at v5.10-rc4 869 lines 22 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_X86_PROCESSOR_H 3#define _ASM_X86_PROCESSOR_H 4 5#include <asm/processor-flags.h> 6 7/* Forward declaration, a strange C thing */ 8struct task_struct; 9struct mm_struct; 10struct io_bitmap; 11struct vm86; 12 13#include <asm/math_emu.h> 14#include <asm/segment.h> 15#include <asm/types.h> 16#include <uapi/asm/sigcontext.h> 17#include <asm/current.h> 18#include <asm/cpufeatures.h> 19#include <asm/page.h> 20#include <asm/pgtable_types.h> 21#include <asm/percpu.h> 22#include <asm/msr.h> 23#include <asm/desc_defs.h> 24#include <asm/nops.h> 25#include <asm/special_insns.h> 26#include <asm/fpu/types.h> 27#include <asm/unwind_hints.h> 28#include <asm/vmxfeatures.h> 29#include <asm/vdso/processor.h> 30 31#include <linux/personality.h> 32#include <linux/cache.h> 33#include <linux/threads.h> 34#include <linux/math64.h> 35#include <linux/err.h> 36#include <linux/irqflags.h> 37#include <linux/mem_encrypt.h> 38 39/* 40 * We handle most unaligned accesses in hardware. On the other hand 41 * unaligned DMA can be quite expensive on some Nehalem processors. 42 * 43 * Based on this we disable the IP header alignment in network drivers. 44 */ 45#define NET_IP_ALIGN 0 46 47#define HBP_NUM 4 48 49/* 50 * These alignment constraints are for performance in the vSMP case, 51 * but in the task_struct case we must also meet hardware imposed 52 * alignment requirements of the FPU state: 53 */ 54#ifdef CONFIG_X86_VSMP 55# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT) 56# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT) 57#else 58# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state) 59# define ARCH_MIN_MMSTRUCT_ALIGN 0 60#endif 61 62enum tlb_infos { 63 ENTRIES, 64 NR_INFO 65}; 66 67extern u16 __read_mostly tlb_lli_4k[NR_INFO]; 68extern u16 __read_mostly tlb_lli_2m[NR_INFO]; 69extern u16 __read_mostly tlb_lli_4m[NR_INFO]; 70extern u16 __read_mostly tlb_lld_4k[NR_INFO]; 71extern u16 __read_mostly tlb_lld_2m[NR_INFO]; 72extern u16 __read_mostly tlb_lld_4m[NR_INFO]; 73extern u16 __read_mostly tlb_lld_1g[NR_INFO]; 74 75/* 76 * CPU type and hardware bug flags. Kept separately for each CPU. 77 * Members of this structure are referenced in head_32.S, so think twice 78 * before touching them. [mj] 79 */ 80 81struct cpuinfo_x86 { 82 __u8 x86; /* CPU family */ 83 __u8 x86_vendor; /* CPU vendor */ 84 __u8 x86_model; 85 __u8 x86_stepping; 86#ifdef CONFIG_X86_64 87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */ 88 int x86_tlbsize; 89#endif 90#ifdef CONFIG_X86_VMX_FEATURE_NAMES 91 __u32 vmx_capability[NVMXINTS]; 92#endif 93 __u8 x86_virt_bits; 94 __u8 x86_phys_bits; 95 /* CPUID returned core id bits: */ 96 __u8 x86_coreid_bits; 97 __u8 cu_id; 98 /* Max extended CPUID function supported: */ 99 __u32 extended_cpuid_level; 100 /* Maximum supported CPUID level, -1=no CPUID: */ 101 int cpuid_level; 102 /* 103 * Align to size of unsigned long because the x86_capability array 104 * is passed to bitops which require the alignment. Use unnamed 105 * union to enforce the array is aligned to size of unsigned long. 106 */ 107 union { 108 __u32 x86_capability[NCAPINTS + NBUGINTS]; 109 unsigned long x86_capability_alignment; 110 }; 111 char x86_vendor_id[16]; 112 char x86_model_id[64]; 113 /* in KB - valid for CPUS which support this call: */ 114 unsigned int x86_cache_size; 115 int