at v5.10 58 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_BLKDEV_H 3#define _LINUX_BLKDEV_H 4 5#include <linux/sched.h> 6#include <linux/sched/clock.h> 7#include <linux/major.h> 8#include <linux/genhd.h> 9#include <linux/list.h> 10#include <linux/llist.h> 11#include <linux/minmax.h> 12#include <linux/timer.h> 13#include <linux/workqueue.h> 14#include <linux/pagemap.h> 15#include <linux/backing-dev-defs.h> 16#include <linux/wait.h> 17#include <linux/mempool.h> 18#include <linux/pfn.h> 19#include <linux/bio.h> 20#include <linux/stringify.h> 21#include <linux/gfp.h> 22#include <linux/bsg.h> 23#include <linux/smp.h> 24#include <linux/rcupdate.h> 25#include <linux/percpu-refcount.h> 26#include <linux/scatterlist.h> 27#include <linux/blkzoned.h> 28#include <linux/pm.h> 29 30struct module; 31struct scsi_ioctl_command; 32 33struct request_queue; 34struct elevator_queue; 35struct blk_trace; 36struct request; 37struct sg_io_hdr; 38struct bsg_job; 39struct blkcg_gq; 40struct blk_flush_queue; 41struct pr_ops; 42struct rq_qos; 43struct blk_queue_stats; 44struct blk_stat_callback; 45struct blk_keyslot_manager; 46 47#define BLKDEV_MIN_RQ 4 48#define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50/* Must be consistent with blk_mq_poll_stats_bkt() */ 51#define BLK_MQ_POLL_STATS_BKTS 16 52 53/* Doing classic polling */ 54#define BLK_MQ_POLL_CLASSIC -1 55 56/* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60#define BLKCG_MAX_POLS 5 61 62typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64/* 65 * request flags */ 66typedef __u32 __bitwise req_flags_t; 67 68/* elevator knows about this request */ 69#define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70/* drive already may have started this one */ 71#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72/* may not be passed by ioscheduler */ 73#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74/* request for flush sequence */ 75#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76/* merge of different types, fail separately */ 77#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78/* track inflight for MQ */ 79#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80/* don't call prep for this one */ 81#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82/* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84#define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85/* vaguely specified driver internal error. Ignored by the block layer */ 86#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 87/* don't warn about errors */ 88#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 89/* elevator private data attached */ 90#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 91/* account into disk and partition IO statistics */ 92#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 93/* request came from our alloc pool */ 94#define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 95/* runtime pm request */ 96#define RQF_PM ((__force req_flags_t)(1 << 15)) 97/* on IO scheduler merge hash */ 98#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 99/* track IO completion time */ 100#define RQF_STATS ((__force req_flags_t)(1 << 17)) 101/* Look at ->special_vec for the actual data payload instead of the 102 bio chain. */ 103#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 104/* The per-zone write lock is held for this request */ 105#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 106/* already slept for hybrid poll */ 107#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 108/* ->timeout has been called, don't expire again */ 109#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 110 111/* flags that prevent us from merging requests: */ 112#define RQF_NOMERGE_FLAGS \ 113 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 114 115/* 116 * Request state for blk-mq. 117 */ 118enum mq_rq_state { 119 MQ_RQ_IDLE = 0, 120 MQ_RQ_IN_FLIGHT = 1, 121 MQ_RQ_COMPLETE = 2, 122}; 123 124/* 125 * Try to put the fields that are referenced together in the same cacheline. 126 * 127 * If you modify this structure, make sure to update blk_rq_init() and 128 * especially blk_mq_rq_ctx_init() to take care of the added fields. 129 */ 130struct request { 131 struct request_queue *q; 132 struct blk_mq_ctx *mq_ctx; 133 struct blk_mq_hw_ctx *mq_hctx; 134 135 unsigned int cmd_flags; /* op and common flags */ 136 req_flags_t rq_flags; 137 138 int tag; 139 int internal_tag; 140 141 /* the following two fields are internal, NEVER access directly */ 142 unsigned int __data_len; /* total data len */ 143 sector_t __sector; /* sector cursor */ 144 145 struct bio *bio; 146 struct bio *biotail; 147 148 struct list_head queuelist; 149 150 /* 151 * The hash is used inside the scheduler, and killed once the 152 * request reaches the dispatch list. The ipi_list is only used 153 * to queue the request for softirq completion, which is long 154 * after the request has been unhashed (and even removed from 155 * the dispatch list). 156 */ 157 union { 158 struct hlist_node hash; /* merge hash */ 159 struct list_head ipi_list; 160 }; 161 162 /* 163 * The rb_node is only used inside the io scheduler, requests 164 * are pruned when moved to the dispatch queue. So let the 165 * completion_data share space with the rb_node. 166 */ 167 union { 168 struct rb_node rb_node; /* sort/lookup */ 169 struct bio_vec special_vec; 170 void *completion_data; 171 int error_count; /* for legacy drivers, don't use */ 172 }; 173 174 /* 175 * Three pointers are available for the IO schedulers, if they need 176 * more they have to dynamically allocate it. Flush requests are 177 * never put on the IO scheduler. So let the flush fields share 178 * space with the elevator data. 179 */ 180 union { 181 struct { 182 struct io_cq *icq; 183 void *priv[2]; 184 } elv; 185 186 struct { 187 unsigned int seq; 188 struct list_head list; 189 rq_end_io_fn *saved_end_io; 190 } flush; 191 }; 192 193 struct gendisk *rq_disk; 194 struct hd_struct *part; 195#ifdef CONFIG_BLK_RQ_ALLOC_TIME 196 /* Time that the first bio started allocating this request. */ 197 u64 alloc_time_ns; 198#endif 199 /* Time that this request was allocated for this IO. */ 200 u64 start_time_ns; 201 /* Time that I/O was submitted to the device. */ 202 u64 io_start_time_ns; 203 204#ifdef CONFIG_BLK_WBT 205 unsigned short wbt_flags; 206#endif 207 /* 208 * rq sectors used for blk stats. It has the same value 209 * with blk_rq_sectors(rq), except that it never be zeroed 210 * by completion. 211 */ 212 unsigned short stats_sectors; 213 214 /* 215 * Number of scatter-gather DMA addr+len pairs after 216 * physical address coalescing is performed. 217 */ 218 unsigned short nr_phys_segments; 219 220#if defined(CONFIG_BLK_DEV_INTEGRITY) 221 unsigned short nr_integrity_segments; 222#endif 223 224#ifdef CONFIG_BLK_INLINE_ENCRYPTION 225 struct bio_crypt_ctx *crypt_ctx; 226 struct blk_ksm_keyslot *crypt_keyslot; 227#endif 228 229 unsigned short write_hint; 230 unsigned short ioprio; 231 232 enum mq_rq_state state; 233 refcount_t ref; 234 235 unsigned int timeout; 236 unsigned long deadline; 237 238 union { 239 struct __call_single_data csd; 240 u64 fifo_time; 241 }; 242 243 /* 244 * completion callback. 