Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 }
711
712 return 0;
713
714restore_freq:
715 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
716 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
717 __func__, old_freq);
718restore_voltage:
719 /* This shouldn't harm even if the voltages weren't updated earlier */
720 if (old_supply)
721 _set_opp_voltage(dev, reg, old_supply);
722
723 return ret;
724}
725
726static int _set_opp_bw(const struct opp_table *opp_table,
727 struct dev_pm_opp *opp, struct device *dev, bool remove)
728{
729 u32 avg, peak;
730 int i, ret;
731
732 if (!opp_table->paths)
733 return 0;
734
735 for (i = 0; i < opp_table->path_count; i++) {
736 if (remove) {
737 avg = 0;
738 peak = 0;
739 } else {
740 avg = opp->bandwidth[i].avg;
741 peak = opp->bandwidth[i].peak;
742 }
743 ret = icc_set_bw(opp_table->paths[i], avg, peak);
744 if (ret) {
745 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
746 remove ? "remove" : "set", i, ret);
747 return ret;
748 }
749 }
750
751 return 0;
752}
753
754static int _set_opp_custom(const struct opp_table *opp_table,
755 struct device *dev, unsigned long old_freq,
756 unsigned long freq,
757 struct dev_pm_opp_supply *old_supply,
758 struct dev_pm_opp_supply *new_supply)
759{
760 struct dev_pm_set_opp_data *data;
761 int size;
762
763 data = opp_table->set_opp_data;
764 data->regulators = opp_table->regulators;
765 data->regulator_count = opp_table->regulator_count;
766 data->clk = opp_table->clk;
767 data->dev = dev;
768
769 data->old_opp.rate = old_freq;
770 size = sizeof(*old_supply) * opp_table->regulator_count;
771 if (!old_supply)
772 memset(data->old_opp.supplies, 0, size);
773 else
774 memcpy(data->old_opp.supplies, old_supply, size);
775
776 data->new_opp.rate = freq;
777 memcpy(data->new_opp.supplies, new_supply, size);
778
779 return opp_table->set_opp(data);
780}
781
782static int _set_required_opp(struct device *dev, struct device *pd_dev,
783 struct dev_pm_opp *opp, int i)
784{
785 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
786 int ret;
787
788 if (!pd_dev)
789 return 0;
790
791 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
792 if (ret) {
793 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
794 dev_name(pd_dev), pstate, ret);
795 }
796
797 return ret;
798}
799
800/* This is only called for PM domain for now */
801static int _set_required_opps(struct device *dev,
802 struct opp_table *opp_table,
803 struct dev_pm_opp *opp, bool up)
804{
805 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
806 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
807 int i, ret = 0;
808
809 if (!required_opp_tables)
810 return 0;
811
812 /* Single genpd case */
813 if (!genpd_virt_devs)
814 return _set_required_opp(dev, dev, opp, 0);
815
816 /* Multiple genpd case */
817
818 /*
819 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
820 * after it is freed from another thread.
821 */
822 mutex_lock(&opp_table->genpd_virt_dev_lock);
823
824 /* Scaling up? Set required OPPs in normal order, else reverse */
825 if (up) {
826 for (i = 0; i < opp_table->required_opp_count; i++) {
827 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
828 if (ret)
829 break;
830 }
831 } else {
832 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
833 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
834 if (ret)
835 break;
836 }
837 }
838
839 mutex_unlock(&opp_table->genpd_virt_dev_lock);
840
841 return ret;
842}
843
844/**
845 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
846 * @dev: device for which we do this operation
847 * @opp: opp based on which the bandwidth levels are to be configured
848 *
849 * This configures the bandwidth to the levels specified by the OPP. However
850 * if the OPP specified is NULL the bandwidth levels are cleared out.
851 *
852 * Return: 0 on success or a negative error value.
853 */
854int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
855{
856 struct opp_table *opp_table;
857 int ret;
858
859 opp_table = _find_opp_table(dev);
860 if (IS_ERR(opp_table)) {
861 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
862 return PTR_ERR(opp_table);
863 }
864
865 if (opp)
866 ret = _set_opp_bw(opp_table, opp, dev, false);
867 else
868 ret = _set_opp_bw(opp_table, NULL, dev, true);
869
870 dev_pm_opp_put_opp_table(opp_table);
871 return ret;
872}
873EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
874
875static int _opp_set_rate_zero(struct device *dev, struct opp_table *opp_table)
876{
877 int ret;
878
879 if (!opp_table->enabled)
880 return 0;
881
882 /*
883 * Some drivers need to support cases where some platforms may
884 * have OPP table for the device, while others don't and
885 * opp_set_rate() just needs to behave like clk_set_rate().
886 */
887 if (!_get_opp_count(opp_table))
888 return 0;
889
890 ret = _set_opp_bw(opp_table, NULL, dev, true);
891 if (ret)
892 return ret;
893
894 if (opp_table->regulators)
895 regulator_disable(opp_table->regulators[0]);
896
897 ret = _set_required_opps(dev, opp_table, NULL, false);
898
899 opp_table->enabled = false;
900 return ret;
901}
902
903/**
904 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
905 * @dev: device for which we do this operation
906 * @target_freq: frequency to achieve
907 *
908 * This configures the power-supplies to the levels specified by the OPP
909 * corresponding to the target_freq, and programs the clock to a value <=
910 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
911 * provided by the opp, should have already rounded to the target OPP's
912 * frequency.
