at v5.10 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Scatterlist Cryptographic API. 4 * 5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 6 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 8 * 9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 10 * and Nettle, by Niels Möller. 11 */ 12#ifndef _LINUX_CRYPTO_H 13#define _LINUX_CRYPTO_H 14 15#include <linux/atomic.h> 16#include <linux/kernel.h> 17#include <linux/list.h> 18#include <linux/bug.h> 19#include <linux/refcount.h> 20#include <linux/slab.h> 21#include <linux/completion.h> 22 23/* 24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 25 * arbitrary modules to be loaded. Loading from userspace may still need the 26 * unprefixed names, so retains those aliases as well. 27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 29 * expands twice on the same line. Instead, use a separate base name for the 30 * alias. 31 */ 32#define MODULE_ALIAS_CRYPTO(name) \ 33 __MODULE_INFO(alias, alias_userspace, name); \ 34 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 35 36/* 37 * Algorithm masks and types. 38 */ 39#define CRYPTO_ALG_TYPE_MASK 0x0000000f 40#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 41#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 42#define CRYPTO_ALG_TYPE_AEAD 0x00000003 43#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 44#define CRYPTO_ALG_TYPE_KPP 0x00000008 45#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 46#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 47#define CRYPTO_ALG_TYPE_RNG 0x0000000c 48#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 49#define CRYPTO_ALG_TYPE_HASH 0x0000000e 50#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 51#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 52 53#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 54#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 55#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 56 57#define CRYPTO_ALG_LARVAL 0x00000010 58#define CRYPTO_ALG_DEAD 0x00000020 59#define CRYPTO_ALG_DYING 0x00000040 60#define CRYPTO_ALG_ASYNC 0x00000080 61 62/* 63 * Set if the algorithm (or an algorithm which it uses) requires another 64 * algorithm of the same type to handle corner cases. 65 */ 66#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 67 68/* 69 * Set if the algorithm has passed automated run-time testing. Note that 70 * if there is no run-time testing for a given algorithm it is considered 71 * to have passed. 72 */ 73 74#define CRYPTO_ALG_TESTED 0x00000400 75 76/* 77 * Set if the algorithm is an instance that is built from templates. 78 */ 79#define CRYPTO_ALG_INSTANCE 0x00000800 80 81/* Set this bit if the algorithm provided is hardware accelerated but 82 * not available to userspace via instruction set or so. 83 */ 84#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 85 86/* 87 * Mark a cipher as a service implementation only usable by another 88 * cipher and never by a normal user of the kernel crypto API 89 */ 90#define CRYPTO_ALG_INTERNAL 0x00002000 91 92/* 93 * Set if the algorithm has a ->setkey() method but can be used without 94 * calling it first, i.e. there is a default key. 95 */ 96#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 97 98/* 99 * Don't trigger module loading 100 */ 101#define CRYPTO_NOLOAD 0x00008000 102 103/* 104 * The algorithm may allocate memory during request processing, i.e. during 105 * encryption, decryption, or hashing. Users can request an algorithm with this 106 * flag unset if they can't handle memory allocation failures. 107 * 108 * This flag is currently only implemented for algorithms of type "skcipher", 109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not 110 * have this flag set even if they allocate memory. 111 * 112 * In some edge cases, algorithms can allocate memory regardless of this flag. 113 * To avoid these cases, users must obey the following usage constraints: 114 * skcipher: 115 * - The IV buffer and all scatterlist elements must be aligned to the 116 * algorithm's alignmask. 117 * - If the data were to be divided into chunks of size 118 * crypto_skcipher_walksize() (with any remainder going at the end), no 119 * chunk can cross a page boundary or a scatterlist element boundary. 120 * aead: 121 * - The IV buffer and all scatterlist elements must be aligned to the 122 * algorithm's alignmask. 123 * - The first scatterlist element must contain all the associated data, 124 * and its pages must be !PageHighMem. 125 * - If the plaintext/ciphertext were to be divided into chunks of size 126 * crypto_aead_walksize() (with the remainder going at the end), no chunk 127 * can cross a page boundary or a scatterlist element boundary. 128 * ahash: 129 * - The result buffer must be aligned to the algorithm's alignmask. 