245 */ 246 rq_end_io_fn *end_io; 247 void *end_io_data; 248}; 249 250static inline bool blk_op_is_scsi(unsigned int op) 251{ 252 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 253} 254 255static inline bool blk_op_is_private(unsigned int op) 256{ 257 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 258} 259 260static inline bool blk_rq_is_scsi(struct request *rq) 261{ 262 return blk_op_is_scsi(req_op(rq)); 263} 264 265static inline bool blk_rq_is_private(struct request *rq) 266{ 267 return blk_op_is_private(req_op(rq)); 268} 269 270static inline bool blk_rq_is_passthrough(struct request *rq) 271{ 272 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 273} 274 275static inline bool bio_is_passthrough(struct bio *bio) 276{ 277 unsigned op = bio_op(bio); 278 279 return blk_op_is_scsi(op) || blk_op_is_private(op); 280} 281 282static inline unsigned short req_get_ioprio(struct request *req) 283{ 284 return req->ioprio; 285} 286 287#include <linux/elevator.h> 288 289struct blk_queue_ctx; 290 291struct bio_vec; 292 293enum blk_eh_timer_return { 294 BLK_EH_DONE, /* drivers has completed the command */ 295 BLK_EH_RESET_TIMER, /* reset timer and try again */ 296}; 297 298enum blk_queue_state { 299 Queue_down, 300 Queue_up, 301}; 302 303#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 304#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 305 306#define BLK_SCSI_MAX_CMDS (256) 307#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 308 309/* 310 * Zoned block device models (zoned limit). 311 * 312 * Note: This needs to be ordered from the least to the most severe 313 * restrictions for the inheritance in blk_stack_limits() to work. 314 */ 315enum blk_zoned_model { 316 BLK_ZONED_NONE = 0, /* Regular block device */ 317 BLK_ZONED_HA, /* Host-aware zoned block device */ 318 BLK_ZONED_HM, /* Host-managed zoned block device */ 319}; 320 321struct queue_limits { 322 unsigned long bounce_pfn; 323 unsigned long seg_boundary_mask; 324 unsigned long virt_boundary_mask; 325 326 unsigned int max_hw_sectors; 327 unsigned int max_dev_sectors; 328 unsigned int chunk_sectors; 329 unsigned int max_sectors; 330 unsigned int max_segment_size; 331 unsigned int physical_block_size; 332 unsigned int logical_block_size; 333 unsigned int alignment_offset; 334 unsigned int io_min; 335 unsigned int io_opt; 336 unsigned int max_discard_sectors; 337 unsigned int max_hw_discard_sectors; 338 unsigned int max_write_same_sectors; 339 unsigned int max_write_zeroes_sectors; 340 unsigned int max_zone_append_sectors; 341 unsigned int discard_granularity; 342 unsigned int discard_alignment; 343 344 unsigned short max_segments; 345 unsigned short max_integrity_segments; 346 unsigned short max_discard_segments; 347 348 unsigned char misaligned; 349 unsigned char discard_misaligned; 350 unsigned char raid_partial_stripes_expensive; 351 enum blk_zoned_model zoned; 352}; 353 354typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 355 void *data); 356 357void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 358 359#ifdef CONFIG_BLK_DEV_ZONED 360 361#define BLK_ALL_ZONES ((unsigned int)-1) 362int blkdev_report_zones(struct block_device *bdev, sector_t sector, 363 unsigned int nr_zones, report_zones_cb cb, void *data); 364unsigned int blkdev_nr_zones(struct gendisk *disk); 365extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 366 sector_t sectors, sector_t nr_sectors, 367 gfp_t gfp_mask); 368int blk_revalidate_disk_zones(struct gendisk *disk, 369 void (*update_driver_data)(struct gendisk *disk)); 370 371extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 374 unsigned int cmd, unsigned long arg); 375 376#else /* CONFIG_BLK_DEV_ZONED */ 377 378static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 379{ 380 return 0; 381} 382 383static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 384 fmode_t mode, unsigned int cmd, 385 unsigned long arg) 386{ 387 return -ENOTTY; 388} 389 390static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 391 fmode_t mode, unsigned int cmd, 392 unsigned long arg) 393{ 394 return -ENOTTY; 395} 396 397#endif /* CONFIG_BLK_DEV_ZONED */ 398 399struct request_queue { 400 struct request *last_merge; 401 struct elevator_queue *elevator; 402 403 struct percpu_ref q_usage_counter; 404 405 struct blk_queue_stats *stats; 406 struct rq_qos *rq_qos; 407 408 const struct blk_mq_ops *mq_ops; 409 410 /* sw queues */ 411 struct blk_mq_ctx __percpu *queue_ctx; 412 413 unsigned int queue_depth; 414 415 /* hw dispatch queues */ 416 struct blk_mq_hw_ctx **queue_hw_ctx; 417 unsigned int nr_hw_queues; 418 419 struct backing_dev_info *backing_dev_info; 420 421 /* 422 * The queue owner gets to use this for whatever they like. 423 * ll_rw_blk doesn't touch it. 424 */ 425 void *queuedata; 426 427 /* 428 * various queue flags, see QUEUE_* below 429 */ 430 unsigned long queue_flags; 431 /* 432 * Number of contexts that have called blk_set_pm_only(). If this 433 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 434 * processed. 435 */ 436 atomic_t pm_only; 437 438 /* 439 * ida allocated id for this queue. Used to index queues from 440 * ioctx. 441 */ 442 int id; 443 444 /* 445 * queue needs bounce pages for pages above this limit 446 */ 447 gfp_t bounce_gfp; 448 449 spinlock_t queue_lock; 450 451 /* 452 * queue kobject 453 */ 454 struct kobject kobj; 455 456 /* 457 * mq queue kobject 458 */ 459 struct kobject *mq_kobj; 460 461#ifdef CONFIG_BLK_DEV_INTEGRITY 462 struct blk_integrity integrity; 463#endif /* CONFIG_BLK_DEV_INTEGRITY */ 464 465#ifdef CONFIG_PM 466 struct device *dev; 467 enum rpm_status rpm_status; 468 unsigned int nr_pending; 469#endif 470 471 /* 472 * queue settings 473 */ 474 unsigned long nr_requests; /* Max # of requests */ 475 476 unsigned int dma_pad_mask; 477 unsigned int dma_alignment; 478 479#ifdef CONFIG_BLK_INLINE_ENCRYPTION 480 /* Inline crypto capabilities */ 481 struct blk_keyslot_manager *ksm; 482#endif 483 484 unsigned int rq_timeout; 485 int poll_nsec; 486 487 struct blk_stat_callback *poll_cb; 488 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 489 490 struct timer_list timeout; 491 struct work_struct timeout_work; 492 493 atomic_t nr_active_requests_shared_sbitmap; 494 495 struct list_head icq_list; 496#ifdef CONFIG_BLK_CGROUP 497 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 498 struct blkcg_gq *root_blkg; 499 struct list_head blkg_list; 500#endif 501 502 struct queue_limits limits; 503 504 unsigned int required_elevator_features; 505 506#ifdef CONFIG_BLK_DEV_ZONED 507 /* 508 * Zoned block device information for request dispatch control. 509 * nr_zones is the total number of zones of the device. This is always 510 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 511 * bits which indicates if a zone is conventional (bit set) or 512 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 513 * bits which indicates if a zone is write locked, that is, if a write 514 * request targeting the zone was dispatched. All three fields are 515 * initialized by the low level device driver (e.g. scsi/sd.c). 516 * Stacking drivers (device mappers) may or may not initialize 517 * these fields. 518 * 519 * Reads of this information must be protected with blk_queue_enter() / 520 * blk_queue_exit(). Modifying this information is only allowed while 521 * no requests are being processed. See also blk_mq_freeze_queue() and 522 * blk_mq_unfreeze_queue(). 523 */ 524 unsigned int nr_zones; 525 unsigned long *conv_zones_bitmap; 526 unsigned long *seq_zones_wlock; 527 unsigned int max_open_zones; 528 unsigned int max_active_zones; 529#endif /* CONFIG_BLK_DEV_ZONED */ 530 531 /* 532 * sg stuff 533 */ 534 unsigned int sg_timeout; 535 unsigned int sg_reserved_size; 536 int node; 537 struct mutex debugfs_mutex; 538#ifdef CONFIG_BLK_DEV_IO_TRACE 539 struct blk_trace __rcu *blk_trace; 540#endif 541 /* 542 * for flush operations 543 */ 544 struct blk_flush_queue *fq; 545 546 struct list_head requeue_list; 547 spinlock_t requeue_lock; 548 struct delayed_work requeue_work; 549 550 struct mutex sysfs_lock; 551 struct mutex sysfs_dir_lock; 552 553 /* 554 * for reusing dead hctx instance in case of updating 555 * nr_hw_queues 556 */ 557 struct list_head unused_hctx_list; 558 spinlock_t unused_hctx_lock; 559 560 int mq_freeze_depth; 561 562#if defined(CONFIG_BLK_DEV_BSG) 563 struct bsg_class_device bsg_dev; 564#endif 565 566#ifdef CONFIG_BLK_DEV_THROTTLING 567 /* Throttle data */ 568 struct throtl_data *td; 569#endif 570 struct rcu_head rcu_head; 571 wait_queue_head_t mq_freeze_wq; 572 /* 573 * Protect concurrent access to q_usage_counter by 574 * percpu_ref_kill() and percpu_ref_reinit(). 