913 */
914int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
915{
916 struct opp_table *opp_table;
917 unsigned long freq, old_freq, temp_freq;
918 struct dev_pm_opp *old_opp, *opp;
919 struct clk *clk;
920 int ret;
921
922 opp_table = _find_opp_table(dev);
923 if (IS_ERR(opp_table)) {
924 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
925 return PTR_ERR(opp_table);
926 }
927
928 if (unlikely(!target_freq)) {
929 ret = _opp_set_rate_zero(dev, opp_table);
930 goto put_opp_table;
931 }
932
933 clk = opp_table->clk;
934 if (IS_ERR(clk)) {
935 dev_err(dev, "%s: No clock available for the device\n",
936 __func__);
937 ret = PTR_ERR(clk);
938 goto put_opp_table;
939 }
940
941 freq = clk_round_rate(clk, target_freq);
942 if ((long)freq <= 0)
943 freq = target_freq;
944
945 old_freq = clk_get_rate(clk);
946
947 /* Return early if nothing to do */
948 if (opp_table->enabled && old_freq == freq) {
949 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
950 __func__, freq);
951 ret = 0;
952 goto put_opp_table;
953 }
954
955 /*
956 * For IO devices which require an OPP on some platforms/SoCs
957 * while just needing to scale the clock on some others
958 * we look for empty OPP tables with just a clock handle and
959 * scale only the clk. This makes dev_pm_opp_set_rate()
960 * equivalent to a clk_set_rate()
961 */
962 if (!_get_opp_count(opp_table)) {
963 ret = _generic_set_opp_clk_only(dev, clk, freq);
964 goto put_opp_table;
965 }
966
967 temp_freq = old_freq;
968 old_opp = _find_freq_ceil(opp_table, &temp_freq);
969 if (IS_ERR(old_opp)) {
970 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
971 __func__, old_freq, PTR_ERR(old_opp));
972 }
973
974 temp_freq = freq;
975 opp = _find_freq_ceil(opp_table, &temp_freq);
976 if (IS_ERR(opp)) {
977 ret = PTR_ERR(opp);
978 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
979 __func__, freq, ret);
980 goto put_old_opp;
981 }
982
983 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
984 old_freq, freq);
985
986 /* Scaling up? Configure required OPPs before frequency */
987 if (freq >= old_freq) {
988 ret = _set_required_opps(dev, opp_table, opp, true);
989 if (ret)
990 goto put_opp;
991 }
992
993 if (opp_table->set_opp) {
994 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
995 IS_ERR(old_opp) ? NULL : old_opp->supplies,
996 opp->supplies);
997 } else if (opp_table->regulators) {
998 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
999 IS_ERR(old_opp) ? NULL : old_opp->supplies,
1000 opp->supplies);
1001 } else {
1002 /* Only frequency scaling */
1003 ret = _generic_set_opp_clk_only(dev, clk, freq);
1004 }
1005
1006 /* Scaling down? Configure required OPPs after frequency */
1007 if (!ret && freq < old_freq) {
1008 ret = _set_required_opps(dev, opp_table, opp, false);
1009 if (ret)
1010 dev_err(dev, "Failed to set required opps: %d\n", ret);
1011 }
1012
1013 if (!ret) {
1014 ret = _set_opp_bw(opp_table, opp, dev, false);
1015 if (!ret)
1016 opp_table->enabled = true;
1017 }
1018
1019put_opp:
1020 dev_pm_opp_put(opp);
1021put_old_opp:
1022 if (!IS_ERR(old_opp))
1023 dev_pm_opp_put(old_opp);
1024put_opp_table:
1025 dev_pm_opp_put_opp_table(opp_table);
1026 return ret;
1027}
1028EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1029
1030/* OPP-dev Helpers */
1031static void _remove_opp_dev(struct opp_device *opp_dev,
1032 struct opp_table *opp_table)
1033{
1034 opp_debug_unregister(opp_dev, opp_table);
1035 list_del(&opp_dev->node);
1036 kfree(opp_dev);
1037}
1038
1039static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1040 struct opp_table *opp_table)
1041{
1042 struct opp_device *opp_dev;
1043
1044 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1045 if (!opp_dev)
1046 return NULL;
1047
1048 /* Initialize opp-dev */
1049 opp_dev->dev = dev;
1050
1051 list_add(&opp_dev->node, &opp_table->dev_list);
1052
1053 /* Create debugfs entries for the opp_table */
1054 opp_debug_register(opp_dev, opp_table);
1055
1056 return opp_dev;
1057}
1058
1059struct opp_device *_add_opp_dev(const struct device *dev,
1060 struct opp_table *opp_table)
1061{
1062 struct opp_device *opp_dev;
1063
1064 mutex_lock(&opp_table->lock);
1065 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1066 mutex_unlock(&opp_table->lock);
1067
1068 return opp_dev;
1069}
1070
1071static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1072{
1073 struct opp_table *opp_table;
1074 struct opp_device *opp_dev;
1075 int ret;
1076
1077 /*
1078 * Allocate a new OPP table. In the infrequent case where a new
1079 * device is needed to be added, we pay this penalty.
1080 */
1081 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1082 if (!opp_table)
1083 return ERR_PTR(-ENOMEM);
1084
1085 mutex_init(&opp_table->lock);
1086 mutex_init(&opp_table->genpd_virt_dev_lock);
1087 INIT_LIST_HEAD(&opp_table->dev_list);
1088
1089 /* Mark regulator count uninitialized */
1090 opp_table->regulator_count = -1;
1091
1092 opp_dev = _add_opp_dev(dev, opp_table);
1093 if (!opp_dev) {
1094 ret = -ENOMEM;
1095 goto err;
1096 }
1097
1098 _of_init_opp_table(opp_table, dev, index);
1099
1100 /* Find clk for the device */
1101 opp_table->clk = clk_get(dev, NULL);
1102 if (IS_ERR(opp_table->clk)) {
1103 ret = PTR_ERR(opp_table->clk);
1104 if (ret == -EPROBE_DEFER)
1105 goto err;
1106
1107 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1108 }
1109
1110 /* Find interconnect path(s) for the device */
1111 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1112 if (ret) {
1113 if (ret == -EPROBE_DEFER)
1114 goto err;
1115
1116 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1117 __func__, ret);
1118 }
1119
1120 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1121 INIT_LIST_HEAD(&opp_table->opp_list);
1122 kref_init(&opp_table->kref);
1123
1124 /* Secure the device table modification */
1125 list_add(&opp_table->node, &opp_tables);
1126 return opp_table;
1127
1128err:
1129 kfree(opp_table);
1130 return ERR_PTR(ret);
1131}
1132
1133void _get_opp_table_kref(struct opp_table *opp_table)
1134{
1135 kref_get(&opp_table->kref);
1136}
1137
1138static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1139{
1140 struct opp_table *opp_table;
1141
1142 /* Hold our table modification lock here */
1143 mutex_lock(&opp_table_lock);
1144
1145 opp_table = _find_opp_table_unlocked(dev);
1146 if (!IS_ERR(opp_table))
1147 goto unlock;
1148
1149 opp_table = _managed_opp(dev, index);
1150 if (opp_table) {
1151 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1152 dev_pm_opp_put_opp_table(opp_table);
1153 opp_table = ERR_PTR(-ENOMEM);
1154 }
1155 goto unlock;
1156 }
1157
1158 opp_table = _allocate_opp_table(dev, index);
1159
1160unlock:
1161 mutex_unlock(&opp_table_lock);
1162
1163 return opp_table;
1164}
1165
1166struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1167{
1168 return _opp_get_opp_table(dev, 0);
1169}
1170EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1171
1172struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1173 int index)
1174{
1175 return _opp_get_opp_table(dev, index);
1176}
1177
1178static void _opp_table_kref_release(struct kref *kref)
1179{
1180 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1181 struct opp_device *opp_dev, *temp;
1182 int i;
1183
1184 _of_clear_opp_table(opp_table);
1185
1186 /* Release clk */
1187 if (!IS_ERR(opp_table->clk))
1188 clk_put(opp_table->clk);
1189
1190 if (opp_table->paths) {
1191 for (i = 0; i < opp_table->path_count; i++)
1192 icc_put(opp_table->paths[i]);
1193 kfree(opp_table->paths);
1194 }
1195
1196 WARN_ON(!list_empty(&opp_table->opp_list));
1197
1198 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1199 /*
1200 * The OPP table is getting removed, drop the performance state
1201 * constraints.
