at v5.10 55 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/block_dev.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 7 */ 8 9#include <linux/init.h> 10#include <linux/mm.h> 11#include <linux/fcntl.h> 12#include <linux/slab.h> 13#include <linux/kmod.h> 14#include <linux/major.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/backing-dev.h> 19#include <linux/module.h> 20#include <linux/blkpg.h> 21#include <linux/magic.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/pseudo_fs.h> 29#include <linux/uio.h> 30#include <linux/namei.h> 31#include <linux/log2.h> 32#include <linux/cleancache.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include <linux/suspend.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78static void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88 89/* Invalidate clean unused buffers and pagecache. */ 90void invalidate_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages) { 95 invalidate_bh_lrus(); 96 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 97 invalidate_mapping_pages(mapping, 0, -1); 98 } 99 /* 99% of the time, we don't need to flush the cleancache on the bdev. 100 * But, for the strange corners, lets be cautious 101 */ 102 cleancache_invalidate_inode(mapping); 103} 104EXPORT_SYMBOL(invalidate_bdev); 105 106/* 107 * Drop all buffers & page cache for given bdev range. This function bails 108 * with error if bdev has other exclusive owner (such as filesystem). 109 */ 110int truncate_bdev_range(struct block_device *bdev, fmode_t mode, 111 loff_t lstart, loff_t lend) 112{ 113 struct block_device *claimed_bdev = NULL; 114 int err; 115 116 /* 117 * If we don't hold exclusive handle for the device, upgrade to it 118 * while we discard the buffer cache to avoid discarding buffers 119 * under live filesystem. 120 */ 121 if (!(mode & FMODE_EXCL)) { 122 claimed_bdev = bdev->bd_contains; 123 err = bd_prepare_to_claim(bdev, claimed_bdev, 124 truncate_bdev_range); 125 if (err) 126 return err; 127 } 128 truncate_inode_pages_range(bdev->bd_inode->i_mapping, lstart, lend); 129 if (claimed_bdev) 130 bd_abort_claiming(bdev, claimed_bdev, truncate_bdev_range); 131 return 0; 132} 133EXPORT_SYMBOL(truncate_bdev_range); 134 135static void set_init_blocksize(struct block_device *bdev) 136{ 137 bdev->bd_inode->i_blkbits = blksize_bits(bdev_logical_block_size(bdev)); 138} 139 140int set_blocksize(struct block_device *bdev, int size) 141{ 142 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 143 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 144 return -EINVAL; 145 146 /* Size cannot be smaller than the size supported by the device */ 147 if (size < bdev_logical_block_size(bdev)) 148 return -EINVAL; 149 150 /* Don't change the size if it is same as current */ 151 if (bdev->bd_inode->i_blkbits != blksize_bits(size)) { 152 sync_blockdev(bdev); 153 bdev->bd_inode->i_blkbits = blksize_bits(size); 154 kill_bdev(bdev); 155 } 156 return 0; 157} 158 159EXPORT_SYMBOL(set_blocksize); 160 161int sb_set_blocksize(struct super_block *sb, int size) 162{ 163 if (set_blocksize(sb->s_bdev, size)) 164 return 0; 165 /* If we get here, we know size is power of two 166 * and it's value is between 512 and PAGE_SIZE */ 167 sb->s_blocksize = size; 168 sb->s_blocksize_bits = blksize_bits(size); 169 return sb->s_blocksize; 170} 171 172EXPORT_SYMBOL(sb_set_blocksize); 173 174int sb_min_blocksize(struct super_block *sb, int size) 175{ 176 int minsize = bdev_logical_block_size(sb->s_bdev); 177 if (size < minsize) 178 size = minsize; 179 return sb_set_blocksize(sb, size); 180} 181 182EXPORT_SYMBOL(sb_min_blocksize); 183 184static int 185blkdev_get_block(struct inode *inode, sector_t iblock, 186 struct buffer_head *bh, int create) 187{ 188 bh->b_bdev = I_BDEV(inode); 189 bh->b_blocknr = iblock; 190 set_buffer_mapped(bh); 191 return 0; 192} 193 194static struct inode *bdev_file_inode(struct file *file) 195{ 196 return file->f_mapping->host; 197} 198 199static unsigned int dio_bio_write_op(struct kiocb *iocb) 200{ 201 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 202 203 /* avoid the need for a I/O completion work item */ 204 if (iocb->ki_flags & IOCB_DSYNC) 205 op |= REQ_FUA; 206 return op; 207} 208 209#define DIO_INLINE_BIO_VECS 4 210 211static void blkdev_bio_end_io_simple(struct bio *bio) 212{ 213 struct task_struct *waiter = bio->bi_private; 214 215 WRITE_ONCE(bio->bi_private, NULL); 216 blk_wake_io_task(waiter); 217} 218 219static ssize_t 220__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 221 int nr_pages) 222{ 223 struct file *file = iocb->ki_filp; 224 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 225 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; 226 loff_t pos = iocb->ki_pos; 227 bool should_dirty = false; 228 struct bio bio; 229 ssize_t ret; 230 blk_qc_t qc; 231 232 if ((pos | iov_iter_alignment(iter)) & 233 (bdev_logical_block_size(bdev) - 1)) 234 return -EINVAL; 235 236 if (nr_pages <= DIO_INLINE_BIO_VECS) 237 vecs = inline_vecs; 238 else { 239 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 240 GFP_KERNEL); 241 if (!vecs) 242 return -ENOMEM; 243 } 244 245 bio_init(&bio, vecs, nr_pages); 246 bio_set_dev(&bio, bdev); 247 bio.bi_iter.bi_sector = pos >> 9; 248 bio.bi_write_hint = iocb->ki_hint; 249 bio.bi_private = current; 250 bio.bi_end_io = blkdev_bio_end_io_simple; 251 bio.bi_ioprio = iocb->ki_ioprio; 252 253 ret = bio_iov_iter_get_pages(&bio, iter); 254 if (unlikely(ret)) 255 goto out; 256 ret = bio.bi_iter.bi_size; 257 258 if (iov_iter_rw(iter) == READ) { 259 bio.bi_opf = REQ_OP_READ; 260 if (iter_is_iovec(iter)) 261 should_dirty = true; 262 } else { 263 bio.bi_opf = dio_bio_write_op(iocb); 264 task_io_account_write(ret); 265 } 266 if (iocb->ki_flags & IOCB_HIPRI) 267 bio_set_polled(&bio, iocb); 268 269 qc = submit_bio(&bio); 270 for (;;) { 271 set_current_state(TASK_UNINTERRUPTIBLE); 272 if (!READ_ONCE(bio.bi_private)) 273 break; 274 if (!(iocb->ki_flags & IOCB_HIPRI) || 275 !blk_poll(bdev_get_queue(bdev), qc, true)) 276 blk_io_schedule(); 277 } 278 __set_current_state(TASK_RUNNING); 279 280 bio_release_pages(&bio, should_dirty); 281 if (unlikely(bio.bi_status)) 282 ret = blk_status_to_errno(bio.bi_status); 283 284out: 285 if (vecs != inline_vecs) 286 kfree(vecs); 287 288 bio_uninit(&bio); 289 290 return ret; 291} 292 293struct blkdev_dio { 294 union { 295 struct kiocb *iocb; 296 struct task_struct *waiter; 297 }; 298 size_t size; 299 atomic_t ref; 300 bool multi_bio : 1; 301 bool should_dirty : 1; 302 bool is_sync : 1; 303 struct bio bio; 304}; 305 306static struct bio_set blkdev_dio_pool; 307 308static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 309{ 310 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 311 struct request_queue *q = bdev_get_queue(bdev); 312 313 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 314} 315 316static void blkdev_bio_end_io(struct bio *bio) 317{ 318 struct blkdev_dio *dio = bio->bi_private; 319 bool should_dirty = dio->should_dirty; 320 321 if (bio->bi_status && !dio->bio.bi_status) 322 dio->bio.bi_status = bio->bi_status; 323 324 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 325 if (!dio->is_sync) { 326 struct kiocb *iocb = dio->iocb; 327 ssize_t ret; 328 329 if (likely(!dio->bio.bi_status)) { 330 ret = dio->size; 331 iocb->ki_pos += ret; 332 } else { 333 ret = blk_status_to_errno(dio->bio.bi_status); 