575 */ 576 struct mutex mq_freeze_lock; 577 578 struct blk_mq_tag_set *tag_set; 579 struct list_head tag_set_list; 580 struct bio_set bio_split; 581 582 struct dentry *debugfs_dir; 583 584#ifdef CONFIG_BLK_DEBUG_FS 585 struct dentry *sched_debugfs_dir; 586 struct dentry *rqos_debugfs_dir; 587#endif 588 589 bool mq_sysfs_init_done; 590 591 size_t cmd_size; 592 593#define BLK_MAX_WRITE_HINTS 5 594 u64 write_hints[BLK_MAX_WRITE_HINTS]; 595}; 596 597/* Keep blk_queue_flag_name[] in sync with the definitions below */ 598#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 599#define QUEUE_FLAG_DYING 1 /* queue being torn down */ 600#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 601#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 602#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 603#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 604#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 605#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 606#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 607#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 608#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 609#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 610#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 611#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 612#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 613#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 614#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 615#define QUEUE_FLAG_WC 17 /* Write back caching */ 616#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 617#define QUEUE_FLAG_DAX 19 /* device supports DAX */ 618#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 619#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 620#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 621#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 622#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 623#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 624#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 625#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 626#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 627#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 628 629#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 630 (1 << QUEUE_FLAG_SAME_COMP) | \ 631 (1 << QUEUE_FLAG_NOWAIT)) 632 633void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 634void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 635bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 636 637#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 638#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 639#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 640#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 641#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 642#define blk_queue_noxmerges(q) \ 643 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 644#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 645#define blk_queue_stable_writes(q) \ 646 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 647#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 648#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 649#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 650#define blk_queue_zone_resetall(q) \ 651 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 652#define blk_queue_secure_erase(q) \ 653 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 654#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 655#define blk_queue_scsi_passthrough(q) \ 656 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 657#define blk_queue_pci_p2pdma(q) \ 658 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 659#ifdef CONFIG_BLK_RQ_ALLOC_TIME 660#define blk_queue_rq_alloc_time(q) \ 661 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 662#else 663#define blk_queue_rq_alloc_time(q) false 664#endif 665 666#define blk_noretry_request(rq) \ 667 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 668 REQ_FAILFAST_DRIVER)) 669#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 670#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 671#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 672#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 673#define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 674 675extern void blk_set_pm_only(struct request_queue *q); 676extern void blk_clear_pm_only(struct request_queue *q); 677 678static inline bool blk_account_rq(struct request *rq) 679{ 680 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 681} 682 683#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 684 685#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 686 687#define rq_dma_dir(rq) \ 688 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 689 690#define dma_map_bvec(dev, bv, dir, attrs) \ 691 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 692 (dir), (attrs)) 693 694static inline bool queue_is_mq(struct request_queue *q) 695{ 696 return q->mq_ops; 697} 698 699static inline enum blk_zoned_model 700blk_queue_zoned_model(struct request_queue *q) 701{ 702 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 703 return q->limits.zoned; 704 return BLK_ZONED_NONE; 705} 706 707static inline bool blk_queue_is_zoned(struct request_queue *q) 708{ 709 switch (blk_queue_zoned_model(q)) { 710 case BLK_ZONED_HA: 711 case BLK_ZONED_HM: 712 return true; 713 default: 714 return false; 715 } 716} 717 718static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 719{ 720 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 721} 722 723#ifdef CONFIG_BLK_DEV_ZONED 724static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 725{ 726 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 727} 728 729static inline unsigned int blk_queue_zone_no(struct request_queue *q, 730 sector_t sector) 731{ 732 if (!blk_queue_is_zoned(q)) 733 return 0; 734 return sector >> ilog2(q->limits.chunk_sectors); 735} 736 737static inline bool blk_queue_zone_is_seq(struct request_queue *q, 738 sector_t sector) 739{ 740 if (!blk_queue_is_zoned(q)) 741 return false; 742 if (!q->conv_zones_bitmap) 743 return true; 744 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 745} 746 747static inline void blk_queue_max_open_zones(struct request_queue *q, 748 unsigned int max_open_zones) 749{ 750 q->max_open_zones = max_open_zones; 751} 752 753static inline unsigned int queue_max_open_zones(const struct request_queue *q) 754{ 755 return q->max_open_zones; 756} 757 758static inline void blk_queue_max_active_zones(struct request_queue *q, 759 unsigned int max_active_zones) 760{ 761 q->max_active_zones = max_active_zones; 762} 763 764static inline unsigned int queue_max_active_zones(const struct request_queue *q) 765{ 766 return q->max_active_zones; 767} 768#else /* CONFIG_BLK_DEV_ZONED */ 769static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 770{ 771 return 0; 772} 773static inline bool blk_queue_zone_is_seq(struct request_queue *q, 774 sector_t sector) 775{ 776 return false; 777} 778static