at v5.10 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68/* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70}; 71 72/** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85}; 86 87/** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110/** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161}; 162 163/** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has a chance to establish any dependency 170 * chains 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 174 * sources that were the result of a previous operation, in the case of a PQ 175 * operation it continues the calculation with new sources 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 177 * on the result of this operation 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 179 * cleared or freed 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 181 * data and the descriptor should be in different format from normal 182 * data descriptors. 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 184 * repeated when it ends until a transaction is issued on the same channel 185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 186 * interleaved transactions and is ignored for all other transaction types. 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 189 * repeated transaction ends. Not setting this flag when the previously queued 190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 191 * to never be processed and stay in the issued queue forever. The flag is 192 * ignored if the previous transaction is not a repeated transaction. 193 */ 194enum dma_ctrl_flags { 195 DMA_PREP_INTERRUPT = (1 << 0), 196 DMA_CTRL_ACK = (1 << 1), 197 DMA_PREP_PQ_DISABLE_P = (1 << 2), 198 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 199 DMA_PREP_CONTINUE = (1 << 4), 200 DMA_PREP_FENCE = (1 << 5), 201 DMA_CTRL_REUSE = (1 << 6), 202 DMA_PREP_CMD = (1 << 7), 203 DMA_PREP_REPEAT = (1 << 8), 204 DMA_PREP_LOAD_EOT = (1 << 9), 205}; 206 207/** 208 * enum sum_check_bits - bit position of pq_check_flags 209 */ 210enum sum_check_bits { 211 SUM_CHECK_P = 0, 212 SUM_CHECK_Q = 1, 213}; 214 215/** 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 219 */ 220enum sum_check_flags { 221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 223}; 224 225 226/** 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 228 * See linux/cpumask.h 229 */ 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 231 232/** 233 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 234 * @memcpy_count: transaction counter 235 * @bytes_transferred: byte counter 236 */ 237 238/** 239 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 240 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 241 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 242 * helper) to the descriptor. 243 * 244 * Client drivers interested to use this mode can follow: 245 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 246 * 1. prepare the descriptor (dmaengine_prep_*) 247 * construct the metadata in the client's buffer 248 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 249 * descriptor 250 * 3. submit the transfer 251 * - DMA_DEV_TO_MEM: 252 * 1. prepare the descriptor (dmaengine_prep_*) 253 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 254 * descriptor 255 * 3. submit the transfer 256 * 4. when the transfer is completed, the metadata should be available in the 257 * attached buffer 258 * 259 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 260 * driver. The client driver can ask for the pointer, maximum size and the 261 * currently used size of the metadata and can directly update or read it. 262 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 263 * provided as helper functions. 264 * 265 * Note: the metadata area for the descriptor is no longer valid after the 266 * transfer has been completed (valid up to the point when the completion 267 * callback returns if used). 268 * 269 * Client drivers interested to use this mode can follow: 270 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 271 * 1. prepare the descriptor (dmaengine_prep_*) 272 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 273 * metadata area 274 * 3. update the metadata at the pointer 275 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 276 * of data the client has placed into the metadata buffer 277 * 5. submit the transfer 278 * - DMA_DEV_TO_MEM: 279 * 1. prepare the descriptor (dmaengine_prep_*) 280 * 2. submit the transfer 281 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 282 * pointer to the engine's metadata area 283 * 4. Read out the metadata from the pointer 284 * 285 * Note: the two mode is not compatible and clients must use one mode for a 286 * descriptor. 287 */ 288enum dma_desc_metadata_mode { 289 DESC_METADATA_NONE = 0, 290 DESC_METADATA_CLIENT = BIT(0), 291 DESC_METADATA_ENGINE = BIT(1), 292}; 293 294struct dma_chan_percpu { 295 /* stats */ 296 unsigned long memcpy_count; 297 unsigned long bytes_transferred; 298}; 299 300/** 301 * struct dma_router - DMA router structure 302 * @dev: pointer to the DMA router device 303 * @route_free: function to be called when the route can be disconnected 304 */ 305struct dma_router { 306 struct device *dev; 307 void (*route_free)(struct device *dev, void *route_data); 308}; 309 310/** 311 * struct dma_chan - devices supply DMA channels, clients use them 312 * @device: ptr to the dma device who supplies this channel, always !