at v5.10-rc4 621 lines 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/tracepoint-defs.h> 14 15/* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26/* The GFP flags allowed during early boot */ 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29/* Control allocation cpuset and node placement constraints */ 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32/* Do not use these with a slab allocator */ 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35void page_writeback_init(void); 36 37vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43{ 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45} 46 47void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54void force_page_cache_ra(struct readahead_control *, struct file_ra_state *, 55 unsigned long nr); 56static inline void force_page_cache_readahead(struct address_space *mapping, 57 struct file *file, pgoff_t index, unsigned long nr_to_read) 58{ 59 DEFINE_READAHEAD(ractl, file, mapping, index); 60 force_page_cache_ra(&ractl, &file->f_ra, nr_to_read); 61} 62 63struct page *find_get_entry(struct address_space *mapping, pgoff_t index); 64struct page *find_lock_entry(struct address_space *mapping, pgoff_t index); 65 66/** 67 * page_evictable - test whether a page is evictable 68 * @page: the page to test 69 * 70 * Test whether page is evictable--i.e., should be placed on active/inactive 71 * lists vs unevictable list. 72 * 73 * Reasons page might not be evictable: 74 * (1) page's mapping marked unevictable 75 * (2) page is part of an mlocked VMA 76 * 77 */ 78static inline bool page_evictable(struct page *page) 79{ 80 bool ret; 81 82 /* Prevent address_space of inode and swap cache from being freed */ 83 rcu_read_lock(); 84 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 85 rcu_read_unlock(); 86 return ret; 87} 88 89/* 90 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 91 * a count of one. 92 */ 93static inline void set_page_refcounted(struct page *page) 94{ 95 VM_BUG_ON_PAGE(PageTail(page), page); 96 VM_BUG_ON_PAGE(page_ref_count(page), page); 97 set_page_count(page, 1); 98} 99 100extern unsigned long highest_memmap_pfn; 101 102/* 103 * Maximum number of reclaim retries without progress before the OOM 104 * killer is consider the only way forward. 105 */ 106#define MAX_RECLAIM_RETRIES 16 107 108/* 109 * in mm/vmscan.c: 110 */ 111extern int isolate_lru_page(struct page *page); 112extern void putback_lru_page(struct page *page); 113 114/* 115 * in mm/rmap.c: 116 */ 117extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 118 119/* 120 * in mm/page_alloc.c 121 */ 122 123/* 124 * Structure for holding the mostly immutable allocation parameters passed 125 * between functions involved in allocations, including the alloc_pages* 126 * family of functions. 127 * 128 * nodemask, migratetype and highest_zoneidx are initialized only once in 129 * __alloc_pages_nodemask() and then never change. 130 * 131 * zonelist, preferred_zone and highest_zoneidx are set first in 132 * __alloc_pages_nodemask() for the fast path, and might be later changed 133 * in __alloc_pages_slowpath(). All other functions pass the whole structure 134 * by a const pointer. 135 */ 136struct alloc_context { 137 struct zonelist *zonelist; 138 nodemask_t *nodemask; 139 struct zoneref *preferred_zoneref; 140 int migratetype; 141 142 /* 143 * highest_zoneidx represents highest usable zone index of 144 * the allocation request. Due to the nature of the zone, 145 * memory on lower zone than the highest_zoneidx will be 146 * protected by lowmem_reserve[highest_zoneidx]. 147 * 148 * highest_zoneidx is also used by reclaim/compaction to limit 149 * the target zone since higher zone than this index cannot be 150 * usable for this allocation request. 151 */ 152 enum zone_type highest_zoneidx; 153 bool spread_dirty_pages; 154}; 155 156/* 157 * Locate the struct page for both the matching buddy in our 158 * pair (buddy1) and the combined O(n+1) page they form (page). 159 * 160 * 1) Any buddy B1 will have an order O twin B2 which satisfies 161 * the following equation: 162 * B2 = B1 ^ (1 << O) 163 * For example, if the starting buddy (buddy2) is #8 its order 164 * 1 buddy is #10: 165 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 166 * 167 * 2) Any buddy B will have an order O+1 parent P which 168 * satisfies the following equation: 169 * P = B & ~(1 << O) 170 * 171 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 172 */ 173static inline unsigned long 174__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 175{ 176 return page_pfn ^ (1 << order); 177} 178 179extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 180 unsigned long end_pfn, struct zone *zone); 181 182static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 183 unsigned long end_pfn, struct zone *zone) 184{ 185 if (zone->contiguous) 186 return