at v5.10 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/mm.h> 15#include <linux/mmu_notifier.h> 16#include <linux/preempt.h> 17#include <linux/msi.h> 18#include <linux/slab.h> 19#include <linux/vmalloc.h> 20#include <linux/rcupdate.h> 21#include <linux/ratelimit.h> 22#include <linux/err.h> 23#include <linux/irqflags.h> 24#include <linux/context_tracking.h> 25#include <linux/irqbypass.h> 26#include <linux/rcuwait.h> 27#include <linux/refcount.h> 28#include <linux/nospec.h> 29#include <asm/signal.h> 30 31#include <linux/kvm.h> 32#include <linux/kvm_para.h> 33 34#include <linux/kvm_types.h> 35 36#include <asm/kvm_host.h> 37 38#ifndef KVM_MAX_VCPU_ID 39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40#endif 41 42/* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47#define KVM_MEMSLOT_INVALID (1UL << 16) 48 49/* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70/* Two fragments for cross MMIO pages. */ 71#define KVM_MAX_MMIO_FRAGMENTS 2 72 73#ifndef KVM_ADDRESS_SPACE_NUM 74#define KVM_ADDRESS_SPACE_NUM 1 75#endif 76 77/* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84#define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90/* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94static inline bool is_error_pfn(kvm_pfn_t pfn) 95{ 96 return !!(pfn & KVM_PFN_ERR_MASK); 97} 98 99/* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107} 108 109/* noslot pfn indicates that the gfn is not in slot. */ 110static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111{ 112 return pfn == KVM_PFN_NOSLOT; 113} 114 115/* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119#ifndef KVM_HVA_ERR_BAD 120 121#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124static inline bool kvm_is_error_hva(unsigned long addr) 125{ 126 return addr >= PAGE_OFFSET; 127} 128 129#endif 130 131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133static inline bool is_error_page(struct page *page) 134{ 135 return IS_ERR(page); 136} 137 138#define KVM_REQUEST_MASK GENMASK(7,0) 139#define KVM_REQUEST_NO_WAKEUP BIT(8) 140#define KVM_REQUEST_WAIT BIT(9) 141/* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147#define KVM_REQ_PENDING_TIMER 2 148#define KVM_REQ_UNHALT 3 149#define KVM_REQUEST_ARCH_BASE 8 150 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154}) 155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157#define KVM_USERSPACE_IRQ_SOURCE_ID 0 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160extern struct mutex kvm_lock; 161extern struct list_head vm_list; 162 163struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167}; 168 169#define NR_IOBUS_DEVS 1000 170 171struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175}; 176 177enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183}; 184 185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198#ifdef CONFIG_KVM_ASYNC_PF 199struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209 bool notpresent_injected; 210}; 211 212void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 213void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 214bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 215 unsigned long hva, struct kvm_arch_async_pf *arch); 216int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 217#endif 218 219enum { 220 OUTSIDE_GUEST_MODE, 221 IN_GUEST_MODE, 222 EXITING_GUEST_MODE, 223 READING_SHADOW_PAGE_TABLES, 224}; 225 226#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 227 228struct kvm_host_map { 229 /* 230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 231 * a 'struct page' for it. When using mem= kernel parameter some memory 232 * can be used as guest memory but they are not managed by host 233 * kernel). 234 * If 'pfn' is not managed by the host kernel, this field is 235 * initialized to KVM_UNMAPPED_PAGE. 236 */ 237 struct page *page; 238 void *hva; 239 kvm_pfn_t pfn; 240 kvm_pfn_t gfn; 241}; 242 243/* 244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 245 * directly to check for that. 246 */ 247static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 248{ 249 return !!map->hva; 250} 251 252/* 253 * Sometimes a large or cross-page mmio needs to be broken up into separate 254 * exits for userspace servicing. 255 */ 256struct kvm_mmio_fragment { 257 gpa_t gpa; 258 void *data; 259 unsigned len; 260}; 261 262struct kvm_vcpu { 263 struct kvm *kvm; 264#ifdef CONFIG_PREEMPT_NOTIFIERS 265 struct preempt_notifier preempt_notifier; 266#endif 267 int cpu; 268 int vcpu_id; /* id given by userspace at creation */ 269 int vcpu_idx; /* index in kvm->vcpus array */ 270 int srcu_idx; 271 int mode; 272 u64 requests; 273 unsigned long guest_debug; 274 275 int pre_pcpu; 276 struct list_head blocked_vcpu_list; 277 278 struct mutex mutex; 279 struct kvm_run *run; 280 281 struct rcuwait wait; 282 struct pid __rcu *pid; 283 int sigset_active; 284 sigset_t sigset; 285 struct kvm_vcpu_stat stat; 286 unsigned int halt_poll_ns; 287 bool valid_wakeup; 288 289#ifdef CONFIG_HAS_IOMEM 290 int mmio_needed; 291 int mmio_read_completed; 292 int mmio_is_write; 293 int mmio_cur_fragment; 294 int mmio_nr_fragments; 295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 296#endif 297 298#ifdef CONFIG_KVM_ASYNC_PF 299 struct { 300 u32 queued; 301 struct list_head queue; 302 struct list_head done; 303 spinlock_t lock; 304 } async_pf; 305#endif 306 307#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 308 /* 309 * Cpu relax intercept or pause loop exit optimization 310 * in_spin_loop: set when a vcpu does a pause loop exit 311 * or cpu relax intercepted. 