1202 */
1203 if (opp_table->genpd_performance_state)
1204 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1205
1206 _remove_opp_dev(opp_dev, opp_table);
1207 }
1208
1209 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1210 mutex_destroy(&opp_table->lock);
1211 list_del(&opp_table->node);
1212 kfree(opp_table);
1213
1214 mutex_unlock(&opp_table_lock);
1215}
1216
1217void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1218{
1219 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1220 &opp_table_lock);
1221}
1222EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1223
1224void _opp_free(struct dev_pm_opp *opp)
1225{
1226 kfree(opp);
1227}
1228
1229static void _opp_kref_release(struct dev_pm_opp *opp,
1230 struct opp_table *opp_table)
1231{
1232 /*
1233 * Notify the changes in the availability of the operable
1234 * frequency/voltage list.
1235 */
1236 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1237 _of_opp_free_required_opps(opp_table, opp);
1238 opp_debug_remove_one(opp);
1239 list_del(&opp->node);
1240 kfree(opp);
1241}
1242
1243static void _opp_kref_release_unlocked(struct kref *kref)
1244{
1245 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1246 struct opp_table *opp_table = opp->opp_table;
1247
1248 _opp_kref_release(opp, opp_table);
1249}
1250
1251static void _opp_kref_release_locked(struct kref *kref)
1252{
1253 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1254 struct opp_table *opp_table = opp->opp_table;
1255
1256 _opp_kref_release(opp, opp_table);
1257 mutex_unlock(&opp_table->lock);
1258}
1259
1260void dev_pm_opp_get(struct dev_pm_opp *opp)
1261{
1262 kref_get(&opp->kref);
1263}
1264
1265void dev_pm_opp_put(struct dev_pm_opp *opp)
1266{
1267 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1268 &opp->opp_table->lock);
1269}
1270EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1271
1272static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1273{
1274 kref_put(&opp->kref, _opp_kref_release_unlocked);
1275}
1276
1277/**
1278 * dev_pm_opp_remove() - Remove an OPP from OPP table
1279 * @dev: device for which we do this operation
1280 * @freq: OPP to remove with matching 'freq'
1281 *
1282 * This function removes an opp from the opp table.
1283 */
1284void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1285{
1286 struct dev_pm_opp *opp;
1287 struct opp_table *opp_table;
1288 bool found = false;
1289
1290 opp_table = _find_opp_table(dev);
1291 if (IS_ERR(opp_table))
1292 return;
1293
1294 mutex_lock(&opp_table->lock);
1295
1296 list_for_each_entry(opp, &opp_table->opp_list, node) {
1297 if (opp->rate == freq) {
1298 found = true;
1299 break;
1300 }
1301 }
1302
1303 mutex_unlock(&opp_table->lock);
1304
1305 if (found) {
1306 dev_pm_opp_put(opp);
1307
1308 /* Drop the reference taken by dev_pm_opp_add() */
1309 dev_pm_opp_put_opp_table(opp_table);
1310 } else {
1311 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1312 __func__, freq);
1313 }
1314
1315 /* Drop the reference taken by _find_opp_table() */
1316 dev_pm_opp_put_opp_table(opp_table);
1317}
1318EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1319
1320bool _opp_remove_all_static(struct opp_table *opp_table)
1321{
1322 struct dev_pm_opp *opp, *tmp;
1323 bool ret = true;
1324
1325 mutex_lock(&opp_table->lock);
1326
1327 if (!opp_table->parsed_static_opps) {
1328 ret = false;
1329 goto unlock;
1330 }
1331
1332 if (--opp_table->parsed_static_opps)
1333 goto unlock;
1334
1335 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1336 if (!opp->dynamic)
1337 dev_pm_opp_put_unlocked(opp);
1338 }
1339
1340unlock:
1341 mutex_unlock(&opp_table->lock);
1342
1343 return ret;
1344}
1345
1346/**
1347 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1348 * @dev: device for which we do this operation
1349 *
1350 * This function removes all dynamically created OPPs from the opp table.