x86_cache_alignment; /* In bytes */ 116 /* Cache QoS architectural values, valid only on the BSP: */ 117 int x86_cache_max_rmid; /* max index */ 118 int x86_cache_occ_scale; /* scale to bytes */ 119 int x86_cache_mbm_width_offset; 120 int x86_power; 121 unsigned long loops_per_jiffy; 122 /* cpuid returned max cores value: */ 123 u16 x86_max_cores; 124 u16 apicid; 125 u16 initial_apicid; 126 u16 x86_clflush_size; 127 /* number of cores as seen by the OS: */ 128 u16 booted_cores; 129 /* Physical processor id: */ 130 u16 phys_proc_id; 131 /* Logical processor id: */ 132 u16 logical_proc_id; 133 /* Core id: */ 134 u16 cpu_core_id; 135 u16 cpu_die_id; 136 u16 logical_die_id; 137 /* Index into per_cpu list: */ 138 u16 cpu_index; 139 u32 microcode; 140 /* Address space bits used by the cache internally */ 141 u8 x86_cache_bits; 142 unsigned initialized : 1; 143} __randomize_layout; 144 145struct cpuid_regs { 146 u32 eax, ebx, ecx, edx; 147}; 148 149enum cpuid_regs_idx { 150 CPUID_EAX = 0, 151 CPUID_EBX, 152 CPUID_ECX, 153 CPUID_EDX, 154}; 155 156#define X86_VENDOR_INTEL 0 157#define X86_VENDOR_CYRIX 1 158#define X86_VENDOR_AMD 2 159#define X86_VENDOR_UMC 3 160#define X86_VENDOR_CENTAUR 5 161#define X86_VENDOR_TRANSMETA 7 162#define X86_VENDOR_NSC 8 163#define X86_VENDOR_HYGON 9 164#define X86_VENDOR_ZHAOXIN 10 165#define X86_VENDOR_NUM 11 166 167#define X86_VENDOR_UNKNOWN 0xff 168 169/* 170 * capabilities of CPUs 171 */ 172extern struct cpuinfo_x86 boot_cpu_data; 173extern struct cpuinfo_x86 new_cpu_data; 174 175extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS]; 176extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS]; 177 178#ifdef CONFIG_SMP 179DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 180#define cpu_data(cpu) per_cpu(cpu_info, cpu) 181#else 182#define cpu_info boot_cpu_data 183#define cpu_data(cpu) boot_cpu_data 184#endif 185 186extern const struct seq_operations cpuinfo_op; 187 188#define cache_line_size() (boot_cpu_data.x86_cache_alignment) 189 190extern void cpu_detect(struct cpuinfo_x86 *c); 191 192static inline unsigned long long l1tf_pfn_limit(void) 193{ 194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT); 195} 196 197extern void early_cpu_init(void); 198extern void identify_boot_cpu(void); 199extern void identify_secondary_cpu(struct cpuinfo_x86 *); 200extern void print_cpu_info(struct cpuinfo_x86 *); 201void print_cpu_msr(struct cpuinfo_x86 *); 202 203#ifdef CONFIG_X86_32 204extern int have_cpuid_p(void); 205#else 206static inline int have_cpuid_p(void) 207{ 208 return 1; 209} 210#endif 211static inline void native_cpuid(unsigned int *eax, unsigned int *ebx, 212 unsigned int *ecx, unsigned int *edx) 213{ 214 /* ecx is often an input as well as an output. */ 215 asm volatile("cpuid" 216 : "=a" (*eax), 217 "=b" (*ebx), 218 "=c" (*ecx), 219 "=d" (*edx) 220 : "0" (*eax), "2" (*ecx) 221 : "memory"); 222} 223 224#define native_cpuid_reg(reg) \ 225static inline unsigned int native_cpuid_##reg(unsigned int op) \ 226{ \ 227 unsigned int eax = op, ebx, ecx = 0, edx; \ 228 \ 229 native_cpuid(&eax, &ebx, &ecx, &edx); \ 230 \ 231 return reg; \ 232} 233 234/* 235 * Native CPUID functions returning a single datum. 236 */ 237native_cpuid_reg(eax) 238native_cpuid_reg(ebx) 239native_cpuid_reg(ecx) 240native_cpuid_reg(edx) 241 242/* 243 * Friendlier CR3 helpers. 