2600extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2601 unsigned long, unsigned long, 2602 unsigned long, unsigned long); 2603 2604struct vm_unmapped_area_info { 2605#define VM_UNMAPPED_AREA_TOPDOWN 1 2606 unsigned long flags; 2607 unsigned long length; 2608 unsigned long low_limit; 2609 unsigned long high_limit; 2610 unsigned long align_mask; 2611 unsigned long align_offset; 2612}; 2613 2614extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2615 2616/* truncate.c */ 2617extern void truncate_inode_pages(struct address_space *, loff_t); 2618extern void truncate_inode_pages_range(struct address_space *, 2619 loff_t lstart, loff_t lend); 2620extern void truncate_inode_pages_final(struct address_space *); 2621 2622/* generic vm_area_ops exported for stackable file systems */ 2623extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2624extern void filemap_map_pages(struct vm_fault *vmf, 2625 pgoff_t start_pgoff, pgoff_t end_pgoff); 2626extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2627 2628/* mm/page-writeback.c */ 2629int __must_check write_one_page(struct page *page); 2630void task_dirty_inc(struct task_struct *tsk); 2631 2632extern unsigned long stack_guard_gap; 2633/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2634extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2635 2636/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2637extern int expand_downwards(struct vm_area_struct *vma, 2638 unsigned long address); 2639#if VM_GROWSUP 2640extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2641#else 2642 #define expand_upwards(vma, address) (0) 2643#endif 2644 2645/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2646extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2647extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2648 struct vm_area_struct **pprev); 2649 2650/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2651 NULL if none. Assume start_addr < end_addr. */ 2652static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2653{ 2654 struct vm_area_struct * vma = find_vma(mm,start_addr); 2655 2656 if (vma && end_addr <= vma->vm_start) 2657 vma = NULL; 2658 return vma; 2659} 2660 2661static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2662{ 2663 unsigned long vm_start = vma->vm_start; 2664 2665 if (vma->vm_flags & VM_GROWSDOWN) { 2666 vm_start -= stack_guard_gap; 2667 if (vm_start > vma->vm_start) 2668 vm_start = 0; 2669 } 2670 return vm_start; 2671} 2672 2673static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2674{ 2675 unsigned long vm_end = vma->vm_end; 2676 2677 if (vma->vm_flags & VM_GROWSUP) { 2678 vm_end += stack_guard_gap; 2679 if (vm_end < vma->vm_end) 2680 vm_end = -PAGE_SIZE; 2681 } 2682 return vm_end; 2683} 2684 2685static inline unsigned long vma_pages(struct vm_area_struct *vma) 2686{ 2687 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2688} 2689 2690/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2691static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2692 unsigned long vm_start, unsigned long vm_end) 2693{ 2694 struct vm_area_struct *vma = find_vma(mm, vm_start); 2695 2696 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2697 vma = NULL; 2698 2699 return vma; 2700} 2701 2702static inline bool range_in_vma(struct vm_area_struct *vma, 2703 unsigned long start, unsigned long end) 2704{ 2705 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2706} 2707 2708#ifdef CONFIG_MMU 2709pgprot_t vm_get_page_prot(unsigned long vm_flags); 2710void vma_set_page_prot(struct vm_area_struct *vma); 2711#else 2712static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2713{ 2714 return __pgprot(0); 2715} 2716static inline void vma_set_page_prot(struct vm_area_struct *vma) 2717{ 2718 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2719} 2720#endif 2721 2722#ifdef CONFIG_NUMA_BALANCING 2723unsigned long change_prot_numa(struct vm_area_struct *vma, 2724 unsigned long start, unsigned long end); 2725#endif 2726 2727struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2728int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2729 unsigned long pfn, unsigned long size, pgprot_t); 2730int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2731int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2732 struct page **pages, unsigned long *num); 2733int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2734 unsigned long num); 2735int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2736 unsigned long num); 2737vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2738 unsigned long pfn); 2739vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2740 unsigned long pfn, pgprot_t pgprot); 2741vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2742 pfn_t pfn); 2743vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2744 pfn_t pfn, pgprot_t pgprot); 2745vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2746 unsigned long addr, pfn_t pfn); 2747int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2748 