inline unsigned int blk_queue_zone_no(struct request_queue *q, 779 sector_t sector) 780{ 781 return 0; 782} 783static inline unsigned int queue_max_open_zones(const struct request_queue *q) 784{ 785 return 0; 786} 787static inline unsigned int queue_max_active_zones(const struct request_queue *q) 788{ 789 return 0; 790} 791#endif /* CONFIG_BLK_DEV_ZONED */ 792 793static inline bool rq_is_sync(struct request *rq) 794{ 795 return op_is_sync(rq->cmd_flags); 796} 797 798static inline bool rq_mergeable(struct request *rq) 799{ 800 if (blk_rq_is_passthrough(rq)) 801 return false; 802 803 if (req_op(rq) == REQ_OP_FLUSH) 804 return false; 805 806 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 807 return false; 808 809 if (req_op(rq) == REQ_OP_ZONE_APPEND) 810 return false; 811 812 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 813 return false; 814 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 815 return false; 816 817 return true; 818} 819 820static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 821{ 822 if (bio_page(a) == bio_page(b) && 823 bio_offset(a) == bio_offset(b)) 824 return true; 825 826 return false; 827} 828 829static inline unsigned int blk_queue_depth(struct request_queue *q) 830{ 831 if (q->queue_depth) 832 return q->queue_depth; 833 834 return q->nr_requests; 835} 836 837extern unsigned long blk_max_low_pfn, blk_max_pfn; 838 839/* 840 * standard bounce addresses: 841 * 842 * BLK_BOUNCE_HIGH : bounce all highmem pages 843 * BLK_BOUNCE_ANY : don't bounce anything 844 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 845 */ 846 847#if BITS_PER_LONG == 32 848#define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 849#else 850#define BLK_BOUNCE_HIGH -1ULL 851#endif 852#define BLK_BOUNCE_ANY (-1ULL) 853#define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 854 855/* 856 * default timeout for SG_IO if none specified 857 */ 858#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 859#define BLK_MIN_SG_TIMEOUT (7 * HZ) 860 861struct rq_map_data { 862 struct page **pages; 863 int page_order; 864 int nr_entries; 865 unsigned long offset; 866 int null_mapped; 867 int from_user; 868}; 869 870struct req_iterator { 871 struct bvec_iter iter; 872 struct bio *bio; 873}; 874 875/* This should not be used directly - use rq_for_each_segment */ 876#define for_each_bio(_bio) \ 877 for (; _bio; _bio = _bio->bi_next) 878#define __rq_for_each_bio(_bio, rq) \ 879 if ((rq->bio)) \ 880 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 881 882#define rq_for_each_segment(bvl, _rq, _iter) \ 883 __rq_for_each_bio(_iter.bio, _rq) \ 884 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 885 886#define rq_for_each_bvec(bvl, _rq, _iter) \ 887 __rq_for_each_bio(_iter.bio, _rq) \ 888 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 889 890#define rq_iter_last(bvec, _iter) \ 891 (_iter.bio->bi_next == NULL && \ 892 bio_iter_last(bvec, _iter.iter)) 893 894#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 895# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 896#endif 897#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 898extern void rq_flush_dcache_pages(struct request *rq); 899#else 900static inline void rq_flush_dcache_pages(struct request *rq) 901{ 902} 903#endif 904 905extern int blk_register_queue(struct gendisk *disk); 906extern void blk_unregister_queue(struct gendisk *disk); 907blk_qc_t submit_bio_noacct(struct bio *bio); 908extern void blk_rq_init(struct request_queue *q, struct request *rq); 909extern void blk_put_request(struct request *); 910extern struct request *blk_get_request(struct request_queue *, unsigned int op, 911 blk_mq_req_flags_t flags); 912extern int blk_lld_busy(struct request_queue *q); 913extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 914 struct bio_set *bs, gfp_t gfp_mask, 915 int (*bio_ctr)(struct bio *, struct bio *, void *), 916 void *data); 917extern void blk_rq_unprep_clone(struct request *rq); 918extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 919 struct request *rq); 920extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 921extern void blk_queue_split(struct bio **); 922extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 923extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 924 unsigned int, void __user *); 925extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 926 unsigned int, void __user *); 927extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 928 struct scsi_ioctl_command __user *); 929extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 930extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 931 932extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 933extern void blk_queue_exit(struct request_queue *q); 934extern void blk_sync_queue(struct request_queue *q); 935extern int blk_rq_map_user(struct request_queue *, struct request *, 936 struct rq_map_data *, void __user *, unsigned long, 937 gfp_t); 938extern int blk_rq_unmap_user(struct bio *); 939extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 940extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 941 struct rq_map_data *, const struct iov_iter *, 942 gfp_t); 943extern void blk_execute_rq(struct request_queue *, struct gendisk *, 944 struct request *, int); 945extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 946 struct request *, int, rq_end_io_fn *); 947 948/* Helper to convert REQ_OP_XXX to its string format XXX */ 949extern const char *blk_op_str(unsigned int op); 950 951int blk_status_to_errno(blk_status_t status); 952blk_status_t errno_to_blk_status(int errno); 953 954int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 955 956static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 957{ 958 return bdev->bd_disk->queue; /* this is never NULL */ 959} 960 961/* 962 * The basic unit of block I/O is a sector. It is used in a number of contexts 963 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 964 * bytes. Variables of type sector_t represent an offset or size that is a 965 * multiple of 512 bytes. Hence these two constants. 966 */ 967#ifndef SECTOR_SHIFT 968#define SECTOR_SHIFT 9 969#endif 970#ifndef SECTOR_SIZE 971#define SECTOR_SIZE (1 << SECTOR_SHIFT) 972#endif 973 974/* 975 * blk_rq_pos() : the current sector 976 * blk_rq_bytes() : bytes left in the entire request 977 * blk_rq_cur_bytes() : bytes left in the current segment 978 * blk_rq_err_bytes() : bytes left till the next error boundary 979 * blk_rq_sectors() : sectors left in the entire request 980 * blk_rq_cur_sectors() : sectors left in the current segment 981 * blk_rq_stats_sectors() : sectors of the entire request used for stats 982 */ 983static inline sector_t blk_rq_pos(const struct request *rq) 984{ 985 return rq->__sector; 986} 987 988static inline unsigned int blk_rq_bytes(const struct request *rq) 989{ 990 return rq->__data_len; 991} 992 993static inline int blk_rq_cur_bytes(const struct request *rq) 994{ 995 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 996} 997 998extern unsigned int blk_rq_err_bytes(const struct request *rq); 999 1000static inline unsigned int blk_rq_sectors(const struct request *rq) 1001{ 1002 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1003} 1004 1005static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1006{ 1007 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1008} 1009 1010static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1011{ 1012 return rq->stats_sectors; 1013} 1014 1015#ifdef CONFIG_BLK_DEV_ZONED 1016 1017/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1018const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1019 1020static inline unsigned int blk_rq_zone_no(struct request *rq) 1021{ 1022 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1023} 1024 1025static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1026{ 1027 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1028} 1029#endif /* CONFIG_BLK_DEV_ZONED */ 1030 1031/* 1032 * Some commands like WRITE SAME have a payload or data transfer size which 1033 * is different from the size of the request. Any driver that supports such 1034 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1035 * calculate the data transfer size. 1036 */ 1037static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1038{ 1039 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1040 return rq->special_vec.bv_len; 1041 return blk_rq_bytes(rq); 1042} 1043 1044/* 1045 * Return the first full biovec in the request. The caller needs to check that 1046 * there are any bvecs before calling this helper. 