1351 */
1352void dev_pm_opp_remove_all_dynamic(struct device *dev)
1353{
1354 struct opp_table *opp_table;
1355 struct dev_pm_opp *opp, *temp;
1356 int count = 0;
1357
1358 opp_table = _find_opp_table(dev);
1359 if (IS_ERR(opp_table))
1360 return;
1361
1362 mutex_lock(&opp_table->lock);
1363 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1364 if (opp->dynamic) {
1365 dev_pm_opp_put_unlocked(opp);
1366 count++;
1367 }
1368 }
1369 mutex_unlock(&opp_table->lock);
1370
1371 /* Drop the references taken by dev_pm_opp_add() */
1372 while (count--)
1373 dev_pm_opp_put_opp_table(opp_table);
1374
1375 /* Drop the reference taken by _find_opp_table() */
1376 dev_pm_opp_put_opp_table(opp_table);
1377}
1378EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1379
1380struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1381{
1382 struct dev_pm_opp *opp;
1383 int supply_count, supply_size, icc_size;
1384
1385 /* Allocate space for at least one supply */
1386 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1387 supply_size = sizeof(*opp->supplies) * supply_count;
1388 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1389
1390 /* allocate new OPP node and supplies structures */
1391 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1392
1393 if (!opp)
1394 return NULL;
1395
1396 /* Put the supplies at the end of the OPP structure as an empty array */
1397 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1398 if (icc_size)
1399 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1400 INIT_LIST_HEAD(&opp->node);
1401
1402 return opp;
1403}
1404
1405static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1406 struct opp_table *opp_table)
1407{
1408 struct regulator *reg;
1409 int i;
1410
1411 if (!opp_table->regulators)
1412 return true;
1413
1414 for (i = 0; i < opp_table->regulator_count; i++) {
1415 reg = opp_table->regulators[i];
1416
1417 if (!regulator_is_supported_voltage(reg,
1418 opp->supplies[i].u_volt_min,
1419 opp->supplies[i].u_volt_max)) {
1420 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1421 __func__, opp->supplies[i].u_volt_min,
1422 opp->supplies[i].u_volt_max);
1423 return false;
1424 }
1425 }
1426
1427 return true;
1428}
1429
1430int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1431{
1432 if (opp1->rate != opp2->rate)
1433 return opp1->rate < opp2->rate ? -1 : 1;
1434 if (opp1->bandwidth && opp2->bandwidth &&
1435 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1436 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1437 if (opp1->level != opp2->level)
1438 return opp1->level < opp2->level ? -1 : 1;
1439 return 0;
1440}
1441
1442static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1443 struct opp_table *opp_table,
1444 struct list_head **head)
1445{
1446 struct dev_pm_opp *opp;
1447 int opp_cmp;
1448
1449 /*
1450 * Insert new OPP in order of increasing frequency and discard if
1451 * already present.
1452 *
1453 * Need to use &opp_table->opp_list in the condition part of the 'for'
1454 * loop, don't replace it with head otherwise it will become an infinite
1455 * loop.
1456 */
1457 list_for_each_entry(opp, &opp_table->opp_list, node) {
1458 opp_cmp = _opp_compare_key(new_opp, opp);
1459 if (opp_cmp > 0) {
1460 *head = &opp->node;
1461 continue;
1462 }
1463
1464 if (opp_cmp < 0)
1465 return 0;
1466
1467 /* Duplicate OPPs */
1468 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1469 __func__, opp->rate, opp->supplies[0].u_volt,
1470 opp->available, new_opp->rate,
1471 new_opp->supplies[0].u_volt, new_opp->available);
1472
1473 /* Should we compare voltages for all regulators here ? */
1474 return opp->available &&
1475 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1476 }
1477
1478 return 0;
1479}
1480
1481/*
1482 * Returns:
1483 * 0: On success. And appropriate error message for duplicate OPPs.
1484 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1485 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1486 * sure we don't print error messages unnecessarily if different parts of
1487 * kernel try to initialize the OPP table.
1488 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1489 * should be considered an error by the callers of _opp_add().
1490 */
1491int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1492 struct opp_table *opp_table, bool rate_not_available)
1493{
1494 struct list_head *head;
1495 int ret;
1496
1497 mutex_lock(&opp_table->lock);
1498 head = &opp_table->opp_list;
1499
1500 if (likely(!rate_not_available)) {
1501 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1502 if (ret) {
1503 mutex_unlock(&opp_table->lock);
1504 return ret;
1505 }
1506 }
1507
1508 list_add(&new_opp->node, head);
1509 mutex_unlock(&opp_table->lock);
1510
1511 new_opp->opp_table = opp_table;
1512 kref_init(&new_opp->kref);
1513
1514 opp_debug_create_one(new_opp, opp_table);
1515
1516 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1517 new_opp->available = false;
1518 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1519 __func__, new_opp->rate);
1520 }
1521
1522 return 0;
1523}
1524
1525/**
1526 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1527 * @opp_table: OPP table
1528 * @dev: device for which we do this operation
1529 * @freq: Frequency in Hz for this OPP
1530 * @u_volt: Voltage in uVolts for this OPP
1531 * @dynamic: Dynamically added OPPs.
1532 *
1533 * This function adds an opp definition to the opp table and returns status.
1534 * The opp is made available by default and it can be controlled using
1535 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1536 *
1537 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1538 * and freed by dev_pm_opp_of_remove_table.
1539 *
1540 * Return:
1541 * 0 On success OR
1542 * Duplicate OPPs (both freq and volt are same) and opp->available
1543 * -EEXIST Freq are same and volt are different OR
1544 * Duplicate OPPs (both freq and volt are same) and !opp->available
1545 * -ENOMEM Memory allocation failure
1546 */
1547int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1548 unsigned long freq, long u_volt, bool dynamic)
1549{
1550 struct dev_pm_opp *new_opp;
1551 unsigned long tol;
1552 int ret;
1553
1554 new_opp = _opp_allocate(opp_table);
1555 if (!new_opp)
1556 return -ENOMEM;
1557
1558 /* populate the opp table */
1559 new_opp->rate = freq;
1560 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1561 new_opp->supplies[0].u_volt = u_volt;
1562 new_opp->supplies[0].u_volt_min = u_volt - tol;
1563 new_opp->supplies[0].u_volt_max = u_volt + tol;
1564 new_opp->available = true;
1565 new_opp->dynamic = dynamic;
1566
1567 ret = _opp_add(dev, new_opp, opp_table, false);
1568 if (ret) {
1569 /* Don't return error for duplicate OPPs */
1570 if (ret == -EBUSY)
1571 ret = 0;
1572 goto free_opp;
1573 }
1574
1575 /*
1576 * Notify the changes in the availability of the operable
1577 * frequency/voltage list.
1578 */
1579 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1580 return 0;
1581
1582free_opp:
1583 _opp_free(new_opp);
1584
1585 return ret;
1586}
1587
1588/**
1589 * dev_pm_opp_set_supported_hw() - Set supported platforms
1590 * @dev: Device for which supported-hw has to be set.
1591 * @versions: Array of hierarchy of versions to match.
1592 * @count: Number of elements in the array.
1593 *
1594 * This is required only for the V2 bindings, and it enables a platform to
1595 * specify the hierarchy of versions it supports. OPP layer will then enable
1596 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1597 * property.