2749static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2750 unsigned long addr, struct page *page) 2751{ 2752 int err = vm_insert_page(vma, addr, page); 2753 2754 if (err == -ENOMEM) 2755 return VM_FAULT_OOM; 2756 if (err < 0 && err != -EBUSY) 2757 return VM_FAULT_SIGBUS; 2758 2759 return VM_FAULT_NOPAGE; 2760} 2761 2762#ifndef io_remap_pfn_range 2763static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2764 unsigned long addr, unsigned long pfn, 2765 unsigned long size, pgprot_t prot) 2766{ 2767 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2768} 2769#endif 2770 2771static inline vm_fault_t vmf_error(int err) 2772{ 2773 if (err == -ENOMEM) 2774 return VM_FAULT_OOM; 2775 return VM_FAULT_SIGBUS; 2776} 2777 2778struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2779 unsigned int foll_flags); 2780 2781#define FOLL_WRITE 0x01 /* check pte is writable */ 2782#define FOLL_TOUCH 0x02 /* mark page accessed */ 2783#define FOLL_GET 0x04 /* do get_page on page */ 2784#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2785#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2786#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2787 * and return without waiting upon it */ 2788#define FOLL_POPULATE 0x40 /* fault in page */ 2789#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2790#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2791#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2792#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2793#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2794#define FOLL_MLOCK 0x1000 /* lock present pages */ 2795#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2796#define FOLL_COW 0x4000 /* internal GUP flag */ 2797#define FOLL_ANON 0x8000 /* don't do file mappings */ 2798#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2799#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2800#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2801#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2802 2803/* 2804 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2805 * other. Here is what they mean, and how to use them: 2806 * 2807 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2808 * period _often_ under userspace control. This is in contrast to 2809 * iov_iter_get_pages(), whose usages are transient. 2810 * 2811 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2812 * lifetime enforced by the filesystem and we need guarantees that longterm 2813 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2814 * the filesystem. Ideas for this coordination include revoking the longterm 2815 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2816 * added after the problem with filesystems was found FS DAX VMAs are 2817 * specifically failed. Filesystem pages are still subject to bugs and use of 2818 * FOLL_LONGTERM should be avoided on those pages. 2819 * 2820 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2821 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2822 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2823 * is due to an incompatibility with the FS DAX check and 2824 * FAULT_FLAG_ALLOW_RETRY. 2825 * 2826 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2827 * that region. And so, CMA attempts to migrate the page before pinning, when 2828 * FOLL_LONGTERM is specified. 2829 * 2830 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2831 * but an additional pin counting system) will be invoked. This is intended for 2832 * anything that gets a page reference and then touches page data (for example, 2833 * Direct IO). This lets the filesystem know that some non-file-system entity is 2834 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2835 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2836 * a call to unpin_user_page(). 2837 * 2838 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2839 * and separate refcounting mechanisms, however, and that means that each has 2840 * its own acquire and release mechanisms: 2841 * 2842 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2843 * 2844 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2845 * 2846 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2847 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2848 * calls applied to them, and that's perfectly OK. This is a constraint on the 2849 * callers, not on the pages.) 2850 * 2851 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2852 * directly by the caller. That's in order to help avoid mismatches when 2853 * releasing pages: get_user_pages*() pages must be released via put_page(), 2854 * while pin_user_pages*() pages must be released via unpin_user_page(). 