312 * dy_eligible: indicates whether vcpu is eligible for directed yield. 313 */ 314 struct { 315 bool in_spin_loop; 316 bool dy_eligible; 317 } spin_loop; 318#endif 319 bool preempted; 320 bool ready; 321 struct kvm_vcpu_arch arch; 322}; 323 324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325{ 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333} 334 335/* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349 u16 as_id; 350}; 351 352static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 353{ 354 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 355} 356 357static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 358{ 359 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 360 361 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 362} 363 364#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 365#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 366#endif 367 368struct kvm_s390_adapter_int { 369 u64 ind_addr; 370 u64 summary_addr; 371 u64 ind_offset; 372 u32 summary_offset; 373 u32 adapter_id; 374}; 375 376struct kvm_hv_sint { 377 u32 vcpu; 378 u32 sint; 379}; 380 381struct kvm_kernel_irq_routing_entry { 382 u32 gsi; 383 u32 type; 384 int (*set)(struct kvm_kernel_irq_routing_entry *e, 385 struct kvm *kvm, int irq_source_id, int level, 386 bool line_status); 387 union { 388 struct { 389 unsigned irqchip; 390 unsigned pin; 391 } irqchip; 392 struct { 393 u32 address_lo; 394 u32 address_hi; 395 u32 data; 396 u32 flags; 397 u32 devid; 398 } msi; 399 struct kvm_s390_adapter_int adapter; 400 struct kvm_hv_sint hv_sint; 401 }; 402 struct hlist_node link; 403}; 404 405#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 406struct kvm_irq_routing_table { 407 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 408 u32 nr_rt_entries; 409 /* 410 * Array indexed by gsi. Each entry contains list of irq chips 411 * the gsi is connected to. 412 */ 413 struct hlist_head map[]; 414}; 415#endif 416 417#ifndef KVM_PRIVATE_MEM_SLOTS 418#define KVM_PRIVATE_MEM_SLOTS 0 419#endif 420 421#ifndef KVM_MEM_SLOTS_NUM 422#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 423#endif 424 425#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 426static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 427{ 428 return 0; 429} 430#endif 431 432/* 433 * Note: 434 * memslots are not sorted by id anymore, please use id_to_memslot() 435 * to get the memslot by its id. 436 */ 437struct kvm_memslots { 438 u64 generation; 439 /* The mapping table from slot id to the index in memslots[]. */ 440 short id_to_index[KVM_MEM_SLOTS_NUM]; 441 atomic_t lru_slot; 442 int used_slots; 443 struct kvm_memory_slot memslots[]; 444}; 445 446struct kvm { 447 spinlock_t mmu_lock; 448 struct mutex slots_lock; 449 struct mm_struct *mm; /* userspace tied to this vm */ 450 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 451 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 452 453 /* 454 * created_vcpus is protected by kvm->lock, and is incremented 455 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 456 * incremented after storing the kvm_vcpu pointer in vcpus, 457 * and is accessed atomically. 458 */ 459 atomic_t online_vcpus; 460 int created_vcpus; 461 int last_boosted_vcpu; 462 struct list_head vm_list; 463 struct mutex lock; 464 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 465#ifdef CONFIG_HAVE_KVM_EVENTFD 466 struct { 467 spinlock_t lock; 468 struct list_head items; 469 struct list_head resampler_list; 470 struct mutex resampler_lock; 471 } irqfds; 472 struct list_head ioeventfds; 473#endif 474 struct kvm_vm_stat stat; 475 struct kvm_arch arch; 476 refcount_t users_count; 477#ifdef CONFIG_KVM_MMIO 478 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 479 spinlock_t ring_lock; 480 struct list_head coalesced_zones; 481#endif 482 483 struct mutex irq_lock; 484#ifdef CONFIG_HAVE_KVM_IRQCHIP 485 /* 486 * Update side is protected by irq_lock. 487 */ 488 struct kvm_irq_routing_table __rcu *irq_routing; 489#endif 490#ifdef CONFIG_HAVE_KVM_IRQFD 491 struct hlist_head irq_ack_notifier_list; 492#endif 493 494#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 495 struct mmu_notifier mmu_notifier; 496 unsigned long mmu_notifier_seq; 497 long mmu_notifier_count; 498#endif 499 long tlbs_dirty; 500 struct list_head devices; 501 u64 manual_dirty_log_protect; 502 struct dentry *debugfs_dentry; 503 struct kvm_stat_data **debugfs_stat_data; 504 struct srcu_struct srcu; 505 struct srcu_struct irq_srcu; 506 pid_t userspace_pid; 507 unsigned int max_halt_poll_ns; 508}; 509 510#define kvm_err(fmt, ...) \ 511 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512#define kvm_info(fmt, ...) \ 513 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514#define kvm_debug(fmt, ...) \ 515 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 516#define kvm_debug_ratelimited(fmt, ...) \ 517 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 518 ## __VA_ARGS__) 519#define kvm_pr_unimpl(fmt, ...) \ 520 pr_err_ratelimited("kvm [%i]: " fmt, \ 521 task_tgid_nr(current), ## __VA_ARGS__) 522 523/* The guest did something we don't support. */ 524#define vcpu_unimpl(vcpu, fmt, ...) \ 525 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 526 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 527 528#define vcpu_debug(vcpu, fmt, ...) \ 529 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 530#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 531 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 532 ## __VA_ARGS__) 533#define vcpu_err(vcpu, fmt, ...) \ 534 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 535 536static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 537{ 538 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 539} 540 541static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 542{ 543 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 544 lockdep_is_held(&kvm->slots_lock) || 545 !refcount_read(&kvm->users_count)); 546} 547 548static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 549{ 550 int num_vcpus = atomic_read(&kvm->online_vcpus); 551 i = array_index_nospec(i, num_vcpus); 552 553 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 554 smp_rmb(); 555 return kvm->vcpus[i]; 556} 557 558#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 559 for (idx = 0; \ 560 idx < atomic_read(&kvm->online_vcpus) && \ 561 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 562 idx++) 563 564static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 565{ 566 struct kvm_vcpu *vcpu = NULL; 567 int i; 568 569 if (id < 0) 570 return NULL; 571 if (id < KVM_MAX_VCPUS) 572 vcpu = kvm_get_vcpu(kvm, id); 573 if (vcpu && vcpu->vcpu_id == id) 574 return vcpu; 575 kvm_for_each_vcpu(i, vcpu, kvm) 576 if (vcpu->vcpu_id == id) 577 return vcpu; 578 return NULL; 579} 580 581static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 582{ 583 return vcpu->vcpu_idx; 584} 585 586#define kvm_for_each_memslot(memslot, slots) \ 587 for (memslot = &slots->memslots[0]; \ 588 memslot < slots->memslots + slots->used_slots; memslot++) \ 589 if (WARN_ON_ONCE(!memslot->npages)) { \ 590 } else 591 592void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 593 594void vcpu_load(struct kvm_vcpu *vcpu); 595void vcpu_put(struct kvm_vcpu *vcpu); 596 597#ifdef __KVM_HAVE_IOAPIC 598void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 599void kvm_arch_post_irq_routing_update(struct kvm *kvm); 600#else 601static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 602{ 603} 604static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 605{ 606} 607#endif 608 609#ifdef CONFIG_HAVE_KVM_IRQFD 610int kvm_irqfd_init(void); 611void kvm_irqfd_exit(void); 612#else 613static inline int kvm_irqfd_init(void) 614{ 615 return 0; 616} 617 618static inline void kvm_irqfd_exit(void) 619{ 620} 621#endif 622int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 623 struct module *module); 624void kvm_exit(void); 625 626void kvm_get_kvm(struct kvm *kvm); 627void kvm_put_kvm(struct kvm *kvm); 628void kvm_put_kvm_no_destroy(struct kvm *kvm); 629 630static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 631{ 632 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 633 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 634 lockdep_is_held(&kvm->slots_lock) || 635 !refcount_read(&kvm->users_count)); 636} 637 638static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 639{ 640 return __kvm_memslots(kvm, 0); 641} 642 643static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 644{ 645 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 646 647 return __kvm_memslots(vcpu->kvm, as_id); 648} 649 650static inline 651struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 652{ 653 int index = slots->id_to_index[id]; 654 struct kvm_memory_slot *slot; 655 656 if (index < 0) 657 return NULL; 658 659 slot = &slots->memslots[index]; 660 661 WARN_ON(slot->id != id); 662 return slot; 663} 664 665/* 666 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 667 * - create a new memory slot 668 * - delete an existing memory slot 669 * - modify an existing memory slot 670 * -- move it in the guest physical memory space 671 * -- just change its flags 672 * 673 * Since flags can be changed by some of these operations, the following 674 * differentiation is the best we can do for __kvm_set_memory_region(): 675 */ 676enum kvm_mr_change { 677 KVM_MR_CREATE, 678 KVM_MR_DELETE, 679 KVM_MR_MOVE, 680 KVM_MR_FLAGS_ONLY, 681}; 682 683int kvm_set_memory_region(struct kvm *kvm, 684 const struct kvm_userspace_memory_region *mem); 685int __kvm_set_memory_region(struct kvm *kvm, 686 const struct kvm_userspace_memory_region *mem); 687void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 688void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 689int kvm_arch_prepare_memory_region(struct kvm *kvm, 690 struct kvm_memory_slot *memslot, 691 const struct kvm_userspace_memory_region *mem, 692 enum kvm_mr_change change); 693void kvm_arch_commit_memory_region(struct kvm *kvm, 694 const struct kvm_userspace_memory_region *mem, 695 struct kvm_memory_slot *old, 696 const struct kvm_memory_slot *new, 697 enum kvm_mr_change