1598 */
1599struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1600 const u32 *versions, unsigned int count)
1601{
1602 struct opp_table *opp_table;
1603
1604 opp_table = dev_pm_opp_get_opp_table(dev);
1605 if (IS_ERR(opp_table))
1606 return opp_table;
1607
1608 /* Make sure there are no concurrent readers while updating opp_table */
1609 WARN_ON(!list_empty(&opp_table->opp_list));
1610
1611 /* Another CPU that shares the OPP table has set the property ? */
1612 if (opp_table->supported_hw)
1613 return opp_table;
1614
1615 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1616 GFP_KERNEL);
1617 if (!opp_table->supported_hw) {
1618 dev_pm_opp_put_opp_table(opp_table);
1619 return ERR_PTR(-ENOMEM);
1620 }
1621
1622 opp_table->supported_hw_count = count;
1623
1624 return opp_table;
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1627
1628/**
1629 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1630 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1631 *
1632 * This is required only for the V2 bindings, and is called for a matching
1633 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1634 * will not be freed.
1635 */
1636void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1637{
1638 /* Make sure there are no concurrent readers while updating opp_table */
1639 WARN_ON(!list_empty(&opp_table->opp_list));
1640
1641 kfree(opp_table->supported_hw);
1642 opp_table->supported_hw = NULL;
1643 opp_table->supported_hw_count = 0;
1644
1645 dev_pm_opp_put_opp_table(opp_table);
1646}
1647EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1648
1649/**
1650 * dev_pm_opp_set_prop_name() - Set prop-extn name
1651 * @dev: Device for which the prop-name has to be set.
1652 * @name: name to postfix to properties.
1653 *
1654 * This is required only for the V2 bindings, and it enables a platform to
1655 * specify the extn to be used for certain property names. The properties to
1656 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1657 * should postfix the property name with -<name> while looking for them.
1658 */
1659struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1660{
1661 struct opp_table *opp_table;
1662
1663 opp_table = dev_pm_opp_get_opp_table(dev);
1664 if (IS_ERR(opp_table))
1665 return opp_table;
1666
1667 /* Make sure there are no concurrent readers while updating opp_table */
1668 WARN_ON(!list_empty(&opp_table->opp_list));
1669
1670 /* Another CPU that shares the OPP table has set the property ? */
1671 if (opp_table->prop_name)
1672 return opp_table;
1673
1674 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1675 if (!opp_table->prop_name) {
1676 dev_pm_opp_put_opp_table(opp_table);
1677 return ERR_PTR(-ENOMEM);
1678 }
1679
1680 return opp_table;
1681}
1682EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1683
1684/**
1685 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1686 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1687 *
1688 * This is required only for the V2 bindings, and is called for a matching
1689 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1690 * will not be freed.
1691 */
1692void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1693{
1694 /* Make sure there are no concurrent readers while updating opp_table */
1695 WARN_ON(!list_empty(&opp_table->opp_list));
1696
1697 kfree(opp_table->prop_name);
1698 opp_table->prop_name = NULL;
1699
1700 dev_pm_opp_put_opp_table(opp_table);
1701}
1702EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1703
1704static int _allocate_set_opp_data(struct opp_table *opp_table)
1705{
1706 struct dev_pm_set_opp_data *data;
1707 int len, count = opp_table->regulator_count;
1708
1709 if (WARN_ON(!opp_table->regulators))
1710 return -EINVAL;
1711
1712 /* space for set_opp_data */
1713 len = sizeof(*data);
1714
1715 /* space for old_opp.supplies and new_opp.supplies */
1716 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1717
1718 data = kzalloc(len, GFP_KERNEL);
1719 if (!data)
1720 return -ENOMEM;
1721
1722 data->old_opp.supplies = (void *)(data + 1);
1723 data->new_opp.supplies = data->old_opp.supplies + count;
1724
1725 opp_table->set_opp_data = data;
1726
1727 return 0;
1728}
1729
1730static void _free_set_opp_data(struct opp_table *opp_table)
1731{
1732 kfree(opp_table->set_opp_data);
1733 opp_table->set_opp_data = NULL;
1734}
1735
1736/**
1737 * dev_pm_opp_set_regulators() - Set regulator names for the device
1738 * @dev: Device for which regulator name is being set.
1739 * @names: Array of pointers to the names of the regulator.
1740 * @count: Number of regulators.
1741 *
1742 * In order to support OPP switching, OPP layer needs to know the name of the
1743 * device's regulators, as the core would be required to switch voltages as
1744 * well.
1745 *
1746 * This must be called before any OPPs are initialized for the device.
1747 */
1748struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1749 const char * const names[],
1750 unsigned int count)
1751{
1752 struct opp_table *opp_table;
1753 struct regulator *reg;
1754 int ret, i;
1755
1756 opp_table = dev_pm_opp_get_opp_table(dev);
1757 if (IS_ERR(opp_table))
1758 return opp_table;
1759
1760 /* This should be called before OPPs are initialized */
1761 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1762 ret = -EBUSY;
1763 goto err;
1764 }
1765
1766 /* Another CPU that shares the OPP table has set the regulators ? */
1767 if (opp_table->regulators)
1768 return opp_table;
1769
1770 opp_table->regulators = kmalloc_array(count,
1771 sizeof(*opp_table->regulators),
1772 GFP_KERNEL);
1773 if (!opp_table->regulators) {
1774 ret = -ENOMEM;
1775 goto err;
1776 }
1777
1778 for (i = 0; i < count; i++) {
1779 reg = regulator_get_optional(dev, names[i]);
1780 if (IS_ERR(reg)) {
1781 ret = PTR_ERR(reg);
1782 if (ret != -EPROBE_DEFER)
1783 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1784 __func__, names[i], ret);
1785 goto free_regulators;
1786 }
1787
1788 opp_table->regulators[i] = reg;
1789 }
1790
1791 opp_table->regulator_count = count;
1792
1793 /* Allocate block only once to pass to set_opp() routines */
1794 ret = _allocate_set_opp_data(opp_table);
1795 if (ret)
1796 goto free_regulators;
1797
1798 return opp_table;
1799
1800free_regulators:
1801 while (i != 0)
1802 regulator_put(opp_table->regulators[--i]);
1803
1804 kfree(opp_table->regulators);
1805 opp_table->regulators = NULL;
1806 opp_table->regulator_count = -1;
1807err:
1808 dev_pm_opp_put_opp_table(opp_table);
1809
1810 return ERR_PTR(ret);
1811}
1812EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1813
1814/**
1815 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1816 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1817 */
1818void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1819{
1820 int i;
1821
1822 if (!opp_table->regulators)
1823 goto put_opp_table;
1824
1825 /* Make sure there are no concurrent readers while updating opp_table */
1826 WARN_ON(!list_empty(&opp_table->opp_list));
1827
1828 if (opp_table->enabled) {
1829 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1830 regulator_disable(opp_table->regulators[i]);
1831 }
1832
1833 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1834 regulator_put(opp_table->regulators[i]);
1835
1836 _free_set_opp_data(opp_table);
1837
1838 kfree(opp_table->regulators);
1839 opp_table->regulators = NULL;
1840 opp_table->regulator_count = -1;
1841
1842put_opp_table:
1843 dev_pm_opp_put_opp_table(opp_table);
1844}
1845EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1846
1847/**
1848 * dev_pm_opp_set_clkname() - Set clk name for the device
1849 * @dev: Device for which clk name is being set.