130 * - crypto_ahash_finup() must not be used unless the algorithm implements 131 * ->finup() natively. 132 */ 133#define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000 134 135/* 136 * Transform masks and values (for crt_flags). 137 */ 138#define CRYPTO_TFM_NEED_KEY 0x00000001 139 140#define CRYPTO_TFM_REQ_MASK 0x000fff00 141#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 142#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 143#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 144 145/* 146 * Miscellaneous stuff. 147 */ 148#define CRYPTO_MAX_ALG_NAME 128 149 150/* 151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 152 * declaration) is used to ensure that the crypto_tfm context structure is 153 * aligned correctly for the given architecture so that there are no alignment 154 * faults for C data types. In particular, this is required on platforms such 155 * as arm where pointers are 32-bit aligned but there are data types such as 156 * u64 which require 64-bit alignment. 157 */ 158#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 159 160#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 161 162struct scatterlist; 163struct crypto_async_request; 164struct crypto_tfm; 165struct crypto_type; 166 167typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 168 169/** 170 * DOC: Block Cipher Context Data Structures 171 * 172 * These data structures define the operating context for each block cipher 173 * type. 174 */ 175 176struct crypto_async_request { 177 struct list_head list; 178 crypto_completion_t complete; 179 void *data; 180 struct crypto_tfm *tfm; 181 182 u32 flags; 183}; 184 185/** 186 * DOC: Block Cipher Algorithm Definitions 187 * 188 * These data structures define modular crypto algorithm implementations, 189 * managed via crypto_register_alg() and crypto_unregister_alg(). 190 */ 191 192/** 193 * struct cipher_alg - single-block symmetric ciphers definition 194 * @cia_min_keysize: Minimum key size supported by the transformation. This is 195 * the smallest key length supported by this transformation 196 * algorithm. This must be set to one of the pre-defined 197 * values as this is not hardware specific. Possible values 198 * for this field can be found via git grep "_MIN_KEY_SIZE" 199 * include/crypto/ 200 * @cia_max_keysize: Maximum key size supported by the transformation. This is 201 * the largest key length supported by this transformation 202 * algorithm. This must be set to one of the pre-defined values 203 * as this is not hardware specific. Possible values for this 204 * field can be found via git grep "_MAX_KEY_SIZE" 205 * include/crypto/ 206 * @cia_setkey: Set key for the transformation. This function is used to either 207 * program a supplied key into the hardware or store the key in the 208 * transformation context for programming it later. Note that this 209 * function does modify the transformation context. This function 210 * can be called multiple times during the existence of the 211 * transformation object, so one must make sure the key is properly 212 * reprogrammed into the hardware. This function is also 213 * responsible for checking the key length for validity. 214 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 215 * single block of data, which must be @cra_blocksize big. This 216 * always operates on a full @cra_blocksize and it is not possible 217 * to encrypt a block of smaller size. The supplied buffers must 218 * therefore also be at least of @cra_blocksize size. Both the 219 * input and output buffers are always aligned to @cra_alignmask. 220 * In case either of the input or output buffer supplied by user 221 * of the crypto API is not aligned to @cra_alignmask, the crypto 222 * API will re-align the buffers. The re-alignment means that a 223 * new buffer will be allocated, the data will be copied into the 224 * new buffer, then the processing will happen on the new buffer, 225 * then the data will be copied back into the original buffer and 226 * finally the new buffer will be freed. In case a software 227 * fallback was put in place in the @cra_init call, this function 228 * might need to use the fallback if the algorithm doesn't support 229 * all of the key sizes. In case the key was stored in 230 * transformation context, the key might need to be re-programmed 231 * into the hardware in this function. This function shall not 232 * modify the transformation context, as this function may be 233 * called in parallel with the same transformation object. 234 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 235 * @cia_encrypt, and the conditions are exactly the same. 236 * 237 * All fields are mandatory and must be filled. 