%NULL 313 * @slave: ptr to the device using this channel 314 * @cookie: last cookie value returned to client 315 * @completed_cookie: last completed cookie for this channel 316 * @chan_id: channel ID for sysfs 317 * @dev: class device for sysfs 318 * @name: backlink name for sysfs 319 * @dbg_client_name: slave name for debugfs in format: 320 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 321 * @device_node: used to add this to the device chan list 322 * @local: per-cpu pointer to a struct dma_chan_percpu 323 * @client_count: how many clients are using this channel 324 * @table_count: number of appearances in the mem-to-mem allocation table 325 * @router: pointer to the DMA router structure 326 * @route_data: channel specific data for the router 327 * @private: private data for certain client-channel associations 328 */ 329struct dma_chan { 330 struct dma_device *device; 331 struct device *slave; 332 dma_cookie_t cookie; 333 dma_cookie_t completed_cookie; 334 335 /* sysfs */ 336 int chan_id; 337 struct dma_chan_dev *dev; 338 const char *name; 339#ifdef CONFIG_DEBUG_FS 340 char *dbg_client_name; 341#endif 342 343 struct list_head device_node; 344 struct dma_chan_percpu __percpu *local; 345 int client_count; 346 int table_count; 347 348 /* DMA router */ 349 struct dma_router *router; 350 void *route_data; 351 352 void *private; 353}; 354 355/** 356 * struct dma_chan_dev - relate sysfs device node to backing channel device 357 * @chan: driver channel device 358 * @device: sysfs device 359 * @dev_id: parent dma_device dev_id 360 */ 361struct dma_chan_dev { 362 struct dma_chan *chan; 363 struct device device; 364 int dev_id; 365}; 366 367/** 368 * enum dma_slave_buswidth - defines bus width of the DMA slave 369 * device, source or target buses 370 */ 371enum dma_slave_buswidth { 372 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 373 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 374 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 375 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 376 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 377 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 378 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 379 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 380 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 381}; 382 383/** 384 * struct dma_slave_config - dma slave channel runtime config 385 * @direction: whether the data shall go in or out on this slave 386 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 387 * legal values. DEPRECATED, drivers should use the direction argument 388 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 389 * the dir field in the dma_interleaved_template structure. 390 * @src_addr: this is the physical address where DMA slave data 391 * should be read (RX), if the source is memory this argument is 392 * ignored. 393 * @dst_addr: this is the physical address where DMA slave data 394 * should be written (TX), if the source is memory this argument 395 * is ignored. 396 * @src_addr_width: this is the width in bytes of the source (RX) 397 * register where DMA data shall be read. If the source 398 * is memory this may be ignored depending on architecture. 399 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 400 * @dst_addr_width: same as src_addr_width but for destination 401 * target (TX) mutatis mutandis. 402 * @src_maxburst: the maximum number of words (note: words, as in 403 * units of the src_addr_width member, not bytes) that can be sent 404 * in one burst to the device. Typically something like half the 405 * FIFO depth on I/O peripherals so you don't overflow it. This 406 * may or may not be applicable on memory sources. 407 * @dst_maxburst: same as src_maxburst but for destination target 408 * mutatis mutandis. 409 * @src_port_window_size: The length of the register area in words the data need 410 * to be accessed on the device side. It is only used for devices which is using 411 * an area instead of a single register to receive the data. Typically the DMA 412 * loops in this area in order to transfer the data. 413 * @dst_port_window_size: same as src_port_window_size but for the destination 414 * port. 415 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 416 * with 'true' if peripheral should be flow controller. Direction will be 417 * selected at Runtime. 418 * @slave_id: Slave requester id. Only valid for slave channels. The dma 419 * slave peripheral will have unique id as dma requester which need to be 420 * pass as slave config. 421 * 422 * This struct is passed in as configuration data to a DMA engine 423 * in order to set up a certain channel for DMA transport at runtime. 424 * The DMA device/engine has to provide support for an additional 425 * callback in the dma_device structure, device_config and this struct 426 * will then be passed in as an argument to the function. 427 * 428 * The rationale for adding configuration information to this struct is as 429 * follows: if it is likely that more than one DMA slave controllers in 430 * the world will support the configuration option, then make it generic. 431 * If not: if it is fixed so that it be sent in static from the platform 432 * data, then prefer to do that. 433 */ 434struct dma_slave_config { 435 enum dma_transfer_direction direction; 436 phys_addr_t src_addr; 437 phys_addr_t dst_addr; 438 enum dma_slave_buswidth src_addr_width; 439 enum dma_slave_buswidth dst_addr_width; 440 u32 src_maxburst; 441 u32 dst_maxburst; 442 u32 src_port_window_size; 443 u32 dst_port_window_size; 444 bool device_fc; 445 unsigned int slave_id; 446}; 447 448/** 449 * enum dma_residue_granularity - Granularity of the reported transfer residue 450 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 451 * DMA channel is only able to tell whether a descriptor has been completed or 452 * not, which means residue reporting is not supported by this channel. The 453 * residue field of the dma_tx_state field will always be 0. 454 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 455 * completed segment of the transfer (For cyclic transfers this is after each 456 * period). This is typically implemented by having the hardware generate an 457 * interrupt after each transferred segment and then the drivers updates the 458 * outstanding residue by the size of the segment. Another possibility is if 459 * the hardware supports scatter-gather and the segment descriptor has a field 460 * which gets set after the segment has been completed. The driver then counts 461 * the number of segments without the flag set to compute the residue. 462 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 463 * burst. This is typically only supported if the hardware has a progress 464 * register of some sort (E.g. a register with the current read/write address 465 * or a register with the amount of bursts/beats/bytes that have been 466 * transferred or still need to be transferred). 467 */ 468enum dma_residue_granularity { 469 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 470 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 471 DMA_RESIDUE_GRANULARITY_BURST = 2, 472}; 473 474/** 475 * struct dma_slave_caps - expose capabilities of a slave channel only 476 * @src_addr_widths: bit mask of src addr widths the channel supports. 