1850 * @name: Clk name.
1851 *
1852 * In order to support OPP switching, OPP layer needs to get pointer to the
1853 * clock for the device. Simple cases work fine without using this routine (i.e.
1854 * by passing connection-id as NULL), but for a device with multiple clocks
1855 * available, the OPP core needs to know the exact name of the clk to use.
1856 *
1857 * This must be called before any OPPs are initialized for the device.
1858 */
1859struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1860{
1861 struct opp_table *opp_table;
1862 int ret;
1863
1864 opp_table = dev_pm_opp_get_opp_table(dev);
1865 if (IS_ERR(opp_table))
1866 return opp_table;
1867
1868 /* This should be called before OPPs are initialized */
1869 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1870 ret = -EBUSY;
1871 goto err;
1872 }
1873
1874 /* Already have default clk set, free it */
1875 if (!IS_ERR(opp_table->clk))
1876 clk_put(opp_table->clk);
1877
1878 /* Find clk for the device */
1879 opp_table->clk = clk_get(dev, name);
1880 if (IS_ERR(opp_table->clk)) {
1881 ret = PTR_ERR(opp_table->clk);
1882 if (ret != -EPROBE_DEFER) {
1883 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1884 ret);
1885 }
1886 goto err;
1887 }
1888
1889 return opp_table;
1890
1891err:
1892 dev_pm_opp_put_opp_table(opp_table);
1893
1894 return ERR_PTR(ret);
1895}
1896EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1897
1898/**
1899 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1900 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1901 */
1902void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1903{
1904 /* Make sure there are no concurrent readers while updating opp_table */
1905 WARN_ON(!list_empty(&opp_table->opp_list));
1906
1907 clk_put(opp_table->clk);
1908 opp_table->clk = ERR_PTR(-EINVAL);
1909
1910 dev_pm_opp_put_opp_table(opp_table);
1911}
1912EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1913
1914/**
1915 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1916 * @dev: Device for which the helper is getting registered.
1917 * @set_opp: Custom set OPP helper.
1918 *
1919 * This is useful to support complex platforms (like platforms with multiple
1920 * regulators per device), instead of the generic OPP set rate helper.
1921 *
1922 * This must be called before any OPPs are initialized for the device.
1923 */
1924struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1925 int (*set_opp)(struct dev_pm_set_opp_data *data))
1926{
1927 struct opp_table *opp_table;
1928
1929 if (!set_opp)
1930 return ERR_PTR(-EINVAL);
1931
1932 opp_table = dev_pm_opp_get_opp_table(dev);
1933 if (!IS_ERR(opp_table))
1934 return opp_table;
1935
1936 /* This should be called before OPPs are initialized */
1937 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1938 dev_pm_opp_put_opp_table(opp_table);
1939 return ERR_PTR(-EBUSY);
1940 }
1941
1942 /* Another CPU that shares the OPP table has set the helper ? */
1943 if (!opp_table->set_opp)
1944 opp_table->set_opp = set_opp;
1945
1946 return opp_table;
1947}
1948EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1949
1950/**
1951 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1952 * set_opp helper
1953 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1954 *
1955 * Release resources blocked for platform specific set_opp helper.
1956 */
1957void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1958{
1959 /* Make sure there are no concurrent readers while updating opp_table */
1960 WARN_ON(!list_empty(&opp_table->opp_list));
1961
1962 opp_table->set_opp = NULL;
1963 dev_pm_opp_put_opp_table(opp_table);
1964}
1965EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1966
1967static void _opp_detach_genpd(struct opp_table *opp_table)
1968{
1969 int index;
1970
1971 if (!opp_table->genpd_virt_devs)
1972 return;
1973
1974 for (index = 0; index < opp_table->required_opp_count; index++) {
1975 if (!opp_table->genpd_virt_devs[index])
1976 continue;
1977
1978 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1979 opp_table->genpd_virt_devs[index] = NULL;
1980 }
1981
1982 kfree(opp_table->genpd_virt_devs);
1983 opp_table->genpd_virt_devs = NULL;
1984}
1985
1986/**
1987 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1988 * @dev: Consumer device for which the genpd is getting attached.
1989 * @names: Null terminated array of pointers containing names of genpd to attach.
1990 * @virt_devs: Pointer to return the array of virtual devices.
1991 *
1992 * Multiple generic power domains for a device are supported with the help of
1993 * virtual genpd devices, which are created for each consumer device - genpd
1994 * pair. These are the device structures which are attached to the power domain
1995 * and are required by the OPP core to set the performance state of the genpd.
1996 * The same API also works for the case where single genpd is available and so
1997 * we don't need to support that separately.
1998 *
1999 * This helper will normally be called by the consumer driver of the device
2000 * "dev", as only that has details of the genpd names.
2001 *
2002 * This helper needs to be called once with a list of all genpd to attach.
2003 * Otherwise the original device structure will be used instead by the OPP core.
2004 *
2005 * The order of entries in the names array must match the order in which
2006 * "required-opps" are added in DT.
2007 */
2008struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2009 const char **names, struct device ***virt_devs)
2010{
2011 struct opp_table *opp_table;
2012 struct device *virt_dev;
2013 int index = 0, ret = -EINVAL;
2014 const char **name = names;
2015
2016 opp_table = dev_pm_opp_get_opp_table(dev);
2017 if (IS_ERR(opp_table))
2018 return opp_table;
2019
2020 if (opp_table->genpd_virt_devs)
2021 return opp_table;
2022
2023 /*
2024 * If the genpd's OPP table isn't already initialized, parsing of the
2025 * required-opps fail for dev. We should retry this after genpd's OPP
2026 * table is added.
