Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dsa.h>
102#include <net/dst.h>
103#include <net/dst_metadata.h>
104#include <net/pkt_sched.h>
105#include <net/pkt_cls.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/iw_handler.h>
115#include <asm/current.h>
116#include <linux/audit.h>
117#include <linux/dmaengine.h>
118#include <linux/err.h>
119#include <linux/ctype.h>
120#include <linux/if_arp.h>
121#include <linux/if_vlan.h>
122#include <linux/ip.h>
123#include <net/ip.h>
124#include <net/mpls.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/inetdevice.h>
133#include <linux/cpu_rmap.h>
134#include <linux/static_key.h>
135#include <linux/hashtable.h>
136#include <linux/vmalloc.h>
137#include <linux/if_macvlan.h>
138#include <linux/errqueue.h>
139#include <linux/hrtimer.h>
140#include <linux/netfilter_ingress.h>
141#include <linux/crash_dump.h>
142#include <linux/sctp.h>
143#include <net/udp_tunnel.h>
144#include <linux/net_namespace.h>
145#include <linux/indirect_call_wrapper.h>
146#include <net/devlink.h>
147#include <linux/pm_runtime.h>
148#include <linux/prandom.h>
149
150#include "net-sysfs.h"
151
152#define MAX_GRO_SKBS 8
153
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157static DEFINE_SPINLOCK(ptype_lock);
158static DEFINE_SPINLOCK(offload_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161static struct list_head offload_base __read_mostly;
162
163static int netif_rx_internal(struct sk_buff *skb);
164static int call_netdevice_notifiers_info(unsigned long val,
165 struct netdev_notifier_info *info);
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
169static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171/*
172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * semaphore.
174 *
175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
178 * dev_base_head list, and hold dev_base_lock for writing when they do the
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
190DEFINE_RWLOCK(dev_base_lock);
191EXPORT_SYMBOL(dev_base_lock);
192
193static DEFINE_MUTEX(ifalias_mutex);
194
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
198static unsigned int napi_gen_id = NR_CPUS;
199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201static DECLARE_RWSEM(devnet_rename_sem);
202
203static inline void dev_base_seq_inc(struct net *net)
204{
205 while (++net->dev_base_seq == 0)
206 ;
207}
208
209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210{
211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219}
220
221static inline void rps_lock(struct softnet_data *sd)
222{
223#ifdef CONFIG_RPS
224 spin_lock(&sd->input_pkt_queue.lock);
225#endif
226}
227
228static inline void rps_unlock(struct softnet_data *sd)
229{
230#ifdef CONFIG_RPS
231 spin_unlock(&sd->input_pkt_queue.lock);
232#endif
233}
234
235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237{
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247}
248
249static struct netdev_name_node *
250netdev_name_node_head_alloc(struct net_device *dev)
251{
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
259}
260
261static void netdev_name_node_free(struct netdev_name_node *name_node)
262{
263 kfree(name_node);
264}
265
266static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268{
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271}
272
273static void netdev_name_node_del(struct netdev_name_node *name_node)
274{
275 hlist_del_rcu(&name_node->hlist);
276}
277
278static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280{
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288}
289
290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292{
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300}
301
302int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303{
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318}
319EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322{
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327}
328
329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330{
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346}
347EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349static void netdev_name_node_alt_flush(struct net_device *dev)
350{
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355}
356
357/* Device list insertion */
358static void list_netdevice(struct net_device *dev)
359{
360 struct net *net = dev_net(dev);
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
366 netdev_name_node_add(net, dev->name_node);
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
369 write_unlock_bh(&dev_base_lock);
370
371 dev_base_seq_inc(net);
372}
373
374/* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
377static void unlist_netdevice(struct net_device *dev)
378{
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
383 list_del_rcu(&dev->dev_list);
384 netdev_name_node_del(dev->name_node);
385 hlist_del_rcu(&dev->index_hlist);
386 write_unlock_bh(&dev_base_lock);
387
388 dev_base_seq_inc(dev_net(dev));
389}
390
391/*
392 * Our notifier list
393 */
394
395static RAW_NOTIFIER_HEAD(netdev_chain);
396
397/*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
401
402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
403EXPORT_PER_CPU_SYMBOL(softnet_data);
404
405#ifdef CONFIG_LOCKDEP
406/*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
446
447static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456}
457
458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460{
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466}
467
468static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469{
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476}
477#else
478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480{
481}
482
483static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484{
485}
486#endif
487
488/*******************************************************************************
489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
493
494
495/*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
511static inline struct list_head *ptype_head(const struct packet_type *pt)
512{
513 if (pt->type == htons(ETH_P_ALL))
514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
515 else
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
518}
519
520/**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
528 * This call does not sleep therefore it can not
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
533void dev_add_pack(struct packet_type *pt)
534{
535 struct list_head *head = ptype_head(pt);
536
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
540}
541EXPORT_SYMBOL(dev_add_pack);
542
543/**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
550 * returns.
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
556void __dev_remove_pack(struct packet_type *pt)
557{
558 struct list_head *head = ptype_head(pt);
559 struct packet_type *pt1;
560
561 spin_lock(&ptype_lock);
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
570 pr_warn("dev_remove_pack: %p not found\n", pt);
571out:
572 spin_unlock(&ptype_lock);
573}
574EXPORT_SYMBOL(__dev_remove_pack);
575
576/**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
588void dev_remove_pack(struct packet_type *pt)
589{
590 __dev_remove_pack(pt);
591
592 synchronize_net();
593}
594EXPORT_SYMBOL(dev_remove_pack);
595
596
597/**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
609void dev_add_offload(struct packet_offload *po)
610{
611 struct packet_offload *elem;
612
613 spin_lock(&offload_lock);
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
619 spin_unlock(&offload_lock);
620}
621EXPORT_SYMBOL(dev_add_offload);
622
623/**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
636static void __dev_remove_offload(struct packet_offload *po)
637{
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
641 spin_lock(&offload_lock);
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651out:
652 spin_unlock(&offload_lock);
653}
654
655/**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
667void dev_remove_offload(struct packet_offload *po)
668{
669 __dev_remove_offload(po);
670
671 synchronize_net();
672}
673EXPORT_SYMBOL(dev_remove_offload);
674
675/******************************************************************************
676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
680
681/* Boot time configuration table */
682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684/**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
693static int netdev_boot_setup_add(char *name, struct ifmap *map)
694{
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
702 strlcpy(s[i].name, name, IFNAMSIZ);
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709}
710
711/**
712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
714 *
715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
719 */
720int netdev_boot_setup_check(struct net_device *dev)
721{
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
727 !strcmp(dev->name, s[i].name)) {
728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
732 return 1;
733 }
734 }
735 return 0;
736}
737EXPORT_SYMBOL(netdev_boot_setup_check);
738
739
740/**
741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
749 */
750unsigned long netdev_boot_base(const char *prefix, int unit)
751{
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
762 if (__dev_get_by_name(&init_net, name))
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769}
770
771/*
772 * Saves at boot time configured settings for any netdevice.
773 */
774int __init netdev_boot_setup(char *str)
775{
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796}
797
798__setup("netdev=", netdev_boot_setup);
799
800/*******************************************************************************
801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
805
806/**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
814int dev_get_iflink(const struct net_device *dev)
815{
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
819 return dev->ifindex;
820}
821EXPORT_SYMBOL(dev_get_iflink);
822
823/**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833{
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846}
847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
849/**
850 * __dev_get_by_name - find a device by its name
851 * @net: the applicable net namespace
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
861struct net_device *__dev_get_by_name(struct net *net, const char *name)
862{
863 struct netdev_name_node *node_name;
864
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
867}
868EXPORT_SYMBOL(__dev_get_by_name);
869
870/**
871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
880 */
881
882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883{
884 struct netdev_name_node *node_name;
885
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
888}
889EXPORT_SYMBOL(dev_get_by_name_rcu);
890
891/**
892 * dev_get_by_name - find a device by its name
893 * @net: the applicable net namespace
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
903struct net_device *dev_get_by_name(struct net *net, const char *name)
904{
905 struct net_device *dev;
906
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
909 if (dev)
910 dev_hold(dev);
911 rcu_read_unlock();
912 return dev;
913}
914EXPORT_SYMBOL(dev_get_by_name);
915
916/**
917 * __dev_get_by_index - find a device by its ifindex
918 * @net: the applicable net namespace
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
928struct net_device *__dev_get_by_index(struct net *net, int ifindex)
929{
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
932
933 hlist_for_each_entry(dev, head, index_hlist)
934 if (dev->ifindex == ifindex)
935 return dev;
936
937 return NULL;
938}
939EXPORT_SYMBOL(__dev_get_by_index);
940
941/**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953{
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
957 hlist_for_each_entry_rcu(dev, head, index_hlist)
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962}
963EXPORT_SYMBOL(dev_get_by_index_rcu);
964
965
966/**
967 * dev_get_by_index - find a device by its ifindex
968 * @net: the applicable net namespace
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
977struct net_device *dev_get_by_index(struct net *net, int ifindex)
978{
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 if (dev)
984 dev_hold(dev);
985 rcu_read_unlock();
986 return dev;
987}
988EXPORT_SYMBOL(dev_get_by_index);
989
990/**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001{
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_napi_id);
1014
1015/**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
1020 */
1021int netdev_get_name(struct net *net, char *name, int ifindex)
1022{
1023 struct net_device *dev;
1024 int ret;
1025
1026 down_read(&devnet_rename_sem);
1027 rcu_read_lock();
1028
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
1031 ret = -ENODEV;
1032 goto out;
1033 }
1034
1035 strcpy(name, dev->name);
1036
1037 ret = 0;
1038out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
1042}
1043
1044/**
1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
1046 * @net: the applicable net namespace
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
1053 * The returned device has not had its ref count increased
1054 * and the caller must therefore be careful about locking
1055 *
1056 */
1057
1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1060{
1061 struct net_device *dev;
1062
1063 for_each_netdev_rcu(net, dev)
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
1066 return dev;
1067
1068 return NULL;
1069}
1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1071
1072struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1073{
1074 struct net_device *dev;
1075
1076 ASSERT_RTNL();
1077 for_each_netdev(net, dev)
1078 if (dev->type == type)
1079 return dev;
1080
1081 return NULL;
1082}
1083EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
1085struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1086{
1087 struct net_device *dev, *ret = NULL;
1088
1089 rcu_read_lock();
1090 for_each_netdev_rcu(net, dev)
1091 if (dev->type == type) {
1092 dev_hold(dev);
1093 ret = dev;
1094 break;
1095 }
1096 rcu_read_unlock();
1097 return ret;
1098}
1099EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101/**
1102 * __dev_get_by_flags - find any device with given flags
1103 * @net: the applicable net namespace
1104 * @if_flags: IFF_* values
1105 * @mask: bitmask of bits in if_flags to check
1106 *
1107 * Search for any interface with the given flags. Returns NULL if a device
1108 * is not found or a pointer to the device. Must be called inside
1109 * rtnl_lock(), and result refcount is unchanged.
1110 */
1111
1112struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 unsigned short mask)
1114{
1115 struct net_device *dev, *ret;
1116
1117 ASSERT_RTNL();
1118
1119 ret = NULL;
1120 for_each_netdev(net, dev) {
1121 if (((dev->flags ^ if_flags) & mask) == 0) {
1122 ret = dev;
1123 break;
1124 }
1125 }
1126 return ret;
1127}
1128EXPORT_SYMBOL(__dev_get_by_flags);
1129
1130/**
1131 * dev_valid_name - check if name is okay for network device
1132 * @name: name string
1133 *
1134 * Network device names need to be valid file names to
1135 * allow sysfs to work. We also disallow any kind of
1136 * whitespace.
1137 */
1138bool dev_valid_name(const char *name)
1139{
1140 if (*name == '\0')
1141 return false;
1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1143 return false;
1144 if (!strcmp(name, ".") || !strcmp(name, ".."))
1145 return false;
1146
1147 while (*name) {
1148 if (*name == '/' || *name == ':' || isspace(*name))
1149 return false;
1150 name++;
1151 }
1152 return true;
1153}
1154EXPORT_SYMBOL(dev_valid_name);
1155
1156/**
1157 * __dev_alloc_name - allocate a name for a device
1158 * @net: network namespace to allocate the device name in
1159 * @name: name format string
1160 * @buf: scratch buffer and result name string
1161 *
1162 * Passed a format string - eg "lt%d" it will try and find a suitable
1163 * id. It scans list of devices to build up a free map, then chooses
1164 * the first empty slot. The caller must hold the dev_base or rtnl lock
1165 * while allocating the name and adding the device in order to avoid
1166 * duplicates.
1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168 * Returns the number of the unit assigned or a negative errno code.
1169 */
1170
1171static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1172{
1173 int i = 0;
1174 const char *p;
1175 const int max_netdevices = 8*PAGE_SIZE;
1176 unsigned long *inuse;
1177 struct net_device *d;
1178
1179 if (!dev_valid_name(name))
1180 return -EINVAL;
1181
1182 p = strchr(name, '%');
1183 if (p) {
1184 /*
1185 * Verify the string as this thing may have come from
1186 * the user. There must be either one "%d" and no other "%"
1187 * characters.
1188 */
1189 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 return -EINVAL;
1191
1192 /* Use one page as a bit array of possible slots */
1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1194 if (!inuse)
1195 return -ENOMEM;
1196
1197 for_each_netdev(net, d) {
1198 if (!sscanf(d->name, name, &i))
1199 continue;
1200 if (i < 0 || i >= max_netdevices)
1201 continue;
1202
1203 /* avoid cases where sscanf is not exact inverse of printf */
1204 snprintf(buf, IFNAMSIZ, name, i);
1205 if (!strncmp(buf, d->name, IFNAMSIZ))
1206 set_bit(i, inuse);
1207 }
1208
1209 i = find_first_zero_bit(inuse, max_netdevices);
1210 free_page((unsigned long) inuse);
1211 }
1212
1213 snprintf(buf, IFNAMSIZ, name, i);
1214 if (!__dev_get_by_name(net, buf))
1215 return i;
1216
1217 /* It is possible to run out of possible slots
1218 * when the name is long and there isn't enough space left
1219 * for the digits, or if all bits are used.
1220 */
1221 return -ENFILE;
1222}
1223
1224static int dev_alloc_name_ns(struct net *net,
1225 struct net_device *dev,
1226 const char *name)
1227{
1228 char buf[IFNAMSIZ];
1229 int ret;
1230
1231 BUG_ON(!net);
1232 ret = __dev_alloc_name(net, name, buf);
1233 if (ret >= 0)
1234 strlcpy(dev->name, buf, IFNAMSIZ);
1235 return ret;
1236}
1237
1238/**
1239 * dev_alloc_name - allocate a name for a device
1240 * @dev: device
1241 * @name: name format string
1242 *
1243 * Passed a format string - eg "lt%d" it will try and find a suitable
1244 * id. It scans list of devices to build up a free map, then chooses
1245 * the first empty slot. The caller must hold the dev_base or rtnl lock
1246 * while allocating the name and adding the device in order to avoid
1247 * duplicates.
1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249 * Returns the number of the unit assigned or a negative errno code.
1250 */
1251
1252int dev_alloc_name(struct net_device *dev, const char *name)
1253{
1254 return dev_alloc_name_ns(dev_net(dev), dev, name);
1255}
1256EXPORT_SYMBOL(dev_alloc_name);
1257
1258static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259 const char *name)
1260{
1261 BUG_ON(!net);
1262
1263 if (!dev_valid_name(name))
1264 return -EINVAL;
1265
1266 if (strchr(name, '%'))
1267 return dev_alloc_name_ns(net, dev, name);
1268 else if (__dev_get_by_name(net, name))
1269 return -EEXIST;
1270 else if (dev->name != name)
1271 strlcpy(dev->name, name, IFNAMSIZ);
1272
1273 return 0;
1274}
1275
1276/**
1277 * dev_change_name - change name of a device
1278 * @dev: device
1279 * @newname: name (or format string) must be at least IFNAMSIZ
1280 *
1281 * Change name of a device, can pass format strings "eth%d".
1282 * for wildcarding.
1283 */
1284int dev_change_name(struct net_device *dev, const char *newname)
1285{
1286 unsigned char old_assign_type;
1287 char oldname[IFNAMSIZ];
1288 int err = 0;
1289 int ret;
1290 struct net *net;
1291
1292 ASSERT_RTNL();
1293 BUG_ON(!dev_net(dev));
1294
1295 net = dev_net(dev);
1296
1297 /* Some auto-enslaved devices e.g. failover slaves are
1298 * special, as userspace might rename the device after
1299 * the interface had been brought up and running since
1300 * the point kernel initiated auto-enslavement. Allow
1301 * live name change even when these slave devices are
1302 * up and running.
1303 *
1304 * Typically, users of these auto-enslaving devices
1305 * don't actually care about slave name change, as
1306 * they are supposed to operate on master interface
1307 * directly.
1308 */
1309 if (dev->flags & IFF_UP &&
1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1311 return -EBUSY;
1312
1313 down_write(&devnet_rename_sem);
1314
1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1316 up_write(&devnet_rename_sem);
1317 return 0;
1318 }
1319
1320 memcpy(oldname, dev->name, IFNAMSIZ);
1321
1322 err = dev_get_valid_name(net, dev, newname);
1323 if (err < 0) {
1324 up_write(&devnet_rename_sem);
1325 return err;
1326 }
1327
1328 if (oldname[0] && !strchr(oldname, '%'))
1329 netdev_info(dev, "renamed from %s\n", oldname);
1330
1331 old_assign_type = dev->name_assign_type;
1332 dev->name_assign_type = NET_NAME_RENAMED;
1333
1334rollback:
1335 ret = device_rename(&dev->dev, dev->name);
1336 if (ret) {
1337 memcpy(dev->name, oldname, IFNAMSIZ);
1338 dev->name_assign_type = old_assign_type;
1339 up_write(&devnet_rename_sem);
1340 return ret;
1341 }
1342
1343 up_write(&devnet_rename_sem);
1344
1345 netdev_adjacent_rename_links(dev, oldname);
1346
1347 write_lock_bh(&dev_base_lock);
1348 netdev_name_node_del(dev->name_node);
1349 write_unlock_bh(&dev_base_lock);
1350
1351 synchronize_rcu();
1352
1353 write_lock_bh(&dev_base_lock);
1354 netdev_name_node_add(net, dev->name_node);
1355 write_unlock_bh(&dev_base_lock);
1356
1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1358 ret = notifier_to_errno(ret);
1359
1360 if (ret) {
1361 /* err >= 0 after dev_alloc_name() or stores the first errno */
1362 if (err >= 0) {
1363 err = ret;
1364 down_write(&devnet_rename_sem);
1365 memcpy(dev->name, oldname, IFNAMSIZ);
1366 memcpy(oldname, newname, IFNAMSIZ);
1367 dev->name_assign_type = old_assign_type;
1368 old_assign_type = NET_NAME_RENAMED;
1369 goto rollback;
1370 } else {
1371 pr_err("%s: name change rollback failed: %d\n",
1372 dev->name, ret);
1373 }
1374 }
1375
1376 return err;
1377}
1378
1379/**
1380 * dev_set_alias - change ifalias of a device
1381 * @dev: device
1382 * @alias: name up to IFALIASZ
1383 * @len: limit of bytes to copy from info
1384 *
1385 * Set ifalias for a device,
1386 */
1387int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388{
1389 struct dev_ifalias *new_alias = NULL;
1390
1391 if (len >= IFALIASZ)
1392 return -EINVAL;
1393
1394 if (len) {
1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396 if (!new_alias)
1397 return -ENOMEM;
1398
1399 memcpy(new_alias->ifalias, alias, len);
1400 new_alias->ifalias[len] = 0;
1401 }
1402
1403 mutex_lock(&ifalias_mutex);
1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405 mutex_is_locked(&ifalias_mutex));
1406 mutex_unlock(&ifalias_mutex);
1407
1408 if (new_alias)
1409 kfree_rcu(new_alias, rcuhead);
1410
1411 return len;
1412}
1413EXPORT_SYMBOL(dev_set_alias);
1414
1415/**
1416 * dev_get_alias - get ifalias of a device
1417 * @dev: device
1418 * @name: buffer to store name of ifalias
1419 * @len: size of buffer
1420 *
1421 * get ifalias for a device. Caller must make sure dev cannot go
1422 * away, e.g. rcu read lock or own a reference count to device.
1423 */
1424int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425{
1426 const struct dev_ifalias *alias;
1427 int ret = 0;
1428
1429 rcu_read_lock();
1430 alias = rcu_dereference(dev->ifalias);
1431 if (alias)
1432 ret = snprintf(name, len, "%s", alias->ifalias);
1433 rcu_read_unlock();
1434
1435 return ret;
1436}
1437
1438/**
1439 * netdev_features_change - device changes features
1440 * @dev: device to cause notification
1441 *
1442 * Called to indicate a device has changed features.
1443 */
1444void netdev_features_change(struct net_device *dev)
1445{
1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1447}
1448EXPORT_SYMBOL(netdev_features_change);
1449
1450/**
1451 * netdev_state_change - device changes state
1452 * @dev: device to cause notification
1453 *
1454 * Called to indicate a device has changed state. This function calls
1455 * the notifier chains for netdev_chain and sends a NEWLINK message
1456 * to the routing socket.
1457 */
1458void netdev_state_change(struct net_device *dev)
1459{
1460 if (dev->flags & IFF_UP) {
1461 struct netdev_notifier_change_info change_info = {
1462 .info.dev = dev,
1463 };
1464
1465 call_netdevice_notifiers_info(NETDEV_CHANGE,
1466 &change_info.info);
1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1468 }
1469}
1470EXPORT_SYMBOL(netdev_state_change);
1471
1472/**
1473 * netdev_notify_peers - notify network peers about existence of @dev
1474 * @dev: network device
1475 *
1476 * Generate traffic such that interested network peers are aware of
1477 * @dev, such as by generating a gratuitous ARP. This may be used when
1478 * a device wants to inform the rest of the network about some sort of
1479 * reconfiguration such as a failover event or virtual machine
1480 * migration.
1481 */
1482void netdev_notify_peers(struct net_device *dev)
1483{
1484 rtnl_lock();
1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1487 rtnl_unlock();
1488}
1489EXPORT_SYMBOL(netdev_notify_peers);
1490
1491static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1492{
1493 const struct net_device_ops *ops = dev->netdev_ops;
1494 int ret;
1495
1496 ASSERT_RTNL();
1497
1498 if (!netif_device_present(dev)) {
1499 /* may be detached because parent is runtime-suspended */
1500 if (dev->dev.parent)
1501 pm_runtime_resume(dev->dev.parent);
1502 if (!netif_device_present(dev))
1503 return -ENODEV;
1504 }
1505
1506 /* Block netpoll from trying to do any rx path servicing.
1507 * If we don't do this there is a chance ndo_poll_controller
1508 * or ndo_poll may be running while we open the device
1509 */
1510 netpoll_poll_disable(dev);
1511
1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1513 ret = notifier_to_errno(ret);
1514 if (ret)
1515 return ret;
1516
1517 set_bit(__LINK_STATE_START, &dev->state);
1518
1519 if (ops->ndo_validate_addr)
1520 ret = ops->ndo_validate_addr(dev);
1521
1522 if (!ret && ops->ndo_open)
1523 ret = ops->ndo_open(dev);
1524
1525 netpoll_poll_enable(dev);
1526
1527 if (ret)
1528 clear_bit(__LINK_STATE_START, &dev->state);
1529 else {
1530 dev->flags |= IFF_UP;
1531 dev_set_rx_mode(dev);
1532 dev_activate(dev);
1533 add_device_randomness(dev->dev_addr, dev->addr_len);
1534 }
1535
1536 return ret;
1537}
1538
1539/**
1540 * dev_open - prepare an interface for use.
1541 * @dev: device to open
1542 * @extack: netlink extended ack
1543 *
1544 * Takes a device from down to up state. The device's private open
1545 * function is invoked and then the multicast lists are loaded. Finally
1546 * the device is moved into the up state and a %NETDEV_UP message is
1547 * sent to the netdev notifier chain.
1548 *
1549 * Calling this function on an active interface is a nop. On a failure
1550 * a negative errno code is returned.
1551 */
1552int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1553{
1554 int ret;
1555
1556 if (dev->flags & IFF_UP)
1557 return 0;
1558
1559 ret = __dev_open(dev, extack);
1560 if (ret < 0)
1561 return ret;
1562
1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1564 call_netdevice_notifiers(NETDEV_UP, dev);
1565
1566 return ret;
1567}
1568EXPORT_SYMBOL(dev_open);
1569
1570static void __dev_close_many(struct list_head *head)
1571{
1572 struct net_device *dev;
1573
1574 ASSERT_RTNL();
1575 might_sleep();
1576
1577 list_for_each_entry(dev, head, close_list) {
1578 /* Temporarily disable netpoll until the interface is down */
1579 netpoll_poll_disable(dev);
1580
1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1582
1583 clear_bit(__LINK_STATE_START, &dev->state);
1584
1585 /* Synchronize to scheduled poll. We cannot touch poll list, it
1586 * can be even on different cpu. So just clear netif_running().
1587 *
1588 * dev->stop() will invoke napi_disable() on all of it's
1589 * napi_struct instances on this device.
1590 */
1591 smp_mb__after_atomic(); /* Commit netif_running(). */
1592 }
1593
1594 dev_deactivate_many(head);
1595
1596 list_for_each_entry(dev, head, close_list) {
1597 const struct net_device_ops *ops = dev->netdev_ops;
1598
1599 /*
1600 * Call the device specific close. This cannot fail.
1601 * Only if device is UP
1602 *
1603 * We allow it to be called even after a DETACH hot-plug
1604 * event.
1605 */
1606 if (ops->ndo_stop)
1607 ops->ndo_stop(dev);
1608
1609 dev->flags &= ~IFF_UP;
1610 netpoll_poll_enable(dev);
1611 }
1612}
1613
1614static void __dev_close(struct net_device *dev)
1615{
1616 LIST_HEAD(single);
1617
1618 list_add(&dev->close_list, &single);
1619 __dev_close_many(&single);
1620 list_del(&single);
1621}
1622
1623void dev_close_many(struct list_head *head, bool unlink)
1624{
1625 struct net_device *dev, *tmp;
1626
1627 /* Remove the devices that don't need to be closed */
1628 list_for_each_entry_safe(dev, tmp, head, close_list)
1629 if (!(dev->flags & IFF_UP))
1630 list_del_init(&dev->close_list);
1631
1632 __dev_close_many(head);
1633
1634 list_for_each_entry_safe(dev, tmp, head, close_list) {
1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1636 call_netdevice_notifiers(NETDEV_DOWN, dev);
1637 if (unlink)
1638 list_del_init(&dev->close_list);
1639 }
1640}
1641EXPORT_SYMBOL(dev_close_many);
1642
1643/**
1644 * dev_close - shutdown an interface.
1645 * @dev: device to shutdown
1646 *
1647 * This function moves an active device into down state. A
1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650 * chain.
1651 */
1652void dev_close(struct net_device *dev)
1653{
1654 if (dev->flags & IFF_UP) {
1655 LIST_HEAD(single);
1656
1657 list_add(&dev->close_list, &single);
1658 dev_close_many(&single, true);
1659 list_del(&single);
1660 }
1661}
1662EXPORT_SYMBOL(dev_close);
1663
1664
1665/**
1666 * dev_disable_lro - disable Large Receive Offload on a device
1667 * @dev: device
1668 *
1669 * Disable Large Receive Offload (LRO) on a net device. Must be
1670 * called under RTNL. This is needed if received packets may be
1671 * forwarded to another interface.
1672 */
1673void dev_disable_lro(struct net_device *dev)
1674{
1675 struct net_device *lower_dev;
1676 struct list_head *iter;
1677
1678 dev->wanted_features &= ~NETIF_F_LRO;
1679 netdev_update_features(dev);
1680
1681 if (unlikely(dev->features & NETIF_F_LRO))
1682 netdev_WARN(dev, "failed to disable LRO!\n");
1683
1684 netdev_for_each_lower_dev(dev, lower_dev, iter)
1685 dev_disable_lro(lower_dev);
1686}
1687EXPORT_SYMBOL(dev_disable_lro);
1688
1689/**
1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691 * @dev: device
1692 *
1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1694 * called under RTNL. This is needed if Generic XDP is installed on
1695 * the device.
1696 */
1697static void dev_disable_gro_hw(struct net_device *dev)
1698{
1699 dev->wanted_features &= ~NETIF_F_GRO_HW;
1700 netdev_update_features(dev);
1701
1702 if (unlikely(dev->features & NETIF_F_GRO_HW))
1703 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704}
1705
1706const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707{
1708#define N(val) \
1709 case NETDEV_##val: \
1710 return "NETDEV_" __stringify(val);
1711 switch (cmd) {
1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1721 N(PRE_CHANGEADDR)
1722 }
1723#undef N
1724 return "UNKNOWN_NETDEV_EVENT";
1725}
1726EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727
1728static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729 struct net_device *dev)
1730{
1731 struct netdev_notifier_info info = {
1732 .dev = dev,
1733 };
1734
1735 return nb->notifier_call(nb, val, &info);
1736}
1737
1738static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739 struct net_device *dev)
1740{
1741 int err;
1742
1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744 err = notifier_to_errno(err);
1745 if (err)
1746 return err;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return 0;
1750
1751 call_netdevice_notifier(nb, NETDEV_UP, dev);
1752 return 0;
1753}
1754
1755static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756 struct net_device *dev)
1757{
1758 if (dev->flags & IFF_UP) {
1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760 dev);
1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762 }
1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764}
1765
1766static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 struct net *net)
1768{
1769 struct net_device *dev;
1770 int err;
1771
1772 for_each_netdev(net, dev) {
1773 err = call_netdevice_register_notifiers(nb, dev);
1774 if (err)
1775 goto rollback;
1776 }
1777 return 0;
1778
1779rollback:
1780 for_each_netdev_continue_reverse(net, dev)
1781 call_netdevice_unregister_notifiers(nb, dev);
1782 return err;
1783}
1784
1785static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 struct net *net)
1787{
1788 struct net_device *dev;
1789
1790 for_each_netdev(net, dev)
1791 call_netdevice_unregister_notifiers(nb, dev);
1792}
1793
1794static int dev_boot_phase = 1;
1795
1796/**
1797 * register_netdevice_notifier - register a network notifier block
1798 * @nb: notifier
1799 *
1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1804 *
1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1808 */
1809
1810int register_netdevice_notifier(struct notifier_block *nb)
1811{
1812 struct net *net;
1813 int err;
1814
1815 /* Close race with setup_net() and cleanup_net() */
1816 down_write(&pernet_ops_rwsem);
1817 rtnl_lock();
1818 err = raw_notifier_chain_register(&netdev_chain, nb);
1819 if (err)
1820 goto unlock;
1821 if (dev_boot_phase)
1822 goto unlock;
1823 for_each_net(net) {
1824 err = call_netdevice_register_net_notifiers(nb, net);
1825 if (err)
1826 goto rollback;
1827 }
1828
1829unlock:
1830 rtnl_unlock();
1831 up_write(&pernet_ops_rwsem);
1832 return err;
1833
1834rollback:
1835 for_each_net_continue_reverse(net)
1836 call_netdevice_unregister_net_notifiers(nb, net);
1837
1838 raw_notifier_chain_unregister(&netdev_chain, nb);
1839 goto unlock;
1840}
1841EXPORT_SYMBOL(register_netdevice_notifier);
1842
1843/**
1844 * unregister_netdevice_notifier - unregister a network notifier block
1845 * @nb: notifier
1846 *
1847 * Unregister a notifier previously registered by
1848 * register_netdevice_notifier(). The notifier is unlinked into the
1849 * kernel structures and may then be reused. A negative errno code
1850 * is returned on a failure.
1851 *
1852 * After unregistering unregister and down device events are synthesized
1853 * for all devices on the device list to the removed notifier to remove
1854 * the need for special case cleanup code.
1855 */
1856
1857int unregister_netdevice_notifier(struct notifier_block *nb)
1858{
1859 struct net *net;
1860 int err;
1861
1862 /* Close race with setup_net() and cleanup_net() */
1863 down_write(&pernet_ops_rwsem);
1864 rtnl_lock();
1865 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1866 if (err)
1867 goto unlock;
1868
1869 for_each_net(net)
1870 call_netdevice_unregister_net_notifiers(nb, net);
1871
1872unlock:
1873 rtnl_unlock();
1874 up_write(&pernet_ops_rwsem);
1875 return err;
1876}
1877EXPORT_SYMBOL(unregister_netdevice_notifier);
1878
1879static int __register_netdevice_notifier_net(struct net *net,
1880 struct notifier_block *nb,
1881 bool ignore_call_fail)
1882{
1883 int err;
1884
1885 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886 if (err)
1887 return err;
1888 if (dev_boot_phase)
1889 return 0;
1890
1891 err = call_netdevice_register_net_notifiers(nb, net);
1892 if (err && !ignore_call_fail)
1893 goto chain_unregister;
1894
1895 return 0;
1896
1897chain_unregister:
1898 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899 return err;
1900}
1901
1902static int __unregister_netdevice_notifier_net(struct net *net,
1903 struct notifier_block *nb)
1904{
1905 int err;
1906
1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908 if (err)
1909 return err;
1910
1911 call_netdevice_unregister_net_notifiers(nb, net);
1912 return 0;
1913}
1914
1915/**
1916 * register_netdevice_notifier_net - register a per-netns network notifier block
1917 * @net: network namespace
1918 * @nb: notifier
1919 *
1920 * Register a notifier to be called when network device events occur.
1921 * The notifier passed is linked into the kernel structures and must
1922 * not be reused until it has been unregistered. A negative errno code
1923 * is returned on a failure.
1924 *
1925 * When registered all registration and up events are replayed
1926 * to the new notifier to allow device to have a race free
1927 * view of the network device list.
1928 */
1929
1930int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931{
1932 int err;
1933
1934 rtnl_lock();
1935 err = __register_netdevice_notifier_net(net, nb, false);
1936 rtnl_unlock();
1937 return err;
1938}
1939EXPORT_SYMBOL(register_netdevice_notifier_net);
1940
1941/**
1942 * unregister_netdevice_notifier_net - unregister a per-netns
1943 * network notifier block
1944 * @net: network namespace
1945 * @nb: notifier
1946 *
1947 * Unregister a notifier previously registered by
1948 * register_netdevice_notifier(). The notifier is unlinked into the
1949 * kernel structures and may then be reused. A negative errno code
1950 * is returned on a failure.
1951 *
1952 * After unregistering unregister and down device events are synthesized
1953 * for all devices on the device list to the removed notifier to remove
1954 * the need for special case cleanup code.
1955 */
1956
1957int unregister_netdevice_notifier_net(struct net *net,
1958 struct notifier_block *nb)
1959{
1960 int err;
1961
1962 rtnl_lock();
1963 err = __unregister_netdevice_notifier_net(net, nb);
1964 rtnl_unlock();
1965 return err;
1966}
1967EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1968
1969int register_netdevice_notifier_dev_net(struct net_device *dev,
1970 struct notifier_block *nb,
1971 struct netdev_net_notifier *nn)
1972{
1973 int err;
1974
1975 rtnl_lock();
1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 if (!err) {
1978 nn->nb = nb;
1979 list_add(&nn->list, &dev->net_notifier_list);
1980 }
1981 rtnl_unlock();
1982 return err;
1983}
1984EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985
1986int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987 struct notifier_block *nb,
1988 struct netdev_net_notifier *nn)
1989{
1990 int err;
1991
1992 rtnl_lock();
1993 list_del(&nn->list);
1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995 rtnl_unlock();
1996 return err;
1997}
1998EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999
2000static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 struct net *net)
2002{
2003 struct netdev_net_notifier *nn;
2004
2005 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007 __register_netdevice_notifier_net(net, nn->nb, true);
2008 }
2009}
2010
2011/**
2012 * call_netdevice_notifiers_info - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @info: notifier information data
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
2020static int call_netdevice_notifiers_info(unsigned long val,
2021 struct netdev_notifier_info *info)
2022{
2023 struct net *net = dev_net(info->dev);
2024 int ret;
2025
2026 ASSERT_RTNL();
2027
2028 /* Run per-netns notifier block chain first, then run the global one.
2029 * Hopefully, one day, the global one is going to be removed after
2030 * all notifier block registrators get converted to be per-netns.
2031 */
2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033 if (ret & NOTIFY_STOP_MASK)
2034 return ret;
2035 return raw_notifier_call_chain(&netdev_chain, val, info);
2036}
2037
2038static int call_netdevice_notifiers_extack(unsigned long val,
2039 struct net_device *dev,
2040 struct netlink_ext_ack *extack)
2041{
2042 struct netdev_notifier_info info = {
2043 .dev = dev,
2044 .extack = extack,
2045 };
2046
2047 return call_netdevice_notifiers_info(val, &info);
2048}
2049
2050/**
2051 * call_netdevice_notifiers - call all network notifier blocks
2052 * @val: value passed unmodified to notifier function
2053 * @dev: net_device pointer passed unmodified to notifier function
2054 *
2055 * Call all network notifier blocks. Parameters and return value
2056 * are as for raw_notifier_call_chain().