2855 * 2856 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2857 */ 2858 2859static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2860{ 2861 if (vm_fault & VM_FAULT_OOM) 2862 return -ENOMEM; 2863 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2864 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2865 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2866 return -EFAULT; 2867 return 0; 2868} 2869 2870typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2871extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2872 unsigned long size, pte_fn_t fn, void *data); 2873extern int apply_to_existing_page_range(struct mm_struct *mm, 2874 unsigned long address, unsigned long size, 2875 pte_fn_t fn, void *data); 2876 2877#ifdef CONFIG_PAGE_POISONING 2878extern bool page_poisoning_enabled(void); 2879extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2880#else 2881static inline bool page_poisoning_enabled(void) { return false; } 2882static inline void kernel_poison_pages(struct page *page, int numpages, 2883 int enable) { } 2884#endif 2885 2886#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2887DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2888#else 2889DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2890#endif 2891static inline bool want_init_on_alloc(gfp_t flags) 2892{ 2893 if (static_branch_unlikely(&init_on_alloc) && 2894 !page_poisoning_enabled()) 2895 return true; 2896 return flags & __GFP_ZERO; 2897} 2898 2899#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2900DECLARE_STATIC_KEY_TRUE(init_on_free); 2901#else 2902DECLARE_STATIC_KEY_FALSE(init_on_free); 2903#endif 2904static inline bool want_init_on_free(void) 2905{ 2906 return static_branch_unlikely(&init_on_free) && 2907 !page_poisoning_enabled(); 2908} 2909 2910#ifdef CONFIG_DEBUG_PAGEALLOC 2911extern void init_debug_pagealloc(void); 2912#else 2913static inline void init_debug_pagealloc(void) {} 2914#endif 2915extern bool _debug_pagealloc_enabled_early; 2916DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2917 2918static inline bool debug_pagealloc_enabled(void) 2919{ 2920 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2921 _debug_pagealloc_enabled_early; 2922} 2923 2924/* 2925 * For use in fast paths after init_debug_pagealloc() has run, or when a 2926 * false negative result is not harmful when called too early. 2927 */ 2928static inline bool debug_pagealloc_enabled_static(void) 2929{ 2930 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2931 return false; 2932 2933 return static_branch_unlikely(&_debug_pagealloc_enabled); 2934} 2935 2936#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2937extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2938 2939/* 2940 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2941 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2942 */ 2943static inline void 2944kernel_map_pages(struct page *page, int numpages, int enable) 2945{ 2946 __kernel_map_pages(page, numpages, enable); 2947} 2948#ifdef CONFIG_HIBERNATION 2949extern bool kernel_page_present(struct page *page); 2950#endif /* CONFIG_HIBERNATION */ 2951#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2952static inline void 2953kernel_map_pages(struct page *page, int numpages, int enable) {} 2954#ifdef CONFIG_HIBERNATION 2955static inline bool kernel_page_present(struct page *page) { return true; } 2956#endif /* CONFIG_HIBERNATION */ 2957#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2958 2959#ifdef __HAVE_ARCH_GATE_AREA 2960extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2961extern int in_gate_area_no_mm(unsigned long addr); 2962extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2963#else 2964static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2965{ 2966 return NULL; 2967} 2968static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2969static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2970{ 2971 return 0; 2972} 2973#endif /* __HAVE_ARCH_GATE_AREA */ 2974 2975extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2976 2977#ifdef CONFIG_SYSCTL 2978extern int sysctl_drop_caches; 2979int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2980 loff_t *); 2981#endif 2982 2983void drop_slab(void); 2984void drop_slab_node(int nid); 2985 2986#ifndef CONFIG_MMU 2987#define randomize_va_space 0 2988#else 2989extern int randomize_va_space; 2990#endif 2991 2992const char * arch_vma_name(struct vm_area_struct *vma); 2993#ifdef CONFIG_MMU 2994void print_vma_addr(char *prefix, unsigned long rip); 2995#else 2996static inline void print_vma_addr(char *prefix, unsigned long rip) 2997{ 2998} 2999#endif 3000 3001void *sparse_buffer_alloc(unsigned long size); 3002struct page * __populate_section_memmap(unsigned long pfn, 3003 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3004pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3005p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3006pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3007pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3008pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3009 struct vmem_altmap *altmap); 3010void *vmemmap_alloc_block(unsigned long size, int node); 3011struct vmem_altmap; 3012void *vmemmap_alloc_block_buf(unsigned long size, int node, 3013 struct vmem_altmap *altmap); 