244 */ 245static inline unsigned long read_cr3_pa(void) 246{ 247 return __read_cr3() & CR3_ADDR_MASK; 248} 249 250static inline unsigned long native_read_cr3_pa(void) 251{ 252 return __native_read_cr3() & CR3_ADDR_MASK; 253} 254 255static inline void load_cr3(pgd_t *pgdir) 256{ 257 write_cr3(__sme_pa(pgdir)); 258} 259 260/* 261 * Note that while the legacy 'TSS' name comes from 'Task State Segment', 262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode, 263 * unrelated to the task-switch mechanism: 264 */ 265#ifdef CONFIG_X86_32 266/* This is the TSS defined by the hardware. */ 267struct x86_hw_tss { 268 unsigned short back_link, __blh; 269 unsigned long sp0; 270 unsigned short ss0, __ss0h; 271 unsigned long sp1; 272 273 /* 274 * We don't use ring 1, so ss1 is a convenient scratch space in 275 * the same cacheline as sp0. We use ss1 to cache the value in 276 * MSR_IA32_SYSENTER_CS. When we context switch 277 * MSR_IA32_SYSENTER_CS, we first check if the new value being 278 * written matches ss1, and, if it's not, then we wrmsr the new 279 * value and update ss1. 280 * 281 * The only reason we context switch MSR_IA32_SYSENTER_CS is 282 * that we set it to zero in vm86 tasks to avoid corrupting the 283 * stack if we were to go through the sysenter path from vm86 284 * mode. 285 */ 286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */ 287 288 unsigned short __ss1h; 289 unsigned long sp2; 290 unsigned short ss2, __ss2h; 291 unsigned long __cr3; 292 unsigned long ip; 293 unsigned long flags; 294 unsigned long ax; 295 unsigned long cx; 296 unsigned long dx; 297 unsigned long bx; 298 unsigned long sp; 299 unsigned long bp; 300 unsigned long si; 301 unsigned long di; 302 unsigned short es, __esh; 303 unsigned short cs, __csh; 304 unsigned short ss, __ssh; 305 unsigned short ds, __dsh; 306 unsigned short fs, __fsh; 307 unsigned short gs, __gsh; 308 unsigned short ldt, __ldth; 309 unsigned short trace; 310 unsigned short io_bitmap_base; 311 312} __attribute__((packed)); 313#else 314struct x86_hw_tss { 315 u32 reserved1; 316 u64 sp0; 317 318 /* 319 * We store cpu_current_top_of_stack in sp1 so it's always accessible. 320 * Linux does not use ring 1, so sp1 is not otherwise needed. 321 */ 322 u64 sp1; 323 324 /* 325 * Since Linux does not use ring 2, the 'sp2' slot is unused by 326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash 327 * the user RSP value. 328 */ 329 u64 sp2; 330 331 u64 reserved2; 332 u64 ist[7]; 333 u32 reserved3; 334 u32 reserved4; 335 u16 reserved5; 336 u16 io_bitmap_base; 337 338} __attribute__((packed)); 339#endif 340 341/* 342 * IO-bitmap sizes: 343 */ 344#define IO_BITMAP_BITS 65536 345#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE) 346#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long)) 347 348#define IO_BITMAP_OFFSET_VALID_MAP \ 349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \ 350 offsetof(struct tss_struct, x86_tss)) 351 352#define IO_BITMAP_OFFSET_VALID_ALL \ 353 (offsetof(struct tss_struct, io_bitmap.mapall) - \ 354 offsetof(struct tss_struct, x86_tss)) 355 356#ifdef CONFIG_X86_IOPL_IOPERM 357/* 358 * sizeof(unsigned long) coming from an extra "long" at the end of the 359 * iobitmap. The limit is inclusive, i.e. the last valid byte. 360 */ 361# define __KERNEL_TSS_LIMIT \ 362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \ 363 sizeof(unsigned long) - 1) 364#else 365# define __KERNEL_TSS_LIMIT \ 366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1) 