477 * Width is specified in bytes, e.g. for a channel supporting 478 * a width of 4 the mask should have BIT(4) set. 479 * @dst_addr_widths: bit mask of dst addr widths the channel supports 480 * @directions: bit mask of slave directions the channel supports. 481 * Since the enum dma_transfer_direction is not defined as bit flag for 482 * each type, the dma controller should set BIT(<TYPE>) and same 483 * should be checked by controller as well 484 * @min_burst: min burst capability per-transfer 485 * @max_burst: max burst capability per-transfer 486 * @max_sg_burst: max number of SG list entries executed in a single burst 487 * DMA tansaction with no software intervention for reinitialization. 488 * Zero value means unlimited number of entries. 489 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 490 * for resume later) 491 * @cmd_resume: true, if resume is supported 492 * @cmd_terminate: true, if terminate cmd is supported 493 * @residue_granularity: granularity of the reported transfer residue 494 * @descriptor_reuse: if a descriptor can be reused by client and 495 * resubmitted multiple times 496 */ 497struct dma_slave_caps { 498 u32 src_addr_widths; 499 u32 dst_addr_widths; 500 u32 directions; 501 u32 min_burst; 502 u32 max_burst; 503 u32 max_sg_burst; 504 bool cmd_pause; 505 bool cmd_resume; 506 bool cmd_terminate; 507 enum dma_residue_granularity residue_granularity; 508 bool descriptor_reuse; 509}; 510 511static inline const char *dma_chan_name(struct dma_chan *chan) 512{ 513 return dev_name(&chan->dev->device); 514} 515 516void dma_chan_cleanup(struct kref *kref); 517 518/** 519 * typedef dma_filter_fn - callback filter for dma_request_channel 520 * @chan: channel to be reviewed 521 * @filter_param: opaque parameter passed through dma_request_channel 522 * 523 * When this optional parameter is specified in a call to dma_request_channel a 524 * suitable channel is passed to this routine for further dispositioning before 525 * being returned. Where 'suitable' indicates a non-busy channel that 526 * satisfies the given capability mask. It returns 'true' to indicate that the 527 * channel is suitable. 528 */ 529typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 530 531typedef void (*dma_async_tx_callback)(void *dma_async_param); 532 533enum dmaengine_tx_result { 534 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 535 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 536 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 537 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 538}; 539 540struct dmaengine_result { 541 enum dmaengine_tx_result result; 542 u32 residue; 543}; 544 545typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 546 const struct dmaengine_result *result); 547 548struct dmaengine_unmap_data { 549#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 550 u16 map_cnt; 551#else 552 u8 map_cnt; 553#endif 554 u8 to_cnt; 555 u8 from_cnt; 556 u8 bidi_cnt; 557 struct device *dev; 558 struct kref kref; 559 size_t len; 560 dma_addr_t addr[]; 561}; 562 563struct dma_async_tx_descriptor; 564 565struct dma_descriptor_metadata_ops { 566 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 567 size_t len); 568 569 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 570 size_t *payload_len, size_t *max_len); 571 int (*set_len)(struct dma_async_tx_descriptor *desc, 572 size_t payload_len); 573}; 574 575/** 576 * struct dma_async_tx_descriptor - async transaction descriptor 577 * ---dma generic offload fields--- 578 * @cookie: tracking cookie for this transaction, set to -EBUSY if 579 * this tx is sitting on a dependency list 580 * @flags: flags to augment operation preparation, control completion, and 581 * communicate status 582 * @phys: physical address of the descriptor 583 * @chan: target channel for this operation 584 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 585 * descriptor pending. To be pushed on .issue_pending() call 586 * @callback: routine to call after this operation is complete 587 * @callback_param: general parameter to pass to the callback routine 588 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 589 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 590 * DESC_METADATA_NONE 591 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 592 * DMA driver if metadata mode is supported with the descriptor 593 * ---async_tx api specific fields--- 594 * @next: at completion submit this descriptor 595 * @parent: pointer to the next level up in the dependency chain 596 * @lock: protect the parent and next pointers 597 */ 598struct dma_async_tx_descriptor { 599 dma_cookie_t cookie; 600 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 601 dma_addr_t phys; 602 struct dma_chan *chan; 603 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 604 int (*desc_free)(struct dma_async_tx_descriptor *tx); 605 dma_async_tx_callback callback; 606 dma_async_tx_callback_result callback_result; 607 void *callback_param; 608 struct dmaengine_unmap_data *unmap; 609 enum dma_desc_metadata_mode desc_metadata_mode; 610 struct dma_descriptor_metadata_ops *metadata_ops; 611#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 612 struct dma_async_tx_descriptor *next; 613 struct dma_async_tx_descriptor *parent; 614 spinlock_t lock; 615#endif 616}; 617 618#ifdef CONFIG_DMA_ENGINE 619static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 620 struct dmaengine_unmap_data *unmap) 621{ 622 kref_get(&unmap->kref); 623 tx->unmap = unmap; 624} 625 626struct dmaengine_unmap_data * 627dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 628void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 629#else 630static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 631 struct dmaengine_unmap_data *unmap) 632{ 633} 634static inline struct dmaengine_unmap_data * 635dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 636{ 637 return NULL; 638} 639static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 640{ 641} 642#endif 643 644static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 645{ 646 if (!tx->unmap) 647 return; 648 649 dmaengine_unmap_put(tx->unmap); 650 tx->unmap = NULL; 651} 652 653#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 654static inline void txd_lock(struct dma_async_tx_descriptor *txd) 655{ 656} 657static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 