334 } 335 336 dio->iocb->ki_complete(iocb, ret, 0); 337 if (dio->multi_bio) 338 bio_put(&dio->bio); 339 } else { 340 struct task_struct *waiter = dio->waiter; 341 342 WRITE_ONCE(dio->waiter, NULL); 343 blk_wake_io_task(waiter); 344 } 345 } 346 347 if (should_dirty) { 348 bio_check_pages_dirty(bio); 349 } else { 350 bio_release_pages(bio, false); 351 bio_put(bio); 352 } 353} 354 355static ssize_t 356__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 357{ 358 struct file *file = iocb->ki_filp; 359 struct inode *inode = bdev_file_inode(file); 360 struct block_device *bdev = I_BDEV(inode); 361 struct blk_plug plug; 362 struct blkdev_dio *dio; 363 struct bio *bio; 364 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 365 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 366 loff_t pos = iocb->ki_pos; 367 blk_qc_t qc = BLK_QC_T_NONE; 368 int ret = 0; 369 370 if ((pos | iov_iter_alignment(iter)) & 371 (bdev_logical_block_size(bdev) - 1)) 372 return -EINVAL; 373 374 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 375 376 dio = container_of(bio, struct blkdev_dio, bio); 377 dio->is_sync = is_sync = is_sync_kiocb(iocb); 378 if (dio->is_sync) { 379 dio->waiter = current; 380 bio_get(bio); 381 } else { 382 dio->iocb = iocb; 383 } 384 385 dio->size = 0; 386 dio->multi_bio = false; 387 dio->should_dirty = is_read && iter_is_iovec(iter); 388 389 /* 390 * Don't plug for HIPRI/polled IO, as those should go straight 391 * to issue 392 */ 393 if (!is_poll) 394 blk_start_plug(&plug); 395 396 for (;;) { 397 bio_set_dev(bio, bdev); 398 bio->bi_iter.bi_sector = pos >> 9; 399 bio->bi_write_hint = iocb->ki_hint; 400 bio->bi_private = dio; 401 bio->bi_end_io = blkdev_bio_end_io; 402 bio->bi_ioprio = iocb->ki_ioprio; 403 404 ret = bio_iov_iter_get_pages(bio, iter); 405 if (unlikely(ret)) { 406 bio->bi_status = BLK_STS_IOERR; 407 bio_endio(bio); 408 break; 409 } 410 411 if (is_read) { 412 bio->bi_opf = REQ_OP_READ; 413 if (dio->should_dirty) 414 bio_set_pages_dirty(bio); 415 } else { 416 bio->bi_opf = dio_bio_write_op(iocb); 417 task_io_account_write(bio->bi_iter.bi_size); 418 } 419 420 dio->size += bio->bi_iter.bi_size; 421 pos += bio->bi_iter.bi_size; 422 423 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 424 if (!nr_pages) { 425 bool polled = false; 426 427 if (iocb->ki_flags & IOCB_HIPRI) { 428 bio_set_polled(bio, iocb); 429 polled = true; 430 } 431 432 qc = submit_bio(bio); 433 434 if (polled) 435 WRITE_ONCE(iocb->ki_cookie, qc); 436 break; 437 } 438 439 if (!dio->multi_bio) { 440 /* 441 * AIO needs an extra reference to ensure the dio 442 * structure which is embedded into the first bio 443 * stays around. 444 */ 445 if (!is_sync) 446 bio_get(bio); 447 dio->multi_bio = true; 448 atomic_set(&dio->ref, 2); 449 } else { 450 atomic_inc(&dio->ref); 451 } 452 453 submit_bio(bio); 454 bio = bio_alloc(GFP_KERNEL, nr_pages); 455 } 456 457 if (!is_poll) 458 blk_finish_plug(&plug); 459 460 if (!is_sync) 461 return -EIOCBQUEUED; 462 463 for (;;) { 464 set_current_state(TASK_UNINTERRUPTIBLE); 465 if (!READ_ONCE(dio->waiter)) 466 break; 467 468 if (!(iocb->ki_flags & IOCB_HIPRI) || 469 !blk_poll(bdev_get_queue(bdev), qc, true)) 470 blk_io_schedule(); 471 } 472 __set_current_state(TASK_RUNNING); 473 474 if (!ret) 475 ret = blk_status_to_errno(dio->bio.bi_status); 476 if (likely(!ret)) 477 ret = dio->size; 478 479 bio_put(&dio->bio); 480 return ret; 481} 482 483static ssize_t 484blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 485{ 486 int nr_pages; 487 488 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 489 if (!nr_pages) 490 return 0; 491 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 492 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 493 494 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 495} 496 497static __init int blkdev_init(void) 498{ 499 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 500} 501module_init(blkdev_init); 502 503int __sync_blockdev(struct block_device *bdev, int wait) 504{ 505 if (!bdev) 506 return 0; 507 if (!wait) 508 return filemap_flush(bdev->bd_inode->i_mapping); 509 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 510} 511 512/* 513 * Write out and wait upon all the dirty data associated with a block 514 * device via its mapping. Does not take the superblock lock. 515 */ 516int sync_blockdev(struct block_device *bdev) 517{ 518 return __sync_blockdev(bdev, 1); 519} 520EXPORT_SYMBOL(sync_blockdev); 521 522/* 523 * Write out and wait upon all dirty data associated with this 524 * device. Filesystem data as well as the underlying block 525 * device. Takes the superblock lock. 526 */ 527int fsync_bdev(struct block_device *bdev) 528{ 529 struct super_block *sb = get_super(bdev); 530 if (sb) { 531 int res = sync_filesystem(sb); 532 drop_super(sb); 533 return res; 534 } 535 return sync_blockdev(bdev); 536} 537EXPORT_SYMBOL(fsync_bdev); 538 539/** 540 * freeze_bdev -- lock a filesystem and force it into a consistent state 541 * @bdev: blockdevice to lock 542 * 543 * If a superblock is found on this device, we take the s_umount semaphore 544 * on it to make sure nobody unmounts until the snapshot creation is done. 545 * The reference counter (bd_fsfreeze_count) guarantees that only the last 546 * unfreeze process can unfreeze the frozen filesystem actually when multiple 547 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 548 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 549 * actually. 550 */ 551struct super_block *freeze_bdev(struct block_device *bdev) 552{ 553 struct super_block *sb; 554 int error = 0; 555 556 mutex_lock(&bdev->bd_fsfreeze_mutex); 557 if (++bdev->bd_fsfreeze_count > 1) { 558 /* 559 * We don't even need to grab a reference - the first call 560 * to freeze_bdev grab an active reference and only the last 561 * thaw_bdev drops it. 562 */ 563 sb = get_super(bdev); 564 if (sb) 565 drop_super(sb); 566 mutex_unlock(&bdev->bd_fsfreeze_mutex); 567 return sb; 568 } 569 570 sb = get_active_super(bdev); 571 if (!sb) 572 goto out; 573 if (sb->s_op->freeze_super) 574 error = sb->s_op->freeze_super(sb); 575 else 576 error = freeze_super(sb); 577 if (error) { 578 deactivate_super(sb); 579 bdev->bd_fsfreeze_count--; 580 mutex_unlock(&bdev->bd_fsfreeze_mutex); 581 return ERR_PTR(error); 582 } 583 deactivate_super(sb); 584 out: 585 sync_blockdev(bdev); 586 mutex_unlock(&bdev->bd_fsfreeze_mutex); 587 return sb; /* thaw_bdev releases s->s_umount */ 588} 589EXPORT_SYMBOL(freeze_bdev); 590 591/** 592 * thaw_bdev -- unlock filesystem 593 * @bdev: blockdevice to unlock 594 * @sb: associated superblock 595 * 596 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 597 */ 598int thaw_bdev(struct block_device *bdev, struct super_block *sb) 599{ 600 int error = -EINVAL; 601 602 mutex_lock(&bdev->bd_fsfreeze_mutex); 603 if (!bdev->bd_fsfreeze_count) 604 goto out; 605 606 error = 0; 607 if (--bdev->bd_fsfreeze_count > 0) 608 goto out; 609 610 if (!sb) 611 goto out; 612 613 if (sb->s_op->thaw_super) 614 error = sb->s_op->thaw_super(sb); 615 else 616 error = thaw_super(sb); 617 if (error) 618 bdev->bd_fsfreeze_count++; 619out: 620 mutex_unlock(&bdev->bd_fsfreeze_mutex); 621 return error; 622} 623EXPORT_SYMBOL(thaw_bdev); 624 625static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 626{ 627 return block_write_full_page(page, blkdev_get_block, wbc); 