238 */ 239struct cipher_alg { 240 unsigned int cia_min_keysize; 241 unsigned int cia_max_keysize; 242 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 243 unsigned int keylen); 244 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 245 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 246}; 247 248/** 249 * struct compress_alg - compression/decompression algorithm 250 * @coa_compress: Compress a buffer of specified length, storing the resulting 251 * data in the specified buffer. Return the length of the 252 * compressed data in dlen. 253 * @coa_decompress: Decompress the source buffer, storing the uncompressed 254 * data in the specified buffer. The length of the data is 255 * returned in dlen. 256 * 257 * All fields are mandatory. 258 */ 259struct compress_alg { 260 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 261 unsigned int slen, u8 *dst, unsigned int *dlen); 262 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 263 unsigned int slen, u8 *dst, unsigned int *dlen); 264}; 265 266#ifdef CONFIG_CRYPTO_STATS 267/* 268 * struct crypto_istat_aead - statistics for AEAD algorithm 269 * @encrypt_cnt: number of encrypt requests 270 * @encrypt_tlen: total data size handled by encrypt requests 271 * @decrypt_cnt: number of decrypt requests 272 * @decrypt_tlen: total data size handled by decrypt requests 273 * @err_cnt: number of error for AEAD requests 274 */ 275struct crypto_istat_aead { 276 atomic64_t encrypt_cnt; 277 atomic64_t encrypt_tlen; 278 atomic64_t decrypt_cnt; 279 atomic64_t decrypt_tlen; 280 atomic64_t err_cnt; 281}; 282 283/* 284 * struct crypto_istat_akcipher - statistics for akcipher algorithm 285 * @encrypt_cnt: number of encrypt requests 286 * @encrypt_tlen: total data size handled by encrypt requests 287 * @decrypt_cnt: number of decrypt requests 288 * @decrypt_tlen: total data size handled by decrypt requests 289 * @verify_cnt: number of verify operation 290 * @sign_cnt: number of sign requests 291 * @err_cnt: number of error for akcipher requests 292 */ 293struct crypto_istat_akcipher { 294 atomic64_t encrypt_cnt; 295 atomic64_t encrypt_tlen; 296 atomic64_t decrypt_cnt; 297 atomic64_t decrypt_tlen; 298 atomic64_t verify_cnt; 299 atomic64_t sign_cnt; 300 atomic64_t err_cnt; 301}; 302 303/* 304 * struct crypto_istat_cipher - statistics for cipher algorithm 305 * @encrypt_cnt: number of encrypt requests 306 * @encrypt_tlen: total data size handled by encrypt requests 307 * @decrypt_cnt: number of decrypt requests 308 * @decrypt_tlen: total data size handled by decrypt requests 309 * @err_cnt: number of error for cipher requests 310 */ 311struct crypto_istat_cipher { 312 atomic64_t encrypt_cnt; 313 atomic64_t encrypt_tlen; 314 atomic64_t decrypt_cnt; 315 atomic64_t decrypt_tlen; 316 atomic64_t err_cnt; 317}; 318 319/* 320 * struct crypto_istat_compress - statistics for compress algorithm 321 * @compress_cnt: number of compress requests 322 * @compress_tlen: total data size handled by compress requests 323 * @decompress_cnt: number of decompress requests 324 * @decompress_tlen: total data size handled by decompress requests 325 * @err_cnt: number of error for compress requests 326 */ 327struct crypto_istat_compress { 328 atomic64_t compress_cnt; 329 atomic64_t compress_tlen; 330 atomic64_t decompress_cnt; 331 atomic64_t decompress_tlen; 332 atomic64_t err_cnt; 333}; 334 335/* 336 * struct crypto_istat_hash - statistics for has algorithm 337 * @hash_cnt: number of hash requests 338 * @hash_tlen: total data size hashed 339 * @err_cnt: number of error for hash requests 340 */ 341struct crypto_istat_hash { 342 atomic64_t hash_cnt; 343 atomic64_t hash_tlen; 344 atomic64_t err_cnt; 345}; 346 347/* 348 * struct crypto_istat_kpp - statistics for KPP algorithm 349 * @setsecret_cnt: number of setsecrey operation 350 * @generate_public_key_cnt: number of generate_public_key operation 351 * @compute_shared_secret_cnt: number of compute_shared_secret operation 352 * @err_cnt: number of error for KPP requests 353 */ 354struct crypto_istat_kpp { 355 atomic64_t setsecret_cnt; 356 atomic64_t generate_public_key_cnt; 357 atomic64_t compute_shared_secret_cnt; 358 atomic64_t err_cnt; 359}; 360 361/* 362 * struct crypto_istat_rng: statistics for RNG algorithm 363 * @generate_cnt: number of RNG generate requests 364 * @generate_tlen: total data size of generated data by the RNG 365 * @seed_cnt: number of times the RNG was seeded 366 * @err_cnt: number of error for RNG requests 367 */ 368struct crypto_istat_rng { 369 atomic64_t generate_cnt; 370 atomic64_t generate_tlen; 371 atomic64_t seed_cnt; 372 atomic64_t err_cnt; 373}; 374#endif /* CONFIG_CRYPTO_STATS */ 375 376#define cra_cipher cra_u.cipher 377#define cra_compress cra_u.compress 378 379/** 380 * struct crypto_alg - definition of a cryptograpic cipher algorithm 381 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 382 * CRYPTO_ALG_* flags for the flags which go in here. Those are 383 * used for fine-tuning the description of the transformation 384 * algorithm. 