1047 */ 1048static inline struct bio_vec req_bvec(struct request *rq) 1049{ 1050 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1051 return rq->special_vec; 1052 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1053} 1054 1055static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1056 int op) 1057{ 1058 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1059 return min(q->limits.max_discard_sectors, 1060 UINT_MAX >> SECTOR_SHIFT); 1061 1062 if (unlikely(op == REQ_OP_WRITE_SAME)) 1063 return q->limits.max_write_same_sectors; 1064 1065 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1066 return q->limits.max_write_zeroes_sectors; 1067 1068 return q->limits.max_sectors; 1069} 1070 1071/* 1072 * Return maximum size of a request at given offset. Only valid for 1073 * file system requests. 1074 */ 1075static inline unsigned int blk_max_size_offset(struct request_queue *q, 1076 sector_t offset, 1077 unsigned int chunk_sectors) 1078{ 1079 if (!chunk_sectors) { 1080 if (q->limits.chunk_sectors) 1081 chunk_sectors = q->limits.chunk_sectors; 1082 else 1083 return q->limits.max_sectors; 1084 } 1085 1086 if (likely(is_power_of_2(chunk_sectors))) 1087 chunk_sectors -= offset & (chunk_sectors - 1); 1088 else 1089 chunk_sectors -= sector_div(offset, chunk_sectors); 1090 1091 return min(q->limits.max_sectors, chunk_sectors); 1092} 1093 1094static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1095 sector_t offset) 1096{ 1097 struct request_queue *q = rq->q; 1098 1099 if (blk_rq_is_passthrough(rq)) 1100 return q->limits.max_hw_sectors; 1101 1102 if (!q->limits.chunk_sectors || 1103 req_op(rq) == REQ_OP_DISCARD || 1104 req_op(rq) == REQ_OP_SECURE_ERASE) 1105 return blk_queue_get_max_sectors(q, req_op(rq)); 1106 1107 return min(blk_max_size_offset(q, offset, 0), 1108 blk_queue_get_max_sectors(q, req_op(rq))); 1109} 1110 1111static inline unsigned int blk_rq_count_bios(struct request *rq) 1112{ 1113 unsigned int nr_bios = 0; 1114 struct bio *bio; 1115 1116 __rq_for_each_bio(bio, rq) 1117 nr_bios++; 1118 1119 return nr_bios; 1120} 1121 1122void blk_steal_bios(struct bio_list *list, struct request *rq); 1123 1124/* 1125 * Request completion related functions. 1126 * 1127 * blk_update_request() completes given number of bytes and updates 1128 * the request without completing it. 1129 */ 1130extern bool blk_update_request(struct request *rq, blk_status_t error, 1131 unsigned int nr_bytes); 1132 1133extern void blk_abort_request(struct request *); 1134 1135/* 1136 * Access functions for manipulating queue properties 1137 */ 1138extern void blk_cleanup_queue(struct request_queue *); 1139extern void blk_queue_bounce_limit(struct request_queue *, u64); 1140extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1141extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1142extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1143extern void blk_queue_max_discard_segments(struct request_queue *, 1144 unsigned short); 1145extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1146extern void blk_queue_max_discard_sectors(struct request_queue *q, 1147 unsigned int max_discard_sectors); 1148extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1149 unsigned int max_write_same_sectors); 1150extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1151 unsigned int max_write_same_sectors); 1152extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1153extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1154 unsigned int max_zone_append_sectors); 1155extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1156extern void blk_queue_alignment_offset(struct request_queue *q, 1157 unsigned int alignment); 1158void blk_queue_update_readahead(struct request_queue *q); 1159extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1160extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1161extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1162extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1163extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1164extern void blk_set_default_limits(struct queue_limits *lim); 1165extern void blk_set_stacking_limits(struct queue_limits *lim); 1166extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1167 sector_t offset); 1168extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1169 sector_t offset); 1170extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1171extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1172extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1173extern void blk_queue_dma_alignment(struct request_queue *, int); 1174extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1175extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1176extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1177extern void blk_queue_required_elevator_features(struct request_queue *q, 1178 unsigned int features); 1179extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1180 struct device *dev); 1181 1182/* 1183 * Number of physical segments as sent to the device. 1184 * 1185 * Normally this is the number of discontiguous data segments sent by the 1186 * submitter. But for data-less command like discard we might have no 1187 * actual data segments submitted, but the driver might have to add it's 1188 * own special payload. In that case we still return 1 here so that this 1189 * special payload will be mapped. 1190 */ 1191static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1192{ 1193 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1194 return 1; 1195 return rq->nr_phys_segments; 1196} 1197 1198/* 1199 * Number of discard segments (or ranges) the driver needs to fill in. 1200 * Each discard bio merged into a request is counted as one segment. 1201 */ 1202static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1203{ 1204 return max_t(unsigned short, rq->nr_phys_segments, 1); 1205} 1206 1207int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1208 struct scatterlist *sglist, struct scatterlist **last_sg); 1209static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1210 struct scatterlist *sglist) 1211{ 1212 struct scatterlist *last_sg = NULL; 1213 1214 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1215} 1216extern void blk_dump_rq_flags(struct request *, char *); 1217 1218bool __must_check blk_get_queue(struct request_queue *); 1219struct request_queue *blk_alloc_queue(int node_id); 1220extern void blk_put_queue(struct request_queue *); 1221extern void blk_set_queue_dying(struct request_queue *); 1222 1223#ifdef CONFIG_BLOCK 1224/* 1225 * blk_plug permits building a queue of related requests by holding the I/O 1226 * fragments for a short period. This allows merging of sequential requests 1227 * into single larger request. As the requests are moved from a per-task list to 1228 * the device's request_queue in a batch, this results in improved scalability 1229 * as the lock contention for request_queue lock is reduced. 