658{ 659} 660static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 661{ 662 BUG(); 663} 664static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 665{ 666} 667static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 668{ 669} 670static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 671{ 672 return NULL; 673} 674static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 675{ 676 return NULL; 677} 678 679#else 680static inline void txd_lock(struct dma_async_tx_descriptor *txd) 681{ 682 spin_lock_bh(&txd->lock); 683} 684static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 685{ 686 spin_unlock_bh(&txd->lock); 687} 688static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 689{ 690 txd->next = next; 691 next->parent = txd; 692} 693static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 694{ 695 txd->parent = NULL; 696} 697static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 698{ 699 txd->next = NULL; 700} 701static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 702{ 703 return txd->parent; 704} 705static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 706{ 707 return txd->next; 708} 709#endif 710 711/** 712 * struct dma_tx_state - filled in to report the status of 713 * a transfer. 714 * @last: last completed DMA cookie 715 * @used: last issued DMA cookie (i.e. the one in progress) 716 * @residue: the remaining number of bytes left to transmit 717 * on the selected transfer for states DMA_IN_PROGRESS and 718 * DMA_PAUSED if this is implemented in the driver, else 0 719 * @in_flight_bytes: amount of data in bytes cached by the DMA. 720 */ 721struct dma_tx_state { 722 dma_cookie_t last; 723 dma_cookie_t used; 724 u32 residue; 725 u32 in_flight_bytes; 726}; 727 728/** 729 * enum dmaengine_alignment - defines alignment of the DMA async tx 730 * buffers 731 */ 732enum dmaengine_alignment { 733 DMAENGINE_ALIGN_1_BYTE = 0, 734 DMAENGINE_ALIGN_2_BYTES = 1, 735 DMAENGINE_ALIGN_4_BYTES = 2, 736 DMAENGINE_ALIGN_8_BYTES = 3, 737 DMAENGINE_ALIGN_16_BYTES = 4, 738 DMAENGINE_ALIGN_32_BYTES = 5, 739 DMAENGINE_ALIGN_64_BYTES = 6, 740}; 741 742/** 743 * struct dma_slave_map - associates slave device and it's slave channel with 744 * parameter to be used by a filter function 745 * @devname: name of the device 746 * @slave: slave channel name 747 * @param: opaque parameter to pass to struct dma_filter.fn 748 */ 749struct dma_slave_map { 750 const char *devname; 751 const char *slave; 752 void *param; 753}; 754 755/** 756 * struct dma_filter - information for slave device/channel to filter_fn/param 757 * mapping 758 * @fn: filter function callback 759 * @mapcnt: number of slave device/channel in the map 760 * @map: array of channel to filter mapping data 761 */ 762struct dma_filter { 763 dma_filter_fn fn; 764 int mapcnt; 765 const struct dma_slave_map *map; 766}; 767 768/** 769 * struct dma_device - info on the entity supplying DMA services 770 * @chancnt: how many DMA channels are supported 771 * @privatecnt: how many DMA channels are requested by dma_request_channel 772 * @channels: the list of struct dma_chan 773 * @global_node: list_head for global dma_device_list 774 * @filter: information for device/slave to filter function/param mapping 775 * @cap_mask: one or more dma_capability flags 776 * @desc_metadata_modes: supported metadata modes by the DMA device 777 * @max_xor: maximum number of xor sources, 0 if no capability 778 * @max_pq: maximum number of PQ sources and PQ-continue capability 779 * @copy_align: alignment shift for memcpy operations 780 * @xor_align: alignment shift for xor operations 781 * @pq_align: alignment shift for pq operations 782 * @fill_align: alignment shift for memset operations 783 * @dev_id: unique device ID 784 * @dev: struct device reference for dma mapping api 785 * @owner: owner module (automatically set based on the provided dev) 786 * @src_addr_widths: bit mask of src addr widths the device supports 787 * Width is specified in bytes, e.g. for a device supporting 788 * a width of 4 the mask should have BIT(4) set. 789 * @dst_addr_widths: bit mask of dst addr widths the device supports 790 * @directions: bit mask of slave directions the device supports. 791 * Since the enum dma_transfer_direction is not defined as bit flag for 792 * each type, the dma controller should set BIT(<TYPE>) and same 793 * should be checked by controller as well 794 * @min_burst: min burst capability per-transfer 795 * @max_burst: max burst capability per-transfer 796 * @max_sg_burst: max number of SG list entries executed in a single burst 797 * DMA tansaction with no software intervention for reinitialization. 798 * Zero value means unlimited number of entries. 799 * @residue_granularity: granularity of the transfer residue reported 800 * by tx_status 801 * @device_alloc_chan_resources: allocate resources and return the 802 * number of allocated descriptors 803 * @device_free_chan_resources: release DMA channel's resources 804 * @device_prep_dma_memcpy: prepares a memcpy operation 805 * @device_prep_dma_xor: prepares a xor operation 806 * @device_prep_dma_xor_val: prepares a xor validation operation 807 * @device_prep_dma_pq: prepares a pq operation 808 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 809 * @device_prep_dma_memset: prepares a memset operation 810 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 811 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 812 * @device_prep_slave_sg: prepares a slave dma operation 813 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 814 * The function takes a buffer of size buf_len. The callback function will 815 * be called after period_len bytes have been transferred. 816 * @device_prep_interleaved_dma: Transfer expression in a generic way. 817 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 818 * @device_caps: May be used to override the generic DMA slave capabilities 819 * with per-channel specific ones 820 * @device_config: Pushes a new configuration to a channel, return 0 or an error 821 * code 822 * @device_pause: Pauses any transfer happening on a channel. Returns 823 * 0 or an error code 824 * @device_resume: Resumes any transfer on a channel previously 825 * paused. Returns 0 or an error code 826 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 827 * or an error code 828 * @device_synchronize: Synchronizes the termination of a transfers to the 829 * current context. 