385 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 386 * of the smallest possible unit which can be transformed with 387 * this algorithm. The users must respect this value. 388 * In case of HASH transformation, it is possible for a smaller 389 * block than @cra_blocksize to be passed to the crypto API for 390 * transformation, in case of any other transformation type, an 391 * error will be returned upon any attempt to transform smaller 392 * than @cra_blocksize chunks. 393 * @cra_ctxsize: Size of the operational context of the transformation. This 394 * value informs the kernel crypto API about the memory size 395 * needed to be allocated for the transformation context. 396 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 397 * buffer containing the input data for the algorithm must be 398 * aligned to this alignment mask. The data buffer for the 399 * output data must be aligned to this alignment mask. Note that 400 * the Crypto API will do the re-alignment in software, but 401 * only under special conditions and there is a performance hit. 402 * The re-alignment happens at these occasions for different 403 * @cra_u types: cipher -- For both input data and output data 404 * buffer; ahash -- For output hash destination buf; shash -- 405 * For output hash destination buf. 406 * This is needed on hardware which is flawed by design and 407 * cannot pick data from arbitrary addresses. 408 * @cra_priority: Priority of this transformation implementation. In case 409 * multiple transformations with same @cra_name are available to 410 * the Crypto API, the kernel will use the one with highest 411 * @cra_priority. 412 * @cra_name: Generic name (usable by multiple implementations) of the 413 * transformation algorithm. This is the name of the transformation 414 * itself. This field is used by the kernel when looking up the 415 * providers of particular transformation. 416 * @cra_driver_name: Unique name of the transformation provider. This is the 417 * name of the provider of the transformation. This can be any 418 * arbitrary value, but in the usual case, this contains the 419 * name of the chip or provider and the name of the 420 * transformation algorithm. 421 * @cra_type: Type of the cryptographic transformation. This is a pointer to 422 * struct crypto_type, which implements callbacks common for all 423 * transformation types. There are multiple options, such as 424 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type. 425 * This field might be empty. In that case, there are no common 426 * callbacks. This is the case for: cipher, compress, shash. 427 * @cra_u: Callbacks implementing the transformation. This is a union of 428 * multiple structures. Depending on the type of transformation selected 429 * by @cra_type and @cra_flags above, the associated structure must be 430 * filled with callbacks. This field might be empty. This is the case 431 * for ahash, shash. 432 * @cra_init: Initialize the cryptographic transformation object. This function 433 * is used to initialize the cryptographic transformation object. 434 * This function is called only once at the instantiation time, right 435 * after the transformation context was allocated. In case the 436 * cryptographic hardware has some special requirements which need to 437 * be handled by software, this function shall check for the precise 438 * requirement of the transformation and put any software fallbacks 439 * in place. 440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 441 * counterpart to @cra_init, used to remove various changes set in 442 * @cra_init. 443 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 444 * definition. See @struct @cipher_alg. 445 * @cra_u.compress: Union member which contains a (de)compression algorithm. 446 * See @struct @compress_alg. 447 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 448 * @cra_list: internally used 449 * @cra_users: internally used 450 * @cra_refcnt: internally used 451 * @cra_destroy: internally used 452 * 453 * @stats: union of all possible crypto_istat_xxx structures 454 * @stats.aead: statistics for AEAD algorithm 455 * @stats.akcipher: statistics for akcipher algorithm 456 * @stats.cipher: statistics for cipher algorithm 457 * @stats.compress: statistics for compress algorithm 458 * @stats.hash: statistics for hash algorithm 459 * @stats.rng: statistics for rng algorithm 460 * @stats.kpp: statistics for KPP algorithm 461 * 462 * The struct crypto_alg describes a generic Crypto API algorithm and is common 463 * for all of the transformations. Any variable not documented here shall not 464 * be used by a cipher implementation as it is internal to the