change); 698/* flush all memory translations */ 699void kvm_arch_flush_shadow_all(struct kvm *kvm); 700/* flush memory translations pointing to 'slot' */ 701void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 702 struct kvm_memory_slot *slot); 703 704int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 705 struct page **pages, int nr_pages); 706 707struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 708unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 709unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 710unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 711unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 712 bool *writable); 713void kvm_release_page_clean(struct page *page); 714void kvm_release_page_dirty(struct page *page); 715void kvm_set_page_accessed(struct page *page); 716 717kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 718kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 719 bool *writable); 720kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 721kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 722kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 723 bool atomic, bool *async, bool write_fault, 724 bool *writable); 725 726void kvm_release_pfn_clean(kvm_pfn_t pfn); 727void kvm_release_pfn_dirty(kvm_pfn_t pfn); 728void kvm_set_pfn_dirty(kvm_pfn_t pfn); 729void kvm_set_pfn_accessed(kvm_pfn_t pfn); 730void kvm_get_pfn(kvm_pfn_t pfn); 731 732void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 733int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 734 int len); 735int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 736int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 737 void *data, unsigned long len); 738int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 739 void *data, unsigned int offset, 740 unsigned long len); 741int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 742 int offset, int len); 743int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 744 unsigned long len); 745int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 746 void *data, unsigned long len); 747int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 748 void *data, unsigned int offset, 749 unsigned long len); 750int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 751 gpa_t gpa, unsigned long len); 752 753#define __kvm_get_guest(kvm, gfn, offset, v) \ 754({ \ 755 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 756 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 757 int __ret = -EFAULT; \ 758 \ 759 if (!kvm_is_error_hva(__addr)) \ 760 __ret = get_user(v, __uaddr); \ 761 __ret; \ 762}) 763 764#define kvm_get_guest(kvm, gpa, v) \ 765({ \ 766 gpa_t __gpa = gpa; \ 767 struct kvm *__kvm = kvm; \ 768 \ 769 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 770 offset_in_page(__gpa), v); \ 771}) 772 773#define __kvm_put_guest(kvm, gfn, offset, v) \ 774({ \ 775 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 776 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 777 int __ret = -EFAULT; \ 778 \ 779 if (!kvm_is_error_hva(__addr)) \ 780 __ret = put_user(v, __uaddr); \ 781 if (!__ret) \ 782 mark_page_dirty(kvm, gfn); \ 783 __ret; \ 784}) 785 786#define kvm_put_guest(kvm, gpa, v) \ 787({ \ 788 gpa_t __gpa = gpa; \ 789 struct kvm *__kvm = kvm; \ 790 \ 791 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 792 offset_in_page(__gpa), v); \ 793}) 794 795int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 796int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 797struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 798bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 799bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 800unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 801void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 802void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 803 804struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 805struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 806kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 807kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 808int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 809int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 810 struct gfn_to_pfn_cache *cache, bool atomic); 811struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 812void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 813int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 814 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 815unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 816unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 817int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 818 int len); 819int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 820 unsigned long len); 821int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 822 unsigned long len); 823int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 824 int offset, int len); 825int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 826 unsigned long len); 827void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 828 829void kvm_sigset_activate(struct kvm_vcpu *vcpu); 830void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 831 