367#endif 368 369/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */ 370#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1) 371 372struct entry_stack { 373 char stack[PAGE_SIZE]; 374}; 375 376struct entry_stack_page { 377 struct entry_stack stack; 378} __aligned(PAGE_SIZE); 379 380/* 381 * All IO bitmap related data stored in the TSS: 382 */ 383struct x86_io_bitmap { 384 /* The sequence number of the last active bitmap. */ 385 u64 prev_sequence; 386 387 /* 388 * Store the dirty size of the last io bitmap offender. The next 389 * one will have to do the cleanup as the switch out to a non io 390 * bitmap user will just set x86_tss.io_bitmap_base to a value 391 * outside of the TSS limit. So for sane tasks there is no need to 392 * actually touch the io_bitmap at all. 393 */ 394 unsigned int prev_max; 395 396 /* 397 * The extra 1 is there because the CPU will access an 398 * additional byte beyond the end of the IO permission 399 * bitmap. The extra byte must be all 1 bits, and must 400 * be within the limit. 401 */ 402 unsigned long bitmap[IO_BITMAP_LONGS + 1]; 403 404 /* 405 * Special I/O bitmap to emulate IOPL(3). All bytes zero, 406 * except the additional byte at the end. 407 */ 408 unsigned long mapall[IO_BITMAP_LONGS + 1]; 409}; 410 411struct tss_struct { 412 /* 413 * The fixed hardware portion. This must not cross a page boundary 414 * at risk of violating the SDM's advice and potentially triggering 415 * errata. 416 */ 417 struct x86_hw_tss x86_tss; 418 419 struct x86_io_bitmap io_bitmap; 420} __aligned(PAGE_SIZE); 421 422DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw); 423 424/* Per CPU interrupt stacks */ 425struct irq_stack { 426 char stack[IRQ_STACK_SIZE]; 427} __aligned(IRQ_STACK_SIZE); 428 429DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr); 430 431#ifdef CONFIG_X86_32 432DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack); 433#else 434/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */ 435#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1 436#endif 437 438#ifdef CONFIG_X86_64 439struct fixed_percpu_data { 440 /* 441 * GCC hardcodes the stack canary as %gs:40. Since the 442 * irq_stack is the object at %gs:0, we reserve the bottom 443 * 48 bytes of the irq stack for the canary. 444 */ 445 char gs_base[40]; 446 unsigned long stack_canary; 447}; 448 449DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible; 450DECLARE_INIT_PER_CPU(fixed_percpu_data); 451 452static inline unsigned long cpu_kernelmode_gs_base(int cpu) 453{ 454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu); 455} 456 457DECLARE_PER_CPU(unsigned int, irq_count); 458extern asmlinkage void ignore_sysret(void); 459 460/* Save actual FS/GS selectors and bases to current->thread */ 461void current_save_fsgs(void); 462#else /* X86_64 */ 463#ifdef CONFIG_STACKPROTECTOR 464/* 465 * Make sure stack canary segment base is cached-aligned: 466 * "For Intel Atom processors, avoid non zero segment base address 467 * that is not aligned to cache line boundary at all cost." 468 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.) 