2027 */
2028 if (!opp_table->required_opp_count) {
2029 ret = -EPROBE_DEFER;
2030 goto put_table;
2031 }
2032
2033 mutex_lock(&opp_table->genpd_virt_dev_lock);
2034
2035 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2036 sizeof(*opp_table->genpd_virt_devs),
2037 GFP_KERNEL);
2038 if (!opp_table->genpd_virt_devs)
2039 goto unlock;
2040
2041 while (*name) {
2042 if (index >= opp_table->required_opp_count) {
2043 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2044 *name, opp_table->required_opp_count, index);
2045 goto err;
2046 }
2047
2048 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2049 if (IS_ERR(virt_dev)) {
2050 ret = PTR_ERR(virt_dev);
2051 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2052 goto err;
2053 }
2054
2055 opp_table->genpd_virt_devs[index] = virt_dev;
2056 index++;
2057 name++;
2058 }
2059
2060 if (virt_devs)
2061 *virt_devs = opp_table->genpd_virt_devs;
2062 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2063
2064 return opp_table;
2065
2066err:
2067 _opp_detach_genpd(opp_table);
2068unlock:
2069 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2070
2071put_table:
2072 dev_pm_opp_put_opp_table(opp_table);
2073
2074 return ERR_PTR(ret);
2075}
2076EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2077
2078/**
2079 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2080 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2081 *
2082 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2083 * OPP table.
2084 */
2085void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2086{
2087 /*
2088 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2089 * used in parallel.
2090 */
2091 mutex_lock(&opp_table->genpd_virt_dev_lock);
2092 _opp_detach_genpd(opp_table);
2093 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2094
2095 dev_pm_opp_put_opp_table(opp_table);
2096}
2097EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2098
2099/**
2100 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2101 * @src_table: OPP table which has dst_table as one of its required OPP table.
2102 * @dst_table: Required OPP table of the src_table.
2103 * @pstate: Current performance state of the src_table.
2104 *
2105 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2106 * "required-opps" property of the OPP (present in @src_table) which has
2107 * performance state set to @pstate.
2108 *
2109 * Return: Zero or positive performance state on success, otherwise negative
2110 * value on errors.
2111 */
2112int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2113 struct opp_table *dst_table,
2114 unsigned int pstate)
2115{
2116 struct dev_pm_opp *opp;
2117 int dest_pstate = -EINVAL;
2118 int i;
2119
2120 /*
2121 * Normally the src_table will have the "required_opps" property set to
2122 * point to one of the OPPs in the dst_table, but in some cases the
2123 * genpd and its master have one to one mapping of performance states
2124 * and so none of them have the "required-opps" property set. Return the
2125 * pstate of the src_table as it is in such cases.
2126 */
2127 if (!src_table->required_opp_count)
2128 return pstate;
2129
2130 for (i = 0; i < src_table->required_opp_count; i++) {
2131 if (src_table->required_opp_tables[i]->np == dst_table->np)
2132 break;
2133 }
2134
2135 if (unlikely(i == src_table->required_opp_count)) {
2136 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2137 __func__, src_table, dst_table);
2138 return -EINVAL;
2139 }
2140
2141 mutex_lock(&src_table->lock);
2142
2143 list_for_each_entry(opp, &src_table->opp_list, node) {
2144 if (opp->pstate == pstate) {
2145 dest_pstate = opp->required_opps[i]->pstate;
2146 goto unlock;
2147 }
2148 }
2149
2150 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2151 dst_table);
2152
2153unlock:
2154 mutex_unlock(&src_table->lock);
2155
2156 return dest_pstate;
2157}
2158
2159/**
2160 * dev_pm_opp_add() - Add an OPP table from a table definitions
2161 * @dev: device for which we do this operation
2162 * @freq: Frequency in Hz for this OPP
2163 * @u_volt: Voltage in uVolts for this OPP
2164 *
2165 * This function adds an opp definition to the opp table and returns status.
2166 * The opp is made available by default and it can be controlled using
2167 * dev_pm_opp_enable/disable functions.
2168 *
2169 * Return:
2170 * 0 On success OR
2171 * Duplicate OPPs (both freq and volt are same) and opp->available
2172 * -EEXIST Freq are same and volt are different OR
2173 * Duplicate OPPs (both freq and volt are same) and !opp->available
2174 * -ENOMEM Memory allocation failure
2175 */
2176int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2177{
2178 struct opp_table *opp_table;
2179 int ret;
2180
2181 opp_table = dev_pm_opp_get_opp_table(dev);
2182 if (IS_ERR(opp_table))
2183 return PTR_ERR(opp_table);
2184
2185 /* Fix regulator count for dynamic OPPs */
2186 opp_table->regulator_count = 1;
2187
2188 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2189 if (ret)
2190 dev_pm_opp_put_opp_table(opp_table);
2191
2192 return ret;
2193}
2194EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2195
2196/**
2197 * _opp_set_availability() - helper to set the availability of an opp
2198 * @dev: device for which we do this operation
2199 * @freq: OPP frequency to modify availability
2200 * @availability_req: availability status requested for this opp
2201 *
2202 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2203 * which is isolated here.
2204 *
2205 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2206 * copy operation, returns 0 if no modification was done OR modification was
2207 * successful.