2057 */
2058
2059int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2060{
2061 return call_netdevice_notifiers_extack(val, dev, NULL);
2062}
2063EXPORT_SYMBOL(call_netdevice_notifiers);
2064
2065/**
2066 * call_netdevice_notifiers_mtu - call all network notifier blocks
2067 * @val: value passed unmodified to notifier function
2068 * @dev: net_device pointer passed unmodified to notifier function
2069 * @arg: additional u32 argument passed to the notifier function
2070 *
2071 * Call all network notifier blocks. Parameters and return value
2072 * are as for raw_notifier_call_chain().
2073 */
2074static int call_netdevice_notifiers_mtu(unsigned long val,
2075 struct net_device *dev, u32 arg)
2076{
2077 struct netdev_notifier_info_ext info = {
2078 .info.dev = dev,
2079 .ext.mtu = arg,
2080 };
2081
2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083
2084 return call_netdevice_notifiers_info(val, &info.info);
2085}
2086
2087#ifdef CONFIG_NET_INGRESS
2088static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2089
2090void net_inc_ingress_queue(void)
2091{
2092 static_branch_inc(&ingress_needed_key);
2093}
2094EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095
2096void net_dec_ingress_queue(void)
2097{
2098 static_branch_dec(&ingress_needed_key);
2099}
2100EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101#endif
2102
2103#ifdef CONFIG_NET_EGRESS
2104static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2105
2106void net_inc_egress_queue(void)
2107{
2108 static_branch_inc(&egress_needed_key);
2109}
2110EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111
2112void net_dec_egress_queue(void)
2113{
2114 static_branch_dec(&egress_needed_key);
2115}
2116EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117#endif
2118
2119static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2120#ifdef CONFIG_JUMP_LABEL
2121static atomic_t netstamp_needed_deferred;
2122static atomic_t netstamp_wanted;
2123static void netstamp_clear(struct work_struct *work)
2124{
2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2126 int wanted;
2127
2128 wanted = atomic_add_return(deferred, &netstamp_wanted);
2129 if (wanted > 0)
2130 static_branch_enable(&netstamp_needed_key);
2131 else
2132 static_branch_disable(&netstamp_needed_key);
2133}
2134static DECLARE_WORK(netstamp_work, netstamp_clear);
2135#endif
2136
2137void net_enable_timestamp(void)
2138{
2139#ifdef CONFIG_JUMP_LABEL
2140 int wanted;
2141
2142 while (1) {
2143 wanted = atomic_read(&netstamp_wanted);
2144 if (wanted <= 0)
2145 break;
2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 return;
2148 }
2149 atomic_inc(&netstamp_needed_deferred);
2150 schedule_work(&netstamp_work);
2151#else
2152 static_branch_inc(&netstamp_needed_key);
2153#endif
2154}
2155EXPORT_SYMBOL(net_enable_timestamp);
2156
2157void net_disable_timestamp(void)
2158{
2159#ifdef CONFIG_JUMP_LABEL
2160 int wanted;
2161
2162 while (1) {
2163 wanted = atomic_read(&netstamp_wanted);
2164 if (wanted <= 1)
2165 break;
2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 return;
2168 }
2169 atomic_dec(&netstamp_needed_deferred);
2170 schedule_work(&netstamp_work);
2171#else
2172 static_branch_dec(&netstamp_needed_key);
2173#endif
2174}
2175EXPORT_SYMBOL(net_disable_timestamp);
2176
2177static inline void net_timestamp_set(struct sk_buff *skb)
2178{
2179 skb->tstamp = 0;
2180 if (static_branch_unlikely(&netstamp_needed_key))
2181 __net_timestamp(skb);
2182}
2183
2184#define net_timestamp_check(COND, SKB) \
2185 if (static_branch_unlikely(&netstamp_needed_key)) { \
2186 if ((COND) && !(SKB)->tstamp) \
2187 __net_timestamp(SKB); \
2188 } \
2189
2190bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2191{
2192 unsigned int len;
2193
2194 if (!(dev->flags & IFF_UP))
2195 return false;
2196
2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198 if (skb->len <= len)
2199 return true;
2200
2201 /* if TSO is enabled, we don't care about the length as the packet
2202 * could be forwarded without being segmented before
2203 */
2204 if (skb_is_gso(skb))
2205 return true;
2206
2207 return false;
2208}
2209EXPORT_SYMBOL_GPL(is_skb_forwardable);
2210
2211int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212{
2213 int ret = ____dev_forward_skb(dev, skb);
2214
2215 if (likely(!ret)) {
2216 skb->protocol = eth_type_trans(skb, dev);
2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218 }
2219
2220 return ret;
2221}
2222EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223
2224/**
2225 * dev_forward_skb - loopback an skb to another netif
2226 *
2227 * @dev: destination network device
2228 * @skb: buffer to forward
2229 *
2230 * return values:
2231 * NET_RX_SUCCESS (no congestion)
2232 * NET_RX_DROP (packet was dropped, but freed)
2233 *
2234 * dev_forward_skb can be used for injecting an skb from the
2235 * start_xmit function of one device into the receive queue
2236 * of another device.
2237 *
2238 * The receiving device may be in another namespace, so
2239 * we have to clear all information in the skb that could
2240 * impact namespace isolation.
2241 */
2242int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243{
2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2245}
2246EXPORT_SYMBOL_GPL(dev_forward_skb);
2247
2248static inline int deliver_skb(struct sk_buff *skb,
2249 struct packet_type *pt_prev,
2250 struct net_device *orig_dev)
2251{
2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2253 return -ENOMEM;
2254 refcount_inc(&skb->users);
2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256}
2257
2258static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259 struct packet_type **pt,
2260 struct net_device *orig_dev,
2261 __be16 type,
2262 struct list_head *ptype_list)
2263{
2264 struct packet_type *ptype, *pt_prev = *pt;
2265
2266 list_for_each_entry_rcu(ptype, ptype_list, list) {
2267 if (ptype->type != type)
2268 continue;
2269 if (pt_prev)
2270 deliver_skb(skb, pt_prev, orig_dev);
2271 pt_prev = ptype;
2272 }
2273 *pt = pt_prev;
2274}
2275
2276static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277{
2278 if (!ptype->af_packet_priv || !skb->sk)
2279 return false;
2280
2281 if (ptype->id_match)
2282 return ptype->id_match(ptype, skb->sk);
2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284 return true;
2285
2286 return false;
2287}
2288
2289/**
2290 * dev_nit_active - return true if any network interface taps are in use
2291 *
2292 * @dev: network device to check for the presence of taps
2293 */
2294bool dev_nit_active(struct net_device *dev)
2295{
2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297}
2298EXPORT_SYMBOL_GPL(dev_nit_active);
2299
2300/*
2301 * Support routine. Sends outgoing frames to any network
2302 * taps currently in use.
2303 */
2304
2305void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2306{
2307 struct packet_type *ptype;
2308 struct sk_buff *skb2 = NULL;
2309 struct packet_type *pt_prev = NULL;
2310 struct list_head *ptype_list = &ptype_all;
2311
2312 rcu_read_lock();
2313again:
2314 list_for_each_entry_rcu(ptype, ptype_list, list) {
2315 if (ptype->ignore_outgoing)
2316 continue;
2317
2318 /* Never send packets back to the socket
2319 * they originated from - MvS (miquels@drinkel.ow.org)
2320 */
2321 if (skb_loop_sk(ptype, skb))
2322 continue;
2323
2324 if (pt_prev) {
2325 deliver_skb(skb2, pt_prev, skb->dev);
2326 pt_prev = ptype;
2327 continue;
2328 }
2329
2330 /* need to clone skb, done only once */
2331 skb2 = skb_clone(skb, GFP_ATOMIC);
2332 if (!skb2)
2333 goto out_unlock;
2334
2335 net_timestamp_set(skb2);
2336
2337 /* skb->nh should be correctly
2338 * set by sender, so that the second statement is
2339 * just protection against buggy protocols.
2340 */
2341 skb_reset_mac_header(skb2);
2342
2343 if (skb_network_header(skb2) < skb2->data ||
2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346 ntohs(skb2->protocol),
2347 dev->name);
2348 skb_reset_network_header(skb2);
2349 }
2350
2351 skb2->transport_header = skb2->network_header;
2352 skb2->pkt_type = PACKET_OUTGOING;
2353 pt_prev = ptype;
2354 }
2355
2356 if (ptype_list == &ptype_all) {
2357 ptype_list = &dev->ptype_all;
2358 goto again;
2359 }
2360out_unlock:
2361 if (pt_prev) {
2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364 else
2365 kfree_skb(skb2);
2366 }
2367 rcu_read_unlock();
2368}
2369EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2370
2371/**
2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2373 * @dev: Network device
2374 * @txq: number of queues available
2375 *
2376 * If real_num_tx_queues is changed the tc mappings may no longer be
2377 * valid. To resolve this verify the tc mapping remains valid and if
2378 * not NULL the mapping. With no priorities mapping to this
2379 * offset/count pair it will no longer be used. In the worst case TC0
2380 * is invalid nothing can be done so disable priority mappings. If is
2381 * expected that drivers will fix this mapping if they can before
2382 * calling netif_set_real_num_tx_queues.
2383 */
2384static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2385{
2386 int i;
2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388
2389 /* If TC0 is invalidated disable TC mapping */
2390 if (tc->offset + tc->count > txq) {
2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2392 dev->num_tc = 0;
2393 return;
2394 }
2395
2396 /* Invalidated prio to tc mappings set to TC0 */
2397 for (i = 1; i < TC_BITMASK + 1; i++) {
2398 int q = netdev_get_prio_tc_map(dev, i);
2399
2400 tc = &dev->tc_to_txq[q];
2401 if (tc->offset + tc->count > txq) {
2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403 i, q);
2404 netdev_set_prio_tc_map(dev, i, 0);
2405 }
2406 }
2407}
2408
2409int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410{
2411 if (dev->num_tc) {
2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 int i;
2414
2415 /* walk through the TCs and see if it falls into any of them */
2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417 if ((txq - tc->offset) < tc->count)
2418 return i;
2419 }
2420
2421 /* didn't find it, just return -1 to indicate no match */
2422 return -1;
2423 }
2424
2425 return 0;
2426}
2427EXPORT_SYMBOL(netdev_txq_to_tc);
2428
2429#ifdef CONFIG_XPS
2430struct static_key xps_needed __read_mostly;
2431EXPORT_SYMBOL(xps_needed);
2432struct static_key xps_rxqs_needed __read_mostly;
2433EXPORT_SYMBOL(xps_rxqs_needed);
2434static DEFINE_MUTEX(xps_map_mutex);
2435#define xmap_dereference(P) \
2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437
2438static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 int tci, u16 index)
2440{
2441 struct xps_map *map = NULL;
2442 int pos;
2443
2444 if (dev_maps)
2445 map = xmap_dereference(dev_maps->attr_map[tci]);
2446 if (!map)
2447 return false;
2448
2449 for (pos = map->len; pos--;) {
2450 if (map->queues[pos] != index)
2451 continue;
2452
2453 if (map->len > 1) {
2454 map->queues[pos] = map->queues[--map->len];
2455 break;
2456 }
2457
2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2459 kfree_rcu(map, rcu);
2460 return false;
2461 }
2462
2463 return true;
2464}
2465
2466static bool remove_xps_queue_cpu(struct net_device *dev,
2467 struct xps_dev_maps *dev_maps,
2468 int cpu, u16 offset, u16 count)
2469{
2470 int num_tc = dev->num_tc ? : 1;
2471 bool active = false;
2472 int tci;
2473
2474 for (tci = cpu * num_tc; num_tc--; tci++) {
2475 int i, j;
2476
2477 for (i = count, j = offset; i--; j++) {
2478 if (!remove_xps_queue(dev_maps, tci, j))
2479 break;
2480 }
2481
2482 active |= i < 0;
2483 }
2484
2485 return active;
2486}
2487
2488static void reset_xps_maps(struct net_device *dev,
2489 struct xps_dev_maps *dev_maps,
2490 bool is_rxqs_map)
2491{
2492 if (is_rxqs_map) {
2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495 } else {
2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497 }
2498 static_key_slow_dec_cpuslocked(&xps_needed);
2499 kfree_rcu(dev_maps, rcu);
2500}
2501
2502static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504 u16 offset, u16 count, bool is_rxqs_map)
2505{
2506 bool active = false;
2507 int i, j;
2508
2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510 j < nr_ids;)
2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 count);
2513 if (!active)
2514 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2515
2516 if (!is_rxqs_map) {
2517 for (i = offset + (count - 1); count--; i--) {
2518 netdev_queue_numa_node_write(
2519 netdev_get_tx_queue(dev, i),
2520 NUMA_NO_NODE);
2521 }
2522 }
2523}
2524
2525static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 u16 count)
2527{
2528 const unsigned long *possible_mask = NULL;
2529 struct xps_dev_maps *dev_maps;
2530 unsigned int nr_ids;
2531
2532 if (!static_key_false(&xps_needed))
2533 return;
2534
2535 cpus_read_lock();
2536 mutex_lock(&xps_map_mutex);
2537
2538 if (static_key_false(&xps_rxqs_needed)) {
2539 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540 if (dev_maps) {
2541 nr_ids = dev->num_rx_queues;
2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543 offset, count, true);
2544 }
2545 }
2546
2547 dev_maps = xmap_dereference(dev->xps_cpus_map);
2548 if (!dev_maps)
2549 goto out_no_maps;
2550
2551 if (num_possible_cpus() > 1)
2552 possible_mask = cpumask_bits(cpu_possible_mask);
2553 nr_ids = nr_cpu_ids;
2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555 false);
2556
2557out_no_maps:
2558 mutex_unlock(&xps_map_mutex);
2559 cpus_read_unlock();
2560}
2561
2562static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563{
2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565}
2566
2567static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568 u16 index, bool is_rxqs_map)
2569{
2570 struct xps_map *new_map;
2571 int alloc_len = XPS_MIN_MAP_ALLOC;
2572 int i, pos;
2573
2574 for (pos = 0; map && pos < map->len; pos++) {
2575 if (map->queues[pos] != index)
2576 continue;
2577 return map;
2578 }
2579
2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2581 if (map) {
2582 if (pos < map->alloc_len)
2583 return map;
2584
2585 alloc_len = map->alloc_len * 2;
2586 }
2587
2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589 * map
2590 */
2591 if (is_rxqs_map)
2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593 else
2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595 cpu_to_node(attr_index));
2596 if (!new_map)
2597 return NULL;
2598
2599 for (i = 0; i < pos; i++)
2600 new_map->queues[i] = map->queues[i];
2601 new_map->alloc_len = alloc_len;
2602 new_map->len = pos;
2603
2604 return new_map;
2605}
2606
2607/* Must be called under cpus_read_lock */
2608int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609 u16 index, bool is_rxqs_map)
2610{
2611 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2613 int i, j, tci, numa_node_id = -2;
2614 int maps_sz, num_tc = 1, tc = 0;
2615 struct xps_map *map, *new_map;
2616 bool active = false;
2617 unsigned int nr_ids;
2618
2619 if (dev->num_tc) {
2620 /* Do not allow XPS on subordinate device directly */
2621 num_tc = dev->num_tc;
2622 if (num_tc < 0)
2623 return -EINVAL;
2624
2625 /* If queue belongs to subordinate dev use its map */
2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627
2628 tc = netdev_txq_to_tc(dev, index);
2629 if (tc < 0)
2630 return -EINVAL;
2631 }
2632
2633 mutex_lock(&xps_map_mutex);
2634 if (is_rxqs_map) {
2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637 nr_ids = dev->num_rx_queues;
2638 } else {
2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640 if (num_possible_cpus() > 1) {
2641 online_mask = cpumask_bits(cpu_online_mask);
2642 possible_mask = cpumask_bits(cpu_possible_mask);
2643 }
2644 dev_maps = xmap_dereference(dev->xps_cpus_map);
2645 nr_ids = nr_cpu_ids;
2646 }
2647
2648 if (maps_sz < L1_CACHE_BYTES)
2649 maps_sz = L1_CACHE_BYTES;
2650
2651 /* allocate memory for queue storage */
2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 j < nr_ids;) {
2654 if (!new_dev_maps)
2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2656 if (!new_dev_maps) {
2657 mutex_unlock(&xps_map_mutex);
2658 return -ENOMEM;
2659 }
2660
2661 tci = j * num_tc + tc;
2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2663 NULL;
2664
2665 map = expand_xps_map(map, j, index, is_rxqs_map);
2666 if (!map)
2667 goto error;
2668
2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2670 }
2671
2672 if (!new_dev_maps)
2673 goto out_no_new_maps;
2674
2675 if (!dev_maps) {
2676 /* Increment static keys at most once per type */
2677 static_key_slow_inc_cpuslocked(&xps_needed);
2678 if (is_rxqs_map)
2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 }
2681
2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683 j < nr_ids;) {
2684 /* copy maps belonging to foreign traffic classes */
2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2686 /* fill in the new device map from the old device map */
2687 map = xmap_dereference(dev_maps->attr_map[tci]);
2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2689 }
2690
2691 /* We need to explicitly update tci as prevous loop
2692 * could break out early if dev_maps is NULL.
2693 */
2694 tci = j * num_tc + tc;
2695
2696 if (netif_attr_test_mask(j, mask, nr_ids) &&
2697 netif_attr_test_online(j, online_mask, nr_ids)) {
2698 /* add tx-queue to CPU/rx-queue maps */
2699 int pos = 0;
2700
2701 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2702 while ((pos < map->len) && (map->queues[pos] != index))
2703 pos++;
2704
2705 if (pos == map->len)
2706 map->queues[map->len++] = index;
2707#ifdef CONFIG_NUMA
2708 if (!is_rxqs_map) {
2709 if (numa_node_id == -2)
2710 numa_node_id = cpu_to_node(j);
2711 else if (numa_node_id != cpu_to_node(j))
2712 numa_node_id = -1;
2713 }
2714#endif
2715 } else if (dev_maps) {
2716 /* fill in the new device map from the old device map */
2717 map = xmap_dereference(dev_maps->attr_map[tci]);
2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 }
2720
2721 /* copy maps belonging to foreign traffic classes */
2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723 /* fill in the new device map from the old device map */
2724 map = xmap_dereference(dev_maps->attr_map[tci]);
2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2726 }
2727 }
2728
2729 if (is_rxqs_map)
2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731 else
2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2733
2734 /* Cleanup old maps */
2735 if (!dev_maps)
2736 goto out_no_old_maps;
2737
2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739 j < nr_ids;) {
2740 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742 map = xmap_dereference(dev_maps->attr_map[tci]);
2743 if (map && map != new_map)
2744 kfree_rcu(map, rcu);
2745 }
2746 }
2747
2748 kfree_rcu(dev_maps, rcu);
2749
2750out_no_old_maps:
2751 dev_maps = new_dev_maps;
2752 active = true;
2753
2754out_no_new_maps:
2755 if (!is_rxqs_map) {
2756 /* update Tx queue numa node */
2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758 (numa_node_id >= 0) ?
2759 numa_node_id : NUMA_NO_NODE);
2760 }
2761
2762 if (!dev_maps)
2763 goto out_no_maps;
2764
2765 /* removes tx-queue from unused CPUs/rx-queues */
2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 j < nr_ids;) {
2768 for (i = tc, tci = j * num_tc; i--; tci++)
2769 active |= remove_xps_queue(dev_maps, tci, index);
2770 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771 !netif_attr_test_online(j, online_mask, nr_ids))
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 for (i = num_tc - tc, tci++; --i; tci++)
2774 active |= remove_xps_queue(dev_maps, tci, index);
2775 }
2776
2777 /* free map if not active */
2778 if (!active)
2779 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2780
2781out_no_maps:
2782 mutex_unlock(&xps_map_mutex);
2783
2784 return 0;
2785error:
2786 /* remove any maps that we added */
2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 j < nr_ids;) {
2789 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2791 map = dev_maps ?
2792 xmap_dereference(dev_maps->attr_map[tci]) :
2793 NULL;
2794 if (new_map && new_map != map)
2795 kfree(new_map);
2796 }
2797 }
2798
2799 mutex_unlock(&xps_map_mutex);
2800
2801 kfree(new_dev_maps);
2802 return -ENOMEM;
2803}
2804EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2805
2806int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807 u16 index)
2808{
2809 int ret;
2810
2811 cpus_read_lock();
2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813 cpus_read_unlock();
2814
2815 return ret;
2816}
2817EXPORT_SYMBOL(netif_set_xps_queue);
2818
2819#endif
2820static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821{
2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823
2824 /* Unbind any subordinate channels */
2825 while (txq-- != &dev->_tx[0]) {
2826 if (txq->sb_dev)
2827 netdev_unbind_sb_channel(dev, txq->sb_dev);
2828 }
2829}
2830
2831void netdev_reset_tc(struct net_device *dev)
2832{
2833#ifdef CONFIG_XPS
2834 netif_reset_xps_queues_gt(dev, 0);
2835#endif
2836 netdev_unbind_all_sb_channels(dev);
2837
2838 /* Reset TC configuration of device */
2839 dev->num_tc = 0;
2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842}
2843EXPORT_SYMBOL(netdev_reset_tc);
2844
2845int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846{
2847 if (tc >= dev->num_tc)
2848 return -EINVAL;
2849
2850#ifdef CONFIG_XPS
2851 netif_reset_xps_queues(dev, offset, count);
2852#endif
2853 dev->tc_to_txq[tc].count = count;
2854 dev->tc_to_txq[tc].offset = offset;
2855 return 0;
2856}
2857EXPORT_SYMBOL(netdev_set_tc_queue);
2858
2859int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860{
2861 if (num_tc > TC_MAX_QUEUE)
2862 return -EINVAL;
2863
2864#ifdef CONFIG_XPS
2865 netif_reset_xps_queues_gt(dev, 0);
2866#endif
2867 netdev_unbind_all_sb_channels(dev);
2868
2869 dev->num_tc = num_tc;
2870 return 0;
2871}
2872EXPORT_SYMBOL(netdev_set_num_tc);
2873
2874void netdev_unbind_sb_channel(struct net_device *dev,
2875 struct net_device *sb_dev)
2876{
2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878
2879#ifdef CONFIG_XPS
2880 netif_reset_xps_queues_gt(sb_dev, 0);
2881#endif
2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884
2885 while (txq-- != &dev->_tx[0]) {
2886 if (txq->sb_dev == sb_dev)
2887 txq->sb_dev = NULL;
2888 }
2889}
2890EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891
2892int netdev_bind_sb_channel_queue(struct net_device *dev,
2893 struct net_device *sb_dev,
2894 u8 tc, u16 count, u16 offset)
2895{
2896 /* Make certain the sb_dev and dev are already configured */
2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 return -EINVAL;
2899
2900 /* We cannot hand out queues we don't have */
2901 if ((offset + count) > dev->real_num_tx_queues)
2902 return -EINVAL;
2903
2904 /* Record the mapping */
2905 sb_dev->tc_to_txq[tc].count = count;
2906 sb_dev->tc_to_txq[tc].offset = offset;
2907
2908 /* Provide a way for Tx queue to find the tc_to_txq map or
2909 * XPS map for itself.
2910 */
2911 while (count--)
2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913
2914 return 0;
2915}
2916EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917
2918int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919{
2920 /* Do not use a multiqueue device to represent a subordinate channel */
2921 if (netif_is_multiqueue(dev))
2922 return -ENODEV;
2923
2924 /* We allow channels 1 - 32767 to be used for subordinate channels.
2925 * Channel 0 is meant to be "native" mode and used only to represent
2926 * the main root device. We allow writing 0 to reset the device back
2927 * to normal mode after being used as a subordinate channel.
2928 */
2929 if (channel > S16_MAX)
2930 return -EINVAL;
2931
2932 dev->num_tc = -channel;
2933
2934 return 0;
2935}
2936EXPORT_SYMBOL(netdev_set_sb_channel);
2937
2938/*
2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2941 */
2942int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2943{
2944 bool disabling;
2945 int rc;
2946
2947 disabling = txq < dev->real_num_tx_queues;
2948
2949 if (txq < 1 || txq > dev->num_tx_queues)
2950 return -EINVAL;
2951
2952 if (dev->reg_state == NETREG_REGISTERED ||
2953 dev->reg_state == NETREG_UNREGISTERING) {
2954 ASSERT_RTNL();
2955
2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957 txq);
2958 if (rc)
2959 return rc;
2960
2961 if (dev->num_tc)
2962 netif_setup_tc(dev, txq);
2963
2964 dev->real_num_tx_queues = txq;
2965
2966 if (disabling) {
2967 synchronize_net();
2968 qdisc_reset_all_tx_gt(dev, txq);
2969#ifdef CONFIG_XPS
2970 netif_reset_xps_queues_gt(dev, txq);
2971#endif
2972 }
2973 } else {
2974 dev->real_num_tx_queues = txq;
2975 }
2976
2977 return 0;
2978}
2979EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2980
2981#ifdef CONFIG_SYSFS
2982/**
2983 * netif_set_real_num_rx_queues - set actual number of RX queues used
2984 * @dev: Network device
2985 * @rxq: Actual number of RX queues
2986 *
2987 * This must be called either with the rtnl_lock held or before
2988 * registration of the net device. Returns 0 on success, or a
2989 * negative error code. If called before registration, it always
2990 * succeeds.
2991 */
2992int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993{
2994 int rc;
2995
2996 if (rxq < 1 || rxq > dev->num_rx_queues)
2997 return -EINVAL;
2998
2999 if (dev->reg_state == NETREG_REGISTERED) {
3000 ASSERT_RTNL();
3001
3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003 rxq);
3004 if (rc)
3005 return rc;
3006 }
3007
3008 dev->real_num_rx_queues = rxq;
3009 return 0;
3010}
3011EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012#endif
3013
3014/**
3015 * netif_get_num_default_rss_queues - default number of RSS queues
3016 *
3017 * This routine should set an upper limit on the number of RSS queues
3018 * used by default by multiqueue devices.
3019 */
3020int netif_get_num_default_rss_queues(void)
3021{
3022 return is_kdump_kernel() ?
3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3024}
3025EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026
3027static void __netif_reschedule(struct Qdisc *q)
3028{
3029 struct softnet_data *sd;
3030 unsigned long flags;
3031
3032 local_irq_save(flags);
3033 sd = this_cpu_ptr(&softnet_data);
3034 q->next_sched = NULL;
3035 *sd->output_queue_tailp = q;
3036 sd->output_queue_tailp = &q->next_sched;
3037 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038 local_irq_restore(flags);
3039}
3040
3041void __netif_schedule(struct Qdisc *q)
3042{
3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044 __netif_reschedule(q);
3045}
3046EXPORT_SYMBOL(__netif_schedule);
3047
3048struct dev_kfree_skb_cb {
3049 enum skb_free_reason reason;
3050};
3051
3052static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3053{
3054 return (struct dev_kfree_skb_cb *)skb->cb;
3055}
3056
3057void netif_schedule_queue(struct netdev_queue *txq)
3058{
3059 rcu_read_lock();
3060 if (!netif_xmit_stopped(txq)) {
3061 struct Qdisc *q = rcu_dereference(txq->qdisc);
3062
3063 __netif_schedule(q);
3064 }
3065 rcu_read_unlock();
3066}
3067EXPORT_SYMBOL(netif_schedule_queue);
3068
3069void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070{
3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072 struct Qdisc *q;
3073
3074 rcu_read_lock();
3075 q = rcu_dereference(dev_queue->qdisc);
3076 __netif_schedule(q);
3077 rcu_read_unlock();
3078 }
3079}
3080EXPORT_SYMBOL(netif_tx_wake_queue);
3081
3082void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3083{
3084 unsigned long flags;
3085
3086 if (unlikely(!skb))
3087 return;
3088
3089 if (likely(refcount_read(&skb->users) == 1)) {
3090 smp_rmb();
3091 refcount_set(&skb->users, 0);
3092 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3093 return;
3094 }
3095 get_kfree_skb_cb(skb)->reason = reason;
3096 local_irq_save(flags);
3097 skb->next = __this_cpu_read(softnet_data.completion_queue);
3098 __this_cpu_write(softnet_data.completion_queue, skb);
3099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100 local_irq_restore(flags);
3101}
3102EXPORT_SYMBOL(__dev_kfree_skb_irq);
3103
3104void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3105{
3106 if (in_irq() || irqs_disabled())
3107 __dev_kfree_skb_irq(skb, reason);
3108 else
3109 dev_kfree_skb(skb);
3110}
3111EXPORT_SYMBOL(__dev_kfree_skb_any);
3112
3113
3114/**
3115 * netif_device_detach - mark device as removed
3116 * @dev: network device
3117 *
3118 * Mark device as removed from system and therefore no longer available.
3119 */
3120void netif_device_detach(struct net_device *dev)
3121{
3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123 netif_running(dev)) {
3124 netif_tx_stop_all_queues(dev);
3125 }
3126}
3127EXPORT_SYMBOL(netif_device_detach);
3128
3129/**
3130 * netif_device_attach - mark device as attached
3131 * @dev: network device
3132 *
3133 * Mark device as attached from system and restart if needed.
3134 */
3135void netif_device_attach(struct net_device *dev)
3136{
3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138 netif_running(dev)) {
3139 netif_tx_wake_all_queues(dev);
3140 __netdev_watchdog_up(dev);
3141 }
3142}
3143EXPORT_SYMBOL(netif_device_attach);
3144
3145/*
3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147 * to be used as a distribution range.
3148 */
3149static u16 skb_tx_hash(const struct net_device *dev,
3150 const struct net_device *sb_dev,
3151 struct sk_buff *skb)
3152{
3153 u32 hash;
3154 u16 qoffset = 0;
3155 u16 qcount = dev->real_num_tx_queues;
3156
3157 if (dev->num_tc) {
3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159
3160 qoffset = sb_dev->tc_to_txq[tc].offset;
3161 qcount = sb_dev->tc_to_txq[tc].count;
3162 }
3163
3164 if (skb_rx_queue_recorded(skb)) {
3165 hash = skb_get_rx_queue(skb);
3166 if (hash >= qoffset)
3167 hash -= qoffset;
3168 while (unlikely(hash >= qcount))
3169 hash -= qcount;
3170 return hash + qoffset;
3171 }
3172
3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174}
3175
3176static void skb_warn_bad_offload(const struct sk_buff *skb)
3177{
3178 static const netdev_features_t null_features;
3179 struct net_device *dev = skb->dev;
3180 const char *name = "";
3181
3182 if (!net_ratelimit())
3183 return;
3184
3185 if (dev) {
3186 if (dev->dev.parent)
3187 name = dev_driver_string(dev->dev.parent);
3188 else
3189 name = netdev_name(dev);
3190 }
3191 skb_dump(KERN_WARNING, skb, false);
3192 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3193 name, dev ? &dev->features : &null_features,
3194 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3195}
3196
3197/*
3198 * Invalidate hardware checksum when packet is to be mangled, and
3199 * complete checksum manually on outgoing path.
3200 */
3201int skb_checksum_help(struct sk_buff *skb)
3202{
3203 __wsum csum;
3204 int ret = 0, offset;
3205
3206 if (skb->ip_summed == CHECKSUM_COMPLETE)
3207 goto out_set_summed;
3208
3209 if (unlikely(skb_shinfo(skb)->gso_size)) {
3210 skb_warn_bad_offload(skb);
3211 return -EINVAL;
3212 }
3213
3214 /* Before computing a checksum, we should make sure no frag could
3215 * be modified by an external entity : checksum could be wrong.
3216 */
3217 if (skb_has_shared_frag(skb)) {
3218 ret = __skb_linearize(skb);
3219 if (ret)
3220 goto out;
3221 }
3222
3223 offset = skb_checksum_start_offset(skb);
3224 BUG_ON(offset >= skb_headlen(skb));
3225 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226
3227 offset += skb->csum_offset;
3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229
3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231 if (ret)
3232 goto out;
3233
3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3235out_set_summed:
3236 skb->ip_summed = CHECKSUM_NONE;
3237out:
3238 return ret;
3239}
3240EXPORT_SYMBOL(skb_checksum_help);
3241
3242int skb_crc32c_csum_help(struct sk_buff *skb)
3243{
3244 __le32 crc32c_csum;
3245 int ret = 0, offset, start;
3246
3247 if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 goto out;
3249
3250 if (unlikely(skb_is_gso(skb)))
3251 goto out;
3252
3253 /* Before computing a checksum, we should make sure no frag could
3254 * be modified by an external entity : checksum could be wrong.
3255 */
3256 if (unlikely(skb_has_shared_frag(skb))) {
3257 ret = __skb_linearize(skb);
3258 if (ret)
3259 goto out;
3260 }
3261 start = skb_checksum_start_offset(skb);
3262 offset = start + offsetof(struct sctphdr, checksum);
3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 ret = -EINVAL;
3265 goto out;
3266 }
3267
3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269 if (ret)
3270 goto out;
3271
3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273 skb->len - start, ~(__u32)0,
3274 crc32c_csum_stub));
3275 *(__le32 *)(skb->data + offset) = crc32c_csum;
3276 skb->ip_summed = CHECKSUM_NONE;
3277 skb->csum_not_inet = 0;
3278out:
3279 return ret;
3280}
3281
3282__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3283{
3284 __be16 type = skb->protocol;
3285
3286 /* Tunnel gso handlers can set protocol to ethernet. */
3287 if (type == htons(ETH_P_TEB)) {
3288 struct ethhdr *eth;
3289
3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 return 0;
3292
3293 eth = (struct ethhdr *)skb->data;
3294 type = eth->h_proto;
3295 }
3296
3297 return __vlan_get_protocol(skb, type, depth);
3298}
3299
3300/**
3301 * skb_mac_gso_segment - mac layer segmentation handler.
3302 * @skb: buffer to segment
3303 * @features: features for the output path (see dev->features)
3304 */
3305struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306 netdev_features_t features)
3307{
3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309 struct packet_offload *ptype;
3310 int vlan_depth = skb->mac_len;
3311 __be16 type = skb_network_protocol(skb, &vlan_depth);
3312
3313 if (unlikely(!type))
3314 return ERR_PTR(-EINVAL);
3315
3316 __skb_pull(skb, vlan_depth);
3317
3318 rcu_read_lock();
3319 list_for_each_entry_rcu(ptype, &offload_base, list) {
3320 if (ptype->type == type && ptype->callbacks.gso_segment) {
3321 segs = ptype->callbacks.gso_segment(skb, features);
3322 break;
3323 }
3324 }
3325 rcu_read_unlock();
3326
3327 __skb_push(skb, skb->data - skb_mac_header(skb));
3328
3329 return segs;
3330}
3331EXPORT_SYMBOL(skb_mac_gso_segment);
3332
3333
3334/* openvswitch calls this on rx path, so we need a different check.
3335 */
3336static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337{
3338 if (tx_path)
3339 return skb->ip_summed != CHECKSUM_PARTIAL &&
3340 skb->ip_summed != CHECKSUM_UNNECESSARY;
3341
3342 return skb->ip_summed == CHECKSUM_NONE;
3343}
3344
3345/**
3346 * __skb_gso_segment - Perform segmentation on skb.
3347 * @skb: buffer to segment
3348 * @features: features for the output path (see dev->features)
3349 * @tx_path: whether it is called in TX path
3350 *
3351 * This function segments the given skb and returns a list of segments.
3352 *
3353 * It may return NULL if the skb requires no segmentation. This is
3354 * only possible when GSO is used for verifying header integrity.
3355 *
3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3357 */
3358struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359 netdev_features_t features, bool tx_path)
3360{
3361 struct sk_buff *segs;
3362
3363 if (unlikely(skb_needs_check(skb, tx_path))) {
3364 int err;
3365
3366 /* We're going to init ->check field in TCP or UDP header */
3367 err = skb_cow_head(skb, 0);
3368 if (err < 0)
3369 return ERR_PTR(err);
3370 }
3371
3372 /* Only report GSO partial support if it will enable us to
3373 * support segmentation on this frame without needing additional
3374 * work.
3375 */
3376 if (features & NETIF_F_GSO_PARTIAL) {
3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378 struct net_device *dev = skb->dev;
3379
3380 partial_features |= dev->features & dev->gso_partial_features;
3381 if (!skb_gso_ok(skb, features | partial_features))
3382 features &= ~NETIF_F_GSO_PARTIAL;
3383 }
3384
3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387
3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3389 SKB_GSO_CB(skb)->encap_level = 0;
3390
3391 skb_reset_mac_header(skb);
3392 skb_reset_mac_len(skb);
3393
3394 segs = skb_mac_gso_segment(skb, features);
3395
3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3397 skb_warn_bad_offload(skb);
3398
3399 return segs;
3400}
3401EXPORT_SYMBOL(__skb_gso_segment);
3402
3403/* Take action when hardware reception checksum errors are detected. */
3404#ifdef CONFIG_BUG
3405void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406{
3407 if (net_ratelimit()) {
3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3409 skb_dump(KERN_ERR, skb, true);
3410 dump_stack();
3411 }
3412}
3413EXPORT_SYMBOL(netdev_rx_csum_fault);
3414#endif
3415
3416/* XXX: check that highmem exists at all on the given machine. */
3417static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3418{
3419#ifdef CONFIG_HIGHMEM
3420 int i;
3421
3422 if (!(dev->features & NETIF_F_HIGHDMA)) {
3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3425
3426 if (PageHighMem(skb_frag_page(frag)))
3427 return 1;
3428 }
3429 }
3430#endif
3431 return 0;
3432}
3433
3434/* If MPLS offload request, verify we are testing hardware MPLS features
3435 * instead of standard features for the netdev.