469 */ 470struct stack_canary { 471 char __pad[20]; /* canary at %gs:20 */ 472 unsigned long canary; 473}; 474DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary); 475#endif 476/* Per CPU softirq stack pointer */ 477DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr); 478#endif /* X86_64 */ 479 480extern unsigned int fpu_kernel_xstate_size; 481extern unsigned int fpu_user_xstate_size; 482 483struct perf_event; 484 485struct thread_struct { 486 /* Cached TLS descriptors: */ 487 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES]; 488#ifdef CONFIG_X86_32 489 unsigned long sp0; 490#endif 491 unsigned long sp; 492#ifdef CONFIG_X86_32 493 unsigned long sysenter_cs; 494#else 495 unsigned short es; 496 unsigned short ds; 497 unsigned short fsindex; 498 unsigned short gsindex; 499#endif 500 501#ifdef CONFIG_X86_64 502 unsigned long fsbase; 503 unsigned long gsbase; 504#else 505 /* 506 * XXX: this could presumably be unsigned short. Alternatively, 507 * 32-bit kernels could be taught to use fsindex instead. 508 */ 509 unsigned long fs; 510 unsigned long gs; 511#endif 512 513 /* Save middle states of ptrace breakpoints */ 514 struct perf_event *ptrace_bps[HBP_NUM]; 515 /* Debug status used for traps, single steps, etc... */ 516 unsigned long virtual_dr6; 517 /* Keep track of the exact dr7 value set by the user */ 518 unsigned long ptrace_dr7; 519 /* Fault info: */ 520 unsigned long cr2; 521 unsigned long trap_nr; 522 unsigned long error_code; 523#ifdef CONFIG_VM86 524 /* Virtual 86 mode info */ 525 struct vm86 *vm86; 526#endif 527 /* IO permissions: */ 528 struct io_bitmap *io_bitmap; 529 530 /* 531 * IOPL. Priviledge level dependent I/O permission which is 532 * emulated via the I/O bitmap to prevent user space from disabling 533 * interrupts. 534 */ 535 unsigned long iopl_emul; 536 537 unsigned int sig_on_uaccess_err:1; 538 539 /* Floating point and extended processor state */ 540 struct fpu fpu; 541 /* 542 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at 543 * the end. 544 */ 545}; 546 547/* Whitelist the FPU state from the task_struct for hardened usercopy. */ 548static inline void arch_thread_struct_whitelist(unsigned long *offset, 549 unsigned long *size) 550{ 551 *offset = offsetof(struct thread_struct, fpu.state); 552 *size = fpu_kernel_xstate_size; 553} 554 555/* 556 * Thread-synchronous status. 557 * 558 * This is different from the flags in that nobody else 559 * ever touches our thread-synchronous status, so we don't 560 * have to worry about atomic accesses. 561 */ 562#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/ 563 564static inline void 565native_load_sp0(unsigned long sp0) 566{ 567 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0); 568} 569 570static __always_inline void native_swapgs(void) 571{ 572#ifdef CONFIG_X86_64 573 asm volatile("swapgs" ::: "memory"); 574#endif 575} 576 577static inline unsigned long current_top_of_stack(void) 578{ 579 /* 580 * We can't read directly from tss.sp0: sp0 on x86_32 is special in 581 * and around vm86 mode and sp0 on x86_64 is special because of the 582 * entry trampoline. 583 */ 584 return this_cpu_read_stable(cpu_current_top_of_stack); 585} 586 587static inline bool on_thread_stack(void) 588{ 589 return (unsigned long)(current_top_of_stack() - 590 current_stack_pointer) < THREAD_SIZE; 591} 592 593#ifdef CONFIG_PARAVIRT_XXL 594#include <asm/paravirt.h> 595#else 596#define __cpuid native_cpuid 597 598static inline void load_sp0(unsigned long sp0) 599{ 600 native_load_sp0(sp0); 601} 602 603#endif /* CONFIG_PARAVIRT_XXL */ 604 605/* Free all resources held by a thread. */ 606extern void release_thread(struct task_struct *); 607 608unsigned long get_wchan(struct task_struct *p); 609 610/* 611 * Generic CPUID function 612 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx 613 * resulting in stale register contents being returned. 