2208 */
2209static int _opp_set_availability(struct device *dev, unsigned long freq,
2210 bool availability_req)
2211{
2212 struct opp_table *opp_table;
2213 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2214 int r = 0;
2215
2216 /* Find the opp_table */
2217 opp_table = _find_opp_table(dev);
2218 if (IS_ERR(opp_table)) {
2219 r = PTR_ERR(opp_table);
2220 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2221 return r;
2222 }
2223
2224 mutex_lock(&opp_table->lock);
2225
2226 /* Do we have the frequency? */
2227 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2228 if (tmp_opp->rate == freq) {
2229 opp = tmp_opp;
2230 break;
2231 }
2232 }
2233
2234 if (IS_ERR(opp)) {
2235 r = PTR_ERR(opp);
2236 goto unlock;
2237 }
2238
2239 /* Is update really needed? */
2240 if (opp->available == availability_req)
2241 goto unlock;
2242
2243 opp->available = availability_req;
2244
2245 dev_pm_opp_get(opp);
2246 mutex_unlock(&opp_table->lock);
2247
2248 /* Notify the change of the OPP availability */
2249 if (availability_req)
2250 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2251 opp);
2252 else
2253 blocking_notifier_call_chain(&opp_table->head,
2254 OPP_EVENT_DISABLE, opp);
2255
2256 dev_pm_opp_put(opp);
2257 goto put_table;
2258
2259unlock:
2260 mutex_unlock(&opp_table->lock);
2261put_table:
2262 dev_pm_opp_put_opp_table(opp_table);
2263 return r;
2264}
2265
2266/**
2267 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2268 * @dev: device for which we do this operation
2269 * @freq: OPP frequency to adjust voltage of
2270 * @u_volt: new OPP target voltage
2271 * @u_volt_min: new OPP min voltage
2272 * @u_volt_max: new OPP max voltage
2273 *
2274 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2275 * copy operation, returns 0 if no modifcation was done OR modification was
2276 * successful.
2277 */
2278int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2279 unsigned long u_volt, unsigned long u_volt_min,
2280 unsigned long u_volt_max)
2281
2282{
2283 struct opp_table *opp_table;
2284 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2285 int r = 0;
2286
2287 /* Find the opp_table */
2288 opp_table = _find_opp_table(dev);
2289 if (IS_ERR(opp_table)) {
2290 r = PTR_ERR(opp_table);
2291 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2292 return r;
2293 }
2294
2295 mutex_lock(&opp_table->lock);
2296
2297 /* Do we have the frequency? */
2298 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2299 if (tmp_opp->rate == freq) {
2300 opp = tmp_opp;
2301 break;
2302 }
2303 }
2304
2305 if (IS_ERR(opp)) {
2306 r = PTR_ERR(opp);
2307 goto adjust_unlock;
2308 }
2309
2310 /* Is update really needed? */
2311 if (opp->supplies->u_volt == u_volt)
2312 goto adjust_unlock;
2313
2314 opp->supplies->u_volt = u_volt;
2315 opp->supplies->u_volt_min = u_volt_min;
2316 opp->supplies->u_volt_max = u_volt_max;
2317
2318 dev_pm_opp_get(opp);
2319 mutex_unlock(&opp_table->lock);
2320
2321 /* Notify the voltage change of the OPP */
2322 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2323 opp);
2324
2325 dev_pm_opp_put(opp);
2326 goto adjust_put_table;
2327
2328adjust_unlock:
2329 mutex_unlock(&opp_table->lock);
2330adjust_put_table:
2331 dev_pm_opp_put_opp_table(opp_table);
2332 return r;
2333}
2334EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2335
2336/**
2337 * dev_pm_opp_enable() - Enable a specific OPP
2338 * @dev: device for which we do this operation
2339 * @freq: OPP frequency to enable
2340 *
2341 * Enables a provided opp. If the operation is valid, this returns 0, else the
2342 * corresponding error value. It is meant to be used for users an OPP available
2343 * after being temporarily made unavailable with dev_pm_opp_disable.
2344 *
2345 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2346 * copy operation, returns 0 if no modification was done OR modification was
2347 * successful.
2348 */
2349int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2350{
2351 return _opp_set_availability(dev, freq, true);
2352}
2353EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2354
2355/**
2356 * dev_pm_opp_disable() - Disable a specific OPP
2357 * @dev: device for which we do this operation
2358 * @freq: OPP frequency to disable
2359 *
2360 * Disables a provided opp. If the operation is valid, this returns
2361 * 0, else the corresponding error value. It is meant to be a temporary
2362 * control by users to make this OPP not available until the circumstances are
2363 * right to make it available again (with a call to dev_pm_opp_enable).
2364 *
2365 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2366 * copy operation, returns 0 if no modification was done OR modification was
2367 * successful.
2368 */
2369int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2370{
2371 return _opp_set_availability(dev, freq, false);
2372}
2373EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2374
2375/**
2376 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2377 * @dev: Device for which notifier needs to be registered
2378 * @nb: Notifier block to be registered
2379 *
2380 * Return: 0 on success or a negative error value.
2381 */
2382int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2383{
2384 struct opp_table *opp_table;
2385 int ret;
2386
2387 opp_table = _find_opp_table(dev);
2388 if (IS_ERR(opp_table))
2389 return PTR_ERR(opp_table);
2390
2391 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2392
2393 dev_pm_opp_put_opp_table(opp_table);
2394
2395 return ret;
2396}
2397EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2398
2399/**
2400 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2401 * @dev: Device for which notifier needs to be unregistered
2402 * @nb: Notifier block to be unregistered
2403 *
2404 * Return: 0 on success or a negative error value.
2405 */
2406int dev_pm_opp_unregister_notifier(struct device *dev,
2407 struct notifier_block *nb)
2408{
2409 struct opp_table *opp_table;
2410 int ret;
2411
2412 opp_table = _find_opp_table(dev);
2413 if (IS_ERR(opp_table))
2414 return PTR_ERR(opp_table);
2415
2416 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2417
2418 dev_pm_opp_put_opp_table(opp_table);
2419
2420 return ret;
2421}
2422EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2423
2424/**
2425 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2426 * @dev: device pointer used to lookup OPP table.
2427 *
2428 * Free both OPPs created using static entries present in DT and the
2429 * dynamically added entries.
2430 */
2431void dev_pm_opp_remove_table(struct device *dev)
2432{
2433 struct opp_table *opp_table;
2434
2435 /* Check for existing table for 'dev' */
2436 opp_table = _find_opp_table(dev);
2437 if (IS_ERR(opp_table)) {
2438 int error = PTR_ERR(opp_table);
2439
2440 if (error != -ENODEV)
2441 WARN(1, "%s: opp_table: %d\n",
2442 IS_ERR_OR_NULL(dev) ?
2443 "Invalid device" : dev_name(dev),
2444 error);
2445 return;
2446 }
2447
2448 /*
2449 * Drop the extra reference only if the OPP table was successfully added
2450 * with dev_pm_opp_of_add_table() earlier.
2451 **/
2452 if (_opp_remove_all_static(opp_table))
2453 dev_pm_opp_put_opp_table(opp_table);
2454
2455 /* Drop reference taken by _find_opp_table() */
2456 dev_pm_opp_put_opp_table(opp_table);
2457}
2458EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);