830 * @device_tx_status: poll for transaction completion, the optional 831 * txstate parameter can be supplied with a pointer to get a 832 * struct with auxiliary transfer status information, otherwise the call 833 * will just return a simple status code 834 * @device_issue_pending: push pending transactions to hardware 835 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 836 * @device_release: called sometime atfer dma_async_device_unregister() is 837 * called and there are no further references to this structure. This 838 * must be implemented to free resources however many existing drivers 839 * do not and are therefore not safe to unbind while in use. 840 * @dbg_summary_show: optional routine to show contents in debugfs; default code 841 * will be used when this is omitted, but custom code can show extra, 842 * controller specific information. 843 */ 844struct dma_device { 845 struct kref ref; 846 unsigned int chancnt; 847 unsigned int privatecnt; 848 struct list_head channels; 849 struct list_head global_node; 850 struct dma_filter filter; 851 dma_cap_mask_t cap_mask; 852 enum dma_desc_metadata_mode desc_metadata_modes; 853 unsigned short max_xor; 854 unsigned short max_pq; 855 enum dmaengine_alignment copy_align; 856 enum dmaengine_alignment xor_align; 857 enum dmaengine_alignment pq_align; 858 enum dmaengine_alignment fill_align; 859 #define DMA_HAS_PQ_CONTINUE (1 << 15) 860 861 int dev_id; 862 struct device *dev; 863 struct module *owner; 864 struct ida chan_ida; 865 struct mutex chan_mutex; /* to protect chan_ida */ 866 867 u32 src_addr_widths; 868 u32 dst_addr_widths; 869 u32 directions; 870 u32 min_burst; 871 u32 max_burst; 872 u32 max_sg_burst; 873 bool descriptor_reuse; 874 enum dma_residue_granularity residue_granularity; 875 876 int (*device_alloc_chan_resources)(struct dma_chan *chan); 877 void (*device_free_chan_resources)(struct dma_chan *chan); 878 879 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 880 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 881 size_t len, unsigned long flags); 882 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 883 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 884 unsigned int src_cnt, size_t len, unsigned long flags); 885 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 886 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 887 size_t len, enum sum_check_flags *result, unsigned long flags); 888 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 889 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 890 unsigned int src_cnt, const unsigned char *scf, 891 size_t len, unsigned long flags); 892 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 893 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 894 unsigned int src_cnt, const unsigned char *scf, size_t len, 895 enum sum_check_flags *pqres, unsigned long flags); 896 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 897 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 898 unsigned long flags); 899 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 900 struct dma_chan *chan, struct scatterlist *sg, 901 unsigned int nents, int value, unsigned long flags); 902 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 903 struct dma_chan *chan, unsigned long flags); 904 905 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 906 struct dma_chan *chan, struct scatterlist *sgl, 907 unsigned int sg_len, enum dma_transfer_direction direction, 908 unsigned long flags, void *context); 909 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 910 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 911 size_t period_len, enum dma_transfer_direction direction, 912 unsigned long flags); 913 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 914 struct dma_chan *chan, struct dma_interleaved_template *xt, 915 unsigned long flags); 916 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 917 struct dma_chan *chan, dma_addr_t dst, u64 data, 918 unsigned long flags); 919 920 void (*device_caps)(struct dma_chan *chan, 921 struct dma_slave_caps *caps); 922 int (*device_config)(struct dma_chan *chan, 923 struct dma_slave_config *config); 924 int (*device_pause)(struct dma_chan *chan); 925 int (*device_resume)(struct dma_chan *chan); 926 int (*device_terminate_all)(struct dma_chan *chan); 927 void (*device_synchronize)(struct dma_chan *chan); 928 929 enum dma_status (*device_tx_status)(struct dma_chan *chan, 930 dma_cookie_t cookie, 931 struct dma_tx_state *txstate); 932 void (*device_issue_pending)(struct dma_chan *chan); 933 void (*device_release)(struct dma_device *dev); 934 /* debugfs support */ 935#ifdef CONFIG_DEBUG_FS 936 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 937 struct dentry *dbg_dev_root; 938#endif 939}; 940 941static inline int dmaengine_slave_config(struct dma_chan *chan, 942 struct dma_slave_config *config) 943{ 944 if (chan->device->device_config) 945 return chan->device->device_config(chan, config); 946 947 return -ENOSYS; 948} 949 950static inline bool is_slave_direction(enum dma_transfer_direction direction) 951{ 952 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 953} 954 955static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 956 struct dma_chan *chan, dma_addr_t buf, size_t len, 957 enum dma_transfer_direction dir, unsigned long flags) 958{ 959 struct scatterlist sg; 960 sg_init_table(&sg, 1); 961 sg_dma_address(&sg) = buf; 962 sg_dma_len(&sg) = len; 963 964 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 965 return NULL; 966 967 return chan->device->device_prep_slave_sg(chan, &sg, 1, 968 dir, flags, NULL); 969} 970 971static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 972 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 973 enum dma_transfer_direction dir, unsigned long flags) 974{ 975 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 976 return NULL; 977 978 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 979 dir, flags, NULL); 980} 981 982#ifdef CONFIG_RAPIDIO_DMA_ENGINE 983struct rio_dma_ext; 984static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 985 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 986 enum dma_transfer_direction dir, unsigned long flags, 987 struct rio_dma_ext *rio_ext) 988{ 989 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 990 return NULL; 