832void kvm_vcpu_block(struct kvm_vcpu *vcpu); 833void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 834void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 835bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 836void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 837int kvm_vcpu_yield_to(struct kvm_vcpu *target); 838void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 839 840void kvm_flush_remote_tlbs(struct kvm *kvm); 841void kvm_reload_remote_mmus(struct kvm *kvm); 842 843#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 844int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 845int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 846void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 847void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 848#endif 849 850bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 851 struct kvm_vcpu *except, 852 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 853bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 854bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 855 struct kvm_vcpu *except); 856bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 857 unsigned long *vcpu_bitmap); 858 859long kvm_arch_dev_ioctl(struct file *filp, 860 unsigned int ioctl, unsigned long arg); 861long kvm_arch_vcpu_ioctl(struct file *filp, 862 unsigned int ioctl, unsigned long arg); 863vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 864 865int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 866 867void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 868 struct kvm_memory_slot *slot, 869 gfn_t gfn_offset, 870 unsigned long mask); 871void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 872 873#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 874void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 875 struct kvm_memory_slot *memslot); 876#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 877int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 878int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 879 int *is_dirty, struct kvm_memory_slot **memslot); 880#endif 881 882int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 883 bool line_status); 884int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 885 struct kvm_enable_cap *cap); 886long kvm_arch_vm_ioctl(struct file *filp, 887 unsigned int ioctl, unsigned long arg); 888 889int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 890int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 891 892int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 893 struct kvm_translation *tr); 894 895int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 896int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 897int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 898 struct kvm_sregs *sregs); 899int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 900 struct kvm_sregs *sregs); 901int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 902 struct kvm_mp_state *mp_state); 903int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 904 struct kvm_mp_state *mp_state); 905int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 906 struct kvm_guest_debug *dbg); 907int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 908 909int kvm_arch_init(void *opaque); 910void kvm_arch_exit(void); 911 912void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 913 914void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 915void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 916int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 917int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 918void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 919void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 920 921#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 922void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 923#endif 924 925int kvm_arch_hardware_enable(void); 926void kvm_arch_hardware_disable(void); 927int kvm_arch_hardware_setup(void *opaque); 928void kvm_arch_hardware_unsetup(void); 929int kvm_arch_check_processor_compat(void *opaque); 930int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 931bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 932int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 933bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 934int kvm_arch_post_init_vm(struct kvm *kvm); 935void kvm_arch_pre_destroy_vm(struct kvm *kvm); 936 937#ifndef __KVM_HAVE_ARCH_VM_ALLOC 938/* 939 * All architectures that want to use vzalloc currently also 940 * need their own kvm_arch_alloc_vm implementation. 