Crypto API. 465 */ 466struct crypto_alg { 467 struct list_head cra_list; 468 struct list_head cra_users; 469 470 u32 cra_flags; 471 unsigned int cra_blocksize; 472 unsigned int cra_ctxsize; 473 unsigned int cra_alignmask; 474 475 int cra_priority; 476 refcount_t cra_refcnt; 477 478 char cra_name[CRYPTO_MAX_ALG_NAME]; 479 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 480 481 const struct crypto_type *cra_type; 482 483 union { 484 struct cipher_alg cipher; 485 struct compress_alg compress; 486 } cra_u; 487 488 int (*cra_init)(struct crypto_tfm *tfm); 489 void (*cra_exit)(struct crypto_tfm *tfm); 490 void (*cra_destroy)(struct crypto_alg *alg); 491 492 struct module *cra_module; 493 494#ifdef CONFIG_CRYPTO_STATS 495 union { 496 struct crypto_istat_aead aead; 497 struct crypto_istat_akcipher akcipher; 498 struct crypto_istat_cipher cipher; 499 struct crypto_istat_compress compress; 500 struct crypto_istat_hash hash; 501 struct crypto_istat_rng rng; 502 struct crypto_istat_kpp kpp; 503 } stats; 504#endif /* CONFIG_CRYPTO_STATS */ 505 506} CRYPTO_MINALIGN_ATTR; 507 508#ifdef CONFIG_CRYPTO_STATS 509void crypto_stats_init(struct crypto_alg *alg); 510void crypto_stats_get(struct crypto_alg *alg); 511void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 512void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 513void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 514void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 515void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 516void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 517void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 518void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 519void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 520void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 521void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 522void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 523void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 524void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 525void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 526void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 527void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 528#else 529static inline void crypto_stats_init(struct crypto_alg *alg) 530{} 531static inline void crypto_stats_get(struct crypto_alg *alg) 532{} 533static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 534{} 535static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 536{} 537static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 538{} 539static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 540{} 541static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 542{} 543static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 544{} 545static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 546{} 547static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 548{} 549static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 550{} 551static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 552{} 553static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 554{} 555static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 556{} 557static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 558{} 559static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 560{} 561static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 562{} 563static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 564{} 565static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 566{} 567#endif 568/* 569 * A helper struct for waiting for completion of async crypto ops 570 */ 571struct crypto_wait { 572 struct completion completion; 573 int err; 574}; 575 576/* 577 * Macro for declaring a crypto op async wait object on stack 578 */ 579#define DECLARE_CRYPTO_WAIT(_wait) \ 580 struct crypto_wait _wait = { \ 581 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 582 583/* 584 * Async ops completion helper functioons 585 */ 586void crypto_req_done(struct crypto_async_request *req, int err); 587 588static inline int crypto_wait_req(int err, struct crypto_wait *wait) 589{ 590 switch (err) { 591 case -EINPROGRESS: 592 case -EBUSY: 593 wait_for_completion(&wait->completion); 594 reinit_completion(&wait->completion); 595 err = wait->err; 596 break; 597 } 598 599 return err; 600} 601 602static inline void crypto_init_wait(struct crypto_wait *wait) 603{ 604 init_completion(&wait->completion); 605} 606 607/* 608 * Algorithm registration interface. 609 */ 610int crypto_register_alg(struct crypto_alg *alg); 611void crypto_unregister_alg(struct crypto_alg *alg); 612int crypto_register_algs(struct crypto_alg *algs, int count); 613void crypto_unregister_algs(struct crypto_alg *algs, int count); 614 615/* 616 * Algorithm query interface. 