991 992 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 993 dir, flags, rio_ext); 994} 995#endif 996 997static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 998 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 999 size_t period_len, enum dma_transfer_direction dir, 1000 unsigned long flags) 1001{ 1002 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1003 return NULL; 1004 1005 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1006 period_len, dir, flags); 1007} 1008 1009static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1010 struct dma_chan *chan, struct dma_interleaved_template *xt, 1011 unsigned long flags) 1012{ 1013 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1014 return NULL; 1015 if (flags & DMA_PREP_REPEAT && 1016 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1017 return NULL; 1018 1019 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1020} 1021 1022static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1023 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1024 unsigned long flags) 1025{ 1026 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1027 return NULL; 1028 1029 return chan->device->device_prep_dma_memset(chan, dest, value, 1030 len, flags); 1031} 1032 1033static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1034 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1035 size_t len, unsigned long flags) 1036{ 1037 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1038 return NULL; 1039 1040 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1041 len, flags); 1042} 1043 1044static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1045 enum dma_desc_metadata_mode mode) 1046{ 1047 if (!chan) 1048 return false; 1049 1050 return !!(chan->device->desc_metadata_modes & mode); 1051} 1052 1053#ifdef CONFIG_DMA_ENGINE 1054int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1055 void *data, size_t len); 1056void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1057 size_t *payload_len, size_t *max_len); 1058int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1059 size_t payload_len); 1060#else /* CONFIG_DMA_ENGINE */ 1061static inline int dmaengine_desc_attach_metadata( 1062 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1063{ 1064 return -EINVAL; 1065} 1066static inline void *dmaengine_desc_get_metadata_ptr( 1067 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1068 size_t *max_len) 1069{ 1070 return NULL; 1071} 1072static inline int dmaengine_desc_set_metadata_len( 1073 struct dma_async_tx_descriptor *desc, size_t payload_len) 1074{ 1075 return -EINVAL; 1076} 1077#endif /* CONFIG_DMA_ENGINE */ 1078 1079/** 1080 * dmaengine_terminate_all() - Terminate all active DMA transfers 1081 * @chan: The channel for which to terminate the transfers 1082 * 1083 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1084 * dmaengine_terminate_async() instead. 1085 */ 1086static inline int dmaengine_terminate_all(struct dma_chan *chan) 1087{ 1088 if (chan->device->device_terminate_all) 1089 return chan->device->device_terminate_all(chan); 1090 1091 return -ENOSYS; 1092} 1093 1094/** 1095 * dmaengine_terminate_async() - Terminate all active DMA transfers 1096 * @chan: The channel for which to terminate the transfers 1097 * 1098 * Calling this function will terminate all active and pending descriptors 1099 * that have previously been submitted to the channel. It is not guaranteed 1100 * though that the transfer for the active descriptor has stopped when the 1101 * function returns. Furthermore it is possible the complete callback of a 1102 * submitted transfer is still running when this function returns. 1103 * 1104 * dmaengine_synchronize() needs to be called before it is safe to free 1105 * any memory that is accessed by previously submitted descriptors or before 1106 * freeing any resources accessed from within the completion callback of any 1107 * previously submitted descriptors. 1108 * 1109 * This function can be called from atomic context as well as from within a 1110 * complete callback of a descriptor submitted on the same channel. 1111 * 1112 * If none of the two conditions above apply consider using 1113 * dmaengine_terminate_sync() instead. 1114 */ 1115static inline int dmaengine_terminate_async(struct dma_chan *chan) 1116{ 1117 if (chan->device->device_terminate_all) 1118 return chan->device->device_terminate_all(chan); 1119 1120 return -EINVAL; 1121} 1122 1123/** 1124 * dmaengine_synchronize() - Synchronize DMA channel termination 1125 * @chan: The channel to synchronize 1126 * 1127 * Synchronizes to the DMA channel termination to the current context. When this 1128 * function returns it is guaranteed that all transfers for previously issued 1129 * descriptors have stopped and it is safe to free the memory associated 1130 * with them. Furthermore it is guaranteed that all complete callback functions 1131 * for a previously submitted descriptor have finished running and it is safe to 1132 * free resources accessed from within the complete callbacks. 1133 * 1134 * The behavior of this function is undefined if dma_async_issue_pending() has 1135 * been called between dmaengine_terminate_async() and this function. 1136 * 1137 * This function must only be called from non-atomic context and must not be 1138 * called from within a complete callback of a descriptor submitted on the same 1139 * channel. 1140 */ 1141static inline void dmaengine_synchronize(struct dma_chan *chan) 1142{ 1143 might_sleep(); 1144 1145 if (chan->device->device_synchronize) 1146 chan->device->device_synchronize(chan); 1147} 1148 1149/** 1150 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1151 * @chan: The channel for which to terminate the transfers 1152 * 1153 * Calling this function will terminate all active and pending transfers 1154 * that have previously been submitted to the channel. It is similar to 1155 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1156 * stopped and that all complete callbacks have finished running when the 1157 * function returns. 1158 * 1159 * This function must only be called from non-atomic context and must not be 1160 * called from within a complete callback of a descriptor submitted on the same 1161 * channel. 