628} 629 630static int blkdev_readpage(struct file * file, struct page * page) 631{ 632 return block_read_full_page(page, blkdev_get_block); 633} 634 635static void blkdev_readahead(struct readahead_control *rac) 636{ 637 mpage_readahead(rac, blkdev_get_block); 638} 639 640static int blkdev_write_begin(struct file *file, struct address_space *mapping, 641 loff_t pos, unsigned len, unsigned flags, 642 struct page **pagep, void **fsdata) 643{ 644 return block_write_begin(mapping, pos, len, flags, pagep, 645 blkdev_get_block); 646} 647 648static int blkdev_write_end(struct file *file, struct address_space *mapping, 649 loff_t pos, unsigned len, unsigned copied, 650 struct page *page, void *fsdata) 651{ 652 int ret; 653 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 654 655 unlock_page(page); 656 put_page(page); 657 658 return ret; 659} 660 661/* 662 * private llseek: 663 * for a block special file file_inode(file)->i_size is zero 664 * so we compute the size by hand (just as in block_read/write above) 665 */ 666static loff_t block_llseek(struct file *file, loff_t offset, int whence) 667{ 668 struct inode *bd_inode = bdev_file_inode(file); 669 loff_t retval; 670 671 inode_lock(bd_inode); 672 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 673 inode_unlock(bd_inode); 674 return retval; 675} 676 677int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 678{ 679 struct inode *bd_inode = bdev_file_inode(filp); 680 struct block_device *bdev = I_BDEV(bd_inode); 681 int error; 682 683 error = file_write_and_wait_range(filp, start, end); 684 if (error) 685 return error; 686 687 /* 688 * There is no need to serialise calls to blkdev_issue_flush with 689 * i_mutex and doing so causes performance issues with concurrent 690 * O_SYNC writers to a block device. 691 */ 692 error = blkdev_issue_flush(bdev, GFP_KERNEL); 693 if (error == -EOPNOTSUPP) 694 error = 0; 695 696 return error; 697} 698EXPORT_SYMBOL(blkdev_fsync); 699 700/** 701 * bdev_read_page() - Start reading a page from a block device 702 * @bdev: The device to read the page from 703 * @sector: The offset on the device to read the page to (need not be aligned) 704 * @page: The page to read 705 * 706 * On entry, the page should be locked. It will be unlocked when the page 707 * has been read. If the block driver implements rw_page synchronously, 708 * that will be true on exit from this function, but it need not be. 709 * 710 * Errors returned by this function are usually "soft", eg out of memory, or 711 * queue full; callers should try a different route to read this page rather 712 * than propagate an error back up the stack. 713 * 714 * Return: negative errno if an error occurs, 0 if submission was successful. 715 */ 716int bdev_read_page(struct block_device *bdev, sector_t sector, 717 struct page *page) 718{ 719 const struct block_device_operations *ops = bdev->bd_disk->fops; 720 int result = -EOPNOTSUPP; 721 722 if (!ops->rw_page || bdev_get_integrity(bdev)) 723 return result; 724 725 result = blk_queue_enter(bdev->bd_disk->queue, 0); 726 if (result) 727 return result; 728 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 729 REQ_OP_READ); 730 blk_queue_exit(bdev->bd_disk->queue); 731 return result; 732} 733 734/** 735 * bdev_write_page() - Start writing a page to a block device 736 * @bdev: The device to write the page to 737 * @sector: The offset on the device to write the page to (need not be aligned) 738 * @page: The page to write 739 * @wbc: The writeback_control for the write 740 * 741 * On entry, the page should be locked and not currently under writeback. 742 * On exit, if the write started successfully, the page will be unlocked and 743 * under writeback. If the write failed already (eg the driver failed to 744 * queue the page to the device), the page will still be locked. If the 745 * caller is a ->writepage implementation, it will need to unlock the page. 746 * 747 * Errors returned by this function are usually "soft", eg out of memory, or 748 * queue full; callers should try a different route to write this page rather 749 * than propagate an error back up the stack. 750 * 751 * Return: negative errno if an error occurs, 0 if submission was successful. 752 */ 753int bdev_write_page(struct block_device *bdev, sector_t sector, 754 struct page *page, struct writeback_control *wbc) 755{ 756 int result; 757 const struct block_device_operations *ops = bdev->bd_disk->fops; 758 759 if (!ops->rw_page || bdev_get_integrity(bdev)) 760 return -EOPNOTSUPP; 761 result = blk_queue_enter(bdev->bd_disk->queue, 0); 762 if (result) 763 return result; 764 765 set_page_writeback(page); 766 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 767 REQ_OP_WRITE); 768 if (result) { 769 end_page_writeback(page); 770 } else { 771 clean_page_buffers(page); 772 unlock_page(page); 773 } 774 blk_queue_exit(bdev->bd_disk->queue); 775 return result; 776} 777 778/* 779 * pseudo-fs 780 */ 781 782static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 783static struct kmem_cache * bdev_cachep __read_mostly; 784 785static struct inode *bdev_alloc_inode(struct super_block *sb) 786{ 787 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 788 if (!ei) 789 return NULL; 790 return &ei->vfs_inode; 791} 792 793static void bdev_free_inode(struct inode *inode) 794{ 795 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 796} 797 798static void init_once(void *foo) 799{ 800 struct bdev_inode *ei = (struct bdev_inode *) foo; 801 struct block_device *bdev = &ei->bdev; 802 803 memset(bdev, 0, sizeof(*bdev)); 804 mutex_init(&bdev->bd_mutex); 805#ifdef CONFIG_SYSFS 806 INIT_LIST_HEAD(&bdev->bd_holder_disks); 807#endif 808 bdev->bd_bdi = &noop_backing_dev_info; 809 inode_init_once(&ei->vfs_inode); 810 /* Initialize mutex for freeze. */ 811 mutex_init(&bdev->bd_fsfreeze_mutex); 812} 813 814static void bdev_evict_inode(struct inode *inode) 815{ 816 struct block_device *bdev = &BDEV_I(inode)->bdev; 817 truncate_inode_pages_final(&inode->i_data); 818 invalidate_inode_buffers(inode); /* is it needed here? */ 819 clear_inode(inode); 820 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 821 inode_detach_wb(inode); 822 if (bdev->bd_bdi != &noop_backing_dev_info) { 823 bdi_put(bdev->bd_bdi); 824 bdev->bd_bdi = &noop_backing_dev_info; 825 } 826} 827 828static const struct super_operations bdev_sops = { 829 .statfs = simple_statfs, 830 .alloc_inode = bdev_alloc_inode, 831 .free_inode = bdev_free_inode, 832 .drop_inode = generic_delete_inode, 833 .evict_inode = bdev_evict_inode, 834}; 835 836static int bd_init_fs_context(struct fs_context *fc) 837{ 838 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); 839 if (!ctx) 840 return -ENOMEM; 841 fc->s_iflags |= SB_I_CGROUPWB; 842 ctx->ops = &bdev_sops; 843 return 0; 844} 845 846static struct file_system_type bd_type = { 847 .name = "bdev", 848 .init_fs_context = bd_init_fs_context, 849 .kill_sb = kill_anon_super, 850}; 851 852struct super_block *blockdev_superblock __read_mostly; 853EXPORT_SYMBOL_GPL(blockdev_superblock); 854 855void __init bdev_cache_init(void) 856{ 857 int err; 858 static struct vfsmount *bd_mnt; 859 860 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 861 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 862 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 863 init_once); 864 err = register_filesystem(&bd_type); 