614 */ 615static inline void cpuid(unsigned int op, 616 unsigned int *eax, unsigned int *ebx, 617 unsigned int *ecx, unsigned int *edx) 618{ 619 *eax = op; 620 *ecx = 0; 621 __cpuid(eax, ebx, ecx, edx); 622} 623 624/* Some CPUID calls want 'count' to be placed in ecx */ 625static inline void cpuid_count(unsigned int op, int count, 626 unsigned int *eax, unsigned int *ebx, 627 unsigned int *ecx, unsigned int *edx) 628{ 629 *eax = op; 630 *ecx = count; 631 __cpuid(eax, ebx, ecx, edx); 632} 633 634/* 635 * CPUID functions returning a single datum 636 */ 637static inline unsigned int cpuid_eax(unsigned int op) 638{ 639 unsigned int eax, ebx, ecx, edx; 640 641 cpuid(op, &eax, &ebx, &ecx, &edx); 642 643 return eax; 644} 645 646static inline unsigned int cpuid_ebx(unsigned int op) 647{ 648 unsigned int eax, ebx, ecx, edx; 649 650 cpuid(op, &eax, &ebx, &ecx, &edx); 651 652 return ebx; 653} 654 655static inline unsigned int cpuid_ecx(unsigned int op) 656{ 657 unsigned int eax, ebx, ecx, edx; 658 659 cpuid(op, &eax, &ebx, &ecx, &edx); 660 661 return ecx; 662} 663 664static inline unsigned int cpuid_edx(unsigned int op) 665{ 666 unsigned int eax, ebx, ecx, edx; 667 668 cpuid(op, &eax, &ebx, &ecx, &edx); 669 670 return edx; 671} 672 673extern void select_idle_routine(const struct cpuinfo_x86 *c); 674extern void amd_e400_c1e_apic_setup(void); 675 676extern unsigned long boot_option_idle_override; 677 678enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT, 679 IDLE_POLL}; 680 681extern void enable_sep_cpu(void); 682extern int sysenter_setup(void); 683 684 685/* Defined in head.S */ 686extern struct desc_ptr early_gdt_descr; 687 688extern void switch_to_new_gdt(int); 689extern void load_direct_gdt(int); 690extern void load_fixmap_gdt(int); 691extern void load_percpu_segment(int); 692extern void cpu_init(void); 693extern void cpu_init_exception_handling(void); 694extern void cr4_init(void); 695 696static inline unsigned long get_debugctlmsr(void) 697{ 698 unsigned long debugctlmsr = 0; 699 700#ifndef CONFIG_X86_DEBUGCTLMSR 701 if (boot_cpu_data.x86 < 6) 702 return 0; 703#endif 704 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 705 706 return debugctlmsr; 707} 708 709static inline void update_debugctlmsr(unsigned long debugctlmsr) 710{ 711#ifndef CONFIG_X86_DEBUGCTLMSR 712 if (boot_cpu_data.x86 < 6) 713 return; 714#endif 715 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr); 716} 717 718extern void set_task_blockstep(struct task_struct *task, bool on); 719 720/* Boot loader type from the setup header: */ 721extern int bootloader_type; 722extern int bootloader_version; 723 724extern char ignore_fpu_irq; 725 726#define HAVE_ARCH_PICK_MMAP_LAYOUT 1 727#define ARCH_HAS_PREFETCHW 728#define ARCH_HAS_SPINLOCK_PREFETCH 729 730#ifdef CONFIG_X86_32 731# define BASE_PREFETCH "" 732# define ARCH_HAS_PREFETCH 733#else 734# define BASE_PREFETCH "prefetcht0 %P1" 735#endif 736 737/* 738 * Prefetch instructions for Pentium III (+) and AMD Athlon (+) 739 * 740 * It's not worth to care about 3dnow prefetches for the K6 741 * because they are microcoded there and very slow. 742 */ 743static inline void prefetch(const void *x) 744{ 745 alternative_input(BASE_PREFETCH, "prefetchnta %P1", 