3436 */
3437#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3438static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439 netdev_features_t features,
3440 __be16 type)
3441{
3442 if (eth_p_mpls(type))
3443 features &= skb->dev->mpls_features;
3444
3445 return features;
3446}
3447#else
3448static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 netdev_features_t features,
3450 __be16 type)
3451{
3452 return features;
3453}
3454#endif
3455
3456static netdev_features_t harmonize_features(struct sk_buff *skb,
3457 netdev_features_t features)
3458{
3459 __be16 type;
3460
3461 type = skb_network_protocol(skb, NULL);
3462 features = net_mpls_features(skb, features, type);
3463
3464 if (skb->ip_summed != CHECKSUM_NONE &&
3465 !can_checksum_protocol(features, type)) {
3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3467 }
3468 if (illegal_highdma(skb->dev, skb))
3469 features &= ~NETIF_F_SG;
3470
3471 return features;
3472}
3473
3474netdev_features_t passthru_features_check(struct sk_buff *skb,
3475 struct net_device *dev,
3476 netdev_features_t features)
3477{
3478 return features;
3479}
3480EXPORT_SYMBOL(passthru_features_check);
3481
3482static netdev_features_t dflt_features_check(struct sk_buff *skb,
3483 struct net_device *dev,
3484 netdev_features_t features)
3485{
3486 return vlan_features_check(skb, features);
3487}
3488
3489static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492{
3493 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494
3495 if (gso_segs > dev->gso_max_segs)
3496 return features & ~NETIF_F_GSO_MASK;
3497
3498 /* Support for GSO partial features requires software
3499 * intervention before we can actually process the packets
3500 * so we need to strip support for any partial features now
3501 * and we can pull them back in after we have partially
3502 * segmented the frame.
3503 */
3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 features &= ~dev->gso_partial_features;
3506
3507 /* Make sure to clear the IPv4 ID mangling feature if the
3508 * IPv4 header has the potential to be fragmented.
3509 */
3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 struct iphdr *iph = skb->encapsulation ?
3512 inner_ip_hdr(skb) : ip_hdr(skb);
3513
3514 if (!(iph->frag_off & htons(IP_DF)))
3515 features &= ~NETIF_F_TSO_MANGLEID;
3516 }
3517
3518 return features;
3519}
3520
3521netdev_features_t netif_skb_features(struct sk_buff *skb)
3522{
3523 struct net_device *dev = skb->dev;
3524 netdev_features_t features = dev->features;
3525
3526 if (skb_is_gso(skb))
3527 features = gso_features_check(skb, dev, features);
3528
3529 /* If encapsulation offload request, verify we are testing
3530 * hardware encapsulation features instead of standard
3531 * features for the netdev
3532 */
3533 if (skb->encapsulation)
3534 features &= dev->hw_enc_features;
3535
3536 if (skb_vlan_tagged(skb))
3537 features = netdev_intersect_features(features,
3538 dev->vlan_features |
3539 NETIF_F_HW_VLAN_CTAG_TX |
3540 NETIF_F_HW_VLAN_STAG_TX);
3541
3542 if (dev->netdev_ops->ndo_features_check)
3543 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 features);
3545 else
3546 features &= dflt_features_check(skb, dev, features);
3547
3548 return harmonize_features(skb, features);
3549}
3550EXPORT_SYMBOL(netif_skb_features);
3551
3552static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553 struct netdev_queue *txq, bool more)
3554{
3555 unsigned int len;
3556 int rc;
3557
3558 if (dev_nit_active(dev))
3559 dev_queue_xmit_nit(skb, dev);
3560
3561 len = skb->len;
3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3563 trace_net_dev_start_xmit(skb, dev);
3564 rc = netdev_start_xmit(skb, dev, txq, more);
3565 trace_net_dev_xmit(skb, rc, dev, len);
3566
3567 return rc;
3568}
3569
3570struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571 struct netdev_queue *txq, int *ret)
3572{
3573 struct sk_buff *skb = first;
3574 int rc = NETDEV_TX_OK;
3575
3576 while (skb) {
3577 struct sk_buff *next = skb->next;
3578
3579 skb_mark_not_on_list(skb);
3580 rc = xmit_one(skb, dev, txq, next != NULL);
3581 if (unlikely(!dev_xmit_complete(rc))) {
3582 skb->next = next;
3583 goto out;
3584 }
3585
3586 skb = next;
3587 if (netif_tx_queue_stopped(txq) && skb) {
3588 rc = NETDEV_TX_BUSY;
3589 break;
3590 }
3591 }
3592
3593out:
3594 *ret = rc;
3595 return skb;
3596}
3597
3598static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599 netdev_features_t features)
3600{
3601 if (skb_vlan_tag_present(skb) &&
3602 !vlan_hw_offload_capable(features, skb->vlan_proto))
3603 skb = __vlan_hwaccel_push_inside(skb);
3604 return skb;
3605}
3606
3607int skb_csum_hwoffload_help(struct sk_buff *skb,
3608 const netdev_features_t features)
3609{
3610 if (unlikely(skb->csum_not_inet))
3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612 skb_crc32c_csum_help(skb);
3613
3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3615}
3616EXPORT_SYMBOL(skb_csum_hwoffload_help);
3617
3618static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3619{
3620 netdev_features_t features;
3621
3622 features = netif_skb_features(skb);
3623 skb = validate_xmit_vlan(skb, features);
3624 if (unlikely(!skb))
3625 goto out_null;
3626
3627 skb = sk_validate_xmit_skb(skb, dev);
3628 if (unlikely(!skb))
3629 goto out_null;
3630
3631 if (netif_needs_gso(skb, features)) {
3632 struct sk_buff *segs;
3633
3634 segs = skb_gso_segment(skb, features);
3635 if (IS_ERR(segs)) {
3636 goto out_kfree_skb;
3637 } else if (segs) {
3638 consume_skb(skb);
3639 skb = segs;
3640 }
3641 } else {
3642 if (skb_needs_linearize(skb, features) &&
3643 __skb_linearize(skb))
3644 goto out_kfree_skb;
3645
3646 /* If packet is not checksummed and device does not
3647 * support checksumming for this protocol, complete
3648 * checksumming here.
3649 */
3650 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3651 if (skb->encapsulation)
3652 skb_set_inner_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 else
3655 skb_set_transport_header(skb,
3656 skb_checksum_start_offset(skb));
3657 if (skb_csum_hwoffload_help(skb, features))
3658 goto out_kfree_skb;
3659 }
3660 }
3661
3662 skb = validate_xmit_xfrm(skb, features, again);
3663
3664 return skb;
3665
3666out_kfree_skb:
3667 kfree_skb(skb);
3668out_null:
3669 atomic_long_inc(&dev->tx_dropped);
3670 return NULL;
3671}
3672
3673struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3674{
3675 struct sk_buff *next, *head = NULL, *tail;
3676
3677 for (; skb != NULL; skb = next) {
3678 next = skb->next;
3679 skb_mark_not_on_list(skb);
3680
3681 /* in case skb wont be segmented, point to itself */
3682 skb->prev = skb;
3683
3684 skb = validate_xmit_skb(skb, dev, again);
3685 if (!skb)
3686 continue;
3687
3688 if (!head)
3689 head = skb;
3690 else
3691 tail->next = skb;
3692 /* If skb was segmented, skb->prev points to
3693 * the last segment. If not, it still contains skb.
3694 */
3695 tail = skb->prev;
3696 }
3697 return head;
3698}
3699EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3700
3701static void qdisc_pkt_len_init(struct sk_buff *skb)
3702{
3703 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
3705 qdisc_skb_cb(skb)->pkt_len = skb->len;
3706
3707 /* To get more precise estimation of bytes sent on wire,
3708 * we add to pkt_len the headers size of all segments
3709 */
3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3711 unsigned int hdr_len;
3712 u16 gso_segs = shinfo->gso_segs;
3713
3714 /* mac layer + network layer */
3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3716
3717 /* + transport layer */
3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3719 const struct tcphdr *th;
3720 struct tcphdr _tcphdr;
3721
3722 th = skb_header_pointer(skb, skb_transport_offset(skb),
3723 sizeof(_tcphdr), &_tcphdr);
3724 if (likely(th))
3725 hdr_len += __tcp_hdrlen(th);
3726 } else {
3727 struct udphdr _udphdr;
3728
3729 if (skb_header_pointer(skb, skb_transport_offset(skb),
3730 sizeof(_udphdr), &_udphdr))
3731 hdr_len += sizeof(struct udphdr);
3732 }
3733
3734 if (shinfo->gso_type & SKB_GSO_DODGY)
3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3736 shinfo->gso_size);
3737
3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3739 }
3740}
3741
3742static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3743 struct net_device *dev,
3744 struct netdev_queue *txq)
3745{
3746 spinlock_t *root_lock = qdisc_lock(q);
3747 struct sk_buff *to_free = NULL;
3748 bool contended;
3749 int rc;
3750
3751 qdisc_calculate_pkt_len(skb, q);
3752
3753 if (q->flags & TCQ_F_NOLOCK) {
3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3755 qdisc_run(q);
3756
3757 if (unlikely(to_free))
3758 kfree_skb_list(to_free);
3759 return rc;
3760 }
3761
3762 /*
3763 * Heuristic to force contended enqueues to serialize on a
3764 * separate lock before trying to get qdisc main lock.
3765 * This permits qdisc->running owner to get the lock more
3766 * often and dequeue packets faster.
3767 */
3768 contended = qdisc_is_running(q);
3769 if (unlikely(contended))
3770 spin_lock(&q->busylock);
3771
3772 spin_lock(root_lock);
3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3774 __qdisc_drop(skb, &to_free);
3775 rc = NET_XMIT_DROP;
3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3777 qdisc_run_begin(q)) {
3778 /*
3779 * This is a work-conserving queue; there are no old skbs
3780 * waiting to be sent out; and the qdisc is not running -
3781 * xmit the skb directly.
3782 */
3783
3784 qdisc_bstats_update(q, skb);
3785
3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3787 if (unlikely(contended)) {
3788 spin_unlock(&q->busylock);
3789 contended = false;
3790 }
3791 __qdisc_run(q);
3792 }
3793
3794 qdisc_run_end(q);
3795 rc = NET_XMIT_SUCCESS;
3796 } else {
3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3798 if (qdisc_run_begin(q)) {
3799 if (unlikely(contended)) {
3800 spin_unlock(&q->busylock);
3801 contended = false;
3802 }
3803 __qdisc_run(q);
3804 qdisc_run_end(q);
3805 }
3806 }
3807 spin_unlock(root_lock);
3808 if (unlikely(to_free))
3809 kfree_skb_list(to_free);
3810 if (unlikely(contended))
3811 spin_unlock(&q->busylock);
3812 return rc;
3813}
3814
3815#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3816static void skb_update_prio(struct sk_buff *skb)
3817{
3818 const struct netprio_map *map;
3819 const struct sock *sk;
3820 unsigned int prioidx;
3821
3822 if (skb->priority)
3823 return;
3824 map = rcu_dereference_bh(skb->dev->priomap);
3825 if (!map)
3826 return;
3827 sk = skb_to_full_sk(skb);
3828 if (!sk)
3829 return;
3830
3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3832
3833 if (prioidx < map->priomap_len)
3834 skb->priority = map->priomap[prioidx];
3835}
3836#else
3837#define skb_update_prio(skb)
3838#endif
3839
3840/**
3841 * dev_loopback_xmit - loop back @skb
3842 * @net: network namespace this loopback is happening in
3843 * @sk: sk needed to be a netfilter okfn
3844 * @skb: buffer to transmit
3845 */
3846int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3847{
3848 skb_reset_mac_header(skb);
3849 __skb_pull(skb, skb_network_offset(skb));
3850 skb->pkt_type = PACKET_LOOPBACK;
3851 skb->ip_summed = CHECKSUM_UNNECESSARY;
3852 WARN_ON(!skb_dst(skb));
3853 skb_dst_force(skb);
3854 netif_rx_ni(skb);
3855 return 0;
3856}
3857EXPORT_SYMBOL(dev_loopback_xmit);
3858
3859#ifdef CONFIG_NET_EGRESS
3860static struct sk_buff *
3861sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3862{
3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3864 struct tcf_result cl_res;
3865
3866 if (!miniq)
3867 return skb;
3868
3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3870 mini_qdisc_bstats_cpu_update(miniq, skb);
3871
3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3873 case TC_ACT_OK:
3874 case TC_ACT_RECLASSIFY:
3875 skb->tc_index = TC_H_MIN(cl_res.classid);
3876 break;
3877 case TC_ACT_SHOT:
3878 mini_qdisc_qstats_cpu_drop(miniq);
3879 *ret = NET_XMIT_DROP;
3880 kfree_skb(skb);
3881 return NULL;
3882 case TC_ACT_STOLEN:
3883 case TC_ACT_QUEUED:
3884 case TC_ACT_TRAP:
3885 *ret = NET_XMIT_SUCCESS;
3886 consume_skb(skb);
3887 return NULL;
3888 case TC_ACT_REDIRECT:
3889 /* No need to push/pop skb's mac_header here on egress! */
3890 skb_do_redirect(skb);
3891 *ret = NET_XMIT_SUCCESS;
3892 return NULL;
3893 default:
3894 break;
3895 }
3896
3897 return skb;
3898}
3899#endif /* CONFIG_NET_EGRESS */
3900
3901#ifdef CONFIG_XPS
3902static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3903 struct xps_dev_maps *dev_maps, unsigned int tci)
3904{
3905 struct xps_map *map;
3906 int queue_index = -1;
3907
3908 if (dev->num_tc) {
3909 tci *= dev->num_tc;
3910 tci += netdev_get_prio_tc_map(dev, skb->priority);
3911 }
3912
3913 map = rcu_dereference(dev_maps->attr_map[tci]);
3914 if (map) {
3915 if (map->len == 1)
3916 queue_index = map->queues[0];
3917 else
3918 queue_index = map->queues[reciprocal_scale(
3919 skb_get_hash(skb), map->len)];
3920 if (unlikely(queue_index >= dev->real_num_tx_queues))
3921 queue_index = -1;
3922 }
3923 return queue_index;
3924}
3925#endif
3926
3927static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3928 struct sk_buff *skb)
3929{
3930#ifdef CONFIG_XPS
3931 struct xps_dev_maps *dev_maps;
3932 struct sock *sk = skb->sk;
3933 int queue_index = -1;
3934
3935 if (!static_key_false(&xps_needed))
3936 return -1;
3937
3938 rcu_read_lock();
3939 if (!static_key_false(&xps_rxqs_needed))
3940 goto get_cpus_map;
3941
3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3943 if (dev_maps) {
3944 int tci = sk_rx_queue_get(sk);
3945
3946 if (tci >= 0 && tci < dev->num_rx_queues)
3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3948 tci);
3949 }
3950
3951get_cpus_map:
3952 if (queue_index < 0) {
3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3954 if (dev_maps) {
3955 unsigned int tci = skb->sender_cpu - 1;
3956
3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3958 tci);
3959 }
3960 }
3961 rcu_read_unlock();
3962
3963 return queue_index;
3964#else
3965 return -1;
3966#endif
3967}
3968
3969u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3970 struct net_device *sb_dev)
3971{
3972 return 0;
3973}
3974EXPORT_SYMBOL(dev_pick_tx_zero);
3975
3976u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3977 struct net_device *sb_dev)
3978{
3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3980}
3981EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3982
3983u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3984 struct net_device *sb_dev)
3985{
3986 struct sock *sk = skb->sk;
3987 int queue_index = sk_tx_queue_get(sk);
3988
3989 sb_dev = sb_dev ? : dev;
3990
3991 if (queue_index < 0 || skb->ooo_okay ||
3992 queue_index >= dev->real_num_tx_queues) {
3993 int new_index = get_xps_queue(dev, sb_dev, skb);
3994
3995 if (new_index < 0)
3996 new_index = skb_tx_hash(dev, sb_dev, skb);
3997
3998 if (queue_index != new_index && sk &&
3999 sk_fullsock(sk) &&
4000 rcu_access_pointer(sk->sk_dst_cache))
4001 sk_tx_queue_set(sk, new_index);
4002
4003 queue_index = new_index;
4004 }
4005
4006 return queue_index;
4007}
4008EXPORT_SYMBOL(netdev_pick_tx);
4009
4010struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4011 struct sk_buff *skb,
4012 struct net_device *sb_dev)
4013{
4014 int queue_index = 0;
4015
4016#ifdef CONFIG_XPS
4017 u32 sender_cpu = skb->sender_cpu - 1;
4018
4019 if (sender_cpu >= (u32)NR_CPUS)
4020 skb->sender_cpu = raw_smp_processor_id() + 1;
4021#endif
4022
4023 if (dev->real_num_tx_queues != 1) {
4024 const struct net_device_ops *ops = dev->netdev_ops;
4025
4026 if (ops->ndo_select_queue)
4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4028 else
4029 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4030
4031 queue_index = netdev_cap_txqueue(dev, queue_index);
4032 }
4033
4034 skb_set_queue_mapping(skb, queue_index);
4035 return netdev_get_tx_queue(dev, queue_index);
4036}
4037
4038/**
4039 * __dev_queue_xmit - transmit a buffer
4040 * @skb: buffer to transmit
4041 * @sb_dev: suboordinate device used for L2 forwarding offload
4042 *
4043 * Queue a buffer for transmission to a network device. The caller must
4044 * have set the device and priority and built the buffer before calling
4045 * this function. The function can be called from an interrupt.
4046 *
4047 * A negative errno code is returned on a failure. A success does not
4048 * guarantee the frame will be transmitted as it may be dropped due
4049 * to congestion or traffic shaping.
4050 *
4051 * -----------------------------------------------------------------------------------
4052 * I notice this method can also return errors from the queue disciplines,
4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4054 * be positive.
4055 *
4056 * Regardless of the return value, the skb is consumed, so it is currently
4057 * difficult to retry a send to this method. (You can bump the ref count
4058 * before sending to hold a reference for retry if you are careful.)
4059 *
4060 * When calling this method, interrupts MUST be enabled. This is because
4061 * the BH enable code must have IRQs enabled so that it will not deadlock.
4062 * --BLG
4063 */
4064static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4065{
4066 struct net_device *dev = skb->dev;
4067 struct netdev_queue *txq;
4068 struct Qdisc *q;
4069 int rc = -ENOMEM;
4070 bool again = false;
4071
4072 skb_reset_mac_header(skb);
4073
4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4076
4077 /* Disable soft irqs for various locks below. Also
4078 * stops preemption for RCU.
4079 */
4080 rcu_read_lock_bh();
4081
4082 skb_update_prio(skb);
4083
4084 qdisc_pkt_len_init(skb);
4085#ifdef CONFIG_NET_CLS_ACT
4086 skb->tc_at_ingress = 0;
4087# ifdef CONFIG_NET_EGRESS
4088 if (static_branch_unlikely(&egress_needed_key)) {
4089 skb = sch_handle_egress(skb, &rc, dev);
4090 if (!skb)
4091 goto out;
4092 }
4093# endif
4094#endif
4095 /* If device/qdisc don't need skb->dst, release it right now while
4096 * its hot in this cpu cache.
4097 */
4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4099 skb_dst_drop(skb);
4100 else
4101 skb_dst_force(skb);
4102
4103 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4104 q = rcu_dereference_bh(txq->qdisc);
4105
4106 trace_net_dev_queue(skb);
4107 if (q->enqueue) {
4108 rc = __dev_xmit_skb(skb, q, dev, txq);
4109 goto out;
4110 }
4111
4112 /* The device has no queue. Common case for software devices:
4113 * loopback, all the sorts of tunnels...
4114
4115 * Really, it is unlikely that netif_tx_lock protection is necessary
4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4117 * counters.)
4118 * However, it is possible, that they rely on protection
4119 * made by us here.
4120
4121 * Check this and shot the lock. It is not prone from deadlocks.
4122 *Either shot noqueue qdisc, it is even simpler 8)
4123 */
4124 if (dev->flags & IFF_UP) {
4125 int cpu = smp_processor_id(); /* ok because BHs are off */
4126
4127 if (txq->xmit_lock_owner != cpu) {
4128 if (dev_xmit_recursion())
4129 goto recursion_alert;
4130
4131 skb = validate_xmit_skb(skb, dev, &again);
4132 if (!skb)
4133 goto out;
4134
4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4136 HARD_TX_LOCK(dev, txq, cpu);
4137
4138 if (!netif_xmit_stopped(txq)) {
4139 dev_xmit_recursion_inc();
4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4141 dev_xmit_recursion_dec();
4142 if (dev_xmit_complete(rc)) {
4143 HARD_TX_UNLOCK(dev, txq);
4144 goto out;
4145 }
4146 }
4147 HARD_TX_UNLOCK(dev, txq);
4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4149 dev->name);
4150 } else {
4151 /* Recursion is detected! It is possible,
4152 * unfortunately
4153 */
4154recursion_alert:
4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4156 dev->name);
4157 }
4158 }
4159
4160 rc = -ENETDOWN;
4161 rcu_read_unlock_bh();
4162
4163 atomic_long_inc(&dev->tx_dropped);
4164 kfree_skb_list(skb);
4165 return rc;
4166out:
4167 rcu_read_unlock_bh();
4168 return rc;
4169}
4170
4171int dev_queue_xmit(struct sk_buff *skb)
4172{
4173 return __dev_queue_xmit(skb, NULL);
4174}
4175EXPORT_SYMBOL(dev_queue_xmit);
4176
4177int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4178{
4179 return __dev_queue_xmit(skb, sb_dev);
4180}
4181EXPORT_SYMBOL(dev_queue_xmit_accel);
4182
4183int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4184{
4185 struct net_device *dev = skb->dev;
4186 struct sk_buff *orig_skb = skb;
4187 struct netdev_queue *txq;
4188 int ret = NETDEV_TX_BUSY;
4189 bool again = false;
4190
4191 if (unlikely(!netif_running(dev) ||
4192 !netif_carrier_ok(dev)))
4193 goto drop;
4194
4195 skb = validate_xmit_skb_list(skb, dev, &again);
4196 if (skb != orig_skb)
4197 goto drop;
4198
4199 skb_set_queue_mapping(skb, queue_id);
4200 txq = skb_get_tx_queue(dev, skb);
4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4202
4203 local_bh_disable();
4204
4205 dev_xmit_recursion_inc();
4206 HARD_TX_LOCK(dev, txq, smp_processor_id());
4207 if (!netif_xmit_frozen_or_drv_stopped(txq))
4208 ret = netdev_start_xmit(skb, dev, txq, false);
4209 HARD_TX_UNLOCK(dev, txq);
4210 dev_xmit_recursion_dec();
4211
4212 local_bh_enable();
4213
4214 if (!dev_xmit_complete(ret))
4215 kfree_skb(skb);
4216
4217 return ret;
4218drop:
4219 atomic_long_inc(&dev->tx_dropped);
4220 kfree_skb_list(skb);
4221 return NET_XMIT_DROP;
4222}
4223EXPORT_SYMBOL(dev_direct_xmit);
4224
4225/*************************************************************************
4226 * Receiver routines
4227 *************************************************************************/
4228
4229int netdev_max_backlog __read_mostly = 1000;
4230EXPORT_SYMBOL(netdev_max_backlog);
4231
4232int netdev_tstamp_prequeue __read_mostly = 1;
4233int netdev_budget __read_mostly = 300;
4234/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4235unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4236int weight_p __read_mostly = 64; /* old backlog weight */
4237int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4238int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4239int dev_rx_weight __read_mostly = 64;
4240int dev_tx_weight __read_mostly = 64;
4241/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4242int gro_normal_batch __read_mostly = 8;
4243
4244/* Called with irq disabled */
4245static inline void ____napi_schedule(struct softnet_data *sd,
4246 struct napi_struct *napi)
4247{
4248 list_add_tail(&napi->poll_list, &sd->poll_list);
4249 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4250}
4251
4252#ifdef CONFIG_RPS
4253
4254/* One global table that all flow-based protocols share. */
4255struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4256EXPORT_SYMBOL(rps_sock_flow_table);
4257u32 rps_cpu_mask __read_mostly;
4258EXPORT_SYMBOL(rps_cpu_mask);
4259
4260struct static_key_false rps_needed __read_mostly;
4261EXPORT_SYMBOL(rps_needed);
4262struct static_key_false rfs_needed __read_mostly;
4263EXPORT_SYMBOL(rfs_needed);
4264
4265static struct rps_dev_flow *
4266set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4267 struct rps_dev_flow *rflow, u16 next_cpu)
4268{
4269 if (next_cpu < nr_cpu_ids) {
4270#ifdef CONFIG_RFS_ACCEL
4271 struct netdev_rx_queue *rxqueue;
4272 struct rps_dev_flow_table *flow_table;
4273 struct rps_dev_flow *old_rflow;
4274 u32 flow_id;
4275 u16 rxq_index;
4276 int rc;
4277
4278 /* Should we steer this flow to a different hardware queue? */
4279 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4280 !(dev->features & NETIF_F_NTUPLE))
4281 goto out;
4282 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4283 if (rxq_index == skb_get_rx_queue(skb))
4284 goto out;
4285
4286 rxqueue = dev->_rx + rxq_index;
4287 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4288 if (!flow_table)
4289 goto out;
4290 flow_id = skb_get_hash(skb) & flow_table->mask;
4291 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4292 rxq_index, flow_id);
4293 if (rc < 0)
4294 goto out;
4295 old_rflow = rflow;
4296 rflow = &flow_table->flows[flow_id];
4297 rflow->filter = rc;
4298 if (old_rflow->filter == rflow->filter)
4299 old_rflow->filter = RPS_NO_FILTER;
4300 out:
4301#endif
4302 rflow->last_qtail =
4303 per_cpu(softnet_data, next_cpu).input_queue_head;
4304 }
4305
4306 rflow->cpu = next_cpu;
4307 return rflow;
4308}
4309
4310/*
4311 * get_rps_cpu is called from netif_receive_skb and returns the target
4312 * CPU from the RPS map of the receiving queue for a given skb.
4313 * rcu_read_lock must be held on entry.
4314 */
4315static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4316 struct rps_dev_flow **rflowp)
4317{
4318 const struct rps_sock_flow_table *sock_flow_table;
4319 struct netdev_rx_queue *rxqueue = dev->_rx;
4320 struct rps_dev_flow_table *flow_table;
4321 struct rps_map *map;
4322 int cpu = -1;
4323 u32 tcpu;
4324 u32 hash;
4325
4326 if (skb_rx_queue_recorded(skb)) {
4327 u16 index = skb_get_rx_queue(skb);
4328
4329 if (unlikely(index >= dev->real_num_rx_queues)) {
4330 WARN_ONCE(dev->real_num_rx_queues > 1,
4331 "%s received packet on queue %u, but number "
4332 "of RX queues is %u\n",
4333 dev->name, index, dev->real_num_rx_queues);
4334 goto done;
4335 }
4336 rxqueue += index;
4337 }
4338
4339 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4340
4341 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 map = rcu_dereference(rxqueue->rps_map);
4343 if (!flow_table && !map)
4344 goto done;
4345
4346 skb_reset_network_header(skb);
4347 hash = skb_get_hash(skb);
4348 if (!hash)
4349 goto done;
4350
4351 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4352 if (flow_table && sock_flow_table) {
4353 struct rps_dev_flow *rflow;
4354 u32 next_cpu;
4355 u32 ident;
4356
4357 /* First check into global flow table if there is a match */
4358 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4359 if ((ident ^ hash) & ~rps_cpu_mask)
4360 goto try_rps;
4361
4362 next_cpu = ident & rps_cpu_mask;
4363
4364 /* OK, now we know there is a match,
4365 * we can look at the local (per receive queue) flow table
4366 */
4367 rflow = &flow_table->flows[hash & flow_table->mask];
4368 tcpu = rflow->cpu;
4369
4370 /*
4371 * If the desired CPU (where last recvmsg was done) is
4372 * different from current CPU (one in the rx-queue flow
4373 * table entry), switch if one of the following holds:
4374 * - Current CPU is unset (>= nr_cpu_ids).
4375 * - Current CPU is offline.
4376 * - The current CPU's queue tail has advanced beyond the
4377 * last packet that was enqueued using this table entry.
4378 * This guarantees that all previous packets for the flow
4379 * have been dequeued, thus preserving in order delivery.
4380 */
4381 if (unlikely(tcpu != next_cpu) &&
4382 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4383 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4384 rflow->last_qtail)) >= 0)) {
4385 tcpu = next_cpu;
4386 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4387 }
4388
4389 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4390 *rflowp = rflow;
4391 cpu = tcpu;
4392 goto done;
4393 }
4394 }
4395
4396try_rps:
4397
4398 if (map) {
4399 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4400 if (cpu_online(tcpu)) {
4401 cpu = tcpu;
4402 goto done;
4403 }
4404 }
4405
4406done:
4407 return cpu;
4408}
4409
4410#ifdef CONFIG_RFS_ACCEL
4411
4412/**
4413 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4414 * @dev: Device on which the filter was set
4415 * @rxq_index: RX queue index
4416 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4417 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4418 *
4419 * Drivers that implement ndo_rx_flow_steer() should periodically call
4420 * this function for each installed filter and remove the filters for
4421 * which it returns %true.
4422 */
4423bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4424 u32 flow_id, u16 filter_id)
4425{
4426 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4427 struct rps_dev_flow_table *flow_table;
4428 struct rps_dev_flow *rflow;
4429 bool expire = true;
4430 unsigned int cpu;
4431
4432 rcu_read_lock();
4433 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4434 if (flow_table && flow_id <= flow_table->mask) {
4435 rflow = &flow_table->flows[flow_id];
4436 cpu = READ_ONCE(rflow->cpu);
4437 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4438 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4439 rflow->last_qtail) <
4440 (int)(10 * flow_table->mask)))
4441 expire = false;
4442 }
4443 rcu_read_unlock();
4444 return expire;
4445}
4446EXPORT_SYMBOL(rps_may_expire_flow);
4447
4448#endif /* CONFIG_RFS_ACCEL */
4449
4450/* Called from hardirq (IPI) context */
4451static void rps_trigger_softirq(void *data)
4452{
4453 struct softnet_data *sd = data;
4454
4455 ____napi_schedule(sd, &sd->backlog);
4456 sd->received_rps++;
4457}
4458
4459#endif /* CONFIG_RPS */
4460
4461/*
4462 * Check if this softnet_data structure is another cpu one
4463 * If yes, queue it to our IPI list and return 1
4464 * If no, return 0
4465 */
4466static int rps_ipi_queued(struct softnet_data *sd)
4467{
4468#ifdef CONFIG_RPS
4469 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4470
4471 if (sd != mysd) {
4472 sd->rps_ipi_next = mysd->rps_ipi_list;
4473 mysd->rps_ipi_list = sd;
4474
4475 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4476 return 1;
4477 }
4478#endif /* CONFIG_RPS */
4479 return 0;
4480}
4481
4482#ifdef CONFIG_NET_FLOW_LIMIT
4483int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4484#endif
4485
4486static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4487{
4488#ifdef CONFIG_NET_FLOW_LIMIT
4489 struct sd_flow_limit *fl;
4490 struct softnet_data *sd;
4491 unsigned int old_flow, new_flow;
4492
4493 if (qlen < (netdev_max_backlog >> 1))
4494 return false;
4495
4496 sd = this_cpu_ptr(&softnet_data);
4497
4498 rcu_read_lock();
4499 fl = rcu_dereference(sd->flow_limit);
4500 if (fl) {
4501 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4502 old_flow = fl->history[fl->history_head];
4503 fl->history[fl->history_head] = new_flow;
4504
4505 fl->history_head++;
4506 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4507
4508 if (likely(fl->buckets[old_flow]))
4509 fl->buckets[old_flow]--;
4510
4511 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4512 fl->count++;
4513 rcu_read_unlock();
4514 return true;
4515 }
4516 }
4517 rcu_read_unlock();
4518#endif
4519 return false;
4520}
4521
4522/*
4523 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4524 * queue (may be a remote CPU queue).
4525 */
4526static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4527 unsigned int *qtail)
4528{
4529 struct softnet_data *sd;
4530 unsigned long flags;
4531 unsigned int qlen;
4532
4533 sd = &per_cpu(softnet_data, cpu);
4534
4535 local_irq_save(flags);
4536
4537 rps_lock(sd);
4538 if (!netif_running(skb->dev))
4539 goto drop;
4540 qlen = skb_queue_len(&sd->input_pkt_queue);
4541 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4542 if (qlen) {
4543enqueue:
4544 __skb_queue_tail(&sd->input_pkt_queue, skb);
4545 input_queue_tail_incr_save(sd, qtail);
4546 rps_unlock(sd);
4547 local_irq_restore(flags);
4548 return NET_RX_SUCCESS;
4549 }
4550
4551 /* Schedule NAPI for backlog device
4552 * We can use non atomic operation since we own the queue lock
4553 */
4554 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4555 if (!rps_ipi_queued(sd))
4556 ____napi_schedule(sd, &sd->backlog);
4557 }
4558 goto enqueue;
4559 }
4560
4561drop:
4562 sd->dropped++;
4563 rps_unlock(sd);
4564
4565 local_irq_restore(flags);
4566
4567 atomic_long_inc(&skb->dev->rx_dropped);
4568 kfree_skb(skb);
4569 return NET_RX_DROP;
4570}
4571
4572static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4573{
4574 struct net_device *dev = skb->dev;
4575 struct netdev_rx_queue *rxqueue;
4576
4577 rxqueue = dev->_rx;
4578
4579 if (skb_rx_queue_recorded(skb)) {
4580 u16 index = skb_get_rx_queue(skb);
4581
4582 if (unlikely(index >= dev->real_num_rx_queues)) {
4583 WARN_ONCE(dev->real_num_rx_queues > 1,
4584 "%s received packet on queue %u, but number "
4585 "of RX queues is %u\n",
4586 dev->name, index, dev->real_num_rx_queues);
4587
4588 return rxqueue; /* Return first rxqueue */
4589 }
4590 rxqueue += index;
4591 }
4592 return rxqueue;
4593}
4594
4595static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4596 struct xdp_buff *xdp,
4597 struct bpf_prog *xdp_prog)
4598{
4599 struct netdev_rx_queue *rxqueue;
4600 void *orig_data, *orig_data_end;
4601 u32 metalen, act = XDP_DROP;
4602 __be16 orig_eth_type;
4603 struct ethhdr *eth;
4604 bool orig_bcast;
4605 int hlen, off;
4606 u32 mac_len;
4607
4608 /* Reinjected packets coming from act_mirred or similar should
4609 * not get XDP generic processing.
4610 */
4611 if (skb_is_redirected(skb))
4612 return XDP_PASS;
4613
4614 /* XDP packets must be linear and must have sufficient headroom
4615 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4616 * native XDP provides, thus we need to do it here as well.
4617 */
4618 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4619 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4620 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4621 int troom = skb->tail + skb->data_len - skb->end;
4622
4623 /* In case we have to go down the path and also linearize,
4624 * then lets do the pskb_expand_head() work just once here.
4625 */
4626 if (pskb_expand_head(skb,
4627 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4628 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4629 goto do_drop;
4630 if (skb_linearize(skb))
4631 goto do_drop;
4632 }
4633
4634 /* The XDP program wants to see the packet starting at the MAC
4635 * header.
4636 */
4637 mac_len = skb->data - skb_mac_header(skb);
4638 hlen = skb_headlen(skb) + mac_len;
4639 xdp->data = skb->data - mac_len;
4640 xdp->data_meta = xdp->data;
4641 xdp->data_end = xdp->data + hlen;
4642 xdp->data_hard_start = skb->data - skb_headroom(skb);
4643
4644 /* SKB "head" area always have tailroom for skb_shared_info */
4645 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4646 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4647
4648 orig_data_end = xdp->data_end;
4649 orig_data = xdp->data;
4650 eth = (struct ethhdr *)xdp->data;
4651 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4652 orig_eth_type = eth->h_proto;
4653
4654 rxqueue = netif_get_rxqueue(skb);
4655 xdp->rxq = &rxqueue->xdp_rxq;
4656
4657 act = bpf_prog_run_xdp(xdp_prog, xdp);
4658
4659 /* check if bpf_xdp_adjust_head was used */
4660 off = xdp->data - orig_data;
4661 if (off) {
4662 if (off > 0)
4663 __skb_pull(skb, off);
4664 else if (off < 0)
4665 __skb_push(skb, -off);
4666
4667 skb->mac_header += off;
4668 skb_reset_network_header(skb);
4669 }
4670
4671 /* check if bpf_xdp_adjust_tail was used */
4672 off = xdp->data_end - orig_data_end;
4673 if (off != 0) {
4674 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4675 skb->len += off; /* positive on grow, negative on shrink */
4676 }
4677
4678 /* check if XDP changed eth hdr such SKB needs update */
4679 eth = (struct ethhdr *)xdp->data;
4680 if ((orig_eth_type != eth->h_proto) ||
4681 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4682 __skb_push(skb, ETH_HLEN);
4683 skb->protocol = eth_type_trans(skb, skb->dev);
4684 }
4685
4686 switch (act) {
4687 case XDP_REDIRECT:
4688 case XDP_TX:
4689 __skb_push(skb, mac_len);
4690 break;
4691 case XDP_PASS:
4692 metalen = xdp->data - xdp->data_meta;
4693 if (metalen)
4694 skb_metadata_set(skb, metalen);
4695 break;
4696 default:
4697 bpf_warn_invalid_xdp_action(act);
4698 fallthrough;
4699 case XDP_ABORTED:
4700 trace_xdp_exception(skb->dev, xdp_prog, act);
4701 fallthrough;
4702 case XDP_DROP:
4703 do_drop:
4704 kfree_skb(skb);
4705 break;
4706 }
4707
4708 return act;
4709}
4710
4711/* When doing generic XDP we have to bypass the qdisc layer and the
4712 * network taps in order to match in-driver-XDP behavior.