3014void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3015int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3016 int node, struct vmem_altmap *altmap); 3017int vmemmap_populate(unsigned long start, unsigned long end, int node, 3018 struct vmem_altmap *altmap); 3019void vmemmap_populate_print_last(void); 3020#ifdef CONFIG_MEMORY_HOTPLUG 3021void vmemmap_free(unsigned long start, unsigned long end, 3022 struct vmem_altmap *altmap); 3023#endif 3024void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3025 unsigned long nr_pages); 3026 3027enum mf_flags { 3028 MF_COUNT_INCREASED = 1 << 0, 3029 MF_ACTION_REQUIRED = 1 << 1, 3030 MF_MUST_KILL = 1 << 2, 3031 MF_SOFT_OFFLINE = 1 << 3, 3032}; 3033extern int memory_failure(unsigned long pfn, int flags); 3034extern void memory_failure_queue(unsigned long pfn, int flags); 3035extern void memory_failure_queue_kick(int cpu); 3036extern int unpoison_memory(unsigned long pfn); 3037extern int sysctl_memory_failure_early_kill; 3038extern int sysctl_memory_failure_recovery; 3039extern void shake_page(struct page *p, int access); 3040extern atomic_long_t num_poisoned_pages __read_mostly; 3041extern int soft_offline_page(unsigned long pfn, int flags); 3042 3043 3044/* 3045 * Error handlers for various types of pages. 3046 */ 3047enum mf_result { 3048 MF_IGNORED, /* Error: cannot be handled */ 3049 MF_FAILED, /* Error: handling failed */ 3050 MF_DELAYED, /* Will be handled later */ 3051 MF_RECOVERED, /* Successfully recovered */ 3052}; 3053 3054enum mf_action_page_type { 3055 MF_MSG_KERNEL, 3056 MF_MSG_KERNEL_HIGH_ORDER, 3057 MF_MSG_SLAB, 3058 MF_MSG_DIFFERENT_COMPOUND, 3059 MF_MSG_POISONED_HUGE, 3060 MF_MSG_HUGE, 3061 MF_MSG_FREE_HUGE, 3062 MF_MSG_NON_PMD_HUGE, 3063 MF_MSG_UNMAP_FAILED, 3064 MF_MSG_DIRTY_SWAPCACHE, 3065 MF_MSG_CLEAN_SWAPCACHE, 3066 MF_MSG_DIRTY_MLOCKED_LRU, 3067 MF_MSG_CLEAN_MLOCKED_LRU, 3068 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3069 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3070 MF_MSG_DIRTY_LRU, 3071 MF_MSG_CLEAN_LRU, 3072 MF_MSG_TRUNCATED_LRU, 3073 MF_MSG_BUDDY, 3074 MF_MSG_BUDDY_2ND, 3075 MF_MSG_DAX, 3076 MF_MSG_UNSPLIT_THP, 3077 MF_MSG_UNKNOWN, 3078}; 3079 3080#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3081extern void clear_huge_page(struct page *page, 3082 unsigned long addr_hint, 3083 unsigned int pages_per_huge_page); 3084extern void copy_user_huge_page(struct page *dst, struct page *src, 3085 unsigned long addr_hint, 3086 struct vm_area_struct *vma, 3087 unsigned int pages_per_huge_page); 3088extern long copy_huge_page_from_user(struct page *dst_page, 3089 const void __user *usr_src, 3090 unsigned int pages_per_huge_page, 3091 bool allow_pagefault); 3092 3093/** 3094 * vma_is_special_huge - Are transhuge page-table entries considered special? 3095 * @vma: Pointer to the struct vm_area_struct to consider 3096 * 3097 * Whether transhuge page-table entries are considered "special" following 3098 * the definition in vm_normal_page(). 3099 * 3100 * Return: true if transhuge page-table entries should be considered special, 3101 * false otherwise. 3102 */ 3103static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3104{ 3105 return vma_is_dax(vma) || (vma->vm_file && 3106 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3107} 3108 3109#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3110 3111#ifdef CONFIG_DEBUG_PAGEALLOC 3112extern unsigned int _debug_guardpage_minorder; 3113DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3114 3115static inline unsigned int debug_guardpage_minorder(void) 3116{ 3117 return _debug_guardpage_minorder; 3118} 3119 3120static inline bool debug_guardpage_enabled(void) 3121{ 3122 return static_branch_unlikely(&_debug_guardpage_enabled); 3123} 3124 3125static inline bool page_is_guard(struct page *page) 3126{ 3127 if (!debug_guardpage_enabled()) 3128 return false; 3129 3130 return PageGuard(page); 3131} 3132#else 3133static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3134static inline bool debug_guardpage_enabled(void) { return false; } 3135static inline bool page_is_guard(struct page *page) { return false; } 3136#endif /* CONFIG_DEBUG_PAGEALLOC */ 3137 3138#if MAX_NUMNODES > 1 3139void __init setup_nr_node_ids(void); 3140#else 3141static inline void setup_nr_node_ids(void) {} 3142#endif 3143 3144extern int memcmp_pages(struct page *page1, struct page *page2); 3145 3146static inline int pages_identical(struct page *page1, struct page *page2) 3147{ 3148 return !memcmp_pages(page1, page2); 3149} 3150 3151#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3152unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3153 pgoff_t first_index, pgoff_t nr, 3154 pgoff_t bitmap_pgoff, 3155 unsigned long *bitmap, 3156 pgoff_t *start, 3157 pgoff_t *end); 3158 3159unsigned long wp_shared_mapping_range(struct address_space *mapping, 3160 pgoff_t first_index, pgoff_t nr); 3161#endif 3162 3163extern int sysctl_nr_trim_pages; 3164 3165#endif /* __KERNEL__ */ 3166#endif /* _LINUX_MM_H */