941 */ 942static inline struct kvm *kvm_arch_alloc_vm(void) 943{ 944 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 945} 946 947static inline void kvm_arch_free_vm(struct kvm *kvm) 948{ 949 kfree(kvm); 950} 951#endif 952 953#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 954static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 955{ 956 return -ENOTSUPP; 957} 958#endif 959 960#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 961void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 962void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 963bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 964#else 965static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 966{ 967} 968 969static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 970{ 971} 972 973static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 974{ 975 return false; 976} 977#endif 978#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 979void kvm_arch_start_assignment(struct kvm *kvm); 980void kvm_arch_end_assignment(struct kvm *kvm); 981bool kvm_arch_has_assigned_device(struct kvm *kvm); 982#else 983static inline void kvm_arch_start_assignment(struct kvm *kvm) 984{ 985} 986 987static inline void kvm_arch_end_assignment(struct kvm *kvm) 988{ 989} 990 991static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 992{ 993 return false; 994} 995#endif 996 997static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 998{ 999#ifdef __KVM_HAVE_ARCH_WQP 1000 return vcpu->arch.waitp; 1001#else 1002 return &vcpu->wait; 1003#endif 1004} 1005 1006#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1007/* 1008 * returns true if the virtual interrupt controller is initialized and 1009 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1010 * controller is dynamically instantiated and this is not always true. 1011 */ 1012bool kvm_arch_intc_initialized(struct kvm *kvm); 1013#else 1014static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1015{ 1016 return true; 1017} 1018#endif 1019 1020int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1021void kvm_arch_destroy_vm(struct kvm *kvm); 1022void kvm_arch_sync_events(struct kvm *kvm); 1023 1024int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1025 1026bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1027bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1028bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1029 1030struct kvm_irq_ack_notifier { 1031 struct hlist_node link; 1032 unsigned gsi; 1033 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1034}; 1035 1036int kvm_irq_map_gsi(struct kvm *kvm, 1037 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1038int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1039 1040int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1041 bool line_status); 1042int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1043 int irq_source_id, int level, bool line_status); 1044int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1045 struct kvm *kvm, int irq_source_id, 1046 int level, bool line_status); 1047bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1048void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1049void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1050void kvm_register_irq_ack_notifier(struct kvm *kvm, 1051 struct kvm_irq_ack_notifier *kian); 1052void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1053 struct kvm_irq_ack_notifier *kian); 1054int kvm_request_irq_source_id(struct kvm *kvm); 1055void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1056bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1057 1058/* 1059 * search_memslots() and __gfn_to_memslot() are here because they are 1060 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1061 * gfn_to_memslot() itself isn't here as an inline because that would 1062 * bloat other code too much. 1063 * 1064 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1065 */ 1066static inline struct kvm_memory_slot * 1067search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1068{ 1069 int start = 0, end = slots->used_slots; 1070 int slot = atomic_read(&slots->lru_slot); 1071 struct kvm_memory_slot *memslots = slots->memslots; 1072 1073 if (unlikely(!slots->used_slots)) 1074 return NULL; 1075 1076 if (gfn >= memslots[slot].base_gfn && 1077 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1078 return &memslots[slot]; 1079 1080 while (start < end) { 1081 slot = start + (end - start) / 2; 1082 1083 if (gfn >= memslots[slot].base_gfn) 1084 end = slot; 1085 else 1086 start = slot + 1; 1087 } 1088 1089 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1090 gfn < memslots[start].base_gfn + memslots[start].npages) { 1091 atomic_set(&slots->lru_slot, start); 1092 return &memslots[start]; 1093 } 1094 1095 return NULL; 1096} 1097 1098static inline struct kvm_memory_slot * 1099__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1100{ 1101 return search_memslots(slots, gfn); 1102} 1103 1104static inline unsigned long 1105__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1106{ 1107 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1108} 1109 1110static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1111{ 1112 return gfn_to_memslot(kvm, gfn)->id; 1113} 1114 1115static inline gfn_t 1116hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1117{ 1118 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1119 1120 return slot->base_gfn + gfn_offset; 1121} 1122 1123static inline gpa_t gfn_to_gpa(gfn_t gfn) 1124{ 1125 return (gpa_t)gfn << PAGE_SHIFT; 1126} 1127 1128static inline gfn_t gpa_to_gfn(gpa_t gpa) 1129{ 1130 return (gfn_t)(gpa >> PAGE_SHIFT); 1131} 1132 1133static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1134{ 1135 return (hpa_t)pfn << PAGE_SHIFT; 1136} 1137 1138static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1139 gpa_t gpa) 1140{ 