1230 * 1231 * It is ok not to disable preemption when adding the request to the plug list 1232 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1233 * the plug list when the task sleeps by itself. For details, please see 1234 * schedule() where blk_schedule_flush_plug() is called. 1235 */ 1236struct blk_plug { 1237 struct list_head mq_list; /* blk-mq requests */ 1238 struct list_head cb_list; /* md requires an unplug callback */ 1239 unsigned short rq_count; 1240 bool multiple_queues; 1241 bool nowait; 1242}; 1243#define BLK_MAX_REQUEST_COUNT 16 1244#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1245 1246struct blk_plug_cb; 1247typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1248struct blk_plug_cb { 1249 struct list_head list; 1250 blk_plug_cb_fn callback; 1251 void *data; 1252}; 1253extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1254 void *data, int size); 1255extern void blk_start_plug(struct blk_plug *); 1256extern void blk_finish_plug(struct blk_plug *); 1257extern void blk_flush_plug_list(struct blk_plug *, bool); 1258 1259static inline void blk_flush_plug(struct task_struct *tsk) 1260{ 1261 struct blk_plug *plug = tsk->plug; 1262 1263 if (plug) 1264 blk_flush_plug_list(plug, false); 1265} 1266 1267static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1268{ 1269 struct blk_plug *plug = tsk->plug; 1270 1271 if (plug) 1272 blk_flush_plug_list(plug, true); 1273} 1274 1275static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1276{ 1277 struct blk_plug *plug = tsk->plug; 1278 1279 return plug && 1280 (!list_empty(&plug->mq_list) || 1281 !list_empty(&plug->cb_list)); 1282} 1283 1284int blkdev_issue_flush(struct block_device *, gfp_t); 1285long nr_blockdev_pages(void); 1286#else /* CONFIG_BLOCK */ 1287struct blk_plug { 1288}; 1289 1290static inline void blk_start_plug(struct blk_plug *plug) 1291{ 1292} 1293 1294static inline void blk_finish_plug(struct blk_plug *plug) 1295{ 1296} 1297 1298static inline void blk_flush_plug(struct task_struct *task) 1299{ 1300} 1301 1302static inline void blk_schedule_flush_plug(struct task_struct *task) 1303{ 1304} 1305 1306 1307static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1308{ 1309 return false; 1310} 1311 1312static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1313{ 1314 return 0; 1315} 1316 1317static inline long nr_blockdev_pages(void) 1318{ 1319 return 0; 1320} 1321#endif /* CONFIG_BLOCK */ 1322 1323extern void blk_io_schedule(void); 1324 1325extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1326 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1327 1328#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1329 1330extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1331 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1332extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1333 sector_t nr_sects, gfp_t gfp_mask, int flags, 1334 struct bio **biop); 1335 1336#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1337#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1338 1339extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1341 unsigned flags); 1342extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1344 1345static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1346 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1347{ 1348 return blkdev_issue_discard(sb->s_bdev, 1349 block << (sb->s_blocksize_bits - 1350 SECTOR_SHIFT), 1351 nr_blocks << (sb->s_blocksize_bits - 1352 SECTOR_SHIFT), 1353 gfp_mask, flags); 1354} 1355static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1356 sector_t nr_blocks, gfp_t gfp_mask) 1357{ 1358 return blkdev_issue_zeroout(sb->s_bdev, 1359 block << (sb->s_blocksize_bits - 1360 SECTOR_SHIFT), 1361 nr_blocks << (sb->s_blocksize_bits - 1362 SECTOR_SHIFT), 1363 gfp_mask, 0); 1364} 1365 1366extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1367 1368static inline bool bdev_is_partition(struct block_device *bdev) 1369{ 1370 return bdev->bd_partno; 1371} 1372 1373enum blk_default_limits { 1374 BLK_MAX_SEGMENTS = 128, 1375 BLK_SAFE_MAX_SECTORS = 255, 1376 BLK_DEF_MAX_SECTORS = 2560, 1377 BLK_MAX_SEGMENT_SIZE = 65536, 1378 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1379}; 1380 1381static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1382{ 1383 return q->limits.seg_boundary_mask; 1384} 1385 1386static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1387{ 1388 return q->limits.virt_boundary_mask; 1389} 1390 1391static inline unsigned int queue_max_sectors(const struct request_queue *q) 1392{ 1393 return q->limits.max_sectors; 1394} 1395 1396static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1397{ 1398 return q->limits.max_hw_sectors; 1399} 1400 1401static inline unsigned short queue_max_segments(const struct request_queue *q) 1402{ 1403 return q->limits.max_segments; 1404} 1405 1406static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1407{ 1408 return q->limits.max_discard_segments; 1409} 1410 1411static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1412{ 1413 return q->limits.max_segment_size; 1414} 1415 1416static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1417{ 1418 1419 const struct queue_limits *l = &q->limits; 1420 1421 return min(l->max_zone_append_sectors, l->max_sectors); 1422} 1423 1424static inline unsigned queue_logical_block_size(const struct request_queue *q) 1425{ 1426 int retval = 512; 1427 1428 if (q && q->limits.logical_block_size) 1429 retval = q->limits.logical_block_size; 1430 1431 return retval; 1432} 1433 1434static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1435{ 1436 return queue_logical_block_size(bdev_get_queue(bdev)); 1437} 1438 1439static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1440{ 1441 return q->limits.physical_block_size; 1442} 1443 1444static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1445{ 1446 return queue_physical_block_size(bdev_get_queue(bdev)); 1447} 1448 1449static inline unsigned int queue_io_min(const struct request_queue *q) 1450{ 1451 return q->limits.io_min; 1452} 1453 1454static inline int bdev_io_min(struct block_device *bdev) 1455{ 1456 return queue_io_min(bdev_get_queue(bdev)); 1457} 1458 1459static inline unsigned int queue_io_opt(const struct request_queue *q) 1460{ 1461 return q->limits.io_opt; 1462} 1463 1464static inline int bdev_io_opt(struct block_device *bdev) 1465{ 1466 return queue_io_opt(bdev_get_queue(bdev)); 1467} 1468 1469static inline int queue_alignment_offset(const struct request_queue *q) 1470{ 1471 if (q->limits.misaligned) 1472 return -1; 1473 1474 return q->limits.alignment_offset; 1475} 1476 1477static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1478{ 1479 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1480 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1481 << SECTOR_SHIFT; 1482 1483 return (granularity + lim->alignment_offset - alignment) % granularity; 1484} 1485 1486static inline int bdev_alignment_offset(struct block_device *bdev) 1487{ 1488 struct request_queue *q = bdev_get_queue(bdev); 1489 1490 if (q->limits.misaligned) 1491 return -1; 1492 if (bdev_is_partition(bdev)) 1493 return queue_limit_alignment_offset(&q->limits, 1494 bdev->bd_part->start_sect); 1495 return q->limits.alignment_offset; 1496} 1497 1498static inline int queue_discard_alignment(const struct request_queue *q) 1499{ 1500 if (q->limits.discard_misaligned) 1501 return -1; 1502 1503 return q->limits.discard_alignment; 