pfn_to_page(start_pfn); 187 188 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 189} 190 191extern int __isolate_free_page(struct page *page, unsigned int order); 192extern void __putback_isolated_page(struct page *page, unsigned int order, 193 int mt); 194extern void memblock_free_pages(struct page *page, unsigned long pfn, 195 unsigned int order); 196extern void __free_pages_core(struct page *page, unsigned int order); 197extern void prep_compound_page(struct page *page, unsigned int order); 198extern void post_alloc_hook(struct page *page, unsigned int order, 199 gfp_t gfp_flags); 200extern int user_min_free_kbytes; 201 202extern void zone_pcp_update(struct zone *zone); 203extern void zone_pcp_reset(struct zone *zone); 204 205#if defined CONFIG_COMPACTION || defined CONFIG_CMA 206 207/* 208 * in mm/compaction.c 209 */ 210/* 211 * compact_control is used to track pages being migrated and the free pages 212 * they are being migrated to during memory compaction. The free_pfn starts 213 * at the end of a zone and migrate_pfn begins at the start. Movable pages 214 * are moved to the end of a zone during a compaction run and the run 215 * completes when free_pfn <= migrate_pfn 216 */ 217struct compact_control { 218 struct list_head freepages; /* List of free pages to migrate to */ 219 struct list_head migratepages; /* List of pages being migrated */ 220 unsigned int nr_freepages; /* Number of isolated free pages */ 221 unsigned int nr_migratepages; /* Number of pages to migrate */ 222 unsigned long free_pfn; /* isolate_freepages search base */ 223 unsigned long migrate_pfn; /* isolate_migratepages search base */ 224 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 225 struct zone *zone; 226 unsigned long total_migrate_scanned; 227 unsigned long total_free_scanned; 228 unsigned short fast_search_fail;/* failures to use free list searches */ 229 short search_order; /* order to start a fast search at */ 230 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 231 int order; /* order a direct compactor needs */ 232 int migratetype; /* migratetype of direct compactor */ 233 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 234 const int highest_zoneidx; /* zone index of a direct compactor */ 235 enum migrate_mode mode; /* Async or sync migration mode */ 236 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 237 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 238 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 239 bool direct_compaction; /* False from kcompactd or /proc/... */ 240 bool proactive_compaction; /* kcompactd proactive compaction */ 241 bool whole_zone; /* Whole zone should/has been scanned */ 242 bool contended; /* Signal lock or sched contention */ 243 bool rescan; /* Rescanning the same pageblock */ 244 bool alloc_contig; /* alloc_contig_range allocation */ 245}; 246 247/* 248 * Used in direct compaction when a page should be taken from the freelists 249 * immediately when one is created during the free path. 250 */ 251struct capture_control { 252 struct compact_control *cc; 253 struct page *page; 254}; 255 256unsigned long 257isolate_freepages_range(struct compact_control *cc, 258 unsigned long start_pfn, unsigned long end_pfn); 259unsigned long 260isolate_migratepages_range(struct compact_control *cc, 261 unsigned long low_pfn, unsigned long end_pfn); 262int find_suitable_fallback(struct free_area *area, unsigned int order, 263 int migratetype, bool only_stealable, bool *can_steal); 264 265#endif 266 267/* 268 * This function returns the order of a free page in the buddy system. In 269 * general, page_zone(page)->lock must be held by the caller to prevent the 270 * page from being allocated in parallel and returning garbage as the order. 271 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 272 * page cannot be allocated or merged in parallel. Alternatively, it must 273 * handle invalid values gracefully, and use buddy_order_unsafe() below. 274 */ 275static inline unsigned int buddy_order(struct page *page) 276{ 277 /* PageBuddy() must be checked by the caller */ 278 return page_private(page); 279} 280 281/* 282 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 283 * PageBuddy() should be checked first by the caller to minimize race window, 284 * and invalid values must be handled gracefully. 285 * 286 * READ_ONCE is used so that if the caller assigns the result into a local 287 * variable and e.g. tests it for valid range before using, the compiler cannot 288 * decide to remove the variable and inline the page_private(page) multiple 289 * times, potentially observing different values in the tests and the actual 290 * use of the result. 291 */ 292#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 293 294static inline bool is_cow_mapping(vm_flags_t flags) 295{ 296 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 297} 298 299/* 300 * These three helpers classifies VMAs for virtual memory accounting. 