865 if (err) 866 panic("Cannot register bdev pseudo-fs"); 867 bd_mnt = kern_mount(&bd_type); 868 if (IS_ERR(bd_mnt)) 869 panic("Cannot create bdev pseudo-fs"); 870 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 871} 872 873/* 874 * Most likely _very_ bad one - but then it's hardly critical for small 875 * /dev and can be fixed when somebody will need really large one. 876 * Keep in mind that it will be fed through icache hash function too. 877 */ 878static inline unsigned long hash(dev_t dev) 879{ 880 return MAJOR(dev)+MINOR(dev); 881} 882 883static int bdev_test(struct inode *inode, void *data) 884{ 885 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 886} 887 888static int bdev_set(struct inode *inode, void *data) 889{ 890 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 891 return 0; 892} 893 894static struct block_device *bdget(dev_t dev) 895{ 896 struct block_device *bdev; 897 struct inode *inode; 898 899 inode = iget5_locked(blockdev_superblock, hash(dev), 900 bdev_test, bdev_set, &dev); 901 902 if (!inode) 903 return NULL; 904 905 bdev = &BDEV_I(inode)->bdev; 906 907 if (inode->i_state & I_NEW) { 908 spin_lock_init(&bdev->bd_size_lock); 909 bdev->bd_contains = NULL; 910 bdev->bd_super = NULL; 911 bdev->bd_inode = inode; 912 bdev->bd_part_count = 0; 913 inode->i_mode = S_IFBLK; 914 inode->i_rdev = dev; 915 inode->i_bdev = bdev; 916 inode->i_data.a_ops = &def_blk_aops; 917 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 918 unlock_new_inode(inode); 919 } 920 return bdev; 921} 922 923/** 924 * bdgrab -- Grab a reference to an already referenced block device 925 * @bdev: Block device to grab a reference to. 926 */ 927struct block_device *bdgrab(struct block_device *bdev) 928{ 929 ihold(bdev->bd_inode); 930 return bdev; 931} 932EXPORT_SYMBOL(bdgrab); 933 934struct block_device *bdget_part(struct hd_struct *part) 935{ 936 return bdget(part_devt(part)); 937} 938 939long nr_blockdev_pages(void) 940{ 941 struct inode *inode; 942 long ret = 0; 943 944 spin_lock(&blockdev_superblock->s_inode_list_lock); 945 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) 946 ret += inode->i_mapping->nrpages; 947 spin_unlock(&blockdev_superblock->s_inode_list_lock); 948 949 return ret; 950} 951 952void bdput(struct block_device *bdev) 953{ 954 iput(bdev->bd_inode); 955} 956 957EXPORT_SYMBOL(bdput); 958 959static struct block_device *bd_acquire(struct inode *inode) 960{ 961 struct block_device *bdev; 962 963 spin_lock(&bdev_lock); 964 bdev = inode->i_bdev; 965 if (bdev && !inode_unhashed(bdev->bd_inode)) { 966 bdgrab(bdev); 967 spin_unlock(&bdev_lock); 968 return bdev; 969 } 970 spin_unlock(&bdev_lock); 971 972 /* 973 * i_bdev references block device inode that was already shut down 974 * (corresponding device got removed). Remove the reference and look 975 * up block device inode again just in case new device got 976 * reestablished under the same device number. 977 */ 978 if (bdev) 979 bd_forget(inode); 980 981 bdev = bdget(inode->i_rdev); 982 if (bdev) { 983 spin_lock(&bdev_lock); 984 if (!inode->i_bdev) { 985 /* 986 * We take an additional reference to bd_inode, 987 * and it's released in clear_inode() of inode. 988 * So, we can access it via ->i_mapping always 989 * without igrab(). 990 */ 991 bdgrab(bdev); 992 inode->i_bdev = bdev; 993 inode->i_mapping = bdev->bd_inode->i_mapping; 994 } 995 spin_unlock(&bdev_lock); 996 } 997 return bdev; 998} 999 1000/* Call when you free inode */ 1001 1002void bd_forget(struct inode *inode) 1003{ 1004 struct block_device *bdev = NULL; 1005 1006 spin_lock(&bdev_lock); 1007 if (!sb_is_blkdev_sb(inode->i_sb)) 1008 bdev = inode->i_bdev; 1009 inode->i_bdev = NULL; 1010 inode->i_mapping = &inode->i_data; 1011 spin_unlock(&bdev_lock); 1012 1013 if (bdev) 1014 bdput(bdev); 1015} 1016 1017/** 1018 * bd_may_claim - test whether a block device can be claimed 1019 * @bdev: block device of interest 1020 * @whole: whole block device containing @bdev, may equal @bdev 1021 * @holder: holder trying to claim @bdev 1022 * 1023 * Test whether @bdev can be claimed by @holder. 1024 * 1025 * CONTEXT: 1026 * spin_lock(&bdev_lock). 1027 * 1028 * RETURNS: 1029 * %true if @bdev can be claimed, %false otherwise. 1030 */ 1031static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1032 void *holder) 1033{ 1034 if (bdev->bd_holder == holder) 1035 return true; /* already a holder */ 1036 else if (bdev->bd_holder != NULL) 1037 return false; /* held by someone else */ 1038 else if (whole == bdev) 1039 return true; /* is a whole device which isn't held */ 1040 1041 else if (whole->bd_holder == bd_may_claim) 1042 return true; /* is a partition of a device that is being partitioned */ 1043 else if (whole->bd_holder != NULL) 1044 return false; /* is a partition of a held device */ 1045 else 1046 return true; /* is a partition of an un-held device */ 1047} 1048 1049/** 1050 * bd_prepare_to_claim - claim a block device 1051 * @bdev: block device of interest 1052 * @whole: the whole device containing @bdev, may equal @bdev 1053 * @holder: holder trying to claim @bdev 1054 * 1055 * Claim @bdev. This function fails if @bdev is already claimed by another 1056 * holder and waits if another claiming is in progress. return, the caller 1057 * has ownership of bd_claiming and bd_holder[s]. 1058 * 1059 * RETURNS: 1060 * 0 if @bdev can be claimed, -EBUSY otherwise. 1061 */ 1062int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1063 void *holder) 1064{ 1065retry: 1066 spin_lock(&bdev_lock); 1067 /* if someone else claimed, fail */ 1068 if (!bd_may_claim(bdev, whole, holder)) { 1069 spin_unlock(&bdev_lock); 1070 return -EBUSY; 1071 } 1072 1073 /* if claiming is already in progress, wait for it to finish */ 1074 if (whole->bd_claiming) { 1075 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1076 DEFINE_WAIT(wait); 1077 1078 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1079 spin_unlock(&bdev_lock); 1080 schedule(); 1081 finish_wait(wq, &wait); 1082 goto retry; 1083 } 1084 1085 /* yay, all mine */ 1086 whole->bd_claiming = holder; 1087 spin_unlock(&bdev_lock); 1088 return 0; 1089} 1090EXPORT_SYMBOL_GPL(bd_prepare_to_claim); /* only for the loop driver */ 1091 1092static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1093{ 1094 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1095 1096 if (!disk) 1097 return NULL; 1098 /* 1099 * Now that we hold gendisk reference we make sure bdev we looked up is 1100 * not stale. If it is, it means device got removed and created before 1101 * we looked up gendisk and we fail open in such case. Associating 1102 * unhashed bdev with newly created gendisk could lead to two bdevs 1103 * (and thus two independent caches) being associated with one device 1104 * which is bad. 1105 */ 1106 if (inode_unhashed(bdev->bd_inode)) { 1107 put_disk_and_module(disk); 1108 return NULL; 1109 } 1110 return disk; 1111} 1112 1113static void bd_clear_claiming(struct block_device *whole, void *holder) 1114{ 1115 lockdep_assert_held(&bdev_lock); 1116 /* tell others that we're done */ 1117 BUG_ON(whole->bd_claiming != holder); 1118 whole->bd_claiming = NULL; 1119 wake_up_bit(&whole->bd_claiming, 0); 1120} 1121 1122/** 1123 * bd_finish_claiming - finish claiming of a block device 1124 * @bdev: block device of interest 1125 * @whole: whole block device 1126 * @holder: holder that has claimed @bdev 1127 * 1128 * Finish exclusive open of a block device. Mark the device as exlusively 1129 * open by the holder and wake up all waiters for exclusive open to finish. 