1504} 1505 1506static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1507{ 1508 unsigned int alignment, granularity, offset; 1509 1510 if (!lim->max_discard_sectors) 1511 return 0; 1512 1513 /* Why are these in bytes, not sectors? */ 1514 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1515 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1516 if (!granularity) 1517 return 0; 1518 1519 /* Offset of the partition start in 'granularity' sectors */ 1520 offset = sector_div(sector, granularity); 1521 1522 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1523 offset = (granularity + alignment - offset) % granularity; 1524 1525 /* Turn it back into bytes, gaah */ 1526 return offset << SECTOR_SHIFT; 1527} 1528 1529static inline int bdev_discard_alignment(struct block_device *bdev) 1530{ 1531 struct request_queue *q = bdev_get_queue(bdev); 1532 1533 if (bdev_is_partition(bdev)) 1534 return queue_limit_discard_alignment(&q->limits, 1535 bdev->bd_part->start_sect); 1536 return q->limits.discard_alignment; 1537} 1538 1539static inline unsigned int bdev_write_same(struct block_device *bdev) 1540{ 1541 struct request_queue *q = bdev_get_queue(bdev); 1542 1543 if (q) 1544 return q->limits.max_write_same_sectors; 1545 1546 return 0; 1547} 1548 1549static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1550{ 1551 struct request_queue *q = bdev_get_queue(bdev); 1552 1553 if (q) 1554 return q->limits.max_write_zeroes_sectors; 1555 1556 return 0; 1557} 1558 1559static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1560{ 1561 struct request_queue *q = bdev_get_queue(bdev); 1562 1563 if (q) 1564 return blk_queue_zoned_model(q); 1565 1566 return BLK_ZONED_NONE; 1567} 1568 1569static inline bool bdev_is_zoned(struct block_device *bdev) 1570{ 1571 struct request_queue *q = bdev_get_queue(bdev); 1572 1573 if (q) 1574 return blk_queue_is_zoned(q); 1575 1576 return false; 1577} 1578 1579static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1580{ 1581 struct request_queue *q = bdev_get_queue(bdev); 1582 1583 if (q) 1584 return blk_queue_zone_sectors(q); 1585 return 0; 1586} 1587 1588static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1589{ 1590 struct request_queue *q = bdev_get_queue(bdev); 1591 1592 if (q) 1593 return queue_max_open_zones(q); 1594 return 0; 1595} 1596 1597static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1598{ 1599 struct request_queue *q = bdev_get_queue(bdev); 1600 1601 if (q) 1602 return queue_max_active_zones(q); 1603 return 0; 1604} 1605 1606static inline int queue_dma_alignment(const struct request_queue *q) 1607{ 1608 return q ? q->dma_alignment : 511; 1609} 1610 1611static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1612 unsigned int len) 1613{ 1614 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1615 return !(addr & alignment) && !(len & alignment); 1616} 1617 1618/* assumes size > 256 */ 1619static inline unsigned int blksize_bits(unsigned int size) 1620{ 1621 unsigned int bits = 8; 1622 do { 1623 bits++; 1624 size >>= 1; 1625 } while (size > 256); 1626 return bits; 1627} 1628 1629static inline unsigned int block_size(struct block_device *bdev) 1630{ 1631 return 1 << bdev->bd_inode->i_blkbits; 1632} 1633 1634int kblockd_schedule_work(struct work_struct *work); 1635int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1636 1637#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1638 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1639#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1640 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1641 1642#if defined(CONFIG_BLK_DEV_INTEGRITY) 1643 1644enum blk_integrity_flags { 1645 BLK_INTEGRITY_VERIFY = 1 << 0, 1646 BLK_INTEGRITY_GENERATE = 1 << 1, 1647 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1648 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1649}; 1650 1651struct blk_integrity_iter { 1652 void *prot_buf; 1653 void *data_buf; 1654 sector_t seed; 1655 unsigned int data_size; 1656 unsigned short interval; 1657 const char *disk_name; 1658}; 1659 1660typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1661typedef void (integrity_prepare_fn) (struct request *); 1662typedef void (integrity_complete_fn) (struct request *, unsigned int); 1663 1664struct blk_integrity_profile { 1665 integrity_processing_fn *generate_fn; 1666 integrity_processing_fn *verify_fn; 1667 integrity_prepare_fn *prepare_fn; 1668 integrity_complete_fn *complete_fn; 1669 const char *name; 1670}; 1671 1672extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1673extern void blk_integrity_unregister(struct gendisk *); 1674extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1675extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1676 struct scatterlist *); 1677extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1678 1679static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1680{ 1681 struct blk_integrity *bi = &disk->queue->integrity; 1682 1683 if (!bi->profile) 1684 return NULL; 1685 1686 return bi; 1687} 1688 1689static inline 1690struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1691{ 1692 return blk_get_integrity(bdev->bd_disk); 1693} 1694 1695static inline bool 1696blk_integrity_queue_supports_integrity(struct request_queue *q) 1697{ 1698 return q->integrity.profile; 1699} 1700 1701static inline bool blk_integrity_rq(struct request *rq) 1702{ 1703 return rq->cmd_flags & REQ_INTEGRITY; 1704} 1705 1706static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1707 unsigned int segs) 1708{ 1709 q->limits.max_integrity_segments = segs; 1710} 1711 1712static inline unsigned short 1713queue_max_integrity_segments(const struct request_queue *q) 1714{ 1715 return q->limits.max_integrity_segments; 1716} 1717 1718/** 1719 * bio_integrity_intervals - Return number of integrity intervals for a bio 1720 * @bi: blk_integrity profile for device 1721 * @sectors: Size of the bio in 512-byte sectors 1722 * 1723 * Description: The block layer calculates everything in 512 byte 1724 * sectors but integrity metadata is done in terms of the data integrity 1725 * interval size of the storage device. Convert the block layer sectors 1726 * to the appropriate number of integrity intervals. 1727 */ 1728static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1729 unsigned int sectors) 1730{ 1731 return sectors >> (bi->interval_exp - 9); 1732} 1733 1734static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1735 unsigned int sectors) 1736{ 1737 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1738} 1739 1740/* 1741 * Return the first bvec that contains integrity data. Only drivers that are 1742 * limited to a single integrity segment should use this helper. 