617 */ 618int crypto_has_alg(const char *name, u32 type, u32 mask); 619 620/* 621 * Transforms: user-instantiated objects which encapsulate algorithms 622 * and core processing logic. Managed via crypto_alloc_*() and 623 * crypto_free_*(), as well as the various helpers below. 624 */ 625 626struct crypto_tfm { 627 628 u32 crt_flags; 629 630 int node; 631 632 void (*exit)(struct crypto_tfm *tfm); 633 634 struct crypto_alg *__crt_alg; 635 636 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 637}; 638 639struct crypto_cipher { 640 struct crypto_tfm base; 641}; 642 643struct crypto_comp { 644 struct crypto_tfm base; 645}; 646 647enum { 648 CRYPTOA_UNSPEC, 649 CRYPTOA_ALG, 650 CRYPTOA_TYPE, 651 CRYPTOA_U32, 652 __CRYPTOA_MAX, 653}; 654 655#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 656 657/* Maximum number of (rtattr) parameters for each template. */ 658#define CRYPTO_MAX_ATTRS 32 659 660struct crypto_attr_alg { 661 char name[CRYPTO_MAX_ALG_NAME]; 662}; 663 664struct crypto_attr_type { 665 u32 type; 666 u32 mask; 667}; 668 669struct crypto_attr_u32 { 670 u32 num; 671}; 672 673/* 674 * Transform user interface. 675 */ 676 677struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 678void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 679 680static inline void crypto_free_tfm(struct crypto_tfm *tfm) 681{ 682 return crypto_destroy_tfm(tfm, tfm); 683} 684 685int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 686 687/* 688 * Transform helpers which query the underlying algorithm. 689 */ 690static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 691{ 692 return tfm->__crt_alg->cra_name; 693} 694 695static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 696{ 697 return tfm->__crt_alg->cra_driver_name; 698} 699 700static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 701{ 702 return tfm->__crt_alg->cra_priority; 703} 704 705static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 706{ 707 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 708} 709 710static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 711{ 712 return tfm->__crt_alg->cra_blocksize; 713} 714 715static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 716{ 717 return tfm->__crt_alg->cra_alignmask; 718} 719 720static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 721{ 722 return tfm->crt_flags; 723} 724 725static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 726{ 727 tfm->crt_flags |= flags; 728} 729 730static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 731{ 732 tfm->crt_flags &= ~flags; 733} 734 735static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 736{ 737 return tfm->__crt_ctx; 738} 739 740static inline unsigned int crypto_tfm_ctx_alignment(void) 741{ 742 struct crypto_tfm *tfm; 743 return __alignof__(tfm->__crt_ctx); 744} 745 746/** 747 * DOC: Single Block Cipher API 748 * 749 * The single block cipher API is used with the ciphers of type 750 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 751 * 752 * Using the single block cipher API calls, operations with the basic cipher 753 * primitive can be implemented. These cipher primitives exclude any block 754 * chaining operations including IV handling. 755 * 756 * The purpose of this single block cipher API is to support the implementation 757 * of templates or other concepts that only need to perform the cipher operation 758 * on one block at a time. Templates invoke the underlying cipher primitive 759 * block-wise and process either the input or the output data of these cipher 760 * operations. 761 */ 762 763static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 764{ 765 return (struct crypto_cipher *)tfm; 766} 767 768/** 769 * crypto_alloc_cipher() - allocate single block cipher handle 770 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 771 * single block cipher 772 * @type: specifies the type of the cipher 773 * @mask: specifies the mask for the cipher 774 * 775 * Allocate a cipher handle for a single block cipher. The returned struct 776 * crypto_cipher is the cipher handle that is required for any subsequent API 777 * invocation for that single block cipher. 