1141 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1142} 1143 1144static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1145{ 1146 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1147 1148 return kvm_is_error_hva(hva); 1149} 1150 1151enum kvm_stat_kind { 1152 KVM_STAT_VM, 1153 KVM_STAT_VCPU, 1154}; 1155 1156struct kvm_stat_data { 1157 struct kvm *kvm; 1158 struct kvm_stats_debugfs_item *dbgfs_item; 1159}; 1160 1161struct kvm_stats_debugfs_item { 1162 const char *name; 1163 int offset; 1164 enum kvm_stat_kind kind; 1165 int mode; 1166}; 1167 1168#define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1169 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1170 1171#define VM_STAT(n, x, ...) \ 1172 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ } 1173#define VCPU_STAT(n, x, ...) \ 1174 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ } 1175 1176extern struct kvm_stats_debugfs_item debugfs_entries[]; 1177extern struct dentry *kvm_debugfs_dir; 1178 1179#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1180static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1181{ 1182 if (unlikely(kvm->mmu_notifier_count)) 1183 return 1; 1184 /* 1185 * Ensure the read of mmu_notifier_count happens before the read 1186 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1187 * mmu_notifier_invalidate_range_end to make sure that the caller 1188 * either sees the old (non-zero) value of mmu_notifier_count or 1189 * the new (incremented) value of mmu_notifier_seq. 1190 * PowerPC Book3s HV KVM calls this under a per-page lock 1191 * rather than under kvm->mmu_lock, for scalability, so 1192 * can't rely on kvm->mmu_lock to keep things ordered. 1193 */ 1194 smp_rmb(); 1195 if (kvm->mmu_notifier_seq != mmu_seq) 1196 return 1; 1197 return 0; 1198} 1199#endif 1200 1201#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1202 1203#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1204 1205bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1206int kvm_set_irq_routing(struct kvm *kvm, 1207 const struct kvm_irq_routing_entry *entries, 1208 unsigned nr, 1209 unsigned flags); 1210int kvm_set_routing_entry(struct kvm *kvm, 1211 struct kvm_kernel_irq_routing_entry *e, 1212 const struct kvm_irq_routing_entry *ue); 1213void kvm_free_irq_routing(struct kvm *kvm); 1214 1215#else 1216 1217static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1218 1219#endif 1220 1221int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1222 1223#ifdef CONFIG_HAVE_KVM_EVENTFD 1224 1225void kvm_eventfd_init(struct kvm *kvm); 1226int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1227 1228#ifdef CONFIG_HAVE_KVM_IRQFD 1229int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1230void kvm_irqfd_release(struct kvm *kvm); 1231void kvm_irq_routing_update(struct kvm *); 1232#else 1233static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1234{ 1235 return -EINVAL; 1236} 1237 1238static inline void kvm_irqfd_release(struct kvm *kvm) {} 1239#endif 1240 1241#else 1242 1243static inline void kvm_eventfd_init(struct kvm *kvm) {} 1244 1245static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1246{ 1247 return -EINVAL; 1248} 1249 1250static inline void kvm_irqfd_release(struct kvm *kvm) {} 1251 1252#ifdef CONFIG_HAVE_KVM_IRQCHIP 1253static inline void kvm_irq_routing_update(struct kvm *kvm) 1254{ 1255} 1256#endif 1257 1258static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1259{ 1260 return -ENOSYS; 1261} 1262 1263#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1264 1265void kvm_arch_irq_routing_update(struct kvm *kvm); 1266 1267static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1268{ 1269 /* 1270 * Ensure the rest of the request is published to kvm_check_request's 1271 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1272 */ 1273 smp_wmb(); 1274 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1275} 1276 1277static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1278{ 1279 return READ_ONCE(vcpu->requests); 1280} 1281 1282static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1283{ 1284 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1285} 1286 1287static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1288{ 1289 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1290} 1291 1292static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1293{ 1294 if (kvm_test_request(req, vcpu)) { 1295 kvm_clear_request(req, vcpu); 1296 1297 /* 1298 * Ensure the rest of the request is visible to kvm_check_request's 1299 * caller. Paired with the smp_wmb in kvm_make_request. 1300 */ 1301 smp_mb__after_atomic(); 1302 return true; 1303 } else { 1304 return false; 1305 } 1306} 1307 1308extern bool kvm_rebooting; 1309 1310extern unsigned int halt_poll_ns; 1311extern unsigned int halt_poll_ns_grow; 1312extern unsigned int halt_poll_ns_grow_start; 1313extern unsigned int halt_poll_ns_shrink; 1314 1315struct kvm_device { 1316 const struct kvm_device_ops *ops; 1317 struct kvm *kvm; 1318 void *private; 1319 struct list_head vm_node; 1320}; 1321 1322/* create, destroy, and name are mandatory */ 1323struct kvm_device_ops { 1324 const char *name; 1325 1326 /* 1327 * create is called holding kvm->lock and any operations not suitable 1328 * to do while holding the lock should be deferred to init (see 1329 * below). 