1743 */ 1744static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1745{ 1746 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1747 return NULL; 1748 return rq->bio->bi_integrity->bip_vec; 1749} 1750 1751#else /* CONFIG_BLK_DEV_INTEGRITY */ 1752 1753struct bio; 1754struct block_device; 1755struct gendisk; 1756struct blk_integrity; 1757 1758static inline int blk_integrity_rq(struct request *rq) 1759{ 1760 return 0; 1761} 1762static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1763 struct bio *b) 1764{ 1765 return 0; 1766} 1767static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1768 struct bio *b, 1769 struct scatterlist *s) 1770{ 1771 return 0; 1772} 1773static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1774{ 1775 return NULL; 1776} 1777static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1778{ 1779 return NULL; 1780} 1781static inline bool 1782blk_integrity_queue_supports_integrity(struct request_queue *q) 1783{ 1784 return false; 1785} 1786static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1787{ 1788 return 0; 1789} 1790static inline void blk_integrity_register(struct gendisk *d, 1791 struct blk_integrity *b) 1792{ 1793} 1794static inline void blk_integrity_unregister(struct gendisk *d) 1795{ 1796} 1797static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1798 unsigned int segs) 1799{ 1800} 1801static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1802{ 1803 return 0; 1804} 1805 1806static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1807 unsigned int sectors) 1808{ 1809 return 0; 1810} 1811 1812static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1813 unsigned int sectors) 1814{ 1815 return 0; 1816} 1817 1818static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1819{ 1820 return NULL; 1821} 1822 1823#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1824 1825#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1826 1827bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1828 1829void blk_ksm_unregister(struct request_queue *q); 1830 1831#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1832 1833static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1834 struct request_queue *q) 1835{ 1836 return true; 1837} 1838 1839static inline void blk_ksm_unregister(struct request_queue *q) { } 1840 1841#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1842 1843 1844struct block_device_operations { 1845 blk_qc_t (*submit_bio) (struct bio *bio); 1846 int (*open) (struct block_device *, fmode_t); 1847 void (*release) (struct gendisk *, fmode_t); 1848 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1849 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1850 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1851 unsigned int (*check_events) (struct gendisk *disk, 1852 unsigned int clearing); 1853 void (*unlock_native_capacity) (struct gendisk *); 1854 int (*revalidate_disk) (struct gendisk *); 1855 int (*getgeo)(struct block_device *, struct hd_geometry *); 1856 /* this callback is with swap_lock and sometimes page table lock held */ 1857 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1858 int (*report_zones)(struct gendisk *, sector_t sector, 1859 unsigned int nr_zones, report_zones_cb cb, void *data); 1860 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1861 struct module *owner; 1862 const struct pr_ops *pr_ops; 1863}; 1864 1865#ifdef CONFIG_COMPAT 1866extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1867 unsigned int, unsigned long); 1868#else 1869#define blkdev_compat_ptr_ioctl NULL 1870#endif 1871 1872extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1873 unsigned long); 1874extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1875extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1876 struct writeback_control *); 1877 1878#ifdef CONFIG_BLK_DEV_ZONED 1879bool blk_req_needs_zone_write_lock(struct request *rq); 1880bool blk_req_zone_write_trylock(struct request *rq); 1881void __blk_req_zone_write_lock(struct request *rq); 1882void __blk_req_zone_write_unlock(struct request *rq); 1883 1884static inline void blk_req_zone_write_lock(struct request *rq) 1885{ 1886 if (blk_req_needs_zone_write_lock(rq)) 1887 __blk_req_zone_write_lock(rq); 1888} 1889 1890static inline void blk_req_zone_write_unlock(struct request *rq) 1891{ 1892 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1893 __blk_req_zone_write_unlock(rq); 1894} 1895 1896static inline bool blk_req_zone_is_write_locked(struct request *rq) 1897{ 1898 return rq->q->seq_zones_wlock && 1899 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1900} 1901 1902static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1903{ 1904 if (!blk_req_needs_zone_write_lock(rq)) 1905 return true; 1906 return !blk_req_zone_is_write_locked(rq); 1907} 1908#else 1909static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1910{ 1911 return false; 1912} 1913 1914static inline void blk_req_zone_write_lock(struct request *rq) 1915{ 1916} 1917 1918static inline void blk_req_zone_write_unlock(struct request *rq) 1919{ 1920} 1921static inline bool blk_req_zone_is_write_locked(struct request *rq) 1922{ 1923 return false; 1924} 1925 1926static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1927{ 1928 return true; 1929} 1930#endif /* CONFIG_BLK_DEV_ZONED */ 1931 1932static inline void blk_wake_io_task(struct task_struct *waiter) 1933{ 1934 /* 1935 * If we're polling, the task itself is doing the completions. For 1936 * that case, we don't need to signal a wakeup, it's enough to just 1937 * mark us as RUNNING. 1938 */ 1939 if (waiter == current) 1940 __set_current_state(TASK_RUNNING); 1941 else 1942 wake_up_process(waiter); 1943} 1944 1945unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1946 unsigned int op); 1947void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1948 unsigned long start_time); 1949 1950unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1951 struct bio *bio); 1952void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1953 unsigned long start_time); 1954 1955/** 1956 * bio_start_io_acct - start I/O accounting for bio based drivers 1957 * @bio: bio to start account for 1958 * 1959 * Returns the start time that should be passed back to bio_end_io_acct(). 1960 */ 1961static inline unsigned long bio_start_io_acct(struct bio *bio) 1962{ 1963 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1964} 1965 1966/** 1967 * bio_end_io_acct - end I/O accounting for bio based drivers 1968 * @bio: bio to end account for 1969 * @start: start time returned by bio_start_io_acct() 1970 */ 1971static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1972{ 1973 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1974} 1975 1976int bdev_read_only(struct block_device *bdev); 1977int set_blocksize(struct block_device *bdev, int size); 1978 1979const char *bdevname(struct block_device *bdev, char *buffer); 1980struct block_device *lookup_bdev(const char *); 1981 1982void blkdev_show(struct seq_file *seqf, off_t offset); 1983 1984#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1985#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1986#ifdef CONFIG_BLOCK 1987#define BLKDEV_MAJOR_MAX 512 1988#else 1989#define BLKDEV_MAJOR_MAX 0 1990#endif 1991 1992struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1993 void *holder); 1994struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1995int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1996 void *holder); 1997void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1998 void *holder); 1999void blkdev_put(struct block_device *bdev, fmode_t mode); 2000 2001struct block_device *I_BDEV(struct inode *inode); 2002struct block_device *bdget_part(struct hd_struct *part); 2003struct block_device *bdgrab(struct block_device *bdev); 2004void bdput(struct block_device *); 2005 2006#ifdef CONFIG_BLOCK 2007void invalidate_bdev(struct block_device *bdev); 2008int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2009 loff_t lend); 2010int sync_blockdev(struct block_device *bdev); 2011#else 2012static inline void invalidate_bdev(struct block_device *bdev) 2013{ 2014} 2015static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode, 2016 loff_t lstart, loff_t lend) 2017{ 2018 return 0; 2019} 2020static inline int sync_blockdev(struct block_device *bdev) 2021{ 2022 return 0; 2023} 2024#endif 2025int fsync_bdev(struct block_device *bdev); 2026 2027struct super_block *freeze_bdev(struct block_device *bdev); 2028int thaw_bdev(struct block_device *bdev, struct super_block *sb); 2029 2030#endif /* _LINUX_BLKDEV_H */