4713 */
4714void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4715{
4716 struct net_device *dev = skb->dev;
4717 struct netdev_queue *txq;
4718 bool free_skb = true;
4719 int cpu, rc;
4720
4721 txq = netdev_core_pick_tx(dev, skb, NULL);
4722 cpu = smp_processor_id();
4723 HARD_TX_LOCK(dev, txq, cpu);
4724 if (!netif_xmit_stopped(txq)) {
4725 rc = netdev_start_xmit(skb, dev, txq, 0);
4726 if (dev_xmit_complete(rc))
4727 free_skb = false;
4728 }
4729 HARD_TX_UNLOCK(dev, txq);
4730 if (free_skb) {
4731 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4732 kfree_skb(skb);
4733 }
4734}
4735
4736static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4737
4738int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4739{
4740 if (xdp_prog) {
4741 struct xdp_buff xdp;
4742 u32 act;
4743 int err;
4744
4745 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4746 if (act != XDP_PASS) {
4747 switch (act) {
4748 case XDP_REDIRECT:
4749 err = xdp_do_generic_redirect(skb->dev, skb,
4750 &xdp, xdp_prog);
4751 if (err)
4752 goto out_redir;
4753 break;
4754 case XDP_TX:
4755 generic_xdp_tx(skb, xdp_prog);
4756 break;
4757 }
4758 return XDP_DROP;
4759 }
4760 }
4761 return XDP_PASS;
4762out_redir:
4763 kfree_skb(skb);
4764 return XDP_DROP;
4765}
4766EXPORT_SYMBOL_GPL(do_xdp_generic);
4767
4768static int netif_rx_internal(struct sk_buff *skb)
4769{
4770 int ret;
4771
4772 net_timestamp_check(netdev_tstamp_prequeue, skb);
4773
4774 trace_netif_rx(skb);
4775
4776#ifdef CONFIG_RPS
4777 if (static_branch_unlikely(&rps_needed)) {
4778 struct rps_dev_flow voidflow, *rflow = &voidflow;
4779 int cpu;
4780
4781 preempt_disable();
4782 rcu_read_lock();
4783
4784 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4785 if (cpu < 0)
4786 cpu = smp_processor_id();
4787
4788 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4789
4790 rcu_read_unlock();
4791 preempt_enable();
4792 } else
4793#endif
4794 {
4795 unsigned int qtail;
4796
4797 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4798 put_cpu();
4799 }
4800 return ret;
4801}
4802
4803/**
4804 * netif_rx - post buffer to the network code
4805 * @skb: buffer to post
4806 *
4807 * This function receives a packet from a device driver and queues it for
4808 * the upper (protocol) levels to process. It always succeeds. The buffer
4809 * may be dropped during processing for congestion control or by the
4810 * protocol layers.
4811 *
4812 * return values:
4813 * NET_RX_SUCCESS (no congestion)
4814 * NET_RX_DROP (packet was dropped)
4815 *
4816 */
4817
4818int netif_rx(struct sk_buff *skb)
4819{
4820 int ret;
4821
4822 trace_netif_rx_entry(skb);
4823
4824 ret = netif_rx_internal(skb);
4825 trace_netif_rx_exit(ret);
4826
4827 return ret;
4828}
4829EXPORT_SYMBOL(netif_rx);
4830
4831int netif_rx_ni(struct sk_buff *skb)
4832{
4833 int err;
4834
4835 trace_netif_rx_ni_entry(skb);
4836
4837 preempt_disable();
4838 err = netif_rx_internal(skb);
4839 if (local_softirq_pending())
4840 do_softirq();
4841 preempt_enable();
4842 trace_netif_rx_ni_exit(err);
4843
4844 return err;
4845}
4846EXPORT_SYMBOL(netif_rx_ni);
4847
4848int netif_rx_any_context(struct sk_buff *skb)
4849{
4850 /*
4851 * If invoked from contexts which do not invoke bottom half
4852 * processing either at return from interrupt or when softrqs are
4853 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4854 * directly.
4855 */
4856 if (in_interrupt())
4857 return netif_rx(skb);
4858 else
4859 return netif_rx_ni(skb);
4860}
4861EXPORT_SYMBOL(netif_rx_any_context);
4862
4863static __latent_entropy void net_tx_action(struct softirq_action *h)
4864{
4865 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4866
4867 if (sd->completion_queue) {
4868 struct sk_buff *clist;
4869
4870 local_irq_disable();
4871 clist = sd->completion_queue;
4872 sd->completion_queue = NULL;
4873 local_irq_enable();
4874
4875 while (clist) {
4876 struct sk_buff *skb = clist;
4877
4878 clist = clist->next;
4879
4880 WARN_ON(refcount_read(&skb->users));
4881 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4882 trace_consume_skb(skb);
4883 else
4884 trace_kfree_skb(skb, net_tx_action);
4885
4886 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4887 __kfree_skb(skb);
4888 else
4889 __kfree_skb_defer(skb);
4890 }
4891
4892 __kfree_skb_flush();
4893 }
4894
4895 if (sd->output_queue) {
4896 struct Qdisc *head;
4897
4898 local_irq_disable();
4899 head = sd->output_queue;
4900 sd->output_queue = NULL;
4901 sd->output_queue_tailp = &sd->output_queue;
4902 local_irq_enable();
4903
4904 while (head) {
4905 struct Qdisc *q = head;
4906 spinlock_t *root_lock = NULL;
4907
4908 head = head->next_sched;
4909
4910 if (!(q->flags & TCQ_F_NOLOCK)) {
4911 root_lock = qdisc_lock(q);
4912 spin_lock(root_lock);
4913 }
4914 /* We need to make sure head->next_sched is read
4915 * before clearing __QDISC_STATE_SCHED
4916 */
4917 smp_mb__before_atomic();
4918 clear_bit(__QDISC_STATE_SCHED, &q->state);
4919 qdisc_run(q);
4920 if (root_lock)
4921 spin_unlock(root_lock);
4922 }
4923 }
4924
4925 xfrm_dev_backlog(sd);
4926}
4927
4928#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4929/* This hook is defined here for ATM LANE */
4930int (*br_fdb_test_addr_hook)(struct net_device *dev,
4931 unsigned char *addr) __read_mostly;
4932EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4933#endif
4934
4935static inline struct sk_buff *
4936sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4937 struct net_device *orig_dev, bool *another)
4938{
4939#ifdef CONFIG_NET_CLS_ACT
4940 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4941 struct tcf_result cl_res;
4942
4943 /* If there's at least one ingress present somewhere (so
4944 * we get here via enabled static key), remaining devices
4945 * that are not configured with an ingress qdisc will bail
4946 * out here.
4947 */
4948 if (!miniq)
4949 return skb;
4950
4951 if (*pt_prev) {
4952 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4953 *pt_prev = NULL;
4954 }
4955
4956 qdisc_skb_cb(skb)->pkt_len = skb->len;
4957 skb->tc_at_ingress = 1;
4958 mini_qdisc_bstats_cpu_update(miniq, skb);
4959
4960 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4961 &cl_res, false)) {
4962 case TC_ACT_OK:
4963 case TC_ACT_RECLASSIFY:
4964 skb->tc_index = TC_H_MIN(cl_res.classid);
4965 break;
4966 case TC_ACT_SHOT:
4967 mini_qdisc_qstats_cpu_drop(miniq);
4968 kfree_skb(skb);
4969 return NULL;
4970 case TC_ACT_STOLEN:
4971 case TC_ACT_QUEUED:
4972 case TC_ACT_TRAP:
4973 consume_skb(skb);
4974 return NULL;
4975 case TC_ACT_REDIRECT:
4976 /* skb_mac_header check was done by cls/act_bpf, so
4977 * we can safely push the L2 header back before
4978 * redirecting to another netdev
4979 */
4980 __skb_push(skb, skb->mac_len);
4981 if (skb_do_redirect(skb) == -EAGAIN) {
4982 __skb_pull(skb, skb->mac_len);
4983 *another = true;
4984 break;
4985 }
4986 return NULL;
4987 case TC_ACT_CONSUMED:
4988 return NULL;
4989 default:
4990 break;
4991 }
4992#endif /* CONFIG_NET_CLS_ACT */
4993 return skb;
4994}
4995
4996/**
4997 * netdev_is_rx_handler_busy - check if receive handler is registered
4998 * @dev: device to check
4999 *
5000 * Check if a receive handler is already registered for a given device.
5001 * Return true if there one.
5002 *
5003 * The caller must hold the rtnl_mutex.
5004 */
5005bool netdev_is_rx_handler_busy(struct net_device *dev)
5006{
5007 ASSERT_RTNL();
5008 return dev && rtnl_dereference(dev->rx_handler);
5009}
5010EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5011
5012/**
5013 * netdev_rx_handler_register - register receive handler
5014 * @dev: device to register a handler for
5015 * @rx_handler: receive handler to register
5016 * @rx_handler_data: data pointer that is used by rx handler
5017 *
5018 * Register a receive handler for a device. This handler will then be
5019 * called from __netif_receive_skb. A negative errno code is returned
5020 * on a failure.
5021 *
5022 * The caller must hold the rtnl_mutex.
5023 *
5024 * For a general description of rx_handler, see enum rx_handler_result.
5025 */
5026int netdev_rx_handler_register(struct net_device *dev,
5027 rx_handler_func_t *rx_handler,
5028 void *rx_handler_data)
5029{
5030 if (netdev_is_rx_handler_busy(dev))
5031 return -EBUSY;
5032
5033 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5034 return -EINVAL;
5035
5036 /* Note: rx_handler_data must be set before rx_handler */
5037 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5038 rcu_assign_pointer(dev->rx_handler, rx_handler);
5039
5040 return 0;
5041}
5042EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5043
5044/**
5045 * netdev_rx_handler_unregister - unregister receive handler
5046 * @dev: device to unregister a handler from
5047 *
5048 * Unregister a receive handler from a device.
5049 *
5050 * The caller must hold the rtnl_mutex.
5051 */
5052void netdev_rx_handler_unregister(struct net_device *dev)
5053{
5054
5055 ASSERT_RTNL();
5056 RCU_INIT_POINTER(dev->rx_handler, NULL);
5057 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5058 * section has a guarantee to see a non NULL rx_handler_data
5059 * as well.
5060 */
5061 synchronize_net();
5062 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5063}
5064EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5065
5066/*
5067 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5068 * the special handling of PFMEMALLOC skbs.
5069 */
5070static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5071{
5072 switch (skb->protocol) {
5073 case htons(ETH_P_ARP):
5074 case htons(ETH_P_IP):
5075 case htons(ETH_P_IPV6):
5076 case htons(ETH_P_8021Q):
5077 case htons(ETH_P_8021AD):
5078 return true;
5079 default:
5080 return false;
5081 }
5082}
5083
5084static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5085 int *ret, struct net_device *orig_dev)
5086{
5087 if (nf_hook_ingress_active(skb)) {
5088 int ingress_retval;
5089
5090 if (*pt_prev) {
5091 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5092 *pt_prev = NULL;
5093 }
5094
5095 rcu_read_lock();
5096 ingress_retval = nf_hook_ingress(skb);
5097 rcu_read_unlock();
5098 return ingress_retval;
5099 }
5100 return 0;
5101}
5102
5103static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5104 struct packet_type **ppt_prev)
5105{
5106 struct packet_type *ptype, *pt_prev;
5107 rx_handler_func_t *rx_handler;
5108 struct sk_buff *skb = *pskb;
5109 struct net_device *orig_dev;
5110 bool deliver_exact = false;
5111 int ret = NET_RX_DROP;
5112 __be16 type;
5113
5114 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5115
5116 trace_netif_receive_skb(skb);
5117
5118 orig_dev = skb->dev;
5119
5120 skb_reset_network_header(skb);
5121 if (!skb_transport_header_was_set(skb))
5122 skb_reset_transport_header(skb);
5123 skb_reset_mac_len(skb);
5124
5125 pt_prev = NULL;
5126
5127another_round:
5128 skb->skb_iif = skb->dev->ifindex;
5129
5130 __this_cpu_inc(softnet_data.processed);
5131
5132 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5133 int ret2;
5134
5135 preempt_disable();
5136 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5137 preempt_enable();
5138
5139 if (ret2 != XDP_PASS) {
5140 ret = NET_RX_DROP;
5141 goto out;
5142 }
5143 skb_reset_mac_len(skb);
5144 }
5145
5146 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5147 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5148 skb = skb_vlan_untag(skb);
5149 if (unlikely(!skb))
5150 goto out;
5151 }
5152
5153 if (skb_skip_tc_classify(skb))
5154 goto skip_classify;
5155
5156 if (pfmemalloc)
5157 goto skip_taps;
5158
5159 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5160 if (pt_prev)
5161 ret = deliver_skb(skb, pt_prev, orig_dev);
5162 pt_prev = ptype;
5163 }
5164
5165 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5166 if (pt_prev)
5167 ret = deliver_skb(skb, pt_prev, orig_dev);
5168 pt_prev = ptype;
5169 }
5170
5171skip_taps:
5172#ifdef CONFIG_NET_INGRESS
5173 if (static_branch_unlikely(&ingress_needed_key)) {
5174 bool another = false;
5175
5176 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5177 &another);
5178 if (another)
5179 goto another_round;
5180 if (!skb)
5181 goto out;
5182
5183 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5184 goto out;
5185 }
5186#endif
5187 skb_reset_redirect(skb);
5188skip_classify:
5189 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5190 goto drop;
5191
5192 if (skb_vlan_tag_present(skb)) {
5193 if (pt_prev) {
5194 ret = deliver_skb(skb, pt_prev, orig_dev);
5195 pt_prev = NULL;
5196 }
5197 if (vlan_do_receive(&skb))
5198 goto another_round;
5199 else if (unlikely(!skb))
5200 goto out;
5201 }
5202
5203 rx_handler = rcu_dereference(skb->dev->rx_handler);
5204 if (rx_handler) {
5205 if (pt_prev) {
5206 ret = deliver_skb(skb, pt_prev, orig_dev);
5207 pt_prev = NULL;
5208 }
5209 switch (rx_handler(&skb)) {
5210 case RX_HANDLER_CONSUMED:
5211 ret = NET_RX_SUCCESS;
5212 goto out;
5213 case RX_HANDLER_ANOTHER:
5214 goto another_round;
5215 case RX_HANDLER_EXACT:
5216 deliver_exact = true;
5217 case RX_HANDLER_PASS:
5218 break;
5219 default:
5220 BUG();
5221 }
5222 }
5223
5224 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5225check_vlan_id:
5226 if (skb_vlan_tag_get_id(skb)) {
5227 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5228 * find vlan device.
5229 */
5230 skb->pkt_type = PACKET_OTHERHOST;
5231 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5232 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5233 /* Outer header is 802.1P with vlan 0, inner header is
5234 * 802.1Q or 802.1AD and vlan_do_receive() above could
5235 * not find vlan dev for vlan id 0.
5236 */
5237 __vlan_hwaccel_clear_tag(skb);
5238 skb = skb_vlan_untag(skb);
5239 if (unlikely(!skb))
5240 goto out;
5241 if (vlan_do_receive(&skb))
5242 /* After stripping off 802.1P header with vlan 0
5243 * vlan dev is found for inner header.
5244 */
5245 goto another_round;
5246 else if (unlikely(!skb))
5247 goto out;
5248 else
5249 /* We have stripped outer 802.1P vlan 0 header.
5250 * But could not find vlan dev.
5251 * check again for vlan id to set OTHERHOST.
5252 */
5253 goto check_vlan_id;
5254 }
5255 /* Note: we might in the future use prio bits
5256 * and set skb->priority like in vlan_do_receive()
5257 * For the time being, just ignore Priority Code Point
5258 */
5259 __vlan_hwaccel_clear_tag(skb);
5260 }
5261
5262 type = skb->protocol;
5263
5264 /* deliver only exact match when indicated */
5265 if (likely(!deliver_exact)) {
5266 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5267 &ptype_base[ntohs(type) &
5268 PTYPE_HASH_MASK]);
5269 }
5270
5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5272 &orig_dev->ptype_specific);
5273
5274 if (unlikely(skb->dev != orig_dev)) {
5275 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5276 &skb->dev->ptype_specific);
5277 }
5278
5279 if (pt_prev) {
5280 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5281 goto drop;
5282 *ppt_prev = pt_prev;
5283 } else {
5284drop:
5285 if (!deliver_exact)
5286 atomic_long_inc(&skb->dev->rx_dropped);
5287 else
5288 atomic_long_inc(&skb->dev->rx_nohandler);
5289 kfree_skb(skb);
5290 /* Jamal, now you will not able to escape explaining
5291 * me how you were going to use this. :-)
5292 */
5293 ret = NET_RX_DROP;
5294 }
5295
5296out:
5297 /* The invariant here is that if *ppt_prev is not NULL
5298 * then skb should also be non-NULL.
5299 *
5300 * Apparently *ppt_prev assignment above holds this invariant due to
5301 * skb dereferencing near it.
5302 */
5303 *pskb = skb;
5304 return ret;
5305}
5306
5307static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5308{
5309 struct net_device *orig_dev = skb->dev;
5310 struct packet_type *pt_prev = NULL;
5311 int ret;
5312
5313 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5314 if (pt_prev)
5315 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5316 skb->dev, pt_prev, orig_dev);
5317 return ret;
5318}
5319
5320/**
5321 * netif_receive_skb_core - special purpose version of netif_receive_skb
5322 * @skb: buffer to process
5323 *
5324 * More direct receive version of netif_receive_skb(). It should
5325 * only be used by callers that have a need to skip RPS and Generic XDP.
5326 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5327 *
5328 * This function may only be called from softirq context and interrupts
5329 * should be enabled.
5330 *
5331 * Return values (usually ignored):
5332 * NET_RX_SUCCESS: no congestion
5333 * NET_RX_DROP: packet was dropped
5334 */
5335int netif_receive_skb_core(struct sk_buff *skb)
5336{
5337 int ret;
5338
5339 rcu_read_lock();
5340 ret = __netif_receive_skb_one_core(skb, false);
5341 rcu_read_unlock();
5342
5343 return ret;
5344}
5345EXPORT_SYMBOL(netif_receive_skb_core);
5346
5347static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5348 struct packet_type *pt_prev,
5349 struct net_device *orig_dev)
5350{
5351 struct sk_buff *skb, *next;
5352
5353 if (!pt_prev)
5354 return;
5355 if (list_empty(head))
5356 return;
5357 if (pt_prev->list_func != NULL)
5358 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5359 ip_list_rcv, head, pt_prev, orig_dev);
5360 else
5361 list_for_each_entry_safe(skb, next, head, list) {
5362 skb_list_del_init(skb);
5363 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5364 }
5365}
5366
5367static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5368{
5369 /* Fast-path assumptions:
5370 * - There is no RX handler.
5371 * - Only one packet_type matches.
5372 * If either of these fails, we will end up doing some per-packet
5373 * processing in-line, then handling the 'last ptype' for the whole
5374 * sublist. This can't cause out-of-order delivery to any single ptype,
5375 * because the 'last ptype' must be constant across the sublist, and all
5376 * other ptypes are handled per-packet.
5377 */
5378 /* Current (common) ptype of sublist */
5379 struct packet_type *pt_curr = NULL;
5380 /* Current (common) orig_dev of sublist */
5381 struct net_device *od_curr = NULL;
5382 struct list_head sublist;
5383 struct sk_buff *skb, *next;
5384
5385 INIT_LIST_HEAD(&sublist);
5386 list_for_each_entry_safe(skb, next, head, list) {
5387 struct net_device *orig_dev = skb->dev;
5388 struct packet_type *pt_prev = NULL;
5389
5390 skb_list_del_init(skb);
5391 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5392 if (!pt_prev)
5393 continue;
5394 if (pt_curr != pt_prev || od_curr != orig_dev) {
5395 /* dispatch old sublist */
5396 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5397 /* start new sublist */
5398 INIT_LIST_HEAD(&sublist);
5399 pt_curr = pt_prev;
5400 od_curr = orig_dev;
5401 }
5402 list_add_tail(&skb->list, &sublist);
5403 }
5404
5405 /* dispatch final sublist */
5406 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5407}
5408
5409static int __netif_receive_skb(struct sk_buff *skb)
5410{
5411 int ret;
5412
5413 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5414 unsigned int noreclaim_flag;
5415
5416 /*
5417 * PFMEMALLOC skbs are special, they should
5418 * - be delivered to SOCK_MEMALLOC sockets only
5419 * - stay away from userspace
5420 * - have bounded memory usage
5421 *
5422 * Use PF_MEMALLOC as this saves us from propagating the allocation
5423 * context down to all allocation sites.
5424 */
5425 noreclaim_flag = memalloc_noreclaim_save();
5426 ret = __netif_receive_skb_one_core(skb, true);
5427 memalloc_noreclaim_restore(noreclaim_flag);
5428 } else
5429 ret = __netif_receive_skb_one_core(skb, false);
5430
5431 return ret;
5432}
5433
5434static void __netif_receive_skb_list(struct list_head *head)
5435{
5436 unsigned long noreclaim_flag = 0;
5437 struct sk_buff *skb, *next;
5438 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5439
5440 list_for_each_entry_safe(skb, next, head, list) {
5441 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5442 struct list_head sublist;
5443
5444 /* Handle the previous sublist */
5445 list_cut_before(&sublist, head, &skb->list);
5446 if (!list_empty(&sublist))
5447 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5448 pfmemalloc = !pfmemalloc;
5449 /* See comments in __netif_receive_skb */
5450 if (pfmemalloc)
5451 noreclaim_flag = memalloc_noreclaim_save();
5452 else
5453 memalloc_noreclaim_restore(noreclaim_flag);
5454 }
5455 }
5456 /* Handle the remaining sublist */
5457 if (!list_empty(head))
5458 __netif_receive_skb_list_core(head, pfmemalloc);
5459 /* Restore pflags */
5460 if (pfmemalloc)
5461 memalloc_noreclaim_restore(noreclaim_flag);
5462}
5463
5464static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5465{
5466 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5467 struct bpf_prog *new = xdp->prog;
5468 int ret = 0;
5469
5470 if (new) {
5471 u32 i;
5472
5473 mutex_lock(&new->aux->used_maps_mutex);
5474
5475 /* generic XDP does not work with DEVMAPs that can
5476 * have a bpf_prog installed on an entry
5477 */
5478 for (i = 0; i < new->aux->used_map_cnt; i++) {
5479 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5480 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5481 mutex_unlock(&new->aux->used_maps_mutex);
5482 return -EINVAL;
5483 }
5484 }
5485
5486 mutex_unlock(&new->aux->used_maps_mutex);
5487 }
5488
5489 switch (xdp->command) {
5490 case XDP_SETUP_PROG:
5491 rcu_assign_pointer(dev->xdp_prog, new);
5492 if (old)
5493 bpf_prog_put(old);
5494
5495 if (old && !new) {
5496 static_branch_dec(&generic_xdp_needed_key);
5497 } else if (new && !old) {
5498 static_branch_inc(&generic_xdp_needed_key);
5499 dev_disable_lro(dev);
5500 dev_disable_gro_hw(dev);
5501 }
5502 break;
5503
5504 default:
5505 ret = -EINVAL;
5506 break;
5507 }
5508
5509 return ret;
5510}
5511
5512static int netif_receive_skb_internal(struct sk_buff *skb)
5513{
5514 int ret;
5515
5516 net_timestamp_check(netdev_tstamp_prequeue, skb);
5517
5518 if (skb_defer_rx_timestamp(skb))
5519 return NET_RX_SUCCESS;
5520
5521 rcu_read_lock();
5522#ifdef CONFIG_RPS
5523 if (static_branch_unlikely(&rps_needed)) {
5524 struct rps_dev_flow voidflow, *rflow = &voidflow;
5525 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5526
5527 if (cpu >= 0) {
5528 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5529 rcu_read_unlock();
5530 return ret;
5531 }
5532 }
5533#endif
5534 ret = __netif_receive_skb(skb);
5535 rcu_read_unlock();
5536 return ret;
5537}
5538
5539static void netif_receive_skb_list_internal(struct list_head *head)
5540{
5541 struct sk_buff *skb, *next;
5542 struct list_head sublist;
5543
5544 INIT_LIST_HEAD(&sublist);
5545 list_for_each_entry_safe(skb, next, head, list) {
5546 net_timestamp_check(netdev_tstamp_prequeue, skb);
5547 skb_list_del_init(skb);
5548 if (!skb_defer_rx_timestamp(skb))
5549 list_add_tail(&skb->list, &sublist);
5550 }
5551 list_splice_init(&sublist, head);
5552
5553 rcu_read_lock();
5554#ifdef CONFIG_RPS
5555 if (static_branch_unlikely(&rps_needed)) {
5556 list_for_each_entry_safe(skb, next, head, list) {
5557 struct rps_dev_flow voidflow, *rflow = &voidflow;
5558 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5559
5560 if (cpu >= 0) {
5561 /* Will be handled, remove from list */
5562 skb_list_del_init(skb);
5563 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5564 }
5565 }
5566 }
5567#endif
5568 __netif_receive_skb_list(head);
5569 rcu_read_unlock();
5570}
5571
5572/**
5573 * netif_receive_skb - process receive buffer from network
5574 * @skb: buffer to process
5575 *
5576 * netif_receive_skb() is the main receive data processing function.
5577 * It always succeeds. The buffer may be dropped during processing
5578 * for congestion control or by the protocol layers.
5579 *
5580 * This function may only be called from softirq context and interrupts
5581 * should be enabled.
5582 *
5583 * Return values (usually ignored):
5584 * NET_RX_SUCCESS: no congestion
5585 * NET_RX_DROP: packet was dropped
5586 */
5587int netif_receive_skb(struct sk_buff *skb)
5588{
5589 int ret;
5590
5591 trace_netif_receive_skb_entry(skb);
5592
5593 ret = netif_receive_skb_internal(skb);
5594 trace_netif_receive_skb_exit(ret);
5595
5596 return ret;
5597}
5598EXPORT_SYMBOL(netif_receive_skb);
5599
5600/**
5601 * netif_receive_skb_list - process many receive buffers from network
5602 * @head: list of skbs to process.
5603 *
5604 * Since return value of netif_receive_skb() is normally ignored, and
5605 * wouldn't be meaningful for a list, this function returns void.
5606 *
5607 * This function may only be called from softirq context and interrupts
5608 * should be enabled.
5609 */
5610void netif_receive_skb_list(struct list_head *head)
5611{
5612 struct sk_buff *skb;
5613
5614 if (list_empty(head))
5615 return;
5616 if (trace_netif_receive_skb_list_entry_enabled()) {
5617 list_for_each_entry(skb, head, list)
5618 trace_netif_receive_skb_list_entry(skb);
5619 }
5620 netif_receive_skb_list_internal(head);
5621 trace_netif_receive_skb_list_exit(0);
5622}
5623EXPORT_SYMBOL(netif_receive_skb_list);
5624
5625static DEFINE_PER_CPU(struct work_struct, flush_works);
5626
5627/* Network device is going away, flush any packets still pending */
5628static void flush_backlog(struct work_struct *work)
5629{
5630 struct sk_buff *skb, *tmp;
5631 struct softnet_data *sd;
5632
5633 local_bh_disable();
5634 sd = this_cpu_ptr(&softnet_data);
5635
5636 local_irq_disable();
5637 rps_lock(sd);
5638 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5639 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5640 __skb_unlink(skb, &sd->input_pkt_queue);
5641 dev_kfree_skb_irq(skb);
5642 input_queue_head_incr(sd);
5643 }
5644 }
5645 rps_unlock(sd);
5646 local_irq_enable();
5647
5648 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5649 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5650 __skb_unlink(skb, &sd->process_queue);
5651 kfree_skb(skb);
5652 input_queue_head_incr(sd);
5653 }
5654 }
5655 local_bh_enable();
5656}
5657
5658static bool flush_required(int cpu)
5659{
5660#if IS_ENABLED(CONFIG_RPS)
5661 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5662 bool do_flush;
5663
5664 local_irq_disable();
5665 rps_lock(sd);
5666
5667 /* as insertion into process_queue happens with the rps lock held,
5668 * process_queue access may race only with dequeue
5669 */
5670 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5671 !skb_queue_empty_lockless(&sd->process_queue);
5672 rps_unlock(sd);
5673 local_irq_enable();
5674
5675 return do_flush;
5676#endif
5677 /* without RPS we can't safely check input_pkt_queue: during a
5678 * concurrent remote skb_queue_splice() we can detect as empty both
5679 * input_pkt_queue and process_queue even if the latter could end-up
5680 * containing a lot of packets.
5681 */
5682 return true;
5683}
5684
5685static void flush_all_backlogs(void)
5686{
5687 static cpumask_t flush_cpus;
5688 unsigned int cpu;
5689
5690 /* since we are under rtnl lock protection we can use static data
5691 * for the cpumask and avoid allocating on stack the possibly
5692 * large mask
5693 */
5694 ASSERT_RTNL();
5695
5696 get_online_cpus();
5697
5698 cpumask_clear(&flush_cpus);
5699 for_each_online_cpu(cpu) {
5700 if (flush_required(cpu)) {
5701 queue_work_on(cpu, system_highpri_wq,
5702 per_cpu_ptr(&flush_works, cpu));
5703 cpumask_set_cpu(cpu, &flush_cpus);
5704 }
5705 }
5706
5707 /* we can have in flight packet[s] on the cpus we are not flushing,
5708 * synchronize_net() in rollback_registered_many() will take care of
5709 * them
5710 */
5711 for_each_cpu(cpu, &flush_cpus)
5712 flush_work(per_cpu_ptr(&flush_works, cpu));
5713
5714 put_online_cpus();
5715}
5716
5717/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5718static void gro_normal_list(struct napi_struct *napi)
5719{
5720 if (!napi->rx_count)
5721 return;
5722 netif_receive_skb_list_internal(&napi->rx_list);
5723 INIT_LIST_HEAD(&napi->rx_list);
5724 napi->rx_count = 0;
5725}
5726
5727/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5728 * pass the whole batch up to the stack.
5729 */
5730static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5731{
5732 list_add_tail(&skb->list, &napi->rx_list);
5733 if (++napi->rx_count >= gro_normal_batch)
5734 gro_normal_list(napi);
5735}
5736
5737INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5738INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5739static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5740{
5741 struct packet_offload *ptype;
5742 __be16 type = skb->protocol;
5743 struct list_head *head = &offload_base;
5744 int err = -ENOENT;
5745
5746 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5747
5748 if (NAPI_GRO_CB(skb)->count == 1) {
5749 skb_shinfo(skb)->gso_size = 0;
5750 goto out;
5751 }
5752
5753 rcu_read_lock();
5754 list_for_each_entry_rcu(ptype, head, list) {
5755 if (ptype->type != type || !ptype->callbacks.gro_complete)
5756 continue;
5757
5758 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5759 ipv6_gro_complete, inet_gro_complete,
5760 skb, 0);
5761 break;
5762 }
5763 rcu_read_unlock();
5764
5765 if (err) {
5766 WARN_ON(&ptype->list == head);
5767 kfree_skb(skb);
5768 return NET_RX_SUCCESS;
5769 }
5770
5771out:
5772 gro_normal_one(napi, skb);
5773 return NET_RX_SUCCESS;
5774}
5775
5776static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5777 bool flush_old)
5778{
5779 struct list_head *head = &napi->gro_hash[index].list;
5780 struct sk_buff *skb, *p;
5781
5782 list_for_each_entry_safe_reverse(skb, p, head, list) {
5783 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5784 return;
5785 skb_list_del_init(skb);
5786 napi_gro_complete(napi, skb);
5787 napi->gro_hash[index].count--;
5788 }
5789
5790 if (!napi->gro_hash[index].count)
5791 __clear_bit(index, &napi->gro_bitmask);
5792}
5793
5794/* napi->gro_hash[].list contains packets ordered by age.
5795 * youngest packets at the head of it.
5796 * Complete skbs in reverse order to reduce latencies.
5797 */
5798void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5799{
5800 unsigned long bitmask = napi->gro_bitmask;
5801 unsigned int i, base = ~0U;
5802
5803 while ((i = ffs(bitmask)) != 0) {
5804 bitmask >>= i;
5805 base += i;
5806 __napi_gro_flush_chain(napi, base, flush_old);
5807 }
5808}
5809EXPORT_SYMBOL(napi_gro_flush);
5810
5811static struct list_head *gro_list_prepare(struct napi_struct *napi,
5812 struct sk_buff *skb)
5813{
5814 unsigned int maclen = skb->dev->hard_header_len;
5815 u32 hash = skb_get_hash_raw(skb);
5816 struct list_head *head;
5817 struct sk_buff *p;
5818
5819 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5820 list_for_each_entry(p, head, list) {
5821 unsigned long diffs;
5822
5823 NAPI_GRO_CB(p)->flush = 0;
5824
5825 if (hash != skb_get_hash_raw(p)) {
5826 NAPI_GRO_CB(p)->same_flow = 0;
5827 continue;
5828 }
5829
5830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5831 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5832 if (skb_vlan_tag_present(p))
5833 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5834 diffs |= skb_metadata_dst_cmp(p, skb);
5835 diffs |= skb_metadata_differs(p, skb);
5836 if (maclen == ETH_HLEN)
5837 diffs |= compare_ether_header(skb_mac_header(p),
5838 skb_mac_header(skb));
5839 else if (!diffs)
5840 diffs = memcmp(skb_mac_header(p),
5841 skb_mac_header(skb),
5842 maclen);
5843 NAPI_GRO_CB(p)->same_flow = !diffs;
5844 }
5845
5846 return head;
5847}
5848
5849static void skb_gro_reset_offset(struct sk_buff *skb)
5850{
5851 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5852 const skb_frag_t *frag0 = &pinfo->frags[0];
5853
5854 NAPI_GRO_CB(skb)->data_offset = 0;
5855 NAPI_GRO_CB(skb)->frag0 = NULL;
5856 NAPI_GRO_CB(skb)->frag0_len = 0;
5857
5858 if (!skb_headlen(skb) && pinfo->nr_frags &&
5859 !PageHighMem(skb_frag_page(frag0))) {
5860 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5861 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5862 skb_frag_size(frag0),
5863 skb->end - skb->tail);
5864 }
5865}
5866
5867static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5868{
5869 struct skb_shared_info *pinfo = skb_shinfo(skb);
5870
5871 BUG_ON(skb->end - skb->tail < grow);
5872
5873 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5874
5875 skb->data_len -= grow;
5876 skb->tail += grow;
5877
5878 skb_frag_off_add(&pinfo->frags[0], grow);
5879 skb_frag_size_sub(&pinfo->frags[0], grow);
5880
5881 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5882 skb_frag_unref(skb, 0);
5883 memmove(pinfo->frags, pinfo->frags + 1,
5884 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5885 }
5886}
5887
5888static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5889{
5890 struct sk_buff *oldest;
5891
5892 oldest = list_last_entry(head, struct sk_buff, list);
5893
5894 /* We are called with head length >= MAX_GRO_SKBS, so this is
5895 * impossible.
5896 */
5897 if (WARN_ON_ONCE(!oldest))
5898 return;
5899
5900 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5901 * SKB to the chain.