301 */ 302 303/* 304 * Executable code area - executable, not writable, not stack 305 */ 306static inline bool is_exec_mapping(vm_flags_t flags) 307{ 308 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 309} 310 311/* 312 * Stack area - atomatically grows in one direction 313 * 314 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 315 * do_mmap() forbids all other combinations. 316 */ 317static inline bool is_stack_mapping(vm_flags_t flags) 318{ 319 return (flags & VM_STACK) == VM_STACK; 320} 321 322/* 323 * Data area - private, writable, not stack 324 */ 325static inline bool is_data_mapping(vm_flags_t flags) 326{ 327 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 328} 329 330/* mm/util.c */ 331void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 332 struct vm_area_struct *prev); 333void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 334 335#ifdef CONFIG_MMU 336extern long populate_vma_page_range(struct vm_area_struct *vma, 337 unsigned long start, unsigned long end, int *nonblocking); 338extern void munlock_vma_pages_range(struct vm_area_struct *vma, 339 unsigned long start, unsigned long end); 340static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 341{ 342 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 343} 344 345/* 346 * must be called with vma's mmap_lock held for read or write, and page locked. 347 */ 348extern void mlock_vma_page(struct page *page); 349extern unsigned int munlock_vma_page(struct page *page); 350 351/* 352 * Clear the page's PageMlocked(). This can be useful in a situation where 353 * we want to unconditionally remove a page from the pagecache -- e.g., 354 * on truncation or freeing. 355 * 356 * It is legal to call this function for any page, mlocked or not. 357 * If called for a page that is still mapped by mlocked vmas, all we do 358 * is revert to lazy LRU behaviour -- semantics are not broken. 359 */ 360extern void clear_page_mlock(struct page *page); 361 362/* 363 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() 364 * (because that does not go through the full procedure of migration ptes): 365 * to migrate the Mlocked page flag; update statistics. 366 */ 367static inline void mlock_migrate_page(struct page *newpage, struct page *page) 368{ 369 if (TestClearPageMlocked(page)) { 370 int nr_pages = thp_nr_pages(page); 371 372 /* Holding pmd lock, no change in irq context: __mod is safe */ 373 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 374 SetPageMlocked(newpage); 375 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 376 } 377} 378 379extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 380 381/* 382 * At what user virtual address is page expected in @vma? 383 */ 384static inline unsigned long 385__vma_address(struct page *page, struct vm_area_struct *vma) 386{ 387 pgoff_t pgoff = page_to_pgoff(page); 388 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 389} 390 391static inline unsigned long 392vma_address(struct page *page, struct vm_area_struct *vma) 393{ 394 unsigned long start, end; 395 396 start = __vma_address(page, vma); 397 end = start + thp_size(page) - PAGE_SIZE; 398 399 /* page should be within @vma mapping range */ 400 VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma); 401 402 return max(start, vma->vm_start); 403} 404 405static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 406 struct file *fpin) 407{ 408 int flags = vmf->flags; 409 410 if (fpin) 411 return fpin; 412 413 /* 414 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 415 * anything, so we only pin the file and drop the mmap_lock if only 416 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 417 */ 418 if (fault_flag_allow_retry_first(flags) && 419 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 420 fpin = get_file(vmf->vma->vm_file); 421 mmap_read_unlock(vmf->vma->vm_mm); 422 } 423 return fpin; 424} 425 426#else /* !CONFIG_MMU */ 427static inline void clear_page_mlock(struct page *page) { } 428static inline void mlock_vma_page(struct page *page) { } 429static inline void mlock_migrate_page(struct page *new, struct page *old) { } 430 431#endif /* !CONFIG_MMU */ 432 433/* 434 * Return the mem_map entry representing the 'offset' subpage within 435 * the maximally aligned gigantic page 'base'. Handle any discontiguity 436 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 437 */ 438static inline struct page *mem_map_offset(struct page *base, int offset) 439{ 440 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 441 return nth_page(base, offset); 442 return base + offset; 443} 444 445/* 446 * Iterator over all subpages within the maximally aligned gigantic 447 * page 'base'. Handle any discontiguity in the mem_map. 448 */ 449static inline struct page *mem_map_next(struct