1330 */ 1331 int (*create)(struct kvm_device *dev, u32 type); 1332 1333 /* 1334 * init is called after create if create is successful and is called 1335 * outside of holding kvm->lock. 1336 */ 1337 void (*init)(struct kvm_device *dev); 1338 1339 /* 1340 * Destroy is responsible for freeing dev. 1341 * 1342 * Destroy may be called before or after destructors are called 1343 * on emulated I/O regions, depending on whether a reference is 1344 * held by a vcpu or other kvm component that gets destroyed 1345 * after the emulated I/O. 1346 */ 1347 void (*destroy)(struct kvm_device *dev); 1348 1349 /* 1350 * Release is an alternative method to free the device. It is 1351 * called when the device file descriptor is closed. Once 1352 * release is called, the destroy method will not be called 1353 * anymore as the device is removed from the device list of 1354 * the VM. kvm->lock is held. 1355 */ 1356 void (*release)(struct kvm_device *dev); 1357 1358 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1359 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1360 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1361 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1362 unsigned long arg); 1363 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1364}; 1365 1366void kvm_device_get(struct kvm_device *dev); 1367void kvm_device_put(struct kvm_device *dev); 1368struct kvm_device *kvm_device_from_filp(struct file *filp); 1369int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1370void kvm_unregister_device_ops(u32 type); 1371 1372extern struct kvm_device_ops kvm_mpic_ops; 1373extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1374extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1375 1376#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1377 1378static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1379{ 1380 vcpu->spin_loop.in_spin_loop = val; 1381} 1382static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1383{ 1384 vcpu->spin_loop.dy_eligible = val; 1385} 1386 1387#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1388 1389static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1390{ 1391} 1392 1393static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1394{ 1395} 1396#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1397 1398static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1399{ 1400 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1401 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1402} 1403 1404struct kvm_vcpu *kvm_get_running_vcpu(void); 1405struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1406 1407#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1408bool kvm_arch_has_irq_bypass(void); 1409int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1410 struct irq_bypass_producer *); 1411void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1412 struct irq_bypass_producer *); 1413void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1414void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1415int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1416 uint32_t guest_irq, bool set); 1417#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1418 1419#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1420/* If we wakeup during the poll time, was it a sucessful poll? */ 1421static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1422{ 1423 return vcpu->valid_wakeup; 1424} 1425 1426#else 1427static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1428{ 1429 return true; 1430} 1431#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1432 1433#ifdef CONFIG_HAVE_KVM_NO_POLL 1434/* Callback that tells if we must not poll */ 1435bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1436#else 1437static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1438{ 1439 return false; 1440} 1441#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1442 1443#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1444long kvm_arch_vcpu_async_ioctl(struct file *filp, 1445 unsigned int ioctl, unsigned long arg); 1446#else 1447static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1448 unsigned int ioctl, 1449 unsigned long arg) 1450{ 1451 return -ENOIOCTLCMD; 1452} 1453#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1454 1455void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1456 unsigned long start, unsigned long end); 1457 1458#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1459int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1460#else 1461static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1462{ 1463 return 0; 1464} 1465#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1466 1467typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1468 1469int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1470 uintptr_t data, const char *name, 1471 struct task_struct **thread_ptr); 1472 1473#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1474static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1475{ 1476 vcpu->run->exit_reason = KVM_EXIT_INTR; 1477 vcpu->stat.signal_exits++; 1478} 1479#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1480 1481#endif