5902 */
5903 skb_list_del_init(oldest);
5904 napi_gro_complete(napi, oldest);
5905}
5906
5907INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5908 struct sk_buff *));
5909INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5910 struct sk_buff *));
5911static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5912{
5913 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5914 struct list_head *head = &offload_base;
5915 struct packet_offload *ptype;
5916 __be16 type = skb->protocol;
5917 struct list_head *gro_head;
5918 struct sk_buff *pp = NULL;
5919 enum gro_result ret;
5920 int same_flow;
5921 int grow;
5922
5923 if (netif_elide_gro(skb->dev))
5924 goto normal;
5925
5926 gro_head = gro_list_prepare(napi, skb);
5927
5928 rcu_read_lock();
5929 list_for_each_entry_rcu(ptype, head, list) {
5930 if (ptype->type != type || !ptype->callbacks.gro_receive)
5931 continue;
5932
5933 skb_set_network_header(skb, skb_gro_offset(skb));
5934 skb_reset_mac_len(skb);
5935 NAPI_GRO_CB(skb)->same_flow = 0;
5936 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5937 NAPI_GRO_CB(skb)->free = 0;
5938 NAPI_GRO_CB(skb)->encap_mark = 0;
5939 NAPI_GRO_CB(skb)->recursion_counter = 0;
5940 NAPI_GRO_CB(skb)->is_fou = 0;
5941 NAPI_GRO_CB(skb)->is_atomic = 1;
5942 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5943
5944 /* Setup for GRO checksum validation */
5945 switch (skb->ip_summed) {
5946 case CHECKSUM_COMPLETE:
5947 NAPI_GRO_CB(skb)->csum = skb->csum;
5948 NAPI_GRO_CB(skb)->csum_valid = 1;
5949 NAPI_GRO_CB(skb)->csum_cnt = 0;
5950 break;
5951 case CHECKSUM_UNNECESSARY:
5952 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5953 NAPI_GRO_CB(skb)->csum_valid = 0;
5954 break;
5955 default:
5956 NAPI_GRO_CB(skb)->csum_cnt = 0;
5957 NAPI_GRO_CB(skb)->csum_valid = 0;
5958 }
5959
5960 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5961 ipv6_gro_receive, inet_gro_receive,
5962 gro_head, skb);
5963 break;
5964 }
5965 rcu_read_unlock();
5966
5967 if (&ptype->list == head)
5968 goto normal;
5969
5970 if (PTR_ERR(pp) == -EINPROGRESS) {
5971 ret = GRO_CONSUMED;
5972 goto ok;
5973 }
5974
5975 same_flow = NAPI_GRO_CB(skb)->same_flow;
5976 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5977
5978 if (pp) {
5979 skb_list_del_init(pp);
5980 napi_gro_complete(napi, pp);
5981 napi->gro_hash[hash].count--;
5982 }
5983
5984 if (same_flow)
5985 goto ok;
5986
5987 if (NAPI_GRO_CB(skb)->flush)
5988 goto normal;
5989
5990 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5991 gro_flush_oldest(napi, gro_head);
5992 } else {
5993 napi->gro_hash[hash].count++;
5994 }
5995 NAPI_GRO_CB(skb)->count = 1;
5996 NAPI_GRO_CB(skb)->age = jiffies;
5997 NAPI_GRO_CB(skb)->last = skb;
5998 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5999 list_add(&skb->list, gro_head);
6000 ret = GRO_HELD;
6001
6002pull:
6003 grow = skb_gro_offset(skb) - skb_headlen(skb);
6004 if (grow > 0)
6005 gro_pull_from_frag0(skb, grow);
6006ok:
6007 if (napi->gro_hash[hash].count) {
6008 if (!test_bit(hash, &napi->gro_bitmask))
6009 __set_bit(hash, &napi->gro_bitmask);
6010 } else if (test_bit(hash, &napi->gro_bitmask)) {
6011 __clear_bit(hash, &napi->gro_bitmask);
6012 }
6013
6014 return ret;
6015
6016normal:
6017 ret = GRO_NORMAL;
6018 goto pull;
6019}
6020
6021struct packet_offload *gro_find_receive_by_type(__be16 type)
6022{
6023 struct list_head *offload_head = &offload_base;
6024 struct packet_offload *ptype;
6025
6026 list_for_each_entry_rcu(ptype, offload_head, list) {
6027 if (ptype->type != type || !ptype->callbacks.gro_receive)
6028 continue;
6029 return ptype;
6030 }
6031 return NULL;
6032}
6033EXPORT_SYMBOL(gro_find_receive_by_type);
6034
6035struct packet_offload *gro_find_complete_by_type(__be16 type)
6036{
6037 struct list_head *offload_head = &offload_base;
6038 struct packet_offload *ptype;
6039
6040 list_for_each_entry_rcu(ptype, offload_head, list) {
6041 if (ptype->type != type || !ptype->callbacks.gro_complete)
6042 continue;
6043 return ptype;
6044 }
6045 return NULL;
6046}
6047EXPORT_SYMBOL(gro_find_complete_by_type);
6048
6049static void napi_skb_free_stolen_head(struct sk_buff *skb)
6050{
6051 skb_dst_drop(skb);
6052 skb_ext_put(skb);
6053 kmem_cache_free(skbuff_head_cache, skb);
6054}
6055
6056static gro_result_t napi_skb_finish(struct napi_struct *napi,
6057 struct sk_buff *skb,
6058 gro_result_t ret)
6059{
6060 switch (ret) {
6061 case GRO_NORMAL:
6062 gro_normal_one(napi, skb);
6063 break;
6064
6065 case GRO_DROP:
6066 kfree_skb(skb);
6067 break;
6068
6069 case GRO_MERGED_FREE:
6070 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6071 napi_skb_free_stolen_head(skb);
6072 else
6073 __kfree_skb(skb);
6074 break;
6075
6076 case GRO_HELD:
6077 case GRO_MERGED:
6078 case GRO_CONSUMED:
6079 break;
6080 }
6081
6082 return ret;
6083}
6084
6085gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6086{
6087 gro_result_t ret;
6088
6089 skb_mark_napi_id(skb, napi);
6090 trace_napi_gro_receive_entry(skb);
6091
6092 skb_gro_reset_offset(skb);
6093
6094 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6095 trace_napi_gro_receive_exit(ret);
6096
6097 return ret;
6098}
6099EXPORT_SYMBOL(napi_gro_receive);
6100
6101static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6102{
6103 if (unlikely(skb->pfmemalloc)) {
6104 consume_skb(skb);
6105 return;
6106 }
6107 __skb_pull(skb, skb_headlen(skb));
6108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6110 __vlan_hwaccel_clear_tag(skb);
6111 skb->dev = napi->dev;
6112 skb->skb_iif = 0;
6113
6114 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6115 skb->pkt_type = PACKET_HOST;
6116
6117 skb->encapsulation = 0;
6118 skb_shinfo(skb)->gso_type = 0;
6119 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6120 skb_ext_reset(skb);
6121
6122 napi->skb = skb;
6123}
6124
6125struct sk_buff *napi_get_frags(struct napi_struct *napi)
6126{
6127 struct sk_buff *skb = napi->skb;
6128
6129 if (!skb) {
6130 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6131 if (skb) {
6132 napi->skb = skb;
6133 skb_mark_napi_id(skb, napi);
6134 }
6135 }
6136 return skb;
6137}
6138EXPORT_SYMBOL(napi_get_frags);
6139
6140static gro_result_t napi_frags_finish(struct napi_struct *napi,
6141 struct sk_buff *skb,
6142 gro_result_t ret)
6143{
6144 switch (ret) {
6145 case GRO_NORMAL:
6146 case GRO_HELD:
6147 __skb_push(skb, ETH_HLEN);
6148 skb->protocol = eth_type_trans(skb, skb->dev);
6149 if (ret == GRO_NORMAL)
6150 gro_normal_one(napi, skb);
6151 break;
6152
6153 case GRO_DROP:
6154 napi_reuse_skb(napi, skb);
6155 break;
6156
6157 case GRO_MERGED_FREE:
6158 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6159 napi_skb_free_stolen_head(skb);
6160 else
6161 napi_reuse_skb(napi, skb);
6162 break;
6163
6164 case GRO_MERGED:
6165 case GRO_CONSUMED:
6166 break;
6167 }
6168
6169 return ret;
6170}
6171
6172/* Upper GRO stack assumes network header starts at gro_offset=0
6173 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6174 * We copy ethernet header into skb->data to have a common layout.
6175 */
6176static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6177{
6178 struct sk_buff *skb = napi->skb;
6179 const struct ethhdr *eth;
6180 unsigned int hlen = sizeof(*eth);
6181
6182 napi->skb = NULL;
6183
6184 skb_reset_mac_header(skb);
6185 skb_gro_reset_offset(skb);
6186
6187 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6188 eth = skb_gro_header_slow(skb, hlen, 0);
6189 if (unlikely(!eth)) {
6190 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6191 __func__, napi->dev->name);
6192 napi_reuse_skb(napi, skb);
6193 return NULL;
6194 }
6195 } else {
6196 eth = (const struct ethhdr *)skb->data;
6197 gro_pull_from_frag0(skb, hlen);
6198 NAPI_GRO_CB(skb)->frag0 += hlen;
6199 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6200 }
6201 __skb_pull(skb, hlen);
6202
6203 /*
6204 * This works because the only protocols we care about don't require
6205 * special handling.
6206 * We'll fix it up properly in napi_frags_finish()
6207 */
6208 skb->protocol = eth->h_proto;
6209
6210 return skb;
6211}
6212
6213gro_result_t napi_gro_frags(struct napi_struct *napi)
6214{
6215 gro_result_t ret;
6216 struct sk_buff *skb = napi_frags_skb(napi);
6217
6218 if (!skb)
6219 return GRO_DROP;
6220
6221 trace_napi_gro_frags_entry(skb);
6222
6223 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6224 trace_napi_gro_frags_exit(ret);
6225
6226 return ret;
6227}
6228EXPORT_SYMBOL(napi_gro_frags);
6229
6230/* Compute the checksum from gro_offset and return the folded value
6231 * after adding in any pseudo checksum.
6232 */
6233__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6234{
6235 __wsum wsum;
6236 __sum16 sum;
6237
6238 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6239
6240 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6241 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6242 /* See comments in __skb_checksum_complete(). */
6243 if (likely(!sum)) {
6244 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6245 !skb->csum_complete_sw)
6246 netdev_rx_csum_fault(skb->dev, skb);
6247 }
6248
6249 NAPI_GRO_CB(skb)->csum = wsum;
6250 NAPI_GRO_CB(skb)->csum_valid = 1;
6251
6252 return sum;
6253}
6254EXPORT_SYMBOL(__skb_gro_checksum_complete);
6255
6256static void net_rps_send_ipi(struct softnet_data *remsd)
6257{
6258#ifdef CONFIG_RPS
6259 while (remsd) {
6260 struct softnet_data *next = remsd->rps_ipi_next;
6261
6262 if (cpu_online(remsd->cpu))
6263 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6264 remsd = next;
6265 }
6266#endif
6267}
6268
6269/*
6270 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6271 * Note: called with local irq disabled, but exits with local irq enabled.
6272 */
6273static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6274{
6275#ifdef CONFIG_RPS
6276 struct softnet_data *remsd = sd->rps_ipi_list;
6277
6278 if (remsd) {
6279 sd->rps_ipi_list = NULL;
6280
6281 local_irq_enable();
6282
6283 /* Send pending IPI's to kick RPS processing on remote cpus. */
6284 net_rps_send_ipi(remsd);
6285 } else
6286#endif
6287 local_irq_enable();
6288}
6289
6290static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6291{
6292#ifdef CONFIG_RPS
6293 return sd->rps_ipi_list != NULL;
6294#else
6295 return false;
6296#endif
6297}
6298
6299static int process_backlog(struct napi_struct *napi, int quota)
6300{
6301 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6302 bool again = true;
6303 int work = 0;
6304
6305 /* Check if we have pending ipi, its better to send them now,
6306 * not waiting net_rx_action() end.
6307 */
6308 if (sd_has_rps_ipi_waiting(sd)) {
6309 local_irq_disable();
6310 net_rps_action_and_irq_enable(sd);
6311 }
6312
6313 napi->weight = dev_rx_weight;
6314 while (again) {
6315 struct sk_buff *skb;
6316
6317 while ((skb = __skb_dequeue(&sd->process_queue))) {
6318 rcu_read_lock();
6319 __netif_receive_skb(skb);
6320 rcu_read_unlock();
6321 input_queue_head_incr(sd);
6322 if (++work >= quota)
6323 return work;
6324
6325 }
6326
6327 local_irq_disable();
6328 rps_lock(sd);
6329 if (skb_queue_empty(&sd->input_pkt_queue)) {
6330 /*
6331 * Inline a custom version of __napi_complete().
6332 * only current cpu owns and manipulates this napi,
6333 * and NAPI_STATE_SCHED is the only possible flag set
6334 * on backlog.
6335 * We can use a plain write instead of clear_bit(),
6336 * and we dont need an smp_mb() memory barrier.
6337 */
6338 napi->state = 0;
6339 again = false;
6340 } else {
6341 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6342 &sd->process_queue);
6343 }
6344 rps_unlock(sd);
6345 local_irq_enable();
6346 }
6347
6348 return work;
6349}
6350
6351/**
6352 * __napi_schedule - schedule for receive
6353 * @n: entry to schedule
6354 *
6355 * The entry's receive function will be scheduled to run.
6356 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6357 */
6358void __napi_schedule(struct napi_struct *n)
6359{
6360 unsigned long flags;
6361
6362 local_irq_save(flags);
6363 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6364 local_irq_restore(flags);
6365}
6366EXPORT_SYMBOL(__napi_schedule);
6367
6368/**
6369 * napi_schedule_prep - check if napi can be scheduled
6370 * @n: napi context
6371 *
6372 * Test if NAPI routine is already running, and if not mark
6373 * it as running. This is used as a condition variable to
6374 * insure only one NAPI poll instance runs. We also make
6375 * sure there is no pending NAPI disable.
6376 */
6377bool napi_schedule_prep(struct napi_struct *n)
6378{
6379 unsigned long val, new;
6380
6381 do {
6382 val = READ_ONCE(n->state);
6383 if (unlikely(val & NAPIF_STATE_DISABLE))
6384 return false;
6385 new = val | NAPIF_STATE_SCHED;
6386
6387 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6388 * This was suggested by Alexander Duyck, as compiler
6389 * emits better code than :
6390 * if (val & NAPIF_STATE_SCHED)
6391 * new |= NAPIF_STATE_MISSED;
6392 */
6393 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6394 NAPIF_STATE_MISSED;
6395 } while (cmpxchg(&n->state, val, new) != val);
6396
6397 return !(val & NAPIF_STATE_SCHED);
6398}
6399EXPORT_SYMBOL(napi_schedule_prep);
6400
6401/**
6402 * __napi_schedule_irqoff - schedule for receive
6403 * @n: entry to schedule
6404 *
6405 * Variant of __napi_schedule() assuming hard irqs are masked
6406 */
6407void __napi_schedule_irqoff(struct napi_struct *n)
6408{
6409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6410}
6411EXPORT_SYMBOL(__napi_schedule_irqoff);
6412
6413bool napi_complete_done(struct napi_struct *n, int work_done)
6414{
6415 unsigned long flags, val, new, timeout = 0;
6416 bool ret = true;
6417
6418 /*
6419 * 1) Don't let napi dequeue from the cpu poll list
6420 * just in case its running on a different cpu.
6421 * 2) If we are busy polling, do nothing here, we have
6422 * the guarantee we will be called later.
6423 */
6424 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6425 NAPIF_STATE_IN_BUSY_POLL)))
6426 return false;
6427
6428 if (work_done) {
6429 if (n->gro_bitmask)
6430 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6431 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6432 }
6433 if (n->defer_hard_irqs_count > 0) {
6434 n->defer_hard_irqs_count--;
6435 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6436 if (timeout)
6437 ret = false;
6438 }
6439 if (n->gro_bitmask) {
6440 /* When the NAPI instance uses a timeout and keeps postponing
6441 * it, we need to bound somehow the time packets are kept in
6442 * the GRO layer
6443 */
6444 napi_gro_flush(n, !!timeout);
6445 }
6446
6447 gro_normal_list(n);
6448
6449 if (unlikely(!list_empty(&n->poll_list))) {
6450 /* If n->poll_list is not empty, we need to mask irqs */
6451 local_irq_save(flags);
6452 list_del_init(&n->poll_list);
6453 local_irq_restore(flags);
6454 }
6455
6456 do {
6457 val = READ_ONCE(n->state);
6458
6459 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6460
6461 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6462
6463 /* If STATE_MISSED was set, leave STATE_SCHED set,
6464 * because we will call napi->poll() one more time.
6465 * This C code was suggested by Alexander Duyck to help gcc.
6466 */
6467 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6468 NAPIF_STATE_SCHED;
6469 } while (cmpxchg(&n->state, val, new) != val);
6470
6471 if (unlikely(val & NAPIF_STATE_MISSED)) {
6472 __napi_schedule(n);
6473 return false;
6474 }
6475
6476 if (timeout)
6477 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6478 HRTIMER_MODE_REL_PINNED);
6479 return ret;
6480}
6481EXPORT_SYMBOL(napi_complete_done);
6482
6483/* must be called under rcu_read_lock(), as we dont take a reference */
6484static struct napi_struct *napi_by_id(unsigned int napi_id)
6485{
6486 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6487 struct napi_struct *napi;
6488
6489 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6490 if (napi->napi_id == napi_id)
6491 return napi;
6492
6493 return NULL;
6494}
6495
6496#if defined(CONFIG_NET_RX_BUSY_POLL)
6497
6498#define BUSY_POLL_BUDGET 8
6499
6500static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6501{
6502 int rc;
6503
6504 /* Busy polling means there is a high chance device driver hard irq
6505 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6506 * set in napi_schedule_prep().
6507 * Since we are about to call napi->poll() once more, we can safely
6508 * clear NAPI_STATE_MISSED.
6509 *
6510 * Note: x86 could use a single "lock and ..." instruction
6511 * to perform these two clear_bit()
6512 */
6513 clear_bit(NAPI_STATE_MISSED, &napi->state);
6514 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6515
6516 local_bh_disable();
6517
6518 /* All we really want here is to re-enable device interrupts.
6519 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6520 */
6521 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6522 /* We can't gro_normal_list() here, because napi->poll() might have
6523 * rearmed the napi (napi_complete_done()) in which case it could
6524 * already be running on another CPU.
6525 */
6526 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6527 netpoll_poll_unlock(have_poll_lock);
6528 if (rc == BUSY_POLL_BUDGET) {
6529 /* As the whole budget was spent, we still own the napi so can
6530 * safely handle the rx_list.
6531 */
6532 gro_normal_list(napi);
6533 __napi_schedule(napi);
6534 }
6535 local_bh_enable();
6536}
6537
6538void napi_busy_loop(unsigned int napi_id,
6539 bool (*loop_end)(void *, unsigned long),
6540 void *loop_end_arg)
6541{
6542 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6543 int (*napi_poll)(struct napi_struct *napi, int budget);
6544 void *have_poll_lock = NULL;
6545 struct napi_struct *napi;
6546
6547restart:
6548 napi_poll = NULL;
6549
6550 rcu_read_lock();
6551
6552 napi = napi_by_id(napi_id);
6553 if (!napi)
6554 goto out;
6555
6556 preempt_disable();
6557 for (;;) {
6558 int work = 0;
6559
6560 local_bh_disable();
6561 if (!napi_poll) {
6562 unsigned long val = READ_ONCE(napi->state);
6563
6564 /* If multiple threads are competing for this napi,
6565 * we avoid dirtying napi->state as much as we can.
6566 */
6567 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6568 NAPIF_STATE_IN_BUSY_POLL))
6569 goto count;
6570 if (cmpxchg(&napi->state, val,
6571 val | NAPIF_STATE_IN_BUSY_POLL |
6572 NAPIF_STATE_SCHED) != val)
6573 goto count;
6574 have_poll_lock = netpoll_poll_lock(napi);
6575 napi_poll = napi->poll;
6576 }
6577 work = napi_poll(napi, BUSY_POLL_BUDGET);
6578 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6579 gro_normal_list(napi);
6580count:
6581 if (work > 0)
6582 __NET_ADD_STATS(dev_net(napi->dev),
6583 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6584 local_bh_enable();
6585
6586 if (!loop_end || loop_end(loop_end_arg, start_time))
6587 break;
6588
6589 if (unlikely(need_resched())) {
6590 if (napi_poll)
6591 busy_poll_stop(napi, have_poll_lock);
6592 preempt_enable();
6593 rcu_read_unlock();
6594 cond_resched();
6595 if (loop_end(loop_end_arg, start_time))
6596 return;
6597 goto restart;
6598 }
6599 cpu_relax();
6600 }
6601 if (napi_poll)
6602 busy_poll_stop(napi, have_poll_lock);
6603 preempt_enable();
6604out:
6605 rcu_read_unlock();
6606}
6607EXPORT_SYMBOL(napi_busy_loop);
6608
6609#endif /* CONFIG_NET_RX_BUSY_POLL */
6610
6611static void napi_hash_add(struct napi_struct *napi)
6612{
6613 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6614 return;
6615
6616 spin_lock(&napi_hash_lock);
6617
6618 /* 0..NR_CPUS range is reserved for sender_cpu use */
6619 do {
6620 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6621 napi_gen_id = MIN_NAPI_ID;
6622 } while (napi_by_id(napi_gen_id));
6623 napi->napi_id = napi_gen_id;
6624
6625 hlist_add_head_rcu(&napi->napi_hash_node,
6626 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6627
6628 spin_unlock(&napi_hash_lock);
6629}
6630
6631/* Warning : caller is responsible to make sure rcu grace period
6632 * is respected before freeing memory containing @napi
6633 */
6634static void napi_hash_del(struct napi_struct *napi)
6635{
6636 spin_lock(&napi_hash_lock);
6637
6638 hlist_del_init_rcu(&napi->napi_hash_node);
6639
6640 spin_unlock(&napi_hash_lock);
6641}
6642
6643static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6644{
6645 struct napi_struct *napi;
6646
6647 napi = container_of(timer, struct napi_struct, timer);
6648
6649 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6650 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6651 */
6652 if (!napi_disable_pending(napi) &&
6653 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6654 __napi_schedule_irqoff(napi);
6655
6656 return HRTIMER_NORESTART;
6657}
6658
6659static void init_gro_hash(struct napi_struct *napi)
6660{
6661 int i;
6662
6663 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6664 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6665 napi->gro_hash[i].count = 0;
6666 }
6667 napi->gro_bitmask = 0;
6668}
6669
6670void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6671 int (*poll)(struct napi_struct *, int), int weight)
6672{
6673 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6674 return;
6675
6676 INIT_LIST_HEAD(&napi->poll_list);
6677 INIT_HLIST_NODE(&napi->napi_hash_node);
6678 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6679 napi->timer.function = napi_watchdog;
6680 init_gro_hash(napi);
6681 napi->skb = NULL;
6682 INIT_LIST_HEAD(&napi->rx_list);
6683 napi->rx_count = 0;
6684 napi->poll = poll;
6685 if (weight > NAPI_POLL_WEIGHT)
6686 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6687 weight);
6688 napi->weight = weight;
6689 napi->dev = dev;
6690#ifdef CONFIG_NETPOLL
6691 napi->poll_owner = -1;
6692#endif
6693 set_bit(NAPI_STATE_SCHED, &napi->state);
6694 set_bit(NAPI_STATE_NPSVC, &napi->state);
6695 list_add_rcu(&napi->dev_list, &dev->napi_list);
6696 napi_hash_add(napi);
6697}
6698EXPORT_SYMBOL(netif_napi_add);
6699
6700void napi_disable(struct napi_struct *n)
6701{
6702 might_sleep();
6703 set_bit(NAPI_STATE_DISABLE, &n->state);
6704
6705 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6706 msleep(1);
6707 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6708 msleep(1);
6709
6710 hrtimer_cancel(&n->timer);
6711
6712 clear_bit(NAPI_STATE_DISABLE, &n->state);
6713}
6714EXPORT_SYMBOL(napi_disable);
6715
6716static void flush_gro_hash(struct napi_struct *napi)
6717{
6718 int i;
6719
6720 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6721 struct sk_buff *skb, *n;
6722
6723 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6724 kfree_skb(skb);
6725 napi->gro_hash[i].count = 0;
6726 }
6727}
6728
6729/* Must be called in process context */
6730void __netif_napi_del(struct napi_struct *napi)
6731{
6732 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6733 return;
6734
6735 napi_hash_del(napi);
6736 list_del_rcu(&napi->dev_list);
6737 napi_free_frags(napi);
6738
6739 flush_gro_hash(napi);
6740 napi->gro_bitmask = 0;
6741}
6742EXPORT_SYMBOL(__netif_napi_del);
6743
6744static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6745{
6746 void *have;
6747 int work, weight;
6748
6749 list_del_init(&n->poll_list);
6750
6751 have = netpoll_poll_lock(n);
6752
6753 weight = n->weight;
6754
6755 /* This NAPI_STATE_SCHED test is for avoiding a race
6756 * with netpoll's poll_napi(). Only the entity which
6757 * obtains the lock and sees NAPI_STATE_SCHED set will
6758 * actually make the ->poll() call. Therefore we avoid
6759 * accidentally calling ->poll() when NAPI is not scheduled.
6760 */
6761 work = 0;
6762 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6763 work = n->poll(n, weight);
6764 trace_napi_poll(n, work, weight);
6765 }
6766
6767 if (unlikely(work > weight))
6768 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6769 n->poll, work, weight);
6770
6771 if (likely(work < weight))
6772 goto out_unlock;
6773
6774 /* Drivers must not modify the NAPI state if they
6775 * consume the entire weight. In such cases this code
6776 * still "owns" the NAPI instance and therefore can
6777 * move the instance around on the list at-will.
6778 */
6779 if (unlikely(napi_disable_pending(n))) {
6780 napi_complete(n);
6781 goto out_unlock;
6782 }
6783
6784 if (n->gro_bitmask) {
6785 /* flush too old packets
6786 * If HZ < 1000, flush all packets.
6787 */
6788 napi_gro_flush(n, HZ >= 1000);
6789 }
6790
6791 gro_normal_list(n);
6792
6793 /* Some drivers may have called napi_schedule
6794 * prior to exhausting their budget.
6795 */
6796 if (unlikely(!list_empty(&n->poll_list))) {
6797 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6798 n->dev ? n->dev->name : "backlog");
6799 goto out_unlock;
6800 }
6801
6802 list_add_tail(&n->poll_list, repoll);
6803
6804out_unlock:
6805 netpoll_poll_unlock(have);
6806
6807 return work;
6808}
6809
6810static __latent_entropy void net_rx_action(struct softirq_action *h)
6811{
6812 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6813 unsigned long time_limit = jiffies +
6814 usecs_to_jiffies(netdev_budget_usecs);
6815 int budget = netdev_budget;
6816 LIST_HEAD(list);
6817 LIST_HEAD(repoll);
6818
6819 local_irq_disable();
6820 list_splice_init(&sd->poll_list, &list);
6821 local_irq_enable();
6822
6823 for (;;) {
6824 struct napi_struct *n;
6825
6826 if (list_empty(&list)) {
6827 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6828 goto out;
6829 break;
6830 }
6831
6832 n = list_first_entry(&list, struct napi_struct, poll_list);
6833 budget -= napi_poll(n, &repoll);
6834
6835 /* If softirq window is exhausted then punt.
6836 * Allow this to run for 2 jiffies since which will allow
6837 * an average latency of 1.5/HZ.
6838 */
6839 if (unlikely(budget <= 0 ||
6840 time_after_eq(jiffies, time_limit))) {
6841 sd->time_squeeze++;
6842 break;
6843 }
6844 }
6845
6846 local_irq_disable();
6847
6848 list_splice_tail_init(&sd->poll_list, &list);
6849 list_splice_tail(&repoll, &list);
6850 list_splice(&list, &sd->poll_list);
6851 if (!list_empty(&sd->poll_list))
6852 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6853
6854 net_rps_action_and_irq_enable(sd);
6855out:
6856 __kfree_skb_flush();
6857}
6858
6859struct netdev_adjacent {
6860 struct net_device *dev;
6861
6862 /* upper master flag, there can only be one master device per list */
6863 bool master;
6864
6865 /* lookup ignore flag */
6866 bool ignore;
6867
6868 /* counter for the number of times this device was added to us */
6869 u16 ref_nr;
6870
6871 /* private field for the users */
6872 void *private;
6873
6874 struct list_head list;
6875 struct rcu_head rcu;
6876};
6877
6878static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6879 struct list_head *adj_list)
6880{
6881 struct netdev_adjacent *adj;
6882
6883 list_for_each_entry(adj, adj_list, list) {
6884 if (adj->dev == adj_dev)
6885 return adj;
6886 }
6887 return NULL;
6888}
6889
6890static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6891 struct netdev_nested_priv *priv)
6892{
6893 struct net_device *dev = (struct net_device *)priv->data;
6894
6895 return upper_dev == dev;
6896}
6897
6898/**
6899 * netdev_has_upper_dev - Check if device is linked to an upper device
6900 * @dev: device
6901 * @upper_dev: upper device to check
6902 *
6903 * Find out if a device is linked to specified upper device and return true
6904 * in case it is. Note that this checks only immediate upper device,
6905 * not through a complete stack of devices. The caller must hold the RTNL lock.
6906 */
6907bool netdev_has_upper_dev(struct net_device *dev,
6908 struct net_device *upper_dev)
6909{
6910 struct netdev_nested_priv priv = {
6911 .data = (void *)upper_dev,
6912 };
6913
6914 ASSERT_RTNL();
6915
6916 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6917 &priv);
6918}
6919EXPORT_SYMBOL(netdev_has_upper_dev);
6920
6921/**
6922 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6923 * @dev: device
6924 * @upper_dev: upper device to check
6925 *
6926 * Find out if a device is linked to specified upper device and return true
6927 * in case it is. Note that this checks the entire upper device chain.
6928 * The caller must hold rcu lock.
6929 */
6930
6931bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6932 struct net_device *upper_dev)
6933{
6934 struct netdev_nested_priv priv = {
6935 .data = (void *)upper_dev,
6936 };
6937
6938 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6939 &priv);
6940}
6941EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6942
6943/**
6944 * netdev_has_any_upper_dev - Check if device is linked to some device
6945 * @dev: device
6946 *
6947 * Find out if a device is linked to an upper device and return true in case
6948 * it is. The caller must hold the RTNL lock.
6949 */
6950bool netdev_has_any_upper_dev(struct net_device *dev)
6951{
6952 ASSERT_RTNL();
6953
6954 return !list_empty(&dev->adj_list.upper);
6955}
6956EXPORT_SYMBOL(netdev_has_any_upper_dev);
6957
6958/**
6959 * netdev_master_upper_dev_get - Get master upper device
6960 * @dev: device
6961 *
6962 * Find a master upper device and return pointer to it or NULL in case
6963 * it's not there. The caller must hold the RTNL lock.
6964 */
6965struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6966{
6967 struct netdev_adjacent *upper;
6968
6969 ASSERT_RTNL();
6970
6971 if (list_empty(&dev->adj_list.upper))
6972 return NULL;
6973
6974 upper = list_first_entry(&dev->adj_list.upper,
6975 struct netdev_adjacent, list);
6976 if (likely(upper->master))
6977 return upper->dev;
6978 return NULL;
6979}
6980EXPORT_SYMBOL(netdev_master_upper_dev_get);
6981
6982static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6983{
6984 struct netdev_adjacent *upper;
6985
6986 ASSERT_RTNL();
6987
6988 if (list_empty(&dev->adj_list.upper))
6989 return NULL;
6990
6991 upper = list_first_entry(&dev->adj_list.upper,
6992 struct netdev_adjacent, list);
6993 if (likely(upper->master) && !upper->ignore)
6994 return upper->dev;
6995 return NULL;
6996}
6997
6998/**
6999 * netdev_has_any_lower_dev - Check if device is linked to some device
7000 * @dev: device
7001 *
7002 * Find out if a device is linked to a lower device and return true in case
7003 * it is. The caller must hold the RTNL lock.
7004 */
7005static bool netdev_has_any_lower_dev(struct net_device *dev)
7006{
7007 ASSERT_RTNL();
7008
7009 return !list_empty(&dev->adj_list.lower);
7010}
7011
7012void *netdev_adjacent_get_private(struct list_head *adj_list)
7013{
7014 struct netdev_adjacent *adj;
7015
7016 adj = list_entry(adj_list, struct netdev_adjacent, list);
7017
7018 return adj->private;
7019}
7020EXPORT_SYMBOL(netdev_adjacent_get_private);
7021
7022/**
7023 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7024 * @dev: device
7025 * @iter: list_head ** of the current position
7026 *
7027 * Gets the next device from the dev's upper list, starting from iter
7028 * position. The caller must hold RCU read lock.
7029 */
7030struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7031 struct list_head **iter)
7032{
7033 struct netdev_adjacent *upper;
7034
7035 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7036
7037 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7038
7039 if (&upper->list == &dev->adj_list.upper)
7040 return NULL;
7041
7042 *iter = &upper->list;
7043
7044 return upper->dev;
7045}
7046EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7047
7048static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7049 struct list_head **iter,
7050 bool *ignore)
7051{
7052 struct netdev_adjacent *upper;
7053
7054 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7055
7056 if (&upper->list == &dev->adj_list.upper)
7057 return NULL;
7058
7059 *iter = &upper->list;
7060 *ignore = upper->ignore;
7061
7062 return upper->dev;
7063}
7064
7065static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7066 struct list_head **iter)
7067{
7068 struct netdev_adjacent *upper;
7069
7070 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7071
7072 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7073
7074 if (&upper->list == &dev->adj_list.upper)
7075 return NULL;
7076
7077 *iter = &upper->list;
7078
7079 return upper->dev;
7080}
7081
7082static int __netdev_walk_all_upper_dev(struct net_device *dev,
7083 int (*fn)(struct net_device *dev,
7084 struct netdev_nested_priv *priv),
7085 struct netdev_nested_priv *priv)
7086{
7087 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7088 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7089 int ret, cur = 0;
7090 bool ignore;
7091
7092 now = dev;
7093 iter = &dev->adj_list.upper;
7094
7095 while (1) {
7096 if (now != dev) {
7097 ret = fn(now, priv);
7098 if (ret)
7099 return ret;
7100 }
7101
7102 next = NULL;
7103 while (1) {
7104 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7105 if (!udev)
7106 break;
7107 if (ignore)
7108 continue;
7109
7110 next = udev;
7111 niter = &udev->adj_list.upper;
7112 dev_stack[cur] = now;
7113 iter_stack[cur++] = iter;
7114 break;
7115 }
7116
7117 if (!next) {
7118 if (!cur)
7119 return 0;
7120 next = dev_stack[--cur];
7121 niter = iter_stack[cur];
7122 }
7123
7124 now = next;
7125 iter = niter;
7126 }
7127
7128 return 0;
7129}
7130
7131int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7132 int (*fn)(struct net_device *dev,
7133 struct netdev_nested_priv *priv),
7134 struct netdev_nested_priv *priv)
7135{
7136 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7137 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7138 int ret, cur = 0;
7139
7140 now = dev;
7141 iter = &dev->adj_list.upper;
7142
7143 while (1) {
7144 if (now != dev) {
7145 ret = fn(now, priv);
7146 if (ret)
7147 return ret;
7148 }
7149
7150 next = NULL;
7151 while (1) {
7152 udev = netdev_next_upper_dev_rcu(now, &iter);
7153 if (!udev)
7154 break;
7155
7156 next = udev;
7157 niter = &udev->adj_list.upper;
7158 dev_stack[cur] = now;
7159 iter_stack[cur++] = iter;
7160 break;
7161 }
7162
7163 if (!next) {
7164 if (!cur)
7165 return 0;
7166 next = dev_stack[--cur];
7167 niter = iter_stack[cur];
7168 }
7169
7170 now = next;
7171 iter = niter;
7172 }
7173
7174 return 0;
7175}
7176EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7177
7178static bool __netdev_has_upper_dev(struct net_device *dev,
7179 struct net_device *upper_dev)
7180{
7181 struct netdev_nested_priv priv = {
7182 .flags = 0,
7183 .data = (void *)upper_dev,
7184 };
7185
7186 ASSERT_RTNL();
7187
7188 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7189 &priv);
7190}
7191
7192/**
7193 * netdev_lower_get_next_private - Get the next ->private from the
7194 * lower neighbour list
7195 * @dev: device
7196 * @iter: list_head ** of the current position
7197 *
7198 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7199 * list, starting from iter position. The caller must hold either hold the
7200 * RTNL lock or its own locking that guarantees that the neighbour lower
7201 * list will remain unchanged.
7202 */
7203void *netdev_lower_get_next_private(struct net_device *dev,
7204 struct list_head **iter)
7205{
7206 struct netdev_adjacent *lower;
7207
7208 lower = list_entry(*iter, struct netdev_adjacent, list);
7209
7210 if (&lower->list == &dev->adj_list.lower)
7211 return NULL;
7212
7213 *iter = lower->list.next;
7214
7215 return lower->private;
7216}
7217EXPORT_SYMBOL(netdev_lower_get_next_private);
7218
7219/**
7220 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7221 * lower neighbour list, RCU
7222 * variant
7223 * @dev: device
7224 * @iter: list_head ** of the current position
7225 *
7226 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7227 * list, starting from iter position. The caller must hold RCU read lock.
7228 */
7229void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7230 struct list_head **iter)
7231{
7232 struct netdev_adjacent *lower;
7233
7234 WARN_ON_ONCE(!rcu_read_lock_held());
7235
7236 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7237
7238 if (&lower->list == &dev->adj_list.lower)
7239 return NULL;
7240
7241 *iter = &lower->list;
7242
7243 return lower->private;
7244}
7245EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7246
7247/**
7248 * netdev_lower_get_next - Get the next device from the lower neighbour
7249 * list
7250 * @dev: device
7251 * @iter: list_head ** of the current position
7252 *
7253 * Gets the next netdev_adjacent from the dev's lower neighbour
7254 * list, starting from iter position. The caller must hold RTNL lock or
7255 * its own locking that guarantees that the neighbour lower
7256 * list will remain unchanged.