1162 */ 1163static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1164{ 1165 int ret; 1166 1167 ret = dmaengine_terminate_async(chan); 1168 if (ret) 1169 return ret; 1170 1171 dmaengine_synchronize(chan); 1172 1173 return 0; 1174} 1175 1176static inline int dmaengine_pause(struct dma_chan *chan) 1177{ 1178 if (chan->device->device_pause) 1179 return chan->device->device_pause(chan); 1180 1181 return -ENOSYS; 1182} 1183 1184static inline int dmaengine_resume(struct dma_chan *chan) 1185{ 1186 if (chan->device->device_resume) 1187 return chan->device->device_resume(chan); 1188 1189 return -ENOSYS; 1190} 1191 1192static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1193 dma_cookie_t cookie, struct dma_tx_state *state) 1194{ 1195 return chan->device->device_tx_status(chan, cookie, state); 1196} 1197 1198static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1199{ 1200 return desc->tx_submit(desc); 1201} 1202 1203static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1204 size_t off1, size_t off2, size_t len) 1205{ 1206 return !(((1 << align) - 1) & (off1 | off2 | len)); 1207} 1208 1209static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1210 size_t off2, size_t len) 1211{ 1212 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1213} 1214 1215static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1216 size_t off2, size_t len) 1217{ 1218 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1219} 1220 1221static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1222 size_t off2, size_t len) 1223{ 1224 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1225} 1226 1227static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1228 size_t off2, size_t len) 1229{ 1230 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1231} 1232 1233static inline void 1234dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1235{ 1236 dma->max_pq = maxpq; 1237 if (has_pq_continue) 1238 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1239} 1240 1241static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1242{ 1243 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1244} 1245 1246static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1247{ 1248 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1249 1250 return (flags & mask) == mask; 1251} 1252 1253static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1254{ 1255 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1256} 1257 1258static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1259{ 1260 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1261} 1262 1263/* dma_maxpq - reduce maxpq in the face of continued operations 1264 * @dma - dma device with PQ capability 1265 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1266 * 1267 * When an engine does not support native continuation we need 3 extra 1268 * source slots to reuse P and Q with the following coefficients: 1269 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1270 * 2/ {01} * Q : use Q to continue Q' calculation 1271 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1272 * 1273 * In the case where P is disabled we only need 1 extra source: 1274 * 1/ {01} * Q : use Q to continue Q' calculation 1275 */ 1276static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1277{ 1278 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1279 return dma_dev_to_maxpq(dma); 1280 if (dmaf_p_disabled_continue(flags)) 1281 return dma_dev_to_maxpq(dma) - 1; 1282 if (dmaf_continue(flags)) 1283 return dma_dev_to_maxpq(dma) - 3; 1284 BUG(); 1285} 1286 1287static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1288 size_t dir_icg) 1289{ 1290 if (inc) { 1291 if (dir_icg) 1292 return dir_icg; 1293 if (sgl) 1294 return icg; 1295 } 1296 1297 return 0; 1298} 1299 1300static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1301 struct data_chunk *chunk) 1302{ 1303 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1304 chunk->icg, chunk->dst_icg); 1305} 1306 1307static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1308 struct data_chunk *chunk) 1309{ 1310 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1311 chunk->icg, chunk->src_icg); 1312} 1313 1314/* --- public DMA engine API --- */ 1315 1316#ifdef CONFIG_DMA_ENGINE 1317void dmaengine_get(void); 1318void dmaengine_put(void); 1319#else 1320static inline void dmaengine_get(void) 1321{ 1322} 1323static inline void dmaengine_put(void) 1324{ 1325} 1326#endif 1327 1328#ifdef CONFIG_ASYNC_TX_DMA 1329#define async_dmaengine_get() dmaengine_get() 1330#define async_dmaengine_put() dmaengine_put() 1331#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1332#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1333#else 1334#define async_dma_find_channel(type) dma_find_channel(type) 1335#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1336#else 1337static inline void async_dmaengine_get(void) 1338{ 1339} 1340static inline void async_dmaengine_put(void) 1341{ 1342} 1343static inline struct dma_chan * 1344async_dma_find_channel(enum dma_transaction_type type) 1345{ 1346 return NULL; 1347} 1348#endif /* CONFIG_ASYNC_TX_DMA */ 1349void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1350 struct dma_chan *chan); 1351 1352static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1353{ 1354 tx->flags |= DMA_CTRL_ACK; 1355} 1356 1357static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1358{ 1359 tx->flags &= ~DMA_CTRL_ACK; 1360} 1361 1362static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1363{ 1364 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1365} 1366 1367#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1368static inline void 1369__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1370{ 1371 set_bit(tx_type, dstp->bits); 1372} 1373 1374#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1375static inline void 1376__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1377{ 1378 clear_bit(tx_type, dstp->bits); 1379} 1380 1381#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1382static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1383{ 1384 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1385} 1386 1387#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1388static inline int 1389__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1390{ 1391 return test_bit(tx_type, srcp->bits); 1392} 1393 1394#define for_each_dma_cap_mask(cap, mask) \ 1395 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1396 1397/** 1398 * dma_async_issue_pending - flush pending transactions to HW 1399 * @chan: target DMA channel 1400 * 1401 * This allows drivers to push copies to HW in batches, 1402 * reducing MMIO writes where possible. 