1130 */ 1131static void bd_finish_claiming(struct block_device *bdev, 1132 struct block_device *whole, void *holder) 1133{ 1134 spin_lock(&bdev_lock); 1135 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1136 /* 1137 * Note that for a whole device bd_holders will be incremented twice, 1138 * and bd_holder will be set to bd_may_claim before being set to holder 1139 */ 1140 whole->bd_holders++; 1141 whole->bd_holder = bd_may_claim; 1142 bdev->bd_holders++; 1143 bdev->bd_holder = holder; 1144 bd_clear_claiming(whole, holder); 1145 spin_unlock(&bdev_lock); 1146} 1147 1148/** 1149 * bd_abort_claiming - abort claiming of a block device 1150 * @bdev: block device of interest 1151 * @whole: whole block device 1152 * @holder: holder that has claimed @bdev 1153 * 1154 * Abort claiming of a block device when the exclusive open failed. This can be 1155 * also used when exclusive open is not actually desired and we just needed 1156 * to block other exclusive openers for a while. 1157 */ 1158void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1159 void *holder) 1160{ 1161 spin_lock(&bdev_lock); 1162 bd_clear_claiming(whole, holder); 1163 spin_unlock(&bdev_lock); 1164} 1165EXPORT_SYMBOL(bd_abort_claiming); 1166 1167#ifdef CONFIG_SYSFS 1168struct bd_holder_disk { 1169 struct list_head list; 1170 struct gendisk *disk; 1171 int refcnt; 1172}; 1173 1174static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1175 struct gendisk *disk) 1176{ 1177 struct bd_holder_disk *holder; 1178 1179 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1180 if (holder->disk == disk) 1181 return holder; 1182 return NULL; 1183} 1184 1185static int add_symlink(struct kobject *from, struct kobject *to) 1186{ 1187 return sysfs_create_link(from, to, kobject_name(to)); 1188} 1189 1190static void del_symlink(struct kobject *from, struct kobject *to) 1191{ 1192 sysfs_remove_link(from, kobject_name(to)); 1193} 1194 1195/** 1196 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1197 * @bdev: the claimed slave bdev 1198 * @disk: the holding disk 1199 * 1200 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1201 * 1202 * This functions creates the following sysfs symlinks. 1203 * 1204 * - from "slaves" directory of the holder @disk to the claimed @bdev 1205 * - from "holders" directory of the @bdev to the holder @disk 1206 * 1207 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1208 * passed to bd_link_disk_holder(), then: 1209 * 1210 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1211 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1212 * 1213 * The caller must have claimed @bdev before calling this function and 1214 * ensure that both @bdev and @disk are valid during the creation and 1215 * lifetime of these symlinks. 1216 * 1217 * CONTEXT: 1218 * Might sleep. 1219 * 1220 * RETURNS: 1221 * 0 on success, -errno on failure. 1222 */ 1223int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1224{ 1225 struct bd_holder_disk *holder; 1226 int ret = 0; 1227 1228 mutex_lock(&bdev->bd_mutex); 1229 1230 WARN_ON_ONCE(!bdev->bd_holder); 1231 1232 /* FIXME: remove the following once add_disk() handles errors */ 1233 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1234 goto out_unlock; 1235 1236 holder = bd_find_holder_disk(bdev, disk); 1237 if (holder) { 1238 holder->refcnt++; 1239 goto out_unlock; 1240 } 1241 1242 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1243 if (!holder) { 1244 ret = -ENOMEM; 1245 goto out_unlock; 1246 } 1247 1248 INIT_LIST_HEAD(&holder->list); 1249 holder->disk = disk; 1250 holder->refcnt = 1; 1251 1252 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1253 if (ret) 1254 goto out_free; 1255 1256 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1257 if (ret) 1258 goto out_del; 1259 /* 1260 * bdev could be deleted beneath us which would implicitly destroy 1261 * the holder directory. Hold on to it. 1262 */ 1263 kobject_get(bdev->bd_part->holder_dir); 1264 1265 list_add(&holder->list, &bdev->bd_holder_disks); 1266 goto out_unlock; 1267 1268out_del: 1269 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1270out_free: 1271 kfree(holder); 1272out_unlock: 1273 mutex_unlock(&bdev->bd_mutex); 1274 return ret; 1275} 1276EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1277 1278/** 1279 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1280 * @bdev: the calimed slave bdev 1281 * @disk: the holding disk 1282 * 1283 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1284 * 1285 * CONTEXT: 1286 * Might sleep. 1287 */ 1288void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1289{ 1290 struct bd_holder_disk *holder; 1291 1292 mutex_lock(&bdev->bd_mutex); 1293 1294 holder = bd_find_holder_disk(bdev, disk); 1295 1296 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1297 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1298 del_symlink(bdev->bd_part->holder_dir, 1299 &disk_to_dev(disk)->kobj); 1300 kobject_put(bdev->bd_part->holder_dir); 1301 list_del_init(&holder->list); 1302 kfree(holder); 1303 } 1304 1305 mutex_unlock(&bdev->bd_mutex); 1306} 1307EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1308#endif 1309 1310/** 1311 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1312 * @disk: struct gendisk to check 1313 * @bdev: struct bdev to adjust. 1314 * @verbose: if %true log a message about a size change if there is any 1315 * 1316 * This routine checks to see if the bdev size does not match the disk size 1317 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1318 * are freed. 1319 */ 1320static void check_disk_size_change(struct gendisk *disk, 1321 struct block_device *bdev, bool verbose) 1322{ 1323 loff_t disk_size, bdev_size; 1324 1325 spin_lock(&bdev->bd_size_lock); 1326 disk_size = (loff_t)get_capacity(disk) << 9; 1327 bdev_size = i_size_read(bdev->bd_inode); 1328 if (disk_size != bdev_size) { 1329 if (verbose) { 1330 printk(KERN_INFO 1331 "%s: detected capacity change from %lld to %lld\n", 1332 disk->disk_name, bdev_size, disk_size); 1333 } 1334 i_size_write(bdev->bd_inode, disk_size); 1335 } 1336 spin_unlock(&bdev->bd_size_lock); 1337 1338 if (bdev_size > disk_size) { 1339 if (__invalidate_device(bdev, false)) 1340 pr_warn("VFS: busy inodes on resized disk %s\n", 1341 disk->disk_name); 1342 } 1343} 1344 1345/** 1346 * revalidate_disk_size - checks for disk size change and adjusts bdev size. 1347 * @disk: struct gendisk to check 1348 * @verbose: if %true log a message about a size change if there is any 1349 * 1350 * This routine checks to see if the bdev size does not match the disk size 1351 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1352 * are freed. 