7257 */
7258void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7259{
7260 struct netdev_adjacent *lower;
7261
7262 lower = list_entry(*iter, struct netdev_adjacent, list);
7263
7264 if (&lower->list == &dev->adj_list.lower)
7265 return NULL;
7266
7267 *iter = lower->list.next;
7268
7269 return lower->dev;
7270}
7271EXPORT_SYMBOL(netdev_lower_get_next);
7272
7273static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7274 struct list_head **iter)
7275{
7276 struct netdev_adjacent *lower;
7277
7278 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7279
7280 if (&lower->list == &dev->adj_list.lower)
7281 return NULL;
7282
7283 *iter = &lower->list;
7284
7285 return lower->dev;
7286}
7287
7288static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7289 struct list_head **iter,
7290 bool *ignore)
7291{
7292 struct netdev_adjacent *lower;
7293
7294 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7295
7296 if (&lower->list == &dev->adj_list.lower)
7297 return NULL;
7298
7299 *iter = &lower->list;
7300 *ignore = lower->ignore;
7301
7302 return lower->dev;
7303}
7304
7305int netdev_walk_all_lower_dev(struct net_device *dev,
7306 int (*fn)(struct net_device *dev,
7307 struct netdev_nested_priv *priv),
7308 struct netdev_nested_priv *priv)
7309{
7310 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7311 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7312 int ret, cur = 0;
7313
7314 now = dev;
7315 iter = &dev->adj_list.lower;
7316
7317 while (1) {
7318 if (now != dev) {
7319 ret = fn(now, priv);
7320 if (ret)
7321 return ret;
7322 }
7323
7324 next = NULL;
7325 while (1) {
7326 ldev = netdev_next_lower_dev(now, &iter);
7327 if (!ldev)
7328 break;
7329
7330 next = ldev;
7331 niter = &ldev->adj_list.lower;
7332 dev_stack[cur] = now;
7333 iter_stack[cur++] = iter;
7334 break;
7335 }
7336
7337 if (!next) {
7338 if (!cur)
7339 return 0;
7340 next = dev_stack[--cur];
7341 niter = iter_stack[cur];
7342 }
7343
7344 now = next;
7345 iter = niter;
7346 }
7347
7348 return 0;
7349}
7350EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7351
7352static int __netdev_walk_all_lower_dev(struct net_device *dev,
7353 int (*fn)(struct net_device *dev,
7354 struct netdev_nested_priv *priv),
7355 struct netdev_nested_priv *priv)
7356{
7357 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7358 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7359 int ret, cur = 0;
7360 bool ignore;
7361
7362 now = dev;
7363 iter = &dev->adj_list.lower;
7364
7365 while (1) {
7366 if (now != dev) {
7367 ret = fn(now, priv);
7368 if (ret)
7369 return ret;
7370 }
7371
7372 next = NULL;
7373 while (1) {
7374 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7375 if (!ldev)
7376 break;
7377 if (ignore)
7378 continue;
7379
7380 next = ldev;
7381 niter = &ldev->adj_list.lower;
7382 dev_stack[cur] = now;
7383 iter_stack[cur++] = iter;
7384 break;
7385 }
7386
7387 if (!next) {
7388 if (!cur)
7389 return 0;
7390 next = dev_stack[--cur];
7391 niter = iter_stack[cur];
7392 }
7393
7394 now = next;
7395 iter = niter;
7396 }
7397
7398 return 0;
7399}
7400
7401struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7402 struct list_head **iter)
7403{
7404 struct netdev_adjacent *lower;
7405
7406 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7407 if (&lower->list == &dev->adj_list.lower)
7408 return NULL;
7409
7410 *iter = &lower->list;
7411
7412 return lower->dev;
7413}
7414EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7415
7416static u8 __netdev_upper_depth(struct net_device *dev)
7417{
7418 struct net_device *udev;
7419 struct list_head *iter;
7420 u8 max_depth = 0;
7421 bool ignore;
7422
7423 for (iter = &dev->adj_list.upper,
7424 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7425 udev;
7426 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7427 if (ignore)
7428 continue;
7429 if (max_depth < udev->upper_level)
7430 max_depth = udev->upper_level;
7431 }
7432
7433 return max_depth;
7434}
7435
7436static u8 __netdev_lower_depth(struct net_device *dev)
7437{
7438 struct net_device *ldev;
7439 struct list_head *iter;
7440 u8 max_depth = 0;
7441 bool ignore;
7442
7443 for (iter = &dev->adj_list.lower,
7444 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7445 ldev;
7446 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7447 if (ignore)
7448 continue;
7449 if (max_depth < ldev->lower_level)
7450 max_depth = ldev->lower_level;
7451 }
7452
7453 return max_depth;
7454}
7455
7456static int __netdev_update_upper_level(struct net_device *dev,
7457 struct netdev_nested_priv *__unused)
7458{
7459 dev->upper_level = __netdev_upper_depth(dev) + 1;
7460 return 0;
7461}
7462
7463static int __netdev_update_lower_level(struct net_device *dev,
7464 struct netdev_nested_priv *priv)
7465{
7466 dev->lower_level = __netdev_lower_depth(dev) + 1;
7467
7468#ifdef CONFIG_LOCKDEP
7469 if (!priv)
7470 return 0;
7471
7472 if (priv->flags & NESTED_SYNC_IMM)
7473 dev->nested_level = dev->lower_level - 1;
7474 if (priv->flags & NESTED_SYNC_TODO)
7475 net_unlink_todo(dev);
7476#endif
7477 return 0;
7478}
7479
7480int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7481 int (*fn)(struct net_device *dev,
7482 struct netdev_nested_priv *priv),
7483 struct netdev_nested_priv *priv)
7484{
7485 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7486 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7487 int ret, cur = 0;
7488
7489 now = dev;
7490 iter = &dev->adj_list.lower;
7491
7492 while (1) {
7493 if (now != dev) {
7494 ret = fn(now, priv);
7495 if (ret)
7496 return ret;
7497 }
7498
7499 next = NULL;
7500 while (1) {
7501 ldev = netdev_next_lower_dev_rcu(now, &iter);
7502 if (!ldev)
7503 break;
7504
7505 next = ldev;
7506 niter = &ldev->adj_list.lower;
7507 dev_stack[cur] = now;
7508 iter_stack[cur++] = iter;
7509 break;
7510 }
7511
7512 if (!next) {
7513 if (!cur)
7514 return 0;
7515 next = dev_stack[--cur];
7516 niter = iter_stack[cur];
7517 }
7518
7519 now = next;
7520 iter = niter;
7521 }
7522
7523 return 0;
7524}
7525EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7526
7527/**
7528 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7529 * lower neighbour list, RCU
7530 * variant
7531 * @dev: device
7532 *
7533 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7534 * list. The caller must hold RCU read lock.
7535 */
7536void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7537{
7538 struct netdev_adjacent *lower;
7539
7540 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7541 struct netdev_adjacent, list);
7542 if (lower)
7543 return lower->private;
7544 return NULL;
7545}
7546EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7547
7548/**
7549 * netdev_master_upper_dev_get_rcu - Get master upper device
7550 * @dev: device
7551 *
7552 * Find a master upper device and return pointer to it or NULL in case
7553 * it's not there. The caller must hold the RCU read lock.
7554 */
7555struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7556{
7557 struct netdev_adjacent *upper;
7558
7559 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7560 struct netdev_adjacent, list);
7561 if (upper && likely(upper->master))
7562 return upper->dev;
7563 return NULL;
7564}
7565EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7566
7567static int netdev_adjacent_sysfs_add(struct net_device *dev,
7568 struct net_device *adj_dev,
7569 struct list_head *dev_list)
7570{
7571 char linkname[IFNAMSIZ+7];
7572
7573 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7574 "upper_%s" : "lower_%s", adj_dev->name);
7575 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7576 linkname);
7577}
7578static void netdev_adjacent_sysfs_del(struct net_device *dev,
7579 char *name,
7580 struct list_head *dev_list)
7581{
7582 char linkname[IFNAMSIZ+7];
7583
7584 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7585 "upper_%s" : "lower_%s", name);
7586 sysfs_remove_link(&(dev->dev.kobj), linkname);
7587}
7588
7589static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7590 struct net_device *adj_dev,
7591 struct list_head *dev_list)
7592{
7593 return (dev_list == &dev->adj_list.upper ||
7594 dev_list == &dev->adj_list.lower) &&
7595 net_eq(dev_net(dev), dev_net(adj_dev));
7596}
7597
7598static int __netdev_adjacent_dev_insert(struct net_device *dev,
7599 struct net_device *adj_dev,
7600 struct list_head *dev_list,
7601 void *private, bool master)
7602{
7603 struct netdev_adjacent *adj;
7604 int ret;
7605
7606 adj = __netdev_find_adj(adj_dev, dev_list);
7607
7608 if (adj) {
7609 adj->ref_nr += 1;
7610 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7611 dev->name, adj_dev->name, adj->ref_nr);
7612
7613 return 0;
7614 }
7615
7616 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7617 if (!adj)
7618 return -ENOMEM;
7619
7620 adj->dev = adj_dev;
7621 adj->master = master;
7622 adj->ref_nr = 1;
7623 adj->private = private;
7624 adj->ignore = false;
7625 dev_hold(adj_dev);
7626
7627 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7628 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7629
7630 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7631 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7632 if (ret)
7633 goto free_adj;
7634 }
7635
7636 /* Ensure that master link is always the first item in list. */
7637 if (master) {
7638 ret = sysfs_create_link(&(dev->dev.kobj),
7639 &(adj_dev->dev.kobj), "master");
7640 if (ret)
7641 goto remove_symlinks;
7642
7643 list_add_rcu(&adj->list, dev_list);
7644 } else {
7645 list_add_tail_rcu(&adj->list, dev_list);
7646 }
7647
7648 return 0;
7649
7650remove_symlinks:
7651 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7652 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7653free_adj:
7654 kfree(adj);
7655 dev_put(adj_dev);
7656
7657 return ret;
7658}
7659
7660static void __netdev_adjacent_dev_remove(struct net_device *dev,
7661 struct net_device *adj_dev,
7662 u16 ref_nr,
7663 struct list_head *dev_list)
7664{
7665 struct netdev_adjacent *adj;
7666
7667 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7668 dev->name, adj_dev->name, ref_nr);
7669
7670 adj = __netdev_find_adj(adj_dev, dev_list);
7671
7672 if (!adj) {
7673 pr_err("Adjacency does not exist for device %s from %s\n",
7674 dev->name, adj_dev->name);
7675 WARN_ON(1);
7676 return;
7677 }
7678
7679 if (adj->ref_nr > ref_nr) {
7680 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7681 dev->name, adj_dev->name, ref_nr,
7682 adj->ref_nr - ref_nr);
7683 adj->ref_nr -= ref_nr;
7684 return;
7685 }
7686
7687 if (adj->master)
7688 sysfs_remove_link(&(dev->dev.kobj), "master");
7689
7690 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7691 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7692
7693 list_del_rcu(&adj->list);
7694 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7695 adj_dev->name, dev->name, adj_dev->name);
7696 dev_put(adj_dev);
7697 kfree_rcu(adj, rcu);
7698}
7699
7700static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7701 struct net_device *upper_dev,
7702 struct list_head *up_list,
7703 struct list_head *down_list,
7704 void *private, bool master)
7705{
7706 int ret;
7707
7708 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7709 private, master);
7710 if (ret)
7711 return ret;
7712
7713 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7714 private, false);
7715 if (ret) {
7716 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7717 return ret;
7718 }
7719
7720 return 0;
7721}
7722
7723static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7724 struct net_device *upper_dev,
7725 u16 ref_nr,
7726 struct list_head *up_list,
7727 struct list_head *down_list)
7728{
7729 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7730 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7731}
7732
7733static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7734 struct net_device *upper_dev,
7735 void *private, bool master)
7736{
7737 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7738 &dev->adj_list.upper,
7739 &upper_dev->adj_list.lower,
7740 private, master);
7741}
7742
7743static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7744 struct net_device *upper_dev)
7745{
7746 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7747 &dev->adj_list.upper,
7748 &upper_dev->adj_list.lower);
7749}
7750
7751static int __netdev_upper_dev_link(struct net_device *dev,
7752 struct net_device *upper_dev, bool master,
7753 void *upper_priv, void *upper_info,
7754 struct netdev_nested_priv *priv,
7755 struct netlink_ext_ack *extack)
7756{
7757 struct netdev_notifier_changeupper_info changeupper_info = {
7758 .info = {
7759 .dev = dev,
7760 .extack = extack,
7761 },
7762 .upper_dev = upper_dev,
7763 .master = master,
7764 .linking = true,
7765 .upper_info = upper_info,
7766 };
7767 struct net_device *master_dev;
7768 int ret = 0;
7769
7770 ASSERT_RTNL();
7771
7772 if (dev == upper_dev)
7773 return -EBUSY;
7774
7775 /* To prevent loops, check if dev is not upper device to upper_dev. */
7776 if (__netdev_has_upper_dev(upper_dev, dev))
7777 return -EBUSY;
7778
7779 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7780 return -EMLINK;
7781
7782 if (!master) {
7783 if (__netdev_has_upper_dev(dev, upper_dev))
7784 return -EEXIST;
7785 } else {
7786 master_dev = __netdev_master_upper_dev_get(dev);
7787 if (master_dev)
7788 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7789 }
7790
7791 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7792 &changeupper_info.info);
7793 ret = notifier_to_errno(ret);
7794 if (ret)
7795 return ret;
7796
7797 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7798 master);
7799 if (ret)
7800 return ret;
7801
7802 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7803 &changeupper_info.info);
7804 ret = notifier_to_errno(ret);
7805 if (ret)
7806 goto rollback;
7807
7808 __netdev_update_upper_level(dev, NULL);
7809 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7810
7811 __netdev_update_lower_level(upper_dev, priv);
7812 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7813 priv);
7814
7815 return 0;
7816
7817rollback:
7818 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7819
7820 return ret;
7821}
7822
7823/**
7824 * netdev_upper_dev_link - Add a link to the upper device
7825 * @dev: device
7826 * @upper_dev: new upper device
7827 * @extack: netlink extended ack
7828 *
7829 * Adds a link to device which is upper to this one. The caller must hold
7830 * the RTNL lock. On a failure a negative errno code is returned.
7831 * On success the reference counts are adjusted and the function
7832 * returns zero.
7833 */
7834int netdev_upper_dev_link(struct net_device *dev,
7835 struct net_device *upper_dev,
7836 struct netlink_ext_ack *extack)
7837{
7838 struct netdev_nested_priv priv = {
7839 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7840 .data = NULL,
7841 };
7842
7843 return __netdev_upper_dev_link(dev, upper_dev, false,
7844 NULL, NULL, &priv, extack);
7845}
7846EXPORT_SYMBOL(netdev_upper_dev_link);
7847
7848/**
7849 * netdev_master_upper_dev_link - Add a master link to the upper device
7850 * @dev: device
7851 * @upper_dev: new upper device
7852 * @upper_priv: upper device private
7853 * @upper_info: upper info to be passed down via notifier
7854 * @extack: netlink extended ack
7855 *
7856 * Adds a link to device which is upper to this one. In this case, only
7857 * one master upper device can be linked, although other non-master devices
7858 * might be linked as well. The caller must hold the RTNL lock.
7859 * On a failure a negative errno code is returned. On success the reference
7860 * counts are adjusted and the function returns zero.
7861 */
7862int netdev_master_upper_dev_link(struct net_device *dev,
7863 struct net_device *upper_dev,
7864 void *upper_priv, void *upper_info,
7865 struct netlink_ext_ack *extack)
7866{
7867 struct netdev_nested_priv priv = {
7868 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7869 .data = NULL,
7870 };
7871
7872 return __netdev_upper_dev_link(dev, upper_dev, true,
7873 upper_priv, upper_info, &priv, extack);
7874}
7875EXPORT_SYMBOL(netdev_master_upper_dev_link);
7876
7877static void __netdev_upper_dev_unlink(struct net_device *dev,
7878 struct net_device *upper_dev,
7879 struct netdev_nested_priv *priv)
7880{
7881 struct netdev_notifier_changeupper_info changeupper_info = {
7882 .info = {
7883 .dev = dev,
7884 },
7885 .upper_dev = upper_dev,
7886 .linking = false,
7887 };
7888
7889 ASSERT_RTNL();
7890
7891 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7892
7893 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7894 &changeupper_info.info);
7895
7896 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7897
7898 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7899 &changeupper_info.info);
7900
7901 __netdev_update_upper_level(dev, NULL);
7902 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7903
7904 __netdev_update_lower_level(upper_dev, priv);
7905 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7906 priv);
7907}
7908
7909/**
7910 * netdev_upper_dev_unlink - Removes a link to upper device
7911 * @dev: device
7912 * @upper_dev: new upper device
7913 *
7914 * Removes a link to device which is upper to this one. The caller must hold
7915 * the RTNL lock.
7916 */
7917void netdev_upper_dev_unlink(struct net_device *dev,
7918 struct net_device *upper_dev)
7919{
7920 struct netdev_nested_priv priv = {
7921 .flags = NESTED_SYNC_TODO,
7922 .data = NULL,
7923 };
7924
7925 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7926}
7927EXPORT_SYMBOL(netdev_upper_dev_unlink);
7928
7929static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7930 struct net_device *lower_dev,
7931 bool val)
7932{
7933 struct netdev_adjacent *adj;
7934
7935 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7936 if (adj)
7937 adj->ignore = val;
7938
7939 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7940 if (adj)
7941 adj->ignore = val;
7942}
7943
7944static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7945 struct net_device *lower_dev)
7946{
7947 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7948}
7949
7950static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7951 struct net_device *lower_dev)
7952{
7953 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7954}
7955
7956int netdev_adjacent_change_prepare(struct net_device *old_dev,
7957 struct net_device *new_dev,
7958 struct net_device *dev,
7959 struct netlink_ext_ack *extack)
7960{
7961 struct netdev_nested_priv priv = {
7962 .flags = 0,
7963 .data = NULL,
7964 };
7965 int err;
7966
7967 if (!new_dev)
7968 return 0;
7969
7970 if (old_dev && new_dev != old_dev)
7971 netdev_adjacent_dev_disable(dev, old_dev);
7972 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7973 extack);
7974 if (err) {
7975 if (old_dev && new_dev != old_dev)
7976 netdev_adjacent_dev_enable(dev, old_dev);
7977 return err;
7978 }
7979
7980 return 0;
7981}
7982EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7983
7984void netdev_adjacent_change_commit(struct net_device *old_dev,
7985 struct net_device *new_dev,
7986 struct net_device *dev)
7987{
7988 struct netdev_nested_priv priv = {
7989 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7990 .data = NULL,
7991 };
7992
7993 if (!new_dev || !old_dev)
7994 return;
7995
7996 if (new_dev == old_dev)
7997 return;
7998
7999 netdev_adjacent_dev_enable(dev, old_dev);
8000 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8001}
8002EXPORT_SYMBOL(netdev_adjacent_change_commit);
8003
8004void netdev_adjacent_change_abort(struct net_device *old_dev,
8005 struct net_device *new_dev,
8006 struct net_device *dev)
8007{
8008 struct netdev_nested_priv priv = {
8009 .flags = 0,
8010 .data = NULL,
8011 };
8012
8013 if (!new_dev)
8014 return;
8015
8016 if (old_dev && new_dev != old_dev)
8017 netdev_adjacent_dev_enable(dev, old_dev);
8018
8019 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8020}
8021EXPORT_SYMBOL(netdev_adjacent_change_abort);
8022
8023/**
8024 * netdev_bonding_info_change - Dispatch event about slave change
8025 * @dev: device
8026 * @bonding_info: info to dispatch
8027 *
8028 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8029 * The caller must hold the RTNL lock.
8030 */
8031void netdev_bonding_info_change(struct net_device *dev,
8032 struct netdev_bonding_info *bonding_info)
8033{
8034 struct netdev_notifier_bonding_info info = {
8035 .info.dev = dev,
8036 };
8037
8038 memcpy(&info.bonding_info, bonding_info,
8039 sizeof(struct netdev_bonding_info));
8040 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8041 &info.info);
8042}
8043EXPORT_SYMBOL(netdev_bonding_info_change);
8044
8045/**
8046 * netdev_get_xmit_slave - Get the xmit slave of master device
8047 * @dev: device
8048 * @skb: The packet
8049 * @all_slaves: assume all the slaves are active
8050 *
8051 * The reference counters are not incremented so the caller must be
8052 * careful with locks. The caller must hold RCU lock.
8053 * %NULL is returned if no slave is found.
8054 */
8055
8056struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8057 struct sk_buff *skb,
8058 bool all_slaves)
8059{
8060 const struct net_device_ops *ops = dev->netdev_ops;
8061
8062 if (!ops->ndo_get_xmit_slave)
8063 return NULL;
8064 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8065}
8066EXPORT_SYMBOL(netdev_get_xmit_slave);
8067
8068static void netdev_adjacent_add_links(struct net_device *dev)
8069{
8070 struct netdev_adjacent *iter;
8071
8072 struct net *net = dev_net(dev);
8073
8074 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8075 if (!net_eq(net, dev_net(iter->dev)))
8076 continue;
8077 netdev_adjacent_sysfs_add(iter->dev, dev,
8078 &iter->dev->adj_list.lower);
8079 netdev_adjacent_sysfs_add(dev, iter->dev,
8080 &dev->adj_list.upper);
8081 }
8082
8083 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8084 if (!net_eq(net, dev_net(iter->dev)))
8085 continue;
8086 netdev_adjacent_sysfs_add(iter->dev, dev,
8087 &iter->dev->adj_list.upper);
8088 netdev_adjacent_sysfs_add(dev, iter->dev,
8089 &dev->adj_list.lower);
8090 }
8091}
8092
8093static void netdev_adjacent_del_links(struct net_device *dev)
8094{
8095 struct netdev_adjacent *iter;
8096
8097 struct net *net = dev_net(dev);
8098
8099 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8100 if (!net_eq(net, dev_net(iter->dev)))
8101 continue;
8102 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8103 &iter->dev->adj_list.lower);
8104 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8105 &dev->adj_list.upper);
8106 }
8107
8108 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8109 if (!net_eq(net, dev_net(iter->dev)))
8110 continue;
8111 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8112 &iter->dev->adj_list.upper);
8113 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8114 &dev->adj_list.lower);
8115 }
8116}
8117
8118void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8119{
8120 struct netdev_adjacent *iter;
8121
8122 struct net *net = dev_net(dev);
8123
8124 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8125 if (!net_eq(net, dev_net(iter->dev)))
8126 continue;
8127 netdev_adjacent_sysfs_del(iter->dev, oldname,
8128 &iter->dev->adj_list.lower);
8129 netdev_adjacent_sysfs_add(iter->dev, dev,
8130 &iter->dev->adj_list.lower);
8131 }
8132
8133 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8134 if (!net_eq(net, dev_net(iter->dev)))
8135 continue;
8136 netdev_adjacent_sysfs_del(iter->dev, oldname,
8137 &iter->dev->adj_list.upper);
8138 netdev_adjacent_sysfs_add(iter->dev, dev,
8139 &iter->dev->adj_list.upper);
8140 }
8141}
8142
8143void *netdev_lower_dev_get_private(struct net_device *dev,
8144 struct net_device *lower_dev)
8145{
8146 struct netdev_adjacent *lower;
8147
8148 if (!lower_dev)
8149 return NULL;
8150 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8151 if (!lower)
8152 return NULL;
8153
8154 return lower->private;
8155}
8156EXPORT_SYMBOL(netdev_lower_dev_get_private);
8157
8158
8159/**
8160 * netdev_lower_change - Dispatch event about lower device state change
8161 * @lower_dev: device
8162 * @lower_state_info: state to dispatch
8163 *
8164 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8165 * The caller must hold the RTNL lock.
8166 */
8167void netdev_lower_state_changed(struct net_device *lower_dev,
8168 void *lower_state_info)
8169{
8170 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8171 .info.dev = lower_dev,
8172 };
8173
8174 ASSERT_RTNL();
8175 changelowerstate_info.lower_state_info = lower_state_info;
8176 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8177 &changelowerstate_info.info);
8178}
8179EXPORT_SYMBOL(netdev_lower_state_changed);
8180
8181static void dev_change_rx_flags(struct net_device *dev, int flags)
8182{
8183 const struct net_device_ops *ops = dev->netdev_ops;
8184
8185 if (ops->ndo_change_rx_flags)
8186 ops->ndo_change_rx_flags(dev, flags);
8187}
8188
8189static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8190{
8191 unsigned int old_flags = dev->flags;
8192 kuid_t uid;
8193 kgid_t gid;
8194
8195 ASSERT_RTNL();
8196
8197 dev->flags |= IFF_PROMISC;
8198 dev->promiscuity += inc;
8199 if (dev->promiscuity == 0) {
8200 /*
8201 * Avoid overflow.
8202 * If inc causes overflow, untouch promisc and return error.
8203 */
8204 if (inc < 0)
8205 dev->flags &= ~IFF_PROMISC;
8206 else {
8207 dev->promiscuity -= inc;
8208 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8209 dev->name);
8210 return -EOVERFLOW;
8211 }
8212 }
8213 if (dev->flags != old_flags) {
8214 pr_info("device %s %s promiscuous mode\n",
8215 dev->name,
8216 dev->flags & IFF_PROMISC ? "entered" : "left");
8217 if (audit_enabled) {
8218 current_uid_gid(&uid, &gid);
8219 audit_log(audit_context(), GFP_ATOMIC,
8220 AUDIT_ANOM_PROMISCUOUS,
8221 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8222 dev->name, (dev->flags & IFF_PROMISC),
8223 (old_flags & IFF_PROMISC),
8224 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8225 from_kuid(&init_user_ns, uid),
8226 from_kgid(&init_user_ns, gid),
8227 audit_get_sessionid(current));
8228 }
8229
8230 dev_change_rx_flags(dev, IFF_PROMISC);
8231 }
8232 if (notify)
8233 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8234 return 0;
8235}
8236
8237/**
8238 * dev_set_promiscuity - update promiscuity count on a device
8239 * @dev: device
8240 * @inc: modifier
8241 *
8242 * Add or remove promiscuity from a device. While the count in the device
8243 * remains above zero the interface remains promiscuous. Once it hits zero
8244 * the device reverts back to normal filtering operation. A negative inc
8245 * value is used to drop promiscuity on the device.
8246 * Return 0 if successful or a negative errno code on error.
8247 */
8248int dev_set_promiscuity(struct net_device *dev, int inc)
8249{
8250 unsigned int old_flags = dev->flags;
8251 int err;
8252
8253 err = __dev_set_promiscuity(dev, inc, true);
8254 if (err < 0)
8255 return err;
8256 if (dev->flags != old_flags)
8257 dev_set_rx_mode(dev);
8258 return err;
8259}
8260EXPORT_SYMBOL(dev_set_promiscuity);
8261
8262static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8263{
8264 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8265
8266 ASSERT_RTNL();
8267
8268 dev->flags |= IFF_ALLMULTI;
8269 dev->allmulti += inc;
8270 if (dev->allmulti == 0) {
8271 /*
8272 * Avoid overflow.
8273 * If inc causes overflow, untouch allmulti and return error.
8274 */
8275 if (inc < 0)
8276 dev->flags &= ~IFF_ALLMULTI;
8277 else {
8278 dev->allmulti -= inc;
8279 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8280 dev->name);
8281 return -EOVERFLOW;
8282 }
8283 }
8284 if (dev->flags ^ old_flags) {
8285 dev_change_rx_flags(dev, IFF_ALLMULTI);
8286 dev_set_rx_mode(dev);
8287 if (notify)
8288 __dev_notify_flags(dev, old_flags,
8289 dev->gflags ^ old_gflags);
8290 }
8291 return 0;
8292}
8293
8294/**
8295 * dev_set_allmulti - update allmulti count on a device
8296 * @dev: device
8297 * @inc: modifier
8298 *
8299 * Add or remove reception of all multicast frames to a device. While the
8300 * count in the device remains above zero the interface remains listening
8301 * to all interfaces. Once it hits zero the device reverts back to normal
8302 * filtering operation. A negative @inc value is used to drop the counter
8303 * when releasing a resource needing all multicasts.
8304 * Return 0 if successful or a negative errno code on error.
8305 */
8306
8307int dev_set_allmulti(struct net_device *dev, int inc)
8308{
8309 return __dev_set_allmulti(dev, inc, true);
8310}
8311EXPORT_SYMBOL(dev_set_allmulti);
8312
8313/*
8314 * Upload unicast and multicast address lists to device and
8315 * configure RX filtering. When the device doesn't support unicast
8316 * filtering it is put in promiscuous mode while unicast addresses
8317 * are present.
8318 */
8319void __dev_set_rx_mode(struct net_device *dev)
8320{
8321 const struct net_device_ops *ops = dev->netdev_ops;
8322
8323 /* dev_open will call this function so the list will stay sane. */
8324 if (!(dev->flags&IFF_UP))
8325 return;
8326
8327 if (!netif_device_present(dev))
8328 return;
8329
8330 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8331 /* Unicast addresses changes may only happen under the rtnl,
8332 * therefore calling __dev_set_promiscuity here is safe.
8333 */
8334 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8335 __dev_set_promiscuity(dev, 1, false);
8336 dev->uc_promisc = true;
8337 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8338 __dev_set_promiscuity(dev, -1, false);
8339 dev->uc_promisc = false;
8340 }
8341 }
8342
8343 if (ops->ndo_set_rx_mode)
8344 ops->ndo_set_rx_mode(dev);
8345}
8346
8347void dev_set_rx_mode(struct net_device *dev)
8348{
8349 netif_addr_lock_bh(dev);
8350 __dev_set_rx_mode(dev);
8351 netif_addr_unlock_bh(dev);
8352}
8353
8354/**
8355 * dev_get_flags - get flags reported to userspace
8356 * @dev: device
8357 *
8358 * Get the combination of flag bits exported through APIs to userspace.
8359 */
8360unsigned int dev_get_flags(const struct net_device *dev)
8361{
8362 unsigned int flags;
8363
8364 flags = (dev->flags & ~(IFF_PROMISC |
8365 IFF_ALLMULTI |
8366 IFF_RUNNING |
8367 IFF_LOWER_UP |
8368 IFF_DORMANT)) |
8369 (dev->gflags & (IFF_PROMISC |
8370 IFF_ALLMULTI));
8371
8372 if (netif_running(dev)) {
8373 if (netif_oper_up(dev))
8374 flags |= IFF_RUNNING;
8375 if (netif_carrier_ok(dev))
8376 flags |= IFF_LOWER_UP;
8377 if (netif_dormant(dev))
8378 flags |= IFF_DORMANT;
8379 }
8380
8381 return flags;
8382}
8383EXPORT_SYMBOL(dev_get_flags);
8384
8385int __dev_change_flags(struct net_device *dev, unsigned int flags,
8386 struct netlink_ext_ack *extack)
8387{
8388 unsigned int old_flags = dev->flags;
8389 int ret;
8390
8391 ASSERT_RTNL();
8392
8393 /*
8394 * Set the flags on our device.
8395 */
8396
8397 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8398 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8399 IFF_AUTOMEDIA)) |
8400 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8401 IFF_ALLMULTI));
8402
8403 /*
8404 * Load in the correct multicast list now the flags have changed.
8405 */
8406
8407 if ((old_flags ^ flags) & IFF_MULTICAST)
8408 dev_change_rx_flags(dev, IFF_MULTICAST);
8409
8410 dev_set_rx_mode(dev);
8411
8412 /*
8413 * Have we downed the interface. We handle IFF_UP ourselves
8414 * according to user attempts to set it, rather than blindly
8415 * setting it.
8416 */
8417
8418 ret = 0;
8419 if ((old_flags ^ flags) & IFF_UP) {
8420 if (old_flags & IFF_UP)
8421 __dev_close(dev);
8422 else
8423 ret = __dev_open(dev, extack);
8424 }
8425
8426 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8427 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8428 unsigned int old_flags = dev->flags;
8429
8430 dev->gflags ^= IFF_PROMISC;
8431
8432 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8433 if (dev->flags != old_flags)
8434 dev_set_rx_mode(dev);
8435 }
8436
8437 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8438 * is important. Some (broken) drivers set IFF_PROMISC, when
8439 * IFF_ALLMULTI is requested not asking us and not reporting.
8440 */
8441 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8442 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8443
8444 dev->gflags ^= IFF_ALLMULTI;
8445 __dev_set_allmulti(dev, inc, false);
8446 }
8447
8448 return ret;
8449}
8450
8451void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8452 unsigned int gchanges)
8453{
8454 unsigned int changes = dev->flags ^ old_flags;
8455
8456 if (gchanges)
8457 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8458
8459 if (changes & IFF_UP) {
8460 if (dev->flags & IFF_UP)
8461 call_netdevice_notifiers(NETDEV_UP, dev);
8462 else
8463 call_netdevice_notifiers(NETDEV_DOWN, dev);
8464 }
8465
8466 if (dev->flags & IFF_UP &&
8467 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8468 struct netdev_notifier_change_info change_info = {
8469 .info = {
8470 .dev = dev,
8471 },
8472 .flags_changed = changes,
8473 };
8474
8475 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8476 }
8477}
8478
8479/**
8480 * dev_change_flags - change device settings
8481 * @dev: device
8482 * @flags: device state flags
8483 * @extack: netlink extended ack
8484 *
8485 * Change settings on device based state flags. The flags are
8486 * in the userspace exported format.
8487 */
8488int dev_change_flags(struct net_device *dev, unsigned int flags,
8489 struct netlink_ext_ack *extack)
8490{
8491 int ret;
8492 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8493
8494 ret = __dev_change_flags(dev, flags, extack);
8495 if (ret < 0)
8496 return ret;
8497
8498 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8499 __dev_notify_flags(dev, old_flags, changes);
8500 return ret;
8501}
8502EXPORT_SYMBOL(dev_change_flags);
8503
8504int __dev_set_mtu(struct net_device *dev, int new_mtu)
8505{
8506 const struct net_device_ops *ops = dev->netdev_ops;
8507
8508 if (ops->ndo_change_mtu)
8509 return ops->ndo_change_mtu(dev, new_mtu);
8510
8511 /* Pairs with all the lockless reads of dev->mtu in the stack */
8512 WRITE_ONCE(dev->mtu, new_mtu);
8513 return 0;
8514}
8515EXPORT_SYMBOL(__dev_set_mtu);
8516
8517int dev_validate_mtu(struct net_device *dev, int new_mtu,
8518 struct netlink_ext_ack *extack)
8519{
8520 /* MTU must be positive, and in range */
8521 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8522 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8523 return -EINVAL;
8524 }
8525
8526 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8527 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8528 return -EINVAL;
8529 }
8530 return 0;
8531}
8532
8533/**
8534 * dev_set_mtu_ext - Change maximum transfer unit
8535 * @dev: device
8536 * @new_mtu: new transfer unit
8537 * @extack: netlink extended ack
8538 *
8539 * Change the maximum transfer size of the network device.
8540 */
8541int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8542 struct netlink_ext_ack *extack)
8543{
8544 int err, orig_mtu;
8545
8546 if (new_mtu == dev->mtu)
8547 return 0;
8548
8549 err = dev_validate_mtu(dev, new_mtu, extack);
8550 if (err)
8551 return err;
8552
8553 if (!netif_device_present(dev))
8554 return -ENODEV;
8555
8556 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8557 err = notifier_to_errno(err);
8558 if (err)
8559 return err;
8560
8561 orig_mtu = dev->mtu;
8562 err = __dev_set_mtu(dev, new_mtu);
8563
8564 if (!err) {
8565 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8566 orig_mtu);
8567 err = notifier_to_errno(err);
8568 if (err) {
8569 /* setting mtu back and notifying everyone again,
8570 * so that they have a chance to revert changes.