1403 */ 1404static inline void dma_async_issue_pending(struct dma_chan *chan) 1405{ 1406 chan->device->device_issue_pending(chan); 1407} 1408 1409/** 1410 * dma_async_is_tx_complete - poll for transaction completion 1411 * @chan: DMA channel 1412 * @cookie: transaction identifier to check status of 1413 * @last: returns last completed cookie, can be NULL 1414 * @used: returns last issued cookie, can be NULL 1415 * 1416 * If @last and @used are passed in, upon return they reflect the driver 1417 * internal state and can be used with dma_async_is_complete() to check 1418 * the status of multiple cookies without re-checking hardware state. 1419 */ 1420static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1421 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1422{ 1423 struct dma_tx_state state; 1424 enum dma_status status; 1425 1426 status = chan->device->device_tx_status(chan, cookie, &state); 1427 if (last) 1428 *last = state.last; 1429 if (used) 1430 *used = state.used; 1431 return status; 1432} 1433 1434/** 1435 * dma_async_is_complete - test a cookie against chan state 1436 * @cookie: transaction identifier to test status of 1437 * @last_complete: last know completed transaction 1438 * @last_used: last cookie value handed out 1439 * 1440 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1441 * the test logic is separated for lightweight testing of multiple cookies 1442 */ 1443static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1444 dma_cookie_t last_complete, dma_cookie_t last_used) 1445{ 1446 if (last_complete <= last_used) { 1447 if ((cookie <= last_complete) || (cookie > last_used)) 1448 return DMA_COMPLETE; 1449 } else { 1450 if ((cookie <= last_complete) && (cookie > last_used)) 1451 return DMA_COMPLETE; 1452 } 1453 return DMA_IN_PROGRESS; 1454} 1455 1456static inline void 1457dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1458{ 1459 if (!st) 1460 return; 1461 1462 st->last = last; 1463 st->used = used; 1464 st->residue = residue; 1465} 1466 1467#ifdef CONFIG_DMA_ENGINE 1468struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1469enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1470enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1471void dma_issue_pending_all(void); 1472struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1473 dma_filter_fn fn, void *fn_param, 1474 struct device_node *np); 1475 1476struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1477struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1478 1479void dma_release_channel(struct dma_chan *chan); 1480int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1481#else 1482static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1483{ 1484 return NULL; 1485} 1486static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1487{ 1488 return DMA_COMPLETE; 1489} 1490static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1491{ 1492 return DMA_COMPLETE; 1493} 1494static inline void dma_issue_pending_all(void) 1495{ 1496} 1497static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1498 dma_filter_fn fn, 1499 void *fn_param, 1500 struct device_node *np) 1501{ 1502 return NULL; 1503} 1504static inline struct dma_chan *dma_request_chan(struct device *dev, 1505 const char *name) 1506{ 1507 return ERR_PTR(-ENODEV); 1508} 1509static inline struct dma_chan *dma_request_chan_by_mask( 1510 const dma_cap_mask_t *mask) 1511{ 1512 return ERR_PTR(-ENODEV); 1513} 1514static inline void dma_release_channel(struct dma_chan *chan) 1515{ 1516} 1517static inline int dma_get_slave_caps(struct dma_chan *chan, 1518 struct dma_slave_caps *caps) 1519{ 1520 return -ENXIO; 1521} 1522#endif 1523 1524static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1525{ 1526 struct dma_slave_caps caps; 1527 int ret; 1528 1529 ret = dma_get_slave_caps(tx->chan, &caps); 1530 if (ret) 1531 return ret; 1532 1533 if (!caps.descriptor_reuse) 1534 return -EPERM; 1535 1536 tx->flags |= DMA_CTRL_REUSE; 1537 return 0; 1538} 1539 1540static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1541{ 1542 tx->flags &= ~DMA_CTRL_REUSE; 1543} 1544 1545static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1546{ 1547 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1548} 1549 1550static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1551{ 1552 /* this is supported for reusable desc, so check that */ 1553 if (!dmaengine_desc_test_reuse(desc)) 1554 return -EPERM; 1555 1556 return desc->desc_free(desc); 1557} 1558 1559/* --- DMA device --- */ 1560 1561int dma_async_device_register(struct dma_device *device); 1562int dmaenginem_async_device_register(struct dma_device *device); 1563void dma_async_device_unregister(struct dma_device *device); 1564int dma_async_device_channel_register(struct dma_device *device, 1565 struct dma_chan *chan); 1566void dma_async_device_channel_unregister(struct dma_device *device, 1567 struct dma_chan *chan); 1568void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1569#define dma_request_channel(mask, x, y) \ 1570 __dma_request_channel(&(mask), x, y, NULL) 1571 1572/* Deprecated, please use dma_request_chan() directly */ 1573static inline struct dma_chan * __deprecated 1574dma_request_slave_channel(struct device *dev, const char *name) 1575{ 1576 struct dma_chan *ch = dma_request_chan(dev, name); 1577 1578 return IS_ERR(ch) ? NULL : ch; 1579} 1580 1581static inline struct dma_chan 1582*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1583 dma_filter_fn fn, void *fn_param, 1584 struct device *dev, const char *name) 1585{ 1586 struct dma_chan *chan; 1587 1588 chan = dma_request_slave_channel(dev, name); 1589 if (chan) 1590 return chan; 1591 1592 if (!fn || !fn_param) 1593 return NULL; 1594 1595 return __dma_request_channel(&mask, fn, fn_param, NULL); 1596} 1597 1598static inline char * 1599dmaengine_get_direction_text(enum dma_transfer_direction dir) 1600{ 1601 switch (dir) { 1602 case DMA_DEV_TO_MEM: 1603 return "DEV_TO_MEM"; 1604 case DMA_MEM_TO_DEV: 1605 return "MEM_TO_DEV"; 1606 case DMA_MEM_TO_MEM: 1607 return "MEM_TO_MEM"; 1608 case DMA_DEV_TO_DEV: 1609 return "DEV_TO_DEV"; 1610 default: 1611 return "invalid"; 1612 } 1613} 1614#endif /* DMAENGINE_H */