1353 */ 1354void revalidate_disk_size(struct gendisk *disk, bool verbose) 1355{ 1356 struct block_device *bdev; 1357 1358 /* 1359 * Hidden disks don't have associated bdev so there's no point in 1360 * revalidating them. 1361 */ 1362 if (disk->flags & GENHD_FL_HIDDEN) 1363 return; 1364 1365 bdev = bdget_disk(disk, 0); 1366 if (bdev) { 1367 check_disk_size_change(disk, bdev, verbose); 1368 bdput(bdev); 1369 } 1370} 1371EXPORT_SYMBOL(revalidate_disk_size); 1372 1373void bd_set_nr_sectors(struct block_device *bdev, sector_t sectors) 1374{ 1375 spin_lock(&bdev->bd_size_lock); 1376 i_size_write(bdev->bd_inode, (loff_t)sectors << SECTOR_SHIFT); 1377 spin_unlock(&bdev->bd_size_lock); 1378} 1379EXPORT_SYMBOL(bd_set_nr_sectors); 1380 1381static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1382 1383int bdev_disk_changed(struct block_device *bdev, bool invalidate) 1384{ 1385 struct gendisk *disk = bdev->bd_disk; 1386 int ret; 1387 1388 lockdep_assert_held(&bdev->bd_mutex); 1389 1390 clear_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1391 1392rescan: 1393 ret = blk_drop_partitions(bdev); 1394 if (ret) 1395 return ret; 1396 1397 /* 1398 * Historically we only set the capacity to zero for devices that 1399 * support partitions (independ of actually having partitions created). 1400 * Doing that is rather inconsistent, but changing it broke legacy 1401 * udisks polling for legacy ide-cdrom devices. Use the crude check 1402 * below to get the sane behavior for most device while not breaking 1403 * userspace for this particular setup. 1404 */ 1405 if (invalidate) { 1406 if (disk_part_scan_enabled(disk) || 1407 !(disk->flags & GENHD_FL_REMOVABLE)) 1408 set_capacity(disk, 0); 1409 } else { 1410 if (disk->fops->revalidate_disk) 1411 disk->fops->revalidate_disk(disk); 1412 } 1413 1414 check_disk_size_change(disk, bdev, !invalidate); 1415 1416 if (get_capacity(disk)) { 1417 ret = blk_add_partitions(disk, bdev); 1418 if (ret == -EAGAIN) 1419 goto rescan; 1420 } else if (invalidate) { 1421 /* 1422 * Tell userspace that the media / partition table may have 1423 * changed. 1424 */ 1425 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 1426 } 1427 1428 return ret; 1429} 1430/* 1431 * Only exported for for loop and dasd for historic reasons. Don't use in new 1432 * code! 1433 */ 1434EXPORT_SYMBOL_GPL(bdev_disk_changed); 1435 1436/* 1437 * bd_mutex locking: 1438 * 1439 * mutex_lock(part->bd_mutex) 1440 * mutex_lock_nested(whole->bd_mutex, 1) 1441 */ 1442 1443static int __blkdev_get(struct block_device *bdev, fmode_t mode, void *holder, 1444 int for_part) 1445{ 1446 struct block_device *whole = NULL, *claiming = NULL; 1447 struct gendisk *disk; 1448 int ret; 1449 int partno; 1450 bool first_open = false, unblock_events = true, need_restart; 1451 1452 restart: 1453 need_restart = false; 1454 ret = -ENXIO; 1455 disk = bdev_get_gendisk(bdev, &partno); 1456 if (!disk) 1457 goto out; 1458 1459 if (partno) { 1460 whole = bdget_disk(disk, 0); 1461 if (!whole) { 1462 ret = -ENOMEM; 1463 goto out_put_disk; 1464 } 1465 } 1466 1467 if (!for_part && (mode & FMODE_EXCL)) { 1468 WARN_ON_ONCE(!holder); 1469 if (whole) 1470 claiming = whole; 1471 else 1472 claiming = bdev; 1473 ret = bd_prepare_to_claim(bdev, claiming, holder); 1474 if (ret) 1475 goto out_put_whole; 1476 } 1477 1478 disk_block_events(disk); 1479 mutex_lock_nested(&bdev->bd_mutex, for_part); 1480 if (!bdev->bd_openers) { 1481 first_open = true; 1482 bdev->bd_disk = disk; 1483 bdev->bd_contains = bdev; 1484 bdev->bd_partno = partno; 1485 1486 if (!partno) { 1487 ret = -ENXIO; 1488 bdev->bd_part = disk_get_part(disk, partno); 1489 if (!bdev->bd_part) 1490 goto out_clear; 1491 1492 ret = 0; 1493 if (disk->fops->open) { 1494 ret = disk->fops->open(bdev, mode); 1495 /* 1496 * If we lost a race with 'disk' being deleted, 1497 * try again. See md.c 1498 */ 1499 if (ret == -ERESTARTSYS) 1500 need_restart = true; 1501 } 1502 1503 if (!ret) { 1504 bd_set_nr_sectors(bdev, get_capacity(disk)); 1505 set_init_blocksize(bdev); 1506 } 1507 1508 /* 1509 * If the device is invalidated, rescan partition 1510 * if open succeeded or failed with -ENOMEDIUM. 1511 * The latter is necessary to prevent ghost 1512 * partitions on a removed medium. 1513 */ 1514 if (test_bit(GD_NEED_PART_SCAN, &disk->state) && 1515 (!ret || ret == -ENOMEDIUM)) 1516 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1517 1518 if (ret) 1519 goto out_clear; 1520 } else { 1521 BUG_ON(for_part); 1522 ret = __blkdev_get(whole, mode, NULL, 1); 1523 if (ret) 1524 goto out_clear; 1525 bdev->bd_contains = bdgrab(whole); 1526 bdev->bd_part = disk_get_part(disk, partno); 1527 if (!(disk->flags & GENHD_FL_UP) || 1528 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1529 ret = -ENXIO; 1530 goto out_clear; 1531 } 1532 bd_set_nr_sectors(bdev, bdev->bd_part->nr_sects); 1533 set_init_blocksize(bdev); 1534 } 1535 1536 if (bdev->bd_bdi == &noop_backing_dev_info) 1537 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1538 } else { 1539 if (bdev->bd_contains == bdev) { 1540 ret = 0; 1541 if (bdev->bd_disk->fops->open) 1542 ret = bdev->bd_disk->fops->open(bdev, mode); 1543 /* the same as first opener case, read comment there */ 1544 if (test_bit(GD_NEED_PART_SCAN, &disk->state) && 1545 (!ret || ret == -ENOMEDIUM)) 1546 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1547 if (ret) 1548 goto out_unlock_bdev; 1549 } 1550 } 1551 bdev->bd_openers++; 1552 if (for_part) 1553 bdev->bd_part_count++; 1554 if (claiming) 1555 bd_finish_claiming(bdev, claiming, holder); 1556 1557 /* 1558 * Block event polling for write claims if requested. Any write holder 1559 * makes the write_holder state stick until all are released. This is 1560 * good enough and tracking individual writeable reference is too 1561 * fragile given the way @mode is used in blkdev_get/put(). 1562 */ 1563 if (claiming && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1564 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1565 bdev->bd_write_holder = true; 1566 unblock_events = false; 1567 } 1568 mutex_unlock(&bdev->bd_mutex); 1569 1570 if (unblock_events) 1571 disk_unblock_events(disk); 1572 1573 /* only one opener holds refs to the module and disk */ 1574 if (!first_open) 1575 put_disk_and_module(disk); 1576 if (whole) 1577 bdput(whole); 1578 return 0; 1579 1580 out_clear: 1581 disk_put_part(bdev->bd_part); 1582 bdev->bd_disk = NULL; 1583 bdev->bd_part = NULL; 1584 if (bdev != bdev->bd_contains) 1585 __blkdev_put(bdev->bd_contains, mode, 1); 1586 bdev->bd_contains = NULL; 1587 out_unlock_bdev: 1588 if (claiming) 1589 bd_abort_claiming(bdev, claiming, holder); 1590 mutex_unlock(&bdev->bd_mutex); 1591 disk_unblock_events(disk); 1592 out_put_whole: 1593 if (whole) 1594 bdput(whole); 1595 out_put_disk: 1596 put_disk_and_module(disk); 1597 if (need_restart) 1598 goto restart; 1599 out: 1600 return ret; 1601} 1602 1603/** 1604 * blkdev_get - open a block device 1605 * @bdev: block_device to open 1606 * @mode: FMODE_* mask 1607 * @holder: exclusive holder identifier 1608 * 1609 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1610 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1611 * @holder is invalid. Exclusive opens may nest for the same @holder. 1612 * 1613 * On success, the reference count of @bdev is unchanged. On failure, 1614 * @bdev is put. 1615 * 1616 * CONTEXT: 1617 * Might sleep. 1618 * 1619 * RETURNS: 1620 * 0 on success, -errno on failure. 1621 */ 1622static int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1623{ 1624 int ret, perm = 0; 1625 1626 if (mode & FMODE_READ) 1627 perm |= MAY_READ; 1628 if (mode & FMODE_WRITE) 1629 perm |= MAY_WRITE; 1630 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1631 if (ret) 1632 goto bdput; 1633 1634 ret =__blkdev_get(bdev, mode, holder, 0); 1635 if (ret) 1636 goto bdput; 1637 return 0; 1638 1639bdput: 1640 bdput(bdev); 1641 return ret; 1642} 1643 1644/** 1645 * blkdev_get_by_path - open a block device by name 1646 * @path: path to the block device to open 1647 * @mode: FMODE_* mask 1648 * @holder: exclusive holder identifier 1649 * 1650 * Open the blockdevice described by the device file at @path. @mode 1651 * and @holder are identical to blkdev_get(). 