746 X86_FEATURE_XMM, 747 "m" (*(const char *)x)); 748} 749 750/* 751 * 3dnow prefetch to get an exclusive cache line. 752 * Useful for spinlocks to avoid one state transition in the 753 * cache coherency protocol: 754 */ 755static __always_inline void prefetchw(const void *x) 756{ 757 alternative_input(BASE_PREFETCH, "prefetchw %P1", 758 X86_FEATURE_3DNOWPREFETCH, 759 "m" (*(const char *)x)); 760} 761 762static inline void spin_lock_prefetch(const void *x) 763{ 764 prefetchw(x); 765} 766 767#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \ 768 TOP_OF_KERNEL_STACK_PADDING) 769 770#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1)) 771 772#define task_pt_regs(task) \ 773({ \ 774 unsigned long __ptr = (unsigned long)task_stack_page(task); \ 775 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \ 776 ((struct pt_regs *)__ptr) - 1; \ 777}) 778 779#ifdef CONFIG_X86_32 780#define INIT_THREAD { \ 781 .sp0 = TOP_OF_INIT_STACK, \ 782 .sysenter_cs = __KERNEL_CS, \ 783} 784 785#define KSTK_ESP(task) (task_pt_regs(task)->sp) 786 787#else 788#define INIT_THREAD { } 789 790extern unsigned long KSTK_ESP(struct task_struct *task); 791 792#endif /* CONFIG_X86_64 */ 793 794extern void start_thread(struct pt_regs *regs, unsigned long new_ip, 795 unsigned long new_sp); 796 797/* 798 * This decides where the kernel will search for a free chunk of vm 799 * space during mmap's. 800 */ 801#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3)) 802#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW) 803 804#define KSTK_EIP(task) (task_pt_regs(task)->ip) 805 806/* Get/set a process' ability to use the timestamp counter instruction */ 807#define GET_TSC_CTL(adr) get_tsc_mode((adr)) 808#define SET_TSC_CTL(val) set_tsc_mode((val)) 809 810extern int get_tsc_mode(unsigned long adr); 811extern int set_tsc_mode(unsigned int val); 812 813DECLARE_PER_CPU(u64, msr_misc_features_shadow); 814 815#ifdef CONFIG_CPU_SUP_AMD 816extern u16 amd_get_nb_id(int cpu); 817extern u32 amd_get_nodes_per_socket(void); 818#else 819static inline u16 amd_get_nb_id(int cpu) { return 0; } 820static inline u32 amd_get_nodes_per_socket(void) { return 0; } 821#endif 822 823static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves) 824{ 825 uint32_t base, eax, signature[3]; 826 827 for (base = 0x40000000; base < 0x40010000; base += 0x100) { 828 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]); 829 830 if (!memcmp(sig, signature, 12) && 831 (leaves == 0 || ((eax - base) >= leaves))) 832 return base; 833 } 834 835 return 0; 836} 837 838extern unsigned long arch_align_stack(unsigned long sp); 839void free_init_pages(const char *what, unsigned long begin, unsigned long end); 840extern void free_kernel_image_pages(const char *what, void *begin, void *end); 841 842void default_idle(void); 843#ifdef CONFIG_XEN 844bool xen_set_default_idle(void); 845#else 846#define xen_set_default_idle 0 847#endif 848 849void stop_this_cpu(void *dummy); 850void microcode_check(void); 851 852enum l1tf_mitigations { 853 L1TF_MITIGATION_OFF, 854 L1TF_MITIGATION_FLUSH_NOWARN, 855 L1TF_MITIGATION_FLUSH, 856 L1TF_MITIGATION_FLUSH_NOSMT, 857 L1TF_MITIGATION_FULL, 858 L1TF_MITIGATION_FULL_FORCE 859}; 860 861extern enum l1tf_mitigations l1tf_mitigation; 862 863enum mds_mitigations { 864 MDS_MITIGATION_OFF, 865 MDS_MITIGATION_FULL, 866 MDS_MITIGATION_VMWERV, 867}; 868 869#endif /* _ASM_X86_PROCESSOR_H */