8571 */
8572 __dev_set_mtu(dev, orig_mtu);
8573 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8574 new_mtu);
8575 }
8576 }
8577 return err;
8578}
8579
8580int dev_set_mtu(struct net_device *dev, int new_mtu)
8581{
8582 struct netlink_ext_ack extack;
8583 int err;
8584
8585 memset(&extack, 0, sizeof(extack));
8586 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8587 if (err && extack._msg)
8588 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8589 return err;
8590}
8591EXPORT_SYMBOL(dev_set_mtu);
8592
8593/**
8594 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8595 * @dev: device
8596 * @new_len: new tx queue length
8597 */
8598int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8599{
8600 unsigned int orig_len = dev->tx_queue_len;
8601 int res;
8602
8603 if (new_len != (unsigned int)new_len)
8604 return -ERANGE;
8605
8606 if (new_len != orig_len) {
8607 dev->tx_queue_len = new_len;
8608 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8609 res = notifier_to_errno(res);
8610 if (res)
8611 goto err_rollback;
8612 res = dev_qdisc_change_tx_queue_len(dev);
8613 if (res)
8614 goto err_rollback;
8615 }
8616
8617 return 0;
8618
8619err_rollback:
8620 netdev_err(dev, "refused to change device tx_queue_len\n");
8621 dev->tx_queue_len = orig_len;
8622 return res;
8623}
8624
8625/**
8626 * dev_set_group - Change group this device belongs to
8627 * @dev: device
8628 * @new_group: group this device should belong to
8629 */
8630void dev_set_group(struct net_device *dev, int new_group)
8631{
8632 dev->group = new_group;
8633}
8634EXPORT_SYMBOL(dev_set_group);
8635
8636/**
8637 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8638 * @dev: device
8639 * @addr: new address
8640 * @extack: netlink extended ack
8641 */
8642int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8643 struct netlink_ext_ack *extack)
8644{
8645 struct netdev_notifier_pre_changeaddr_info info = {
8646 .info.dev = dev,
8647 .info.extack = extack,
8648 .dev_addr = addr,
8649 };
8650 int rc;
8651
8652 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8653 return notifier_to_errno(rc);
8654}
8655EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8656
8657/**
8658 * dev_set_mac_address - Change Media Access Control Address
8659 * @dev: device
8660 * @sa: new address
8661 * @extack: netlink extended ack
8662 *
8663 * Change the hardware (MAC) address of the device
8664 */
8665int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8666 struct netlink_ext_ack *extack)
8667{
8668 const struct net_device_ops *ops = dev->netdev_ops;
8669 int err;
8670
8671 if (!ops->ndo_set_mac_address)
8672 return -EOPNOTSUPP;
8673 if (sa->sa_family != dev->type)
8674 return -EINVAL;
8675 if (!netif_device_present(dev))
8676 return -ENODEV;
8677 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8678 if (err)
8679 return err;
8680 err = ops->ndo_set_mac_address(dev, sa);
8681 if (err)
8682 return err;
8683 dev->addr_assign_type = NET_ADDR_SET;
8684 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8685 add_device_randomness(dev->dev_addr, dev->addr_len);
8686 return 0;
8687}
8688EXPORT_SYMBOL(dev_set_mac_address);
8689
8690/**
8691 * dev_change_carrier - Change device carrier
8692 * @dev: device
8693 * @new_carrier: new value
8694 *
8695 * Change device carrier
8696 */
8697int dev_change_carrier(struct net_device *dev, bool new_carrier)
8698{
8699 const struct net_device_ops *ops = dev->netdev_ops;
8700
8701 if (!ops->ndo_change_carrier)
8702 return -EOPNOTSUPP;
8703 if (!netif_device_present(dev))
8704 return -ENODEV;
8705 return ops->ndo_change_carrier(dev, new_carrier);
8706}
8707EXPORT_SYMBOL(dev_change_carrier);
8708
8709/**
8710 * dev_get_phys_port_id - Get device physical port ID
8711 * @dev: device
8712 * @ppid: port ID
8713 *
8714 * Get device physical port ID
8715 */
8716int dev_get_phys_port_id(struct net_device *dev,
8717 struct netdev_phys_item_id *ppid)
8718{
8719 const struct net_device_ops *ops = dev->netdev_ops;
8720
8721 if (!ops->ndo_get_phys_port_id)
8722 return -EOPNOTSUPP;
8723 return ops->ndo_get_phys_port_id(dev, ppid);
8724}
8725EXPORT_SYMBOL(dev_get_phys_port_id);
8726
8727/**
8728 * dev_get_phys_port_name - Get device physical port name
8729 * @dev: device
8730 * @name: port name
8731 * @len: limit of bytes to copy to name
8732 *
8733 * Get device physical port name
8734 */
8735int dev_get_phys_port_name(struct net_device *dev,
8736 char *name, size_t len)
8737{
8738 const struct net_device_ops *ops = dev->netdev_ops;
8739 int err;
8740
8741 if (ops->ndo_get_phys_port_name) {
8742 err = ops->ndo_get_phys_port_name(dev, name, len);
8743 if (err != -EOPNOTSUPP)
8744 return err;
8745 }
8746 return devlink_compat_phys_port_name_get(dev, name, len);
8747}
8748EXPORT_SYMBOL(dev_get_phys_port_name);
8749
8750/**
8751 * dev_get_port_parent_id - Get the device's port parent identifier
8752 * @dev: network device
8753 * @ppid: pointer to a storage for the port's parent identifier
8754 * @recurse: allow/disallow recursion to lower devices
8755 *
8756 * Get the devices's port parent identifier
8757 */
8758int dev_get_port_parent_id(struct net_device *dev,
8759 struct netdev_phys_item_id *ppid,
8760 bool recurse)
8761{
8762 const struct net_device_ops *ops = dev->netdev_ops;
8763 struct netdev_phys_item_id first = { };
8764 struct net_device *lower_dev;
8765 struct list_head *iter;
8766 int err;
8767
8768 if (ops->ndo_get_port_parent_id) {
8769 err = ops->ndo_get_port_parent_id(dev, ppid);
8770 if (err != -EOPNOTSUPP)
8771 return err;
8772 }
8773
8774 err = devlink_compat_switch_id_get(dev, ppid);
8775 if (!err || err != -EOPNOTSUPP)
8776 return err;
8777
8778 if (!recurse)
8779 return -EOPNOTSUPP;
8780
8781 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8782 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8783 if (err)
8784 break;
8785 if (!first.id_len)
8786 first = *ppid;
8787 else if (memcmp(&first, ppid, sizeof(*ppid)))
8788 return -EOPNOTSUPP;
8789 }
8790
8791 return err;
8792}
8793EXPORT_SYMBOL(dev_get_port_parent_id);
8794
8795/**
8796 * netdev_port_same_parent_id - Indicate if two network devices have
8797 * the same port parent identifier
8798 * @a: first network device
8799 * @b: second network device
8800 */
8801bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8802{
8803 struct netdev_phys_item_id a_id = { };
8804 struct netdev_phys_item_id b_id = { };
8805
8806 if (dev_get_port_parent_id(a, &a_id, true) ||
8807 dev_get_port_parent_id(b, &b_id, true))
8808 return false;
8809
8810 return netdev_phys_item_id_same(&a_id, &b_id);
8811}
8812EXPORT_SYMBOL(netdev_port_same_parent_id);
8813
8814/**
8815 * dev_change_proto_down - update protocol port state information
8816 * @dev: device
8817 * @proto_down: new value
8818 *
8819 * This info can be used by switch drivers to set the phys state of the
8820 * port.
8821 */
8822int dev_change_proto_down(struct net_device *dev, bool proto_down)
8823{
8824 const struct net_device_ops *ops = dev->netdev_ops;
8825
8826 if (!ops->ndo_change_proto_down)
8827 return -EOPNOTSUPP;
8828 if (!netif_device_present(dev))
8829 return -ENODEV;
8830 return ops->ndo_change_proto_down(dev, proto_down);
8831}
8832EXPORT_SYMBOL(dev_change_proto_down);
8833
8834/**
8835 * dev_change_proto_down_generic - generic implementation for
8836 * ndo_change_proto_down that sets carrier according to
8837 * proto_down.
8838 *
8839 * @dev: device
8840 * @proto_down: new value
8841 */
8842int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8843{
8844 if (proto_down)
8845 netif_carrier_off(dev);
8846 else
8847 netif_carrier_on(dev);
8848 dev->proto_down = proto_down;
8849 return 0;
8850}
8851EXPORT_SYMBOL(dev_change_proto_down_generic);
8852
8853/**
8854 * dev_change_proto_down_reason - proto down reason
8855 *
8856 * @dev: device
8857 * @mask: proto down mask
8858 * @value: proto down value
8859 */
8860void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8861 u32 value)
8862{
8863 int b;
8864
8865 if (!mask) {
8866 dev->proto_down_reason = value;
8867 } else {
8868 for_each_set_bit(b, &mask, 32) {
8869 if (value & (1 << b))
8870 dev->proto_down_reason |= BIT(b);
8871 else
8872 dev->proto_down_reason &= ~BIT(b);
8873 }
8874 }
8875}
8876EXPORT_SYMBOL(dev_change_proto_down_reason);
8877
8878struct bpf_xdp_link {
8879 struct bpf_link link;
8880 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8881 int flags;
8882};
8883
8884static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8885{
8886 if (flags & XDP_FLAGS_HW_MODE)
8887 return XDP_MODE_HW;
8888 if (flags & XDP_FLAGS_DRV_MODE)
8889 return XDP_MODE_DRV;
8890 if (flags & XDP_FLAGS_SKB_MODE)
8891 return XDP_MODE_SKB;
8892 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8893}
8894
8895static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8896{
8897 switch (mode) {
8898 case XDP_MODE_SKB:
8899 return generic_xdp_install;
8900 case XDP_MODE_DRV:
8901 case XDP_MODE_HW:
8902 return dev->netdev_ops->ndo_bpf;
8903 default:
8904 return NULL;
8905 };
8906}
8907
8908static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8909 enum bpf_xdp_mode mode)
8910{
8911 return dev->xdp_state[mode].link;
8912}
8913
8914static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8915 enum bpf_xdp_mode mode)
8916{
8917 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8918
8919 if (link)
8920 return link->link.prog;
8921 return dev->xdp_state[mode].prog;
8922}
8923
8924u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8925{
8926 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8927
8928 return prog ? prog->aux->id : 0;
8929}
8930
8931static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8932 struct bpf_xdp_link *link)
8933{
8934 dev->xdp_state[mode].link = link;
8935 dev->xdp_state[mode].prog = NULL;
8936}
8937
8938static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8939 struct bpf_prog *prog)
8940{
8941 dev->xdp_state[mode].link = NULL;
8942 dev->xdp_state[mode].prog = prog;
8943}
8944
8945static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8946 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8947 u32 flags, struct bpf_prog *prog)
8948{
8949 struct netdev_bpf xdp;
8950 int err;
8951
8952 memset(&xdp, 0, sizeof(xdp));
8953 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8954 xdp.extack = extack;
8955 xdp.flags = flags;
8956 xdp.prog = prog;
8957
8958 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8959 * "moved" into driver), so they don't increment it on their own, but
8960 * they do decrement refcnt when program is detached or replaced.
8961 * Given net_device also owns link/prog, we need to bump refcnt here
8962 * to prevent drivers from underflowing it.
8963 */
8964 if (prog)
8965 bpf_prog_inc(prog);
8966 err = bpf_op(dev, &xdp);
8967 if (err) {
8968 if (prog)
8969 bpf_prog_put(prog);
8970 return err;
8971 }
8972
8973 if (mode != XDP_MODE_HW)
8974 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8975
8976 return 0;
8977}
8978
8979static void dev_xdp_uninstall(struct net_device *dev)
8980{
8981 struct bpf_xdp_link *link;
8982 struct bpf_prog *prog;
8983 enum bpf_xdp_mode mode;
8984 bpf_op_t bpf_op;
8985
8986 ASSERT_RTNL();
8987
8988 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8989 prog = dev_xdp_prog(dev, mode);
8990 if (!prog)
8991 continue;
8992
8993 bpf_op = dev_xdp_bpf_op(dev, mode);
8994 if (!bpf_op)
8995 continue;
8996
8997 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8998
8999 /* auto-detach link from net device */
9000 link = dev_xdp_link(dev, mode);
9001 if (link)
9002 link->dev = NULL;
9003 else
9004 bpf_prog_put(prog);
9005
9006 dev_xdp_set_link(dev, mode, NULL);
9007 }
9008}
9009
9010static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9011 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9012 struct bpf_prog *old_prog, u32 flags)
9013{
9014 struct bpf_prog *cur_prog;
9015 enum bpf_xdp_mode mode;
9016 bpf_op_t bpf_op;
9017 int err;
9018
9019 ASSERT_RTNL();
9020
9021 /* either link or prog attachment, never both */
9022 if (link && (new_prog || old_prog))
9023 return -EINVAL;
9024 /* link supports only XDP mode flags */
9025 if (link && (flags & ~XDP_FLAGS_MODES)) {
9026 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9027 return -EINVAL;
9028 }
9029 /* just one XDP mode bit should be set, zero defaults to SKB mode */
9030 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9031 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9032 return -EINVAL;
9033 }
9034 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9035 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9036 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9037 return -EINVAL;
9038 }
9039
9040 mode = dev_xdp_mode(dev, flags);
9041 /* can't replace attached link */
9042 if (dev_xdp_link(dev, mode)) {
9043 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9044 return -EBUSY;
9045 }
9046
9047 cur_prog = dev_xdp_prog(dev, mode);
9048 /* can't replace attached prog with link */
9049 if (link && cur_prog) {
9050 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9051 return -EBUSY;
9052 }
9053 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9054 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9055 return -EEXIST;
9056 }
9057
9058 /* put effective new program into new_prog */
9059 if (link)
9060 new_prog = link->link.prog;
9061
9062 if (new_prog) {
9063 bool offload = mode == XDP_MODE_HW;
9064 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9065 ? XDP_MODE_DRV : XDP_MODE_SKB;
9066
9067 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9068 NL_SET_ERR_MSG(extack, "XDP program already attached");
9069 return -EBUSY;
9070 }
9071 if (!offload && dev_xdp_prog(dev, other_mode)) {
9072 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9073 return -EEXIST;
9074 }
9075 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9076 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9077 return -EINVAL;
9078 }
9079 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9080 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9081 return -EINVAL;
9082 }
9083 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9084 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9085 return -EINVAL;
9086 }
9087 }
9088
9089 /* don't call drivers if the effective program didn't change */
9090 if (new_prog != cur_prog) {
9091 bpf_op = dev_xdp_bpf_op(dev, mode);
9092 if (!bpf_op) {
9093 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9094 return -EOPNOTSUPP;
9095 }
9096
9097 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9098 if (err)
9099 return err;
9100 }
9101
9102 if (link)
9103 dev_xdp_set_link(dev, mode, link);
9104 else
9105 dev_xdp_set_prog(dev, mode, new_prog);
9106 if (cur_prog)
9107 bpf_prog_put(cur_prog);
9108
9109 return 0;
9110}
9111
9112static int dev_xdp_attach_link(struct net_device *dev,
9113 struct netlink_ext_ack *extack,
9114 struct bpf_xdp_link *link)
9115{
9116 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9117}
9118
9119static int dev_xdp_detach_link(struct net_device *dev,
9120 struct netlink_ext_ack *extack,
9121 struct bpf_xdp_link *link)
9122{
9123 enum bpf_xdp_mode mode;
9124 bpf_op_t bpf_op;
9125
9126 ASSERT_RTNL();
9127
9128 mode = dev_xdp_mode(dev, link->flags);
9129 if (dev_xdp_link(dev, mode) != link)
9130 return -EINVAL;
9131
9132 bpf_op = dev_xdp_bpf_op(dev, mode);
9133 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134 dev_xdp_set_link(dev, mode, NULL);
9135 return 0;
9136}
9137
9138static void bpf_xdp_link_release(struct bpf_link *link)
9139{
9140 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9141
9142 rtnl_lock();
9143
9144 /* if racing with net_device's tear down, xdp_link->dev might be
9145 * already NULL, in which case link was already auto-detached
9146 */
9147 if (xdp_link->dev) {
9148 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9149 xdp_link->dev = NULL;
9150 }
9151
9152 rtnl_unlock();
9153}
9154
9155static int bpf_xdp_link_detach(struct bpf_link *link)
9156{
9157 bpf_xdp_link_release(link);
9158 return 0;
9159}
9160
9161static void bpf_xdp_link_dealloc(struct bpf_link *link)
9162{
9163 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9164
9165 kfree(xdp_link);
9166}
9167
9168static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9169 struct seq_file *seq)
9170{
9171 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9172 u32 ifindex = 0;
9173
9174 rtnl_lock();
9175 if (xdp_link->dev)
9176 ifindex = xdp_link->dev->ifindex;
9177 rtnl_unlock();
9178
9179 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9180}
9181
9182static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9183 struct bpf_link_info *info)
9184{
9185 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9186 u32 ifindex = 0;
9187
9188 rtnl_lock();
9189 if (xdp_link->dev)
9190 ifindex = xdp_link->dev->ifindex;
9191 rtnl_unlock();
9192
9193 info->xdp.ifindex = ifindex;
9194 return 0;
9195}
9196
9197static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9198 struct bpf_prog *old_prog)
9199{
9200 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9201 enum bpf_xdp_mode mode;
9202 bpf_op_t bpf_op;
9203 int err = 0;
9204
9205 rtnl_lock();
9206
9207 /* link might have been auto-released already, so fail */
9208 if (!xdp_link->dev) {
9209 err = -ENOLINK;
9210 goto out_unlock;
9211 }
9212
9213 if (old_prog && link->prog != old_prog) {
9214 err = -EPERM;
9215 goto out_unlock;
9216 }
9217 old_prog = link->prog;
9218 if (old_prog == new_prog) {
9219 /* no-op, don't disturb drivers */
9220 bpf_prog_put(new_prog);
9221 goto out_unlock;
9222 }
9223
9224 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9225 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9226 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9227 xdp_link->flags, new_prog);
9228 if (err)
9229 goto out_unlock;
9230
9231 old_prog = xchg(&link->prog, new_prog);
9232 bpf_prog_put(old_prog);
9233
9234out_unlock:
9235 rtnl_unlock();
9236 return err;
9237}
9238
9239static const struct bpf_link_ops bpf_xdp_link_lops = {
9240 .release = bpf_xdp_link_release,
9241 .dealloc = bpf_xdp_link_dealloc,
9242 .detach = bpf_xdp_link_detach,
9243 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9244 .fill_link_info = bpf_xdp_link_fill_link_info,
9245 .update_prog = bpf_xdp_link_update,
9246};
9247
9248int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9249{
9250 struct net *net = current->nsproxy->net_ns;
9251 struct bpf_link_primer link_primer;
9252 struct bpf_xdp_link *link;
9253 struct net_device *dev;
9254 int err, fd;
9255
9256 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9257 if (!dev)
9258 return -EINVAL;
9259
9260 link = kzalloc(sizeof(*link), GFP_USER);
9261 if (!link) {
9262 err = -ENOMEM;
9263 goto out_put_dev;
9264 }
9265
9266 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9267 link->dev = dev;
9268 link->flags = attr->link_create.flags;
9269
9270 err = bpf_link_prime(&link->link, &link_primer);
9271 if (err) {
9272 kfree(link);
9273 goto out_put_dev;
9274 }
9275
9276 rtnl_lock();
9277 err = dev_xdp_attach_link(dev, NULL, link);
9278 rtnl_unlock();
9279
9280 if (err) {
9281 bpf_link_cleanup(&link_primer);
9282 goto out_put_dev;
9283 }
9284
9285 fd = bpf_link_settle(&link_primer);
9286 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9287 dev_put(dev);
9288 return fd;
9289
9290out_put_dev:
9291 dev_put(dev);
9292 return err;
9293}
9294
9295/**
9296 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9297 * @dev: device
9298 * @extack: netlink extended ack
9299 * @fd: new program fd or negative value to clear
9300 * @expected_fd: old program fd that userspace expects to replace or clear
9301 * @flags: xdp-related flags
9302 *
9303 * Set or clear a bpf program for a device
9304 */
9305int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9306 int fd, int expected_fd, u32 flags)
9307{
9308 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9309 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9310 int err;
9311
9312 ASSERT_RTNL();
9313
9314 if (fd >= 0) {
9315 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9316 mode != XDP_MODE_SKB);
9317 if (IS_ERR(new_prog))
9318 return PTR_ERR(new_prog);
9319 }
9320
9321 if (expected_fd >= 0) {
9322 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9323 mode != XDP_MODE_SKB);
9324 if (IS_ERR(old_prog)) {
9325 err = PTR_ERR(old_prog);
9326 old_prog = NULL;
9327 goto err_out;
9328 }
9329 }
9330
9331 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9332
9333err_out:
9334 if (err && new_prog)
9335 bpf_prog_put(new_prog);
9336 if (old_prog)
9337 bpf_prog_put(old_prog);
9338 return err;
9339}
9340
9341/**
9342 * dev_new_index - allocate an ifindex
9343 * @net: the applicable net namespace
9344 *
9345 * Returns a suitable unique value for a new device interface
9346 * number. The caller must hold the rtnl semaphore or the
9347 * dev_base_lock to be sure it remains unique.
9348 */
9349static int dev_new_index(struct net *net)
9350{
9351 int ifindex = net->ifindex;
9352
9353 for (;;) {
9354 if (++ifindex <= 0)
9355 ifindex = 1;
9356 if (!__dev_get_by_index(net, ifindex))
9357 return net->ifindex = ifindex;
9358 }
9359}
9360
9361/* Delayed registration/unregisteration */
9362static LIST_HEAD(net_todo_list);
9363DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9364
9365static void net_set_todo(struct net_device *dev)
9366{
9367 list_add_tail(&dev->todo_list, &net_todo_list);
9368 dev_net(dev)->dev_unreg_count++;
9369}
9370
9371static void rollback_registered_many(struct list_head *head)
9372{
9373 struct net_device *dev, *tmp;
9374 LIST_HEAD(close_head);
9375
9376 BUG_ON(dev_boot_phase);
9377 ASSERT_RTNL();
9378
9379 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9380 /* Some devices call without registering
9381 * for initialization unwind. Remove those
9382 * devices and proceed with the remaining.
9383 */
9384 if (dev->reg_state == NETREG_UNINITIALIZED) {
9385 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9386 dev->name, dev);
9387
9388 WARN_ON(1);
9389 list_del(&dev->unreg_list);
9390 continue;
9391 }
9392 dev->dismantle = true;
9393 BUG_ON(dev->reg_state != NETREG_REGISTERED);
9394 }
9395
9396 /* If device is running, close it first. */
9397 list_for_each_entry(dev, head, unreg_list)
9398 list_add_tail(&dev->close_list, &close_head);
9399 dev_close_many(&close_head, true);
9400
9401 list_for_each_entry(dev, head, unreg_list) {
9402 /* And unlink it from device chain. */
9403 unlist_netdevice(dev);
9404
9405 dev->reg_state = NETREG_UNREGISTERING;
9406 }
9407 flush_all_backlogs();
9408
9409 synchronize_net();
9410
9411 list_for_each_entry(dev, head, unreg_list) {
9412 struct sk_buff *skb = NULL;
9413
9414 /* Shutdown queueing discipline. */
9415 dev_shutdown(dev);
9416
9417 dev_xdp_uninstall(dev);
9418
9419 /* Notify protocols, that we are about to destroy
9420 * this device. They should clean all the things.
9421 */
9422 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9423
9424 if (!dev->rtnl_link_ops ||
9425 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9426 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
9427 GFP_KERNEL, NULL, 0);
9428
9429 /*
9430 * Flush the unicast and multicast chains
9431 */
9432 dev_uc_flush(dev);
9433 dev_mc_flush(dev);
9434
9435 netdev_name_node_alt_flush(dev);
9436 netdev_name_node_free(dev->name_node);
9437
9438 if (dev->netdev_ops->ndo_uninit)
9439 dev->netdev_ops->ndo_uninit(dev);
9440
9441 if (skb)
9442 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
9443
9444 /* Notifier chain MUST detach us all upper devices. */
9445 WARN_ON(netdev_has_any_upper_dev(dev));
9446 WARN_ON(netdev_has_any_lower_dev(dev));
9447
9448 /* Remove entries from kobject tree */
9449 netdev_unregister_kobject(dev);
9450#ifdef CONFIG_XPS
9451 /* Remove XPS queueing entries */
9452 netif_reset_xps_queues_gt(dev, 0);
9453#endif
9454 }
9455
9456 synchronize_net();
9457
9458 list_for_each_entry(dev, head, unreg_list)
9459 dev_put(dev);
9460}
9461
9462static void rollback_registered(struct net_device *dev)
9463{
9464 LIST_HEAD(single);
9465
9466 list_add(&dev->unreg_list, &single);
9467 rollback_registered_many(&single);
9468 list_del(&single);
9469}
9470
9471static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9472 struct net_device *upper, netdev_features_t features)
9473{
9474 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9475 netdev_features_t feature;
9476 int feature_bit;
9477
9478 for_each_netdev_feature(upper_disables, feature_bit) {
9479 feature = __NETIF_F_BIT(feature_bit);
9480 if (!(upper->wanted_features & feature)
9481 && (features & feature)) {
9482 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9483 &feature, upper->name);
9484 features &= ~feature;
9485 }
9486 }
9487
9488 return features;
9489}
9490
9491static void netdev_sync_lower_features(struct net_device *upper,
9492 struct net_device *lower, netdev_features_t features)
9493{
9494 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9495 netdev_features_t feature;
9496 int feature_bit;
9497
9498 for_each_netdev_feature(upper_disables, feature_bit) {
9499 feature = __NETIF_F_BIT(feature_bit);
9500 if (!(features & feature) && (lower->features & feature)) {
9501 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9502 &feature, lower->name);
9503 lower->wanted_features &= ~feature;
9504 __netdev_update_features(lower);
9505
9506 if (unlikely(lower->features & feature))
9507 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9508 &feature, lower->name);
9509 else
9510 netdev_features_change(lower);
9511 }
9512 }
9513}
9514
9515static netdev_features_t netdev_fix_features(struct net_device *dev,
9516 netdev_features_t features)
9517{
9518 /* Fix illegal checksum combinations */
9519 if ((features & NETIF_F_HW_CSUM) &&
9520 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9521 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9522 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9523 }
9524
9525 /* TSO requires that SG is present as well. */
9526 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9527 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9528 features &= ~NETIF_F_ALL_TSO;
9529 }
9530
9531 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9532 !(features & NETIF_F_IP_CSUM)) {
9533 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9534 features &= ~NETIF_F_TSO;
9535 features &= ~NETIF_F_TSO_ECN;
9536 }
9537
9538 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9539 !(features & NETIF_F_IPV6_CSUM)) {
9540 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9541 features &= ~NETIF_F_TSO6;
9542 }
9543
9544 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9545 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9546 features &= ~NETIF_F_TSO_MANGLEID;
9547
9548 /* TSO ECN requires that TSO is present as well. */
9549 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9550 features &= ~NETIF_F_TSO_ECN;
9551
9552 /* Software GSO depends on SG. */
9553 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9554 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9555 features &= ~NETIF_F_GSO;
9556 }
9557
9558 /* GSO partial features require GSO partial be set */
9559 if ((features & dev->gso_partial_features) &&
9560 !(features & NETIF_F_GSO_PARTIAL)) {
9561 netdev_dbg(dev,
9562 "Dropping partially supported GSO features since no GSO partial.\n");
9563 features &= ~dev->gso_partial_features;
9564 }
9565
9566 if (!(features & NETIF_F_RXCSUM)) {
9567 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9568 * successfully merged by hardware must also have the
9569 * checksum verified by hardware. If the user does not
9570 * want to enable RXCSUM, logically, we should disable GRO_HW.
9571 */
9572 if (features & NETIF_F_GRO_HW) {
9573 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9574 features &= ~NETIF_F_GRO_HW;
9575 }
9576 }
9577
9578 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9579 if (features & NETIF_F_RXFCS) {
9580 if (features & NETIF_F_LRO) {
9581 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9582 features &= ~NETIF_F_LRO;
9583 }
9584
9585 if (features & NETIF_F_GRO_HW) {
9586 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9587 features &= ~NETIF_F_GRO_HW;
9588 }
9589 }
9590
9591 return features;
9592}
9593
9594int __netdev_update_features(struct net_device *dev)
9595{
9596 struct net_device *upper, *lower;
9597 netdev_features_t features;
9598 struct list_head *iter;
9599 int err = -1;
9600
9601 ASSERT_RTNL();
9602
9603 features = netdev_get_wanted_features(dev);
9604
9605 if (dev->netdev_ops->ndo_fix_features)
9606 features = dev->netdev_ops->ndo_fix_features(dev, features);
9607
9608 /* driver might be less strict about feature dependencies */
9609 features = netdev_fix_features(dev, features);
9610
9611 /* some features can't be enabled if they're off on an upper device */
9612 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9613 features = netdev_sync_upper_features(dev, upper, features);
9614
9615 if (dev->features == features)
9616 goto sync_lower;
9617
9618 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9619 &dev->features, &features);
9620
9621 if (dev->netdev_ops->ndo_set_features)
9622 err = dev->netdev_ops->ndo_set_features(dev, features);
9623 else
9624 err = 0;
9625
9626 if (unlikely(err < 0)) {
9627 netdev_err(dev,
9628 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9629 err, &features, &dev->features);
9630 /* return non-0 since some features might have changed and
9631 * it's better to fire a spurious notification than miss it
9632 */
9633 return -1;
9634 }
9635
9636sync_lower:
9637 /* some features must be disabled on lower devices when disabled
9638 * on an upper device (think: bonding master or bridge)
9639 */
9640 netdev_for_each_lower_dev(dev, lower, iter)
9641 netdev_sync_lower_features(dev, lower, features);
9642
9643 if (!err) {
9644 netdev_features_t diff = features ^ dev->features;
9645
9646 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9647 /* udp_tunnel_{get,drop}_rx_info both need
9648 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9649 * device, or they won't do anything.
9650 * Thus we need to update dev->features
9651 * *before* calling udp_tunnel_get_rx_info,
9652 * but *after* calling udp_tunnel_drop_rx_info.
9653 */
9654 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9655 dev->features = features;
9656 udp_tunnel_get_rx_info(dev);
9657 } else {
9658 udp_tunnel_drop_rx_info(dev);
9659 }
9660 }
9661
9662 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9663 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9664 dev->features = features;
9665 err |= vlan_get_rx_ctag_filter_info(dev);
9666 } else {
9667 vlan_drop_rx_ctag_filter_info(dev);
9668 }
9669 }
9670
9671 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9672 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9673 dev->features = features;
9674 err |= vlan_get_rx_stag_filter_info(dev);
9675 } else {
9676 vlan_drop_rx_stag_filter_info(dev);
9677 }
9678 }
9679
9680 dev->features = features;
9681 }
9682
9683 return err < 0 ? 0 : 1;
9684}
9685
9686/**
9687 * netdev_update_features - recalculate device features
9688 * @dev: the device to check
9689 *
9690 * Recalculate dev->features set and send notifications if it
9691 * has changed. Should be called after driver or hardware dependent
9692 * conditions might have changed that influence the features.
9693 */
9694void netdev_update_features(struct net_device *dev)
9695{
9696 if (__netdev_update_features(dev))
9697 netdev_features_change(dev);
9698}
9699EXPORT_SYMBOL(netdev_update_features);
9700
9701/**
9702 * netdev_change_features - recalculate device features
9703 * @dev: the device to check
9704 *
9705 * Recalculate dev->features set and send notifications even
9706 * if they have not changed. Should be called instead of
9707 * netdev_update_features() if also dev->vlan_features might
9708 * have changed to allow the changes to be propagated to stacked
9709 * VLAN devices.
9710 */
9711void netdev_change_features(struct net_device *dev)
9712{
9713 __netdev_update_features(dev);
9714 netdev_features_change(dev);
9715}
9716EXPORT_SYMBOL(netdev_change_features);
9717
9718/**
9719 * netif_stacked_transfer_operstate - transfer operstate
9720 * @rootdev: the root or lower level device to transfer state from
9721 * @dev: the device to transfer operstate to
9722 *
9723 * Transfer operational state from root to device. This is normally
9724 * called when a stacking relationship exists between the root
9725 * device and the device(a leaf device).
9726 */
9727void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9728 struct net_device *dev)
9729{
9730 if (rootdev->operstate == IF_OPER_DORMANT)
9731 netif_dormant_on(dev);
9732 else
9733 netif_dormant_off(dev);
9734
9735 if (rootdev->operstate == IF_OPER_TESTING)
9736 netif_testing_on(dev);
9737 else
9738 netif_testing_off(dev);
9739
9740 if (netif_carrier_ok(rootdev))
9741 netif_carrier_on(dev);
9742 else
9743 netif_carrier_off(dev);
9744}
9745EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9746
9747static int netif_alloc_rx_queues(struct net_device *dev)
9748{
9749 unsigned int i, count = dev->num_rx_queues;
9750 struct netdev_rx_queue *rx;
9751 size_t sz = count * sizeof(*rx);
9752 int err = 0;
9753
9754 BUG_ON(count < 1);
9755
9756 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9757 if (!rx)
9758 return -ENOMEM;
9759
9760 dev->_rx = rx;
9761
9762 for (i = 0; i < count; i++) {
9763 rx[i].dev = dev;
9764
9765 /* XDP RX-queue setup */
9766 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9767 if (err < 0)
9768 goto err_rxq_info;
9769 }
9770 return 0;
9771
9772err_rxq_info:
9773 /* Rollback successful reg's and free other resources */
9774 while (i--)
9775 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9776 kvfree(dev->_rx);
9777 dev->_rx = NULL;
9778 return err;
9779}
9780
9781static void netif_free_rx_queues(struct net_device *dev)
9782{
9783 unsigned int i, count = dev->num_rx_queues;
9784
9785 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9786 if (!dev->_rx)
9787 return;
9788
9789 for (i = 0; i < count; i++)
9790 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9791
9792 kvfree(dev->_rx);
9793}
9794
9795static void netdev_init_one_queue(struct net_device *dev,
9796 struct netdev_queue *queue, void *_unused)
9797{
9798 /* Initialize queue lock */
9799 spin_lock_init(&queue->_xmit_lock);
9800 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9801 queue->xmit_lock_owner = -1;
9802 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9803 queue->dev = dev;
9804#ifdef CONFIG_BQL
9805 dql_init(&queue->dql, HZ);
9806#endif
9807}
9808
9809static void netif_free_tx_queues(struct net_device *dev)
9810{
9811 kvfree(dev->_tx);
9812}
9813
9814static int netif_alloc_netdev_queues(struct net_device *dev)
9815{
9816 unsigned int count = dev->num_tx_queues;
9817 struct netdev_queue *tx;
9818 size_t sz = count * sizeof(*tx);
9819
9820 if (count < 1 || count > 0xffff)
9821 return -EINVAL;
9822
9823 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9824 if (!tx)
9825 return -ENOMEM;
9826
9827 dev->_tx = tx;
9828
9829 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9830 spin_lock_init(&dev->tx_global_lock);
9831
9832 return 0;
9833}
9834
9835void netif_tx_stop_all_queues(struct net_device *dev)
9836{
9837 unsigned int i;
9838
9839 for (i = 0; i < dev->num_tx_queues; i++) {
9840 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9841
9842 netif_tx_stop_queue(txq);
9843 }
9844}
9845EXPORT_SYMBOL(netif_tx_stop_all_queues);
9846
9847/**
9848 * register_netdevice - register a network device
9849 * @dev: device to register
9850 *
9851 * Take a completed network device structure and add it to the kernel
9852 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9853 * chain. 0 is returned on success. A negative errno code is returned
9854 * on a failure to set up the device, or if the name is a duplicate.
9855 *
9856 * Callers must hold the rtnl semaphore. You may want
9857 * register_netdev() instead of this.
9858 *
9859 * BUGS:
9860 * The locking appears insufficient to guarantee two parallel registers
9861 * will not get the same name.
9862 */
9863
9864int register_netdevice(struct net_device *dev)
9865{
9866 int ret;
9867 struct net *net = dev_net(dev);
9868
9869 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9870 NETDEV_FEATURE_COUNT);
9871 BUG_ON(dev_boot_phase);
9872 ASSERT_RTNL();
9873
9874 might_sleep();
9875
9876 /* When net_device's are persistent, this will be fatal. */
9877 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9878 BUG_ON(!net);
9879
9880 ret = ethtool_check_ops(dev->ethtool_ops);
9881 if (ret)
9882 return ret;
9883
9884 spin_lock_init(&dev->addr_list_lock);
9885 netdev_set_addr_lockdep_class(dev);
9886
9887 ret = dev_get_valid_name(net, dev, dev->name);
9888 if (ret < 0)
9889 goto out;
9890
9891 ret = -ENOMEM;
9892 dev->name_node = netdev_name_node_head_alloc(dev);
9893 if (!dev->name_node)
9894 goto out;
9895
9896 /* Init, if this function is available */
9897 if (dev->netdev_ops->ndo_init) {
9898 ret = dev->netdev_ops->ndo_init(dev);
9899 if (ret) {
9900 if (ret > 0)
9901 ret = -EIO;
9902 goto err_free_name;
9903 }
9904 }
9905
9906 if (((dev->hw_features | dev->features) &
9907 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9908 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9909 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9910 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9911 ret = -EINVAL;
9912 goto err_uninit;
9913 }
9914
9915 ret = -EBUSY;
9916 if (!dev->ifindex)
9917 dev->ifindex = dev_new_index(net);
9918 else if (__dev_get_by_index(net, dev->ifindex))
9919 goto err_uninit;
9920
9921 /* Transfer changeable features to wanted_features and enable
9922 * software offloads (GSO and GRO).
9923 */
9924 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9925 dev->features |= NETIF_F_SOFT_FEATURES;
9926
9927 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9928 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9929 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9930 }
9931
9932 dev->wanted_features = dev->features & dev->hw_features;
9933
9934 if (!(dev->flags & IFF_LOOPBACK))
9935 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9936
9937 /* If IPv4 TCP segmentation offload is supported we should also
9938 * allow the device to enable segmenting the frame with the option
9939 * of ignoring a static IP ID value. This doesn't enable the
9940 * feature itself but allows the user to enable it later.
9941 */
9942 if (dev->hw_features & NETIF_F_TSO)
9943 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9944 if (dev->vlan_features & NETIF_F_TSO)
9945 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9946 if (dev->mpls_features & NETIF_F_TSO)
9947 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9948 if (dev->hw_enc_features & NETIF_F_TSO)
9949 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9950
9951 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9952 */
9953 dev->vlan_features |= NETIF_F_HIGHDMA;
9954
9955 /* Make NETIF_F_SG inheritable to tunnel devices.
9956 */
9957 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9958
9959 /* Make NETIF_F_SG inheritable to MPLS.
9960 */
9961 dev->mpls_features |= NETIF_F_SG;
9962
9963 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9964 ret = notifier_to_errno(ret);
9965 if (ret)
9966 goto err_uninit;
9967
9968 ret = netdev_register_kobject(dev);
9969 if (ret) {
9970 dev->reg_state = NETREG_UNREGISTERED;
9971 goto err_uninit;
9972 }
9973 dev->reg_state = NETREG_REGISTERED;
9974
9975 __netdev_update_features(dev);
9976
9977 /*
9978 * Default initial state at registry is that the
9979 * device is present.
9980 */
9981
9982 set_bit(__LINK_STATE_PRESENT, &dev->state);
9983
9984 linkwatch_init_dev(dev);
9985
9986 dev_init_scheduler(dev);
9987 dev_hold(dev);
9988 list_netdevice(dev);
9989 add_device_randomness(dev->dev_addr, dev->addr_len);
9990
9991 /* If the device has permanent device address, driver should
9992 * set dev_addr and also addr_assign_type should be set to
9993 * NET_ADDR_PERM (default value).