1652 * 1653 * On success, the returned block_device has reference count of one. 1654 * 1655 * CONTEXT: 1656 * Might sleep. 1657 * 1658 * RETURNS: 1659 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1660 */ 1661struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1662 void *holder) 1663{ 1664 struct block_device *bdev; 1665 int err; 1666 1667 bdev = lookup_bdev(path); 1668 if (IS_ERR(bdev)) 1669 return bdev; 1670 1671 err = blkdev_get(bdev, mode, holder); 1672 if (err) 1673 return ERR_PTR(err); 1674 1675 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1676 blkdev_put(bdev, mode); 1677 return ERR_PTR(-EACCES); 1678 } 1679 1680 return bdev; 1681} 1682EXPORT_SYMBOL(blkdev_get_by_path); 1683 1684/** 1685 * blkdev_get_by_dev - open a block device by device number 1686 * @dev: device number of block device to open 1687 * @mode: FMODE_* mask 1688 * @holder: exclusive holder identifier 1689 * 1690 * Open the blockdevice described by device number @dev. @mode and 1691 * @holder are identical to blkdev_get(). 1692 * 1693 * Use it ONLY if you really do not have anything better - i.e. when 1694 * you are behind a truly sucky interface and all you are given is a 1695 * device number. _Never_ to be used for internal purposes. If you 1696 * ever need it - reconsider your API. 1697 * 1698 * On success, the returned block_device has reference count of one. 1699 * 1700 * CONTEXT: 1701 * Might sleep. 1702 * 1703 * RETURNS: 1704 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1705 */ 1706struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1707{ 1708 struct block_device *bdev; 1709 int err; 1710 1711 bdev = bdget(dev); 1712 if (!bdev) 1713 return ERR_PTR(-ENOMEM); 1714 1715 err = blkdev_get(bdev, mode, holder); 1716 if (err) 1717 return ERR_PTR(err); 1718 1719 return bdev; 1720} 1721EXPORT_SYMBOL(blkdev_get_by_dev); 1722 1723static int blkdev_open(struct inode * inode, struct file * filp) 1724{ 1725 struct block_device *bdev; 1726 1727 /* 1728 * Preserve backwards compatibility and allow large file access 1729 * even if userspace doesn't ask for it explicitly. Some mkfs 1730 * binary needs it. We might want to drop this workaround 1731 * during an unstable branch. 1732 */ 1733 filp->f_flags |= O_LARGEFILE; 1734 1735 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC; 1736 1737 if (filp->f_flags & O_NDELAY) 1738 filp->f_mode |= FMODE_NDELAY; 1739 if (filp->f_flags & O_EXCL) 1740 filp->f_mode |= FMODE_EXCL; 1741 if ((filp->f_flags & O_ACCMODE) == 3) 1742 filp->f_mode |= FMODE_WRITE_IOCTL; 1743 1744 bdev = bd_acquire(inode); 1745 if (bdev == NULL) 1746 return -ENOMEM; 1747 1748 filp->f_mapping = bdev->bd_inode->i_mapping; 1749 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1750 1751 return blkdev_get(bdev, filp->f_mode, filp); 1752} 1753 1754static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1755{ 1756 struct gendisk *disk = bdev->bd_disk; 1757 struct block_device *victim = NULL; 1758 1759 /* 1760 * Sync early if it looks like we're the last one. If someone else 1761 * opens the block device between now and the decrement of bd_openers 1762 * then we did a sync that we didn't need to, but that's not the end 1763 * of the world and we want to avoid long (could be several minute) 1764 * syncs while holding the mutex. 1765 */ 1766 if (bdev->bd_openers == 1) 1767 sync_blockdev(bdev); 1768 1769 mutex_lock_nested(&bdev->bd_mutex, for_part); 1770 if (for_part) 1771 bdev->bd_part_count--; 1772 1773 if (!--bdev->bd_openers) { 1774 WARN_ON_ONCE(bdev->bd_holders); 1775 sync_blockdev(bdev); 1776 kill_bdev(bdev); 1777 1778 bdev_write_inode(bdev); 1779 } 1780 if (bdev->bd_contains == bdev) { 1781 if (disk->fops->release) 1782 disk->fops->release(disk, mode); 1783 } 1784 if (!bdev->bd_openers) { 1785 disk_put_part(bdev->bd_part); 1786 bdev->bd_part = NULL; 1787 bdev->bd_disk = NULL; 1788 if (bdev != bdev->bd_contains) 1789 victim = bdev->bd_contains; 1790 bdev->bd_contains = NULL; 1791 1792 put_disk_and_module(disk); 1793 } 1794 mutex_unlock(&bdev->bd_mutex); 1795 bdput(bdev); 1796 if (victim) 1797 __blkdev_put(victim, mode, 1); 1798} 1799 1800void blkdev_put(struct block_device *bdev, fmode_t mode) 1801{ 1802 mutex_lock(&bdev->bd_mutex); 1803 1804 if (mode & FMODE_EXCL) { 1805 bool bdev_free; 1806 1807 /* 1808 * Release a claim on the device. The holder fields 1809 * are protected with bdev_lock. bd_mutex is to 1810 * synchronize disk_holder unlinking. 1811 */ 1812 spin_lock(&bdev_lock); 1813 1814 WARN_ON_ONCE(--bdev->bd_holders < 0); 1815 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1816 1817 /* bd_contains might point to self, check in a separate step */ 1818 if ((bdev_free = !bdev->bd_holders)) 1819 bdev->bd_holder = NULL; 1820 if (!bdev->bd_contains->bd_holders) 1821 bdev->bd_contains->bd_holder = NULL; 1822 1823 spin_unlock(&bdev_lock); 1824 1825 /* 1826 * If this was the last claim, remove holder link and 1827 * unblock evpoll if it was a write holder. 1828 */ 1829 if (bdev_free && bdev->bd_write_holder) { 1830 disk_unblock_events(bdev->bd_disk); 1831 bdev->bd_write_holder = false; 1832 } 1833 } 1834 1835 /* 1836 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1837 * event. This is to ensure detection of media removal commanded 1838 * from userland - e.g. eject(1). 1839 */ 1840 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1841 1842 mutex_unlock(&bdev->bd_mutex); 1843 1844 __blkdev_put(bdev, mode, 0); 1845} 1846EXPORT_SYMBOL(blkdev_put); 1847 1848static int blkdev_close(struct inode * inode, struct file * filp) 1849{ 1850 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1851 blkdev_put(bdev, filp->f_mode); 1852 return 0; 1853} 1854 1855static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1856{ 1857 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1858 fmode_t mode = file->f_mode; 1859 1860 /* 1861 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1862 * to updated it before every ioctl. 1863 */ 1864 if (file->f_flags & O_NDELAY) 1865 mode |= FMODE_NDELAY; 1866 else 1867 mode &= ~FMODE_NDELAY; 1868 1869 return blkdev_ioctl(bdev, mode, cmd, arg); 1870} 1871 1872/* 1873 * Write data to the block device. Only intended for the block device itself 1874 * and the raw driver which basically is a fake block device. 