page *iter, 450 struct page *base, int offset) 451{ 452 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 453 unsigned long pfn = page_to_pfn(base) + offset; 454 if (!pfn_valid(pfn)) 455 return NULL; 456 return pfn_to_page(pfn); 457 } 458 return iter + 1; 459} 460 461/* Memory initialisation debug and verification */ 462enum mminit_level { 463 MMINIT_WARNING, 464 MMINIT_VERIFY, 465 MMINIT_TRACE 466}; 467 468#ifdef CONFIG_DEBUG_MEMORY_INIT 469 470extern int mminit_loglevel; 471 472#define mminit_dprintk(level, prefix, fmt, arg...) \ 473do { \ 474 if (level < mminit_loglevel) { \ 475 if (level <= MMINIT_WARNING) \ 476 pr_warn("mminit::" prefix " " fmt, ##arg); \ 477 else \ 478 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 479 } \ 480} while (0) 481 482extern void mminit_verify_pageflags_layout(void); 483extern void mminit_verify_zonelist(void); 484#else 485 486static inline void mminit_dprintk(enum mminit_level level, 487 const char *prefix, const char *fmt, ...) 488{ 489} 490 491static inline void mminit_verify_pageflags_layout(void) 492{ 493} 494 495static inline void mminit_verify_zonelist(void) 496{ 497} 498#endif /* CONFIG_DEBUG_MEMORY_INIT */ 499 500/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 501#if defined(CONFIG_SPARSEMEM) 502extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 503 unsigned long *end_pfn); 504#else 505static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 506 unsigned long *end_pfn) 507{ 508} 509#endif /* CONFIG_SPARSEMEM */ 510 511#define NODE_RECLAIM_NOSCAN -2 512#define NODE_RECLAIM_FULL -1 513#define NODE_RECLAIM_SOME 0 514#define NODE_RECLAIM_SUCCESS 1 515 516#ifdef CONFIG_NUMA 517extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 518#else 519static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 520 unsigned int order) 521{ 522 return NODE_RECLAIM_NOSCAN; 523} 524#endif 525 526extern int hwpoison_filter(struct page *p); 527 528extern u32 hwpoison_filter_dev_major; 529extern u32 hwpoison_filter_dev_minor; 530extern u64 hwpoison_filter_flags_mask; 531extern u64 hwpoison_filter_flags_value; 532extern u64 hwpoison_filter_memcg; 533extern u32 hwpoison_filter_enable; 534 535extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 536 unsigned long, unsigned long, 537 unsigned long, unsigned long); 538 539extern void set_pageblock_order(void); 540unsigned int reclaim_clean_pages_from_list(struct zone *zone, 541 struct list_head *page_list); 542/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 543#define ALLOC_WMARK_MIN WMARK_MIN 544#define ALLOC_WMARK_LOW WMARK_LOW 545#define ALLOC_WMARK_HIGH WMARK_HIGH 546#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 547 548/* Mask to get the watermark bits */ 549#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 550 551/* 552 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 553 * cannot assume a reduced access to memory reserves is sufficient for 554 * !MMU 555 */ 556#ifdef CONFIG_MMU 557#define ALLOC_OOM 0x08 558#else 559#define ALLOC_OOM ALLOC_NO_WATERMARKS 560#endif 561 562#define ALLOC_HARDER 0x10 /* try to alloc harder */ 563#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 564#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 565#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 566#ifdef CONFIG_ZONE_DMA32 567#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 568#else 569#define ALLOC_NOFRAGMENT 0x0 570#endif 571#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 572 573enum ttu_flags; 574struct tlbflush_unmap_batch; 575 576 577/* 578 * only for MM internal work items which do not depend on 579 * any allocations or locks which might depend on allocations 580 */ 581extern struct workqueue_struct *mm_percpu_wq; 582 583#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 584void try_to_unmap_flush(void); 585void try_to_unmap_flush_dirty(void); 586void flush_tlb_batched_pending(struct mm_struct *mm); 587#else 588static inline void try_to_unmap_flush(void) 589{ 590} 591static inline void try_to_unmap_flush_dirty(void) 592{ 593} 594static inline void flush_tlb_batched_pending(struct mm_struct *mm) 595{ 596} 597#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 598 599extern const struct trace_print_flags pageflag_names[]; 600extern const struct trace_print_flags vmaflag_names[]; 601extern const struct trace_print_flags gfpflag_names[]; 602 603static inline bool is_migrate_highatomic(enum migratetype migratetype) 604{ 605 return migratetype == MIGRATE_HIGHATOMIC; 606} 607 608static inline bool is_migrate_highatomic_page(struct page *page) 609{ 610 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 611} 612 613void setup_zone_pageset(struct zone *zone); 614 615struct migration_target_control { 616 int nid; /* preferred node id */ 617 nodemask_t *nmask; 618 gfp_t gfp_mask; 619}; 620 621#endif /* __MM_INTERNAL_H */