9994 */
9995 if (dev->addr_assign_type == NET_ADDR_PERM)
9996 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9997
9998 /* Notify protocols, that a new device appeared. */
9999 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10000 ret = notifier_to_errno(ret);
10001 if (ret) {
10002 rollback_registered(dev);
10003 rcu_barrier();
10004
10005 dev->reg_state = NETREG_UNREGISTERED;
10006 /* We should put the kobject that hold in
10007 * netdev_unregister_kobject(), otherwise
10008 * the net device cannot be freed when
10009 * driver calls free_netdev(), because the
10010 * kobject is being hold.
10011 */
10012 kobject_put(&dev->dev.kobj);
10013 }
10014 /*
10015 * Prevent userspace races by waiting until the network
10016 * device is fully setup before sending notifications.
10017 */
10018 if (!dev->rtnl_link_ops ||
10019 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10020 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10021
10022out:
10023 return ret;
10024
10025err_uninit:
10026 if (dev->netdev_ops->ndo_uninit)
10027 dev->netdev_ops->ndo_uninit(dev);
10028 if (dev->priv_destructor)
10029 dev->priv_destructor(dev);
10030err_free_name:
10031 netdev_name_node_free(dev->name_node);
10032 goto out;
10033}
10034EXPORT_SYMBOL(register_netdevice);
10035
10036/**
10037 * init_dummy_netdev - init a dummy network device for NAPI
10038 * @dev: device to init
10039 *
10040 * This takes a network device structure and initialize the minimum
10041 * amount of fields so it can be used to schedule NAPI polls without
10042 * registering a full blown interface. This is to be used by drivers
10043 * that need to tie several hardware interfaces to a single NAPI
10044 * poll scheduler due to HW limitations.
10045 */
10046int init_dummy_netdev(struct net_device *dev)
10047{
10048 /* Clear everything. Note we don't initialize spinlocks
10049 * are they aren't supposed to be taken by any of the
10050 * NAPI code and this dummy netdev is supposed to be
10051 * only ever used for NAPI polls
10052 */
10053 memset(dev, 0, sizeof(struct net_device));
10054
10055 /* make sure we BUG if trying to hit standard
10056 * register/unregister code path
10057 */
10058 dev->reg_state = NETREG_DUMMY;
10059
10060 /* NAPI wants this */
10061 INIT_LIST_HEAD(&dev->napi_list);
10062
10063 /* a dummy interface is started by default */
10064 set_bit(__LINK_STATE_PRESENT, &dev->state);
10065 set_bit(__LINK_STATE_START, &dev->state);
10066
10067 /* napi_busy_loop stats accounting wants this */
10068 dev_net_set(dev, &init_net);
10069
10070 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10071 * because users of this 'device' dont need to change
10072 * its refcount.
10073 */
10074
10075 return 0;
10076}
10077EXPORT_SYMBOL_GPL(init_dummy_netdev);
10078
10079
10080/**
10081 * register_netdev - register a network device
10082 * @dev: device to register
10083 *
10084 * Take a completed network device structure and add it to the kernel
10085 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10086 * chain. 0 is returned on success. A negative errno code is returned
10087 * on a failure to set up the device, or if the name is a duplicate.
10088 *
10089 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10090 * and expands the device name if you passed a format string to
10091 * alloc_netdev.
10092 */
10093int register_netdev(struct net_device *dev)
10094{
10095 int err;
10096
10097 if (rtnl_lock_killable())
10098 return -EINTR;
10099 err = register_netdevice(dev);
10100 rtnl_unlock();
10101 return err;
10102}
10103EXPORT_SYMBOL(register_netdev);
10104
10105int netdev_refcnt_read(const struct net_device *dev)
10106{
10107 int i, refcnt = 0;
10108
10109 for_each_possible_cpu(i)
10110 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10111 return refcnt;
10112}
10113EXPORT_SYMBOL(netdev_refcnt_read);
10114
10115#define WAIT_REFS_MIN_MSECS 1
10116#define WAIT_REFS_MAX_MSECS 250
10117/**
10118 * netdev_wait_allrefs - wait until all references are gone.
10119 * @dev: target net_device
10120 *
10121 * This is called when unregistering network devices.
10122 *
10123 * Any protocol or device that holds a reference should register
10124 * for netdevice notification, and cleanup and put back the
10125 * reference if they receive an UNREGISTER event.
10126 * We can get stuck here if buggy protocols don't correctly
10127 * call dev_put.
10128 */
10129static void netdev_wait_allrefs(struct net_device *dev)
10130{
10131 unsigned long rebroadcast_time, warning_time;
10132 int wait = 0, refcnt;
10133
10134 linkwatch_forget_dev(dev);
10135
10136 rebroadcast_time = warning_time = jiffies;
10137 refcnt = netdev_refcnt_read(dev);
10138
10139 while (refcnt != 0) {
10140 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10141 rtnl_lock();
10142
10143 /* Rebroadcast unregister notification */
10144 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10145
10146 __rtnl_unlock();
10147 rcu_barrier();
10148 rtnl_lock();
10149
10150 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10151 &dev->state)) {
10152 /* We must not have linkwatch events
10153 * pending on unregister. If this
10154 * happens, we simply run the queue
10155 * unscheduled, resulting in a noop
10156 * for this device.
10157 */
10158 linkwatch_run_queue();
10159 }
10160
10161 __rtnl_unlock();
10162
10163 rebroadcast_time = jiffies;
10164 }
10165
10166 if (!wait) {
10167 rcu_barrier();
10168 wait = WAIT_REFS_MIN_MSECS;
10169 } else {
10170 msleep(wait);
10171 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10172 }
10173
10174 refcnt = netdev_refcnt_read(dev);
10175
10176 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10177 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10178 dev->name, refcnt);
10179 warning_time = jiffies;
10180 }
10181 }
10182}
10183
10184/* The sequence is:
10185 *
10186 * rtnl_lock();
10187 * ...
10188 * register_netdevice(x1);
10189 * register_netdevice(x2);
10190 * ...
10191 * unregister_netdevice(y1);
10192 * unregister_netdevice(y2);
10193 * ...
10194 * rtnl_unlock();
10195 * free_netdev(y1);
10196 * free_netdev(y2);
10197 *
10198 * We are invoked by rtnl_unlock().
10199 * This allows us to deal with problems:
10200 * 1) We can delete sysfs objects which invoke hotplug
10201 * without deadlocking with linkwatch via keventd.
10202 * 2) Since we run with the RTNL semaphore not held, we can sleep
10203 * safely in order to wait for the netdev refcnt to drop to zero.
10204 *
10205 * We must not return until all unregister events added during
10206 * the interval the lock was held have been completed.
10207 */
10208void netdev_run_todo(void)
10209{
10210 struct list_head list;
10211#ifdef CONFIG_LOCKDEP
10212 struct list_head unlink_list;
10213
10214 list_replace_init(&net_unlink_list, &unlink_list);
10215
10216 while (!list_empty(&unlink_list)) {
10217 struct net_device *dev = list_first_entry(&unlink_list,
10218 struct net_device,
10219 unlink_list);
10220 list_del_init(&dev->unlink_list);
10221 dev->nested_level = dev->lower_level - 1;
10222 }
10223#endif
10224
10225 /* Snapshot list, allow later requests */
10226 list_replace_init(&net_todo_list, &list);
10227
10228 __rtnl_unlock();
10229
10230
10231 /* Wait for rcu callbacks to finish before next phase */
10232 if (!list_empty(&list))
10233 rcu_barrier();
10234
10235 while (!list_empty(&list)) {
10236 struct net_device *dev
10237 = list_first_entry(&list, struct net_device, todo_list);
10238 list_del(&dev->todo_list);
10239
10240 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10241 pr_err("network todo '%s' but state %d\n",
10242 dev->name, dev->reg_state);
10243 dump_stack();
10244 continue;
10245 }
10246
10247 dev->reg_state = NETREG_UNREGISTERED;
10248
10249 netdev_wait_allrefs(dev);
10250
10251 /* paranoia */
10252 BUG_ON(netdev_refcnt_read(dev));
10253 BUG_ON(!list_empty(&dev->ptype_all));
10254 BUG_ON(!list_empty(&dev->ptype_specific));
10255 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10256 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10257#if IS_ENABLED(CONFIG_DECNET)
10258 WARN_ON(dev->dn_ptr);
10259#endif
10260 if (dev->priv_destructor)
10261 dev->priv_destructor(dev);
10262 if (dev->needs_free_netdev)
10263 free_netdev(dev);
10264
10265 /* Report a network device has been unregistered */
10266 rtnl_lock();
10267 dev_net(dev)->dev_unreg_count--;
10268 __rtnl_unlock();
10269 wake_up(&netdev_unregistering_wq);
10270
10271 /* Free network device */
10272 kobject_put(&dev->dev.kobj);
10273 }
10274}
10275
10276/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10277 * all the same fields in the same order as net_device_stats, with only
10278 * the type differing, but rtnl_link_stats64 may have additional fields
10279 * at the end for newer counters.
10280 */
10281void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10282 const struct net_device_stats *netdev_stats)
10283{
10284#if BITS_PER_LONG == 64
10285 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10286 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10287 /* zero out counters that only exist in rtnl_link_stats64 */
10288 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10289 sizeof(*stats64) - sizeof(*netdev_stats));
10290#else
10291 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10292 const unsigned long *src = (const unsigned long *)netdev_stats;
10293 u64 *dst = (u64 *)stats64;
10294
10295 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10296 for (i = 0; i < n; i++)
10297 dst[i] = src[i];
10298 /* zero out counters that only exist in rtnl_link_stats64 */
10299 memset((char *)stats64 + n * sizeof(u64), 0,
10300 sizeof(*stats64) - n * sizeof(u64));
10301#endif
10302}
10303EXPORT_SYMBOL(netdev_stats_to_stats64);
10304
10305/**
10306 * dev_get_stats - get network device statistics
10307 * @dev: device to get statistics from
10308 * @storage: place to store stats
10309 *
10310 * Get network statistics from device. Return @storage.
10311 * The device driver may provide its own method by setting
10312 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10313 * otherwise the internal statistics structure is used.
10314 */
10315struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10316 struct rtnl_link_stats64 *storage)
10317{
10318 const struct net_device_ops *ops = dev->netdev_ops;
10319
10320 if (ops->ndo_get_stats64) {
10321 memset(storage, 0, sizeof(*storage));
10322 ops->ndo_get_stats64(dev, storage);
10323 } else if (ops->ndo_get_stats) {
10324 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10325 } else {
10326 netdev_stats_to_stats64(storage, &dev->stats);
10327 }
10328 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10329 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10330 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10331 return storage;
10332}
10333EXPORT_SYMBOL(dev_get_stats);
10334
10335/**
10336 * dev_fetch_sw_netstats - get per-cpu network device statistics
10337 * @s: place to store stats
10338 * @netstats: per-cpu network stats to read from
10339 *
10340 * Read per-cpu network statistics and populate the related fields in @s.
10341 */
10342void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10343 const struct pcpu_sw_netstats __percpu *netstats)
10344{
10345 int cpu;
10346
10347 for_each_possible_cpu(cpu) {
10348 const struct pcpu_sw_netstats *stats;
10349 struct pcpu_sw_netstats tmp;
10350 unsigned int start;
10351
10352 stats = per_cpu_ptr(netstats, cpu);
10353 do {
10354 start = u64_stats_fetch_begin_irq(&stats->syncp);
10355 tmp.rx_packets = stats->rx_packets;
10356 tmp.rx_bytes = stats->rx_bytes;
10357 tmp.tx_packets = stats->tx_packets;
10358 tmp.tx_bytes = stats->tx_bytes;
10359 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10360
10361 s->rx_packets += tmp.rx_packets;
10362 s->rx_bytes += tmp.rx_bytes;
10363 s->tx_packets += tmp.tx_packets;
10364 s->tx_bytes += tmp.tx_bytes;
10365 }
10366}
10367EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10368
10369struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10370{
10371 struct netdev_queue *queue = dev_ingress_queue(dev);
10372
10373#ifdef CONFIG_NET_CLS_ACT
10374 if (queue)
10375 return queue;
10376 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10377 if (!queue)
10378 return NULL;
10379 netdev_init_one_queue(dev, queue, NULL);
10380 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10381 queue->qdisc_sleeping = &noop_qdisc;
10382 rcu_assign_pointer(dev->ingress_queue, queue);
10383#endif
10384 return queue;
10385}
10386
10387static const struct ethtool_ops default_ethtool_ops;
10388
10389void netdev_set_default_ethtool_ops(struct net_device *dev,
10390 const struct ethtool_ops *ops)
10391{
10392 if (dev->ethtool_ops == &default_ethtool_ops)
10393 dev->ethtool_ops = ops;
10394}
10395EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10396
10397void netdev_freemem(struct net_device *dev)
10398{
10399 char *addr = (char *)dev - dev->padded;
10400
10401 kvfree(addr);
10402}
10403
10404/**
10405 * alloc_netdev_mqs - allocate network device
10406 * @sizeof_priv: size of private data to allocate space for
10407 * @name: device name format string
10408 * @name_assign_type: origin of device name
10409 * @setup: callback to initialize device
10410 * @txqs: the number of TX subqueues to allocate
10411 * @rxqs: the number of RX subqueues to allocate
10412 *
10413 * Allocates a struct net_device with private data area for driver use
10414 * and performs basic initialization. Also allocates subqueue structs
10415 * for each queue on the device.
10416 */
10417struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10418 unsigned char name_assign_type,
10419 void (*setup)(struct net_device *),
10420 unsigned int txqs, unsigned int rxqs)
10421{
10422 struct net_device *dev;
10423 unsigned int alloc_size;
10424 struct net_device *p;
10425
10426 BUG_ON(strlen(name) >= sizeof(dev->name));
10427
10428 if (txqs < 1) {
10429 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10430 return NULL;
10431 }
10432
10433 if (rxqs < 1) {
10434 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10435 return NULL;
10436 }
10437
10438 alloc_size = sizeof(struct net_device);
10439 if (sizeof_priv) {
10440 /* ensure 32-byte alignment of private area */
10441 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10442 alloc_size += sizeof_priv;
10443 }
10444 /* ensure 32-byte alignment of whole construct */
10445 alloc_size += NETDEV_ALIGN - 1;
10446
10447 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10448 if (!p)
10449 return NULL;
10450
10451 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10452 dev->padded = (char *)dev - (char *)p;
10453
10454 dev->pcpu_refcnt = alloc_percpu(int);
10455 if (!dev->pcpu_refcnt)
10456 goto free_dev;
10457
10458 if (dev_addr_init(dev))
10459 goto free_pcpu;
10460
10461 dev_mc_init(dev);
10462 dev_uc_init(dev);
10463
10464 dev_net_set(dev, &init_net);
10465
10466 dev->gso_max_size = GSO_MAX_SIZE;
10467 dev->gso_max_segs = GSO_MAX_SEGS;
10468 dev->upper_level = 1;
10469 dev->lower_level = 1;
10470#ifdef CONFIG_LOCKDEP
10471 dev->nested_level = 0;
10472 INIT_LIST_HEAD(&dev->unlink_list);
10473#endif
10474
10475 INIT_LIST_HEAD(&dev->napi_list);
10476 INIT_LIST_HEAD(&dev->unreg_list);
10477 INIT_LIST_HEAD(&dev->close_list);
10478 INIT_LIST_HEAD(&dev->link_watch_list);
10479 INIT_LIST_HEAD(&dev->adj_list.upper);
10480 INIT_LIST_HEAD(&dev->adj_list.lower);
10481 INIT_LIST_HEAD(&dev->ptype_all);
10482 INIT_LIST_HEAD(&dev->ptype_specific);
10483 INIT_LIST_HEAD(&dev->net_notifier_list);
10484#ifdef CONFIG_NET_SCHED
10485 hash_init(dev->qdisc_hash);
10486#endif
10487 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10488 setup(dev);
10489
10490 if (!dev->tx_queue_len) {
10491 dev->priv_flags |= IFF_NO_QUEUE;
10492 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10493 }
10494
10495 dev->num_tx_queues = txqs;
10496 dev->real_num_tx_queues = txqs;
10497 if (netif_alloc_netdev_queues(dev))
10498 goto free_all;
10499
10500 dev->num_rx_queues = rxqs;
10501 dev->real_num_rx_queues = rxqs;
10502 if (netif_alloc_rx_queues(dev))
10503 goto free_all;
10504
10505 strcpy(dev->name, name);
10506 dev->name_assign_type = name_assign_type;
10507 dev->group = INIT_NETDEV_GROUP;
10508 if (!dev->ethtool_ops)
10509 dev->ethtool_ops = &default_ethtool_ops;
10510
10511 nf_hook_ingress_init(dev);
10512
10513 return dev;
10514
10515free_all:
10516 free_netdev(dev);
10517 return NULL;
10518
10519free_pcpu:
10520 free_percpu(dev->pcpu_refcnt);
10521free_dev:
10522 netdev_freemem(dev);
10523 return NULL;
10524}
10525EXPORT_SYMBOL(alloc_netdev_mqs);
10526
10527/**
10528 * free_netdev - free network device
10529 * @dev: device
10530 *
10531 * This function does the last stage of destroying an allocated device
10532 * interface. The reference to the device object is released. If this
10533 * is the last reference then it will be freed.Must be called in process
10534 * context.
10535 */
10536void free_netdev(struct net_device *dev)
10537{
10538 struct napi_struct *p, *n;
10539
10540 might_sleep();
10541 netif_free_tx_queues(dev);
10542 netif_free_rx_queues(dev);
10543
10544 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10545
10546 /* Flush device addresses */
10547 dev_addr_flush(dev);
10548
10549 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10550 netif_napi_del(p);
10551
10552 free_percpu(dev->pcpu_refcnt);
10553 dev->pcpu_refcnt = NULL;
10554 free_percpu(dev->xdp_bulkq);
10555 dev->xdp_bulkq = NULL;
10556
10557 /* Compatibility with error handling in drivers */
10558 if (dev->reg_state == NETREG_UNINITIALIZED) {
10559 netdev_freemem(dev);
10560 return;
10561 }
10562
10563 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10564 dev->reg_state = NETREG_RELEASED;
10565
10566 /* will free via device release */
10567 put_device(&dev->dev);
10568}
10569EXPORT_SYMBOL(free_netdev);
10570
10571/**
10572 * synchronize_net - Synchronize with packet receive processing
10573 *
10574 * Wait for packets currently being received to be done.
10575 * Does not block later packets from starting.
10576 */
10577void synchronize_net(void)
10578{
10579 might_sleep();
10580 if (rtnl_is_locked())
10581 synchronize_rcu_expedited();
10582 else
10583 synchronize_rcu();
10584}
10585EXPORT_SYMBOL(synchronize_net);
10586
10587/**
10588 * unregister_netdevice_queue - remove device from the kernel
10589 * @dev: device
10590 * @head: list
10591 *
10592 * This function shuts down a device interface and removes it
10593 * from the kernel tables.
10594 * If head not NULL, device is queued to be unregistered later.
10595 *
10596 * Callers must hold the rtnl semaphore. You may want
10597 * unregister_netdev() instead of this.
10598 */
10599
10600void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10601{
10602 ASSERT_RTNL();
10603
10604 if (head) {
10605 list_move_tail(&dev->unreg_list, head);
10606 } else {
10607 rollback_registered(dev);
10608 /* Finish processing unregister after unlock */
10609 net_set_todo(dev);
10610 }
10611}
10612EXPORT_SYMBOL(unregister_netdevice_queue);
10613
10614/**
10615 * unregister_netdevice_many - unregister many devices
10616 * @head: list of devices
10617 *
10618 * Note: As most callers use a stack allocated list_head,
10619 * we force a list_del() to make sure stack wont be corrupted later.
10620 */
10621void unregister_netdevice_many(struct list_head *head)
10622{
10623 struct net_device *dev;
10624
10625 if (!list_empty(head)) {
10626 rollback_registered_many(head);
10627 list_for_each_entry(dev, head, unreg_list)
10628 net_set_todo(dev);
10629 list_del(head);
10630 }
10631}
10632EXPORT_SYMBOL(unregister_netdevice_many);
10633
10634/**
10635 * unregister_netdev - remove device from the kernel
10636 * @dev: device
10637 *
10638 * This function shuts down a device interface and removes it
10639 * from the kernel tables.
10640 *
10641 * This is just a wrapper for unregister_netdevice that takes
10642 * the rtnl semaphore. In general you want to use this and not
10643 * unregister_netdevice.
10644 */
10645void unregister_netdev(struct net_device *dev)
10646{
10647 rtnl_lock();
10648 unregister_netdevice(dev);
10649 rtnl_unlock();
10650}
10651EXPORT_SYMBOL(unregister_netdev);
10652
10653/**
10654 * dev_change_net_namespace - move device to different nethost namespace
10655 * @dev: device
10656 * @net: network namespace
10657 * @pat: If not NULL name pattern to try if the current device name
10658 * is already taken in the destination network namespace.
10659 *
10660 * This function shuts down a device interface and moves it
10661 * to a new network namespace. On success 0 is returned, on
10662 * a failure a netagive errno code is returned.
10663 *
10664 * Callers must hold the rtnl semaphore.
10665 */
10666
10667int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10668{
10669 struct net *net_old = dev_net(dev);
10670 int err, new_nsid, new_ifindex;
10671
10672 ASSERT_RTNL();
10673
10674 /* Don't allow namespace local devices to be moved. */
10675 err = -EINVAL;
10676 if (dev->features & NETIF_F_NETNS_LOCAL)
10677 goto out;
10678
10679 /* Ensure the device has been registrered */
10680 if (dev->reg_state != NETREG_REGISTERED)
10681 goto out;
10682
10683 /* Get out if there is nothing todo */
10684 err = 0;
10685 if (net_eq(net_old, net))
10686 goto out;
10687
10688 /* Pick the destination device name, and ensure
10689 * we can use it in the destination network namespace.
10690 */
10691 err = -EEXIST;
10692 if (__dev_get_by_name(net, dev->name)) {
10693 /* We get here if we can't use the current device name */
10694 if (!pat)
10695 goto out;
10696 err = dev_get_valid_name(net, dev, pat);
10697 if (err < 0)
10698 goto out;
10699 }
10700
10701 /*
10702 * And now a mini version of register_netdevice unregister_netdevice.
10703 */
10704
10705 /* If device is running close it first. */
10706 dev_close(dev);
10707
10708 /* And unlink it from device chain */
10709 unlist_netdevice(dev);
10710
10711 synchronize_net();
10712
10713 /* Shutdown queueing discipline. */
10714 dev_shutdown(dev);
10715
10716 /* Notify protocols, that we are about to destroy
10717 * this device. They should clean all the things.
10718 *
10719 * Note that dev->reg_state stays at NETREG_REGISTERED.
10720 * This is wanted because this way 8021q and macvlan know
10721 * the device is just moving and can keep their slaves up.
10722 */
10723 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10724 rcu_barrier();
10725
10726 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10727 /* If there is an ifindex conflict assign a new one */
10728 if (__dev_get_by_index(net, dev->ifindex))
10729 new_ifindex = dev_new_index(net);
10730 else
10731 new_ifindex = dev->ifindex;
10732
10733 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10734 new_ifindex);
10735
10736 /*
10737 * Flush the unicast and multicast chains
10738 */
10739 dev_uc_flush(dev);
10740 dev_mc_flush(dev);
10741
10742 /* Send a netdev-removed uevent to the old namespace */
10743 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10744 netdev_adjacent_del_links(dev);
10745
10746 /* Move per-net netdevice notifiers that are following the netdevice */
10747 move_netdevice_notifiers_dev_net(dev, net);
10748
10749 /* Actually switch the network namespace */
10750 dev_net_set(dev, net);
10751 dev->ifindex = new_ifindex;
10752
10753 /* Send a netdev-add uevent to the new namespace */
10754 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10755 netdev_adjacent_add_links(dev);
10756
10757 /* Fixup kobjects */
10758 err = device_rename(&dev->dev, dev->name);
10759 WARN_ON(err);
10760
10761 /* Adapt owner in case owning user namespace of target network
10762 * namespace is different from the original one.
10763 */
10764 err = netdev_change_owner(dev, net_old, net);
10765 WARN_ON(err);
10766
10767 /* Add the device back in the hashes */
10768 list_netdevice(dev);
10769
10770 /* Notify protocols, that a new device appeared. */
10771 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10772
10773 /*
10774 * Prevent userspace races by waiting until the network
10775 * device is fully setup before sending notifications.
10776 */
10777 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10778
10779 synchronize_net();
10780 err = 0;
10781out:
10782 return err;
10783}
10784EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10785
10786static int dev_cpu_dead(unsigned int oldcpu)
10787{
10788 struct sk_buff **list_skb;
10789 struct sk_buff *skb;
10790 unsigned int cpu;
10791 struct softnet_data *sd, *oldsd, *remsd = NULL;
10792
10793 local_irq_disable();
10794 cpu = smp_processor_id();
10795 sd = &per_cpu(softnet_data, cpu);
10796 oldsd = &per_cpu(softnet_data, oldcpu);
10797
10798 /* Find end of our completion_queue. */
10799 list_skb = &sd->completion_queue;
10800 while (*list_skb)
10801 list_skb = &(*list_skb)->next;
10802 /* Append completion queue from offline CPU. */
10803 *list_skb = oldsd->completion_queue;
10804 oldsd->completion_queue = NULL;
10805
10806 /* Append output queue from offline CPU. */
10807 if (oldsd->output_queue) {
10808 *sd->output_queue_tailp = oldsd->output_queue;
10809 sd->output_queue_tailp = oldsd->output_queue_tailp;
10810 oldsd->output_queue = NULL;
10811 oldsd->output_queue_tailp = &oldsd->output_queue;
10812 }
10813 /* Append NAPI poll list from offline CPU, with one exception :
10814 * process_backlog() must be called by cpu owning percpu backlog.
10815 * We properly handle process_queue & input_pkt_queue later.
10816 */
10817 while (!list_empty(&oldsd->poll_list)) {
10818 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10819 struct napi_struct,
10820 poll_list);
10821
10822 list_del_init(&napi->poll_list);
10823 if (napi->poll == process_backlog)
10824 napi->state = 0;
10825 else
10826 ____napi_schedule(sd, napi);
10827 }
10828
10829 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10830 local_irq_enable();
10831
10832#ifdef CONFIG_RPS
10833 remsd = oldsd->rps_ipi_list;
10834 oldsd->rps_ipi_list = NULL;
10835#endif
10836 /* send out pending IPI's on offline CPU */
10837 net_rps_send_ipi(remsd);
10838
10839 /* Process offline CPU's input_pkt_queue */
10840 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10841 netif_rx_ni(skb);
10842 input_queue_head_incr(oldsd);
10843 }
10844 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10845 netif_rx_ni(skb);
10846 input_queue_head_incr(oldsd);
10847 }
10848
10849 return 0;
10850}
10851
10852/**
10853 * netdev_increment_features - increment feature set by one
10854 * @all: current feature set
10855 * @one: new feature set
10856 * @mask: mask feature set
10857 *
10858 * Computes a new feature set after adding a device with feature set
10859 * @one to the master device with current feature set @all. Will not
10860 * enable anything that is off in @mask. Returns the new feature set.
10861 */
10862netdev_features_t netdev_increment_features(netdev_features_t all,
10863 netdev_features_t one, netdev_features_t mask)
10864{
10865 if (mask & NETIF_F_HW_CSUM)
10866 mask |= NETIF_F_CSUM_MASK;
10867 mask |= NETIF_F_VLAN_CHALLENGED;
10868
10869 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10870 all &= one | ~NETIF_F_ALL_FOR_ALL;
10871
10872 /* If one device supports hw checksumming, set for all. */
10873 if (all & NETIF_F_HW_CSUM)
10874 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10875
10876 return all;
10877}
10878EXPORT_SYMBOL(netdev_increment_features);
10879
10880static struct hlist_head * __net_init netdev_create_hash(void)
10881{
10882 int i;
10883 struct hlist_head *hash;
10884
10885 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10886 if (hash != NULL)
10887 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10888 INIT_HLIST_HEAD(&hash[i]);
10889
10890 return hash;
10891}
10892
10893/* Initialize per network namespace state */
10894static int __net_init netdev_init(struct net *net)
10895{
10896 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10897 8 * sizeof_field(struct napi_struct, gro_bitmask));
10898
10899 if (net != &init_net)
10900 INIT_LIST_HEAD(&net->dev_base_head);
10901
10902 net->dev_name_head = netdev_create_hash();
10903 if (net->dev_name_head == NULL)
10904 goto err_name;
10905
10906 net->dev_index_head = netdev_create_hash();
10907 if (net->dev_index_head == NULL)
10908 goto err_idx;
10909
10910 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10911
10912 return 0;
10913
10914err_idx:
10915 kfree(net->dev_name_head);
10916err_name:
10917 return -ENOMEM;
10918}
10919
10920/**
10921 * netdev_drivername - network driver for the device
10922 * @dev: network device
10923 *
10924 * Determine network driver for device.
10925 */
10926const char *netdev_drivername(const struct net_device *dev)
10927{
10928 const struct device_driver *driver;
10929 const struct device *parent;
10930 const char *empty = "";
10931
10932 parent = dev->dev.parent;
10933 if (!parent)
10934 return empty;
10935
10936 driver = parent->driver;
10937 if (driver && driver->name)
10938 return driver->name;
10939 return empty;
10940}
10941
10942static void __netdev_printk(const char *level, const struct net_device *dev,
10943 struct va_format *vaf)
10944{
10945 if (dev && dev->dev.parent) {
10946 dev_printk_emit(level[1] - '0',
10947 dev->dev.parent,
10948 "%s %s %s%s: %pV",
10949 dev_driver_string(dev->dev.parent),
10950 dev_name(dev->dev.parent),
10951 netdev_name(dev), netdev_reg_state(dev),
10952 vaf);
10953 } else if (dev) {
10954 printk("%s%s%s: %pV",
10955 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10956 } else {
10957 printk("%s(NULL net_device): %pV", level, vaf);
10958 }
10959}
10960
10961void netdev_printk(const char *level, const struct net_device *dev,
10962 const char *format, ...)
10963{
10964 struct va_format vaf;
10965 va_list args;
10966
10967 va_start(args, format);
10968
10969 vaf.fmt = format;
10970 vaf.va = &args;
10971
10972 __netdev_printk(level, dev, &vaf);
10973
10974 va_end(args);
10975}
10976EXPORT_SYMBOL(netdev_printk);
10977
10978#define define_netdev_printk_level(func, level) \
10979void func(const struct net_device *dev, const char *fmt, ...) \
10980{ \
10981 struct va_format vaf; \
10982 va_list args; \
10983 \
10984 va_start(args, fmt); \
10985 \
10986 vaf.fmt = fmt; \
10987 vaf.va = &args; \
10988 \
10989 __netdev_printk(level, dev, &vaf); \
10990 \
10991 va_end(args); \
10992} \
10993EXPORT_SYMBOL(func);
10994
10995define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10996define_netdev_printk_level(netdev_alert, KERN_ALERT);
10997define_netdev_printk_level(netdev_crit, KERN_CRIT);
10998define_netdev_printk_level(netdev_err, KERN_ERR);
10999define_netdev_printk_level(netdev_warn, KERN_WARNING);
11000define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11001define_netdev_printk_level(netdev_info, KERN_INFO);
11002
11003static void __net_exit netdev_exit(struct net *net)
11004{
11005 kfree(net->dev_name_head);
11006 kfree(net->dev_index_head);
11007 if (net != &init_net)
11008 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11009}
11010
11011static struct pernet_operations __net_initdata netdev_net_ops = {
11012 .init = netdev_init,
11013 .exit = netdev_exit,
11014};
11015
11016static void __net_exit default_device_exit(struct net *net)
11017{
11018 struct net_device *dev, *aux;
11019 /*
11020 * Push all migratable network devices back to the
11021 * initial network namespace
11022 */
11023 rtnl_lock();
11024 for_each_netdev_safe(net, dev, aux) {
11025 int err;
11026 char fb_name[IFNAMSIZ];
11027
11028 /* Ignore unmoveable devices (i.e. loopback) */
11029 if (dev->features & NETIF_F_NETNS_LOCAL)
11030 continue;
11031
11032 /* Leave virtual devices for the generic cleanup */
11033 if (dev->rtnl_link_ops)
11034 continue;
11035
11036 /* Push remaining network devices to init_net */
11037 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11038 if (__dev_get_by_name(&init_net, fb_name))
11039 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11040 err = dev_change_net_namespace(dev, &init_net, fb_name);
11041 if (err) {
11042 pr_emerg("%s: failed to move %s to init_net: %d\n",
11043 __func__, dev->name, err);
11044 BUG();
11045 }
11046 }
11047 rtnl_unlock();
11048}
11049
11050static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11051{
11052 /* Return with the rtnl_lock held when there are no network
11053 * devices unregistering in any network namespace in net_list.
11054 */
11055 struct net *net;
11056 bool unregistering;
11057 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11058
11059 add_wait_queue(&netdev_unregistering_wq, &wait);
11060 for (;;) {
11061 unregistering = false;
11062 rtnl_lock();
11063 list_for_each_entry(net, net_list, exit_list) {
11064 if (net->dev_unreg_count > 0) {
11065 unregistering = true;
11066 break;
11067 }
11068 }
11069 if (!unregistering)
11070 break;
11071 __rtnl_unlock();
11072
11073 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11074 }
11075 remove_wait_queue(&netdev_unregistering_wq, &wait);
11076}
11077
11078static void __net_exit default_device_exit_batch(struct list_head *net_list)
11079{
11080 /* At exit all network devices most be removed from a network
11081 * namespace. Do this in the reverse order of registration.
11082 * Do this across as many network namespaces as possible to
11083 * improve batching efficiency.
11084 */
11085 struct net_device *dev;
11086 struct net *net;
11087 LIST_HEAD(dev_kill_list);
11088
11089 /* To prevent network device cleanup code from dereferencing
11090 * loopback devices or network devices that have been freed
11091 * wait here for all pending unregistrations to complete,
11092 * before unregistring the loopback device and allowing the
11093 * network namespace be freed.
11094 *
11095 * The netdev todo list containing all network devices
11096 * unregistrations that happen in default_device_exit_batch
11097 * will run in the rtnl_unlock() at the end of
11098 * default_device_exit_batch.
11099 */
11100 rtnl_lock_unregistering(net_list);
11101 list_for_each_entry(net, net_list, exit_list) {
11102 for_each_netdev_reverse(net, dev) {
11103 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11104 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11105 else
11106 unregister_netdevice_queue(dev, &dev_kill_list);
11107 }
11108 }
11109 unregister_netdevice_many(&dev_kill_list);
11110 rtnl_unlock();
11111}
11112
11113static struct pernet_operations __net_initdata default_device_ops = {
11114 .exit = default_device_exit,
11115 .exit_batch = default_device_exit_batch,
11116};
11117
11118/*
11119 * Initialize the DEV module. At boot time this walks the device list and
11120 * unhooks any devices that fail to initialise (normally hardware not
11121 * present) and leaves us with a valid list of present and active devices.
11122 *
11123 */
11124
11125/*
11126 * This is called single threaded during boot, so no need
11127 * to take the rtnl semaphore.
11128 */
11129static int __init net_dev_init(void)
11130{
11131 int i, rc = -ENOMEM;
11132
11133 BUG_ON(!dev_boot_phase);
11134
11135 if (dev_proc_init())
11136 goto out;
11137
11138 if (netdev_kobject_init())
11139 goto out;
11140
11141 INIT_LIST_HEAD(&ptype_all);
11142 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11143 INIT_LIST_HEAD(&ptype_base[i]);
11144
11145 INIT_LIST_HEAD(&offload_base);
11146
11147 if (register_pernet_subsys(&netdev_net_ops))
11148 goto out;
11149
11150 /*
11151 * Initialise the packet receive queues.
11152 */
11153
11154 for_each_possible_cpu(i) {
11155 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11156 struct softnet_data *sd = &per_cpu(softnet_data, i);
11157
11158 INIT_WORK(flush, flush_backlog);
11159
11160 skb_queue_head_init(&sd->input_pkt_queue);
11161 skb_queue_head_init(&sd->process_queue);
11162#ifdef CONFIG_XFRM_OFFLOAD
11163 skb_queue_head_init(&sd->xfrm_backlog);
11164#endif
11165 INIT_LIST_HEAD(&sd->poll_list);
11166 sd->output_queue_tailp = &sd->output_queue;
11167#ifdef CONFIG_RPS
11168 sd->csd.func = rps_trigger_softirq;
11169 sd->csd.info = sd;
11170 sd->cpu = i;
11171#endif
11172
11173 init_gro_hash(&sd->backlog);
11174 sd->backlog.poll = process_backlog;
11175 sd->backlog.weight = weight_p;
11176 }
11177
11178 dev_boot_phase = 0;
11179
11180 /* The loopback device is special if any other network devices
11181 * is present in a network namespace the loopback device must
11182 * be present. Since we now dynamically allocate and free the
11183 * loopback device ensure this invariant is maintained by
11184 * keeping the loopback device as the first device on the
11185 * list of network devices. Ensuring the loopback devices
11186 * is the first device that appears and the last network device
11187 * that disappears.
11188 */
11189 if (register_pernet_device(&loopback_net_ops))
11190 goto out;
11191
11192 if (register_pernet_device(&default_device_ops))
11193 goto out;
11194
11195 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11196 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11197
11198 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11199 NULL, dev_cpu_dead);
11200 WARN_ON(rc < 0);
11201 rc = 0;
11202out:
11203 return rc;
11204}
11205
11206subsys_initcall(net_dev_init);