1875 * 1876 * Does not take i_mutex for the write and thus is not for general purpose 1877 * use. 1878 */ 1879ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1880{ 1881 struct file *file = iocb->ki_filp; 1882 struct inode *bd_inode = bdev_file_inode(file); 1883 loff_t size = i_size_read(bd_inode); 1884 struct blk_plug plug; 1885 ssize_t ret; 1886 1887 if (bdev_read_only(I_BDEV(bd_inode))) 1888 return -EPERM; 1889 1890 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode->i_rdev)) 1891 return -ETXTBSY; 1892 1893 if (!iov_iter_count(from)) 1894 return 0; 1895 1896 if (iocb->ki_pos >= size) 1897 return -ENOSPC; 1898 1899 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1900 return -EOPNOTSUPP; 1901 1902 iov_iter_truncate(from, size - iocb->ki_pos); 1903 1904 blk_start_plug(&plug); 1905 ret = __generic_file_write_iter(iocb, from); 1906 if (ret > 0) 1907 ret = generic_write_sync(iocb, ret); 1908 blk_finish_plug(&plug); 1909 return ret; 1910} 1911EXPORT_SYMBOL_GPL(blkdev_write_iter); 1912 1913ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1914{ 1915 struct file *file = iocb->ki_filp; 1916 struct inode *bd_inode = bdev_file_inode(file); 1917 loff_t size = i_size_read(bd_inode); 1918 loff_t pos = iocb->ki_pos; 1919 1920 if (pos >= size) 1921 return 0; 1922 1923 size -= pos; 1924 iov_iter_truncate(to, size); 1925 return generic_file_read_iter(iocb, to); 1926} 1927EXPORT_SYMBOL_GPL(blkdev_read_iter); 1928 1929/* 1930 * Try to release a page associated with block device when the system 1931 * is under memory pressure. 1932 */ 1933static int blkdev_releasepage(struct page *page, gfp_t wait) 1934{ 1935 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1936 1937 if (super && super->s_op->bdev_try_to_free_page) 1938 return super->s_op->bdev_try_to_free_page(super, page, wait); 1939 1940 return try_to_free_buffers(page); 1941} 1942 1943static int blkdev_writepages(struct address_space *mapping, 1944 struct writeback_control *wbc) 1945{ 1946 return generic_writepages(mapping, wbc); 1947} 1948 1949static const struct address_space_operations def_blk_aops = { 1950 .readpage = blkdev_readpage, 1951 .readahead = blkdev_readahead, 1952 .writepage = blkdev_writepage, 1953 .write_begin = blkdev_write_begin, 1954 .write_end = blkdev_write_end, 1955 .writepages = blkdev_writepages, 1956 .releasepage = blkdev_releasepage, 1957 .direct_IO = blkdev_direct_IO, 1958 .migratepage = buffer_migrate_page_norefs, 1959 .is_dirty_writeback = buffer_check_dirty_writeback, 1960}; 1961 1962#define BLKDEV_FALLOC_FL_SUPPORTED \ 1963 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 1964 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 1965 1966static long blkdev_fallocate(struct file *file, int mode, loff_t start, 1967 loff_t len) 1968{ 1969 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1970 loff_t end = start + len - 1; 1971 loff_t isize; 1972 int error; 1973 1974 /* Fail if we don't recognize the flags. */ 1975 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 1976 return -EOPNOTSUPP; 1977 1978 /* Don't go off the end of the device. */ 1979 isize = i_size_read(bdev->bd_inode); 1980 if (start >= isize) 1981 return -EINVAL; 1982 if (end >= isize) { 1983 if (mode & FALLOC_FL_KEEP_SIZE) { 1984 len = isize - start; 1985 end = start + len - 1; 1986 } else 1987 return -EINVAL; 1988 } 1989 1990 /* 1991 * Don't allow IO that isn't aligned to logical block size. 1992 */ 1993 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 1994 return -EINVAL; 1995 1996 /* Invalidate the page cache, including dirty pages. */ 1997 error = truncate_bdev_range(bdev, file->f_mode, start, end); 1998 if (error) 1999 return error; 2000 2001 switch (mode) { 2002 case FALLOC_FL_ZERO_RANGE: 2003 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2004 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2005 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2006 break; 2007 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2008 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2009 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2010 break; 2011 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2012 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2013 GFP_KERNEL, 0); 2014 break; 2015 default: 2016 return -EOPNOTSUPP; 2017 } 2018 if (error) 2019 return error; 2020 2021 /* 2022 * Invalidate again; if someone wandered in and dirtied a page, 2023 * the caller will be given -EBUSY. The third argument is 2024 * inclusive, so the rounding here is safe. 2025 */ 2026 return invalidate_inode_pages2_range(bdev->bd_inode->i_mapping, 2027 start >> PAGE_SHIFT, 2028 end >> PAGE_SHIFT); 2029} 2030 2031const struct file_operations def_blk_fops = { 2032 .open = blkdev_open, 2033 .release = blkdev_close, 2034 .llseek = block_llseek, 2035 .read_iter = blkdev_read_iter, 2036 .write_iter = blkdev_write_iter, 2037 .iopoll = blkdev_iopoll, 2038 .mmap = generic_file_mmap, 2039 .fsync = blkdev_fsync, 2040 .unlocked_ioctl = block_ioctl, 2041#ifdef CONFIG_COMPAT 2042 .compat_ioctl = compat_blkdev_ioctl, 2043#endif 2044 .splice_read = generic_file_splice_read, 2045 .splice_write = iter_file_splice_write, 2046 .fallocate = blkdev_fallocate, 2047}; 2048 2049/** 2050 * lookup_bdev - lookup a struct block_device by name 2051 * @pathname: special file representing the block device 2052 * 2053 * Get a reference to the blockdevice at @pathname in the current 2054 * namespace if possible and return it. Return ERR_PTR(error) 2055 * otherwise. 2056 */ 2057struct block_device *lookup_bdev(const char *pathname) 2058{ 2059 struct block_device *bdev; 2060 struct inode *inode; 2061 struct path path; 2062 int error; 2063 2064 if (!pathname || !*pathname) 2065 return ERR_PTR(-EINVAL); 2066 2067 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2068 if (error) 2069 return ERR_PTR(error); 2070 2071 inode = d_backing_inode(path.dentry); 2072 error = -ENOTBLK; 2073 if (!S_ISBLK(inode->i_mode)) 2074 goto fail; 2075 error = -EACCES; 2076 if (!may_open_dev(&path)) 2077 goto fail; 2078 error = -ENOMEM; 2079 bdev = bd_acquire(inode); 2080 if (!bdev) 2081 goto fail; 2082out: 2083 path_put(&path); 2084 return bdev; 2085fail: 2086 bdev = ERR_PTR(error); 2087 goto out; 2088} 2089EXPORT_SYMBOL(lookup_bdev); 2090 2091int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2092{ 2093 struct super_block *sb = get_super(bdev); 2094 int res = 0; 2095 2096 if (sb) { 2097 /* 2098 * no need to lock the super, get_super holds the 2099 * read mutex so the filesystem cannot go away 2100 * under us (->put_super runs with the write lock 2101 * hold). 2102 */ 2103 shrink_dcache_sb(sb); 2104 res = invalidate_inodes(sb, kill_dirty); 2105 drop_super(sb); 2106 } 2107 invalidate_bdev(bdev); 2108 return res; 2109} 2110EXPORT_SYMBOL(__invalidate_device); 2111 2112void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2113{ 2114 struct inode *inode, *old_inode = NULL; 2115 2116 spin_lock(&blockdev_superblock->s_inode_list_lock); 2117 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2118 struct address_space *mapping = inode->i_mapping; 2119 struct block_device *bdev; 2120 2121 spin_lock(&inode->i_lock); 2122 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2123 mapping->nrpages == 0) { 2124 spin_unlock(&inode->i_lock); 2125 continue; 2126 } 2127 __iget(inode); 2128 spin_unlock(&inode->i_lock); 2129 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2130 /* 2131 * We hold a reference to 'inode' so it couldn't have been 2132 * removed from s_inodes list while we dropped the 2133 * s_inode_list_lock We cannot iput the inode now as we can 2134 * be holding the last reference and we cannot iput it under 2135 * s_inode_list_lock. So we keep the reference and iput it 2136 * later. 2137 */ 2138 iput(old_inode); 2139 old_inode = inode; 2140 bdev = I_BDEV(inode); 2141 2142 mutex_lock(&bdev->bd_mutex); 2143 if (bdev->bd_openers) 2144 func(bdev, arg); 2145 mutex_unlock(&bdev->bd_mutex); 2146 2147 spin_lock(&blockdev_superblock->s_inode_list_lock); 2148 } 2149 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2150 iput(old_inode); 2151}