778 * 779 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 780 * of an error, PTR_ERR() returns the error code. 781 */ 782static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 783 u32 type, u32 mask) 784{ 785 type &= ~CRYPTO_ALG_TYPE_MASK; 786 type |= CRYPTO_ALG_TYPE_CIPHER; 787 mask |= CRYPTO_ALG_TYPE_MASK; 788 789 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 790} 791 792static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 793{ 794 return &tfm->base; 795} 796 797/** 798 * crypto_free_cipher() - zeroize and free the single block cipher handle 799 * @tfm: cipher handle to be freed 800 */ 801static inline void crypto_free_cipher(struct crypto_cipher *tfm) 802{ 803 crypto_free_tfm(crypto_cipher_tfm(tfm)); 804} 805 806/** 807 * crypto_has_cipher() - Search for the availability of a single block cipher 808 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 809 * single block cipher 810 * @type: specifies the type of the cipher 811 * @mask: specifies the mask for the cipher 812 * 813 * Return: true when the single block cipher is known to the kernel crypto API; 814 * false otherwise 815 */ 816static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 817{ 818 type &= ~CRYPTO_ALG_TYPE_MASK; 819 type |= CRYPTO_ALG_TYPE_CIPHER; 820 mask |= CRYPTO_ALG_TYPE_MASK; 821 822 return crypto_has_alg(alg_name, type, mask); 823} 824 825/** 826 * crypto_cipher_blocksize() - obtain block size for cipher 827 * @tfm: cipher handle 828 * 829 * The block size for the single block cipher referenced with the cipher handle 830 * tfm is returned. The caller may use that information to allocate appropriate 831 * memory for the data returned by the encryption or decryption operation 832 * 833 * Return: block size of cipher 834 */ 835static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 836{ 837 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 838} 839 840static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 841{ 842 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 843} 844 845static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 846{ 847 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 848} 849 850static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 851 u32 flags) 852{ 853 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 854} 855 856static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 857 u32 flags) 858{ 859 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 860} 861 862/** 863 * crypto_cipher_setkey() - set key for cipher 864 * @tfm: cipher handle 865 * @key: buffer holding the key 866 * @keylen: length of the key in bytes 867 * 868 * The caller provided key is set for the single block cipher referenced by the 869 * cipher handle. 870 * 871 * Note, the key length determines the cipher type. Many block ciphers implement 872 * different cipher modes depending on the key size, such as AES-128 vs AES-192 873 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 874 * is performed. 875 * 876 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 877 */ 878int crypto_cipher_setkey(struct crypto_cipher *tfm, 879 const u8 *key, unsigned int keylen); 880 881/** 882 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 883 * @tfm: cipher handle 884 * @dst: points to the buffer that will be filled with the ciphertext 885 * @src: buffer holding the plaintext to be encrypted 886 * 887 * Invoke the encryption operation of one block. The caller must ensure that 888 * the plaintext and ciphertext buffers are at least one block in size. 889 */ 890void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 891 u8 *dst, const u8 *src); 892 893/** 894 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 895 * @tfm: cipher handle 896 * @dst: points to the buffer that will be filled with the plaintext 897 * @src: buffer holding the ciphertext to be decrypted 898 * 899 * Invoke the decryption operation of one block. The caller must ensure that 900 * the plaintext and ciphertext buffers are at least one block in size. 901 */ 902void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 903 u8 *dst, const u8 *src); 904 905static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 906{ 907 return (struct crypto_comp *)tfm; 908} 909 910static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 911 u32 type, u32 mask) 912{ 913 type &= ~CRYPTO_ALG_TYPE_MASK; 914 type |= CRYPTO_ALG_TYPE_COMPRESS; 915 mask |= CRYPTO_ALG_TYPE_MASK; 916 917 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 918} 919 920static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 921{ 922 return &tfm->base; 923} 924 925static inline void crypto_free_comp(struct crypto_comp *tfm) 926{ 927 crypto_free_tfm(crypto_comp_tfm(tfm)); 928} 929 930static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 931{ 932 type &= ~CRYPTO_ALG_TYPE_MASK; 933 type |= CRYPTO_ALG_TYPE_COMPRESS; 934 mask |= CRYPTO_ALG_TYPE_MASK; 935 936 return crypto_has_alg(alg_name, type, mask); 937} 938 939static inline const char *crypto_comp_name(struct crypto_comp *tfm) 940{ 941 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 942} 943 944int crypto_comp_compress(struct crypto_comp *tfm, 945 const u8 *src, unsigned int slen, 946 u8 *dst, unsigned int *dlen); 947 948int crypto_comp_decompress(struct crypto_comp *tfm, 949 const u8 *src, unsigned int slen, 950 u8 *dst, unsigned int *dlen); 951 952#endif /* _LINUX_CRYPTO_H */ 953