at v5.10-rc2 1330 lines 36 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 */ 6 7#include <linux/module.h> 8#include <linux/kernel.h> 9#include <linux/slab.h> 10#include <linux/netdevice.h> 11#include <linux/if_arp.h> 12#include <linux/workqueue.h> 13#include <linux/can.h> 14#include <linux/can/can-ml.h> 15#include <linux/can/dev.h> 16#include <linux/can/skb.h> 17#include <linux/can/netlink.h> 18#include <linux/can/led.h> 19#include <linux/of.h> 20#include <net/rtnetlink.h> 21 22#define MOD_DESC "CAN device driver interface" 23 24MODULE_DESCRIPTION(MOD_DESC); 25MODULE_LICENSE("GPL v2"); 26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 27 28/* CAN DLC to real data length conversion helpers */ 29 30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 31 8, 12, 16, 20, 24, 32, 48, 64}; 32 33/* get data length from can_dlc with sanitized can_dlc */ 34u8 can_dlc2len(u8 can_dlc) 35{ 36 return dlc2len[can_dlc & 0x0F]; 37} 38EXPORT_SYMBOL_GPL(can_dlc2len); 39 40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 41 9, 9, 9, 9, /* 9 - 12 */ 42 10, 10, 10, 10, /* 13 - 16 */ 43 11, 11, 11, 11, /* 17 - 20 */ 44 12, 12, 12, 12, /* 21 - 24 */ 45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 50 51/* map the sanitized data length to an appropriate data length code */ 52u8 can_len2dlc(u8 len) 53{ 54 if (unlikely(len > 64)) 55 return 0xF; 56 57 return len2dlc[len]; 58} 59EXPORT_SYMBOL_GPL(can_len2dlc); 60 61#ifdef CONFIG_CAN_CALC_BITTIMING 62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 63 64/* Bit-timing calculation derived from: 65 * 66 * Code based on LinCAN sources and H8S2638 project 67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 68 * Copyright 2005 Stanislav Marek 69 * email: pisa@cmp.felk.cvut.cz 70 * 71 * Calculates proper bit-timing parameters for a specified bit-rate 72 * and sample-point, which can then be used to set the bit-timing 73 * registers of the CAN controller. You can find more information 74 * in the header file linux/can/netlink.h. 75 */ 76static int 77can_update_sample_point(const struct can_bittiming_const *btc, 78 unsigned int sample_point_nominal, unsigned int tseg, 79 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 80 unsigned int *sample_point_error_ptr) 81{ 82 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 83 unsigned int sample_point, best_sample_point = 0; 84 unsigned int tseg1, tseg2; 85 int i; 86 87 for (i = 0; i <= 1; i++) { 88 tseg2 = tseg + CAN_SYNC_SEG - 89 (sample_point_nominal * (tseg + CAN_SYNC_SEG)) / 90 1000 - i; 91 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 92 tseg1 = tseg - tseg2; 93 if (tseg1 > btc->tseg1_max) { 94 tseg1 = btc->tseg1_max; 95 tseg2 = tseg - tseg1; 96 } 97 98 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) / 99 (tseg + CAN_SYNC_SEG); 100 sample_point_error = abs(sample_point_nominal - sample_point); 101 102 if (sample_point <= sample_point_nominal && 103 sample_point_error < best_sample_point_error) { 104 best_sample_point = sample_point; 105 best_sample_point_error = sample_point_error; 106 *tseg1_ptr = tseg1; 107 *tseg2_ptr = tseg2; 108 } 109 } 110 111 if (sample_point_error_ptr) 112 *sample_point_error_ptr = best_sample_point_error; 113 114 return best_sample_point; 115} 116 117static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 118 const struct can_bittiming_const *btc) 119{ 120 struct can_priv *priv = netdev_priv(dev); 121 unsigned int bitrate; /* current bitrate */ 122 unsigned int bitrate_error; /* difference between current and nominal value */ 123 unsigned int best_bitrate_error = UINT_MAX; 124 unsigned int sample_point_error; /* difference between current and nominal value */ 125 unsigned int best_sample_point_error = UINT_MAX; 126 unsigned int sample_point_nominal; /* nominal sample point */ 127 unsigned int best_tseg = 0; /* current best value for tseg */ 128 unsigned int best_brp = 0; /* current best value for brp */ 129 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 130 u64 v64; 131 132 /* Use CiA recommended sample points */ 133 if (bt->sample_point) { 134 sample_point_nominal = bt->sample_point; 135 } else { 136 if (bt->bitrate > 800000) 137 sample_point_nominal = 750; 138 else if (bt->bitrate > 500000) 139 sample_point_nominal = 800; 140 else 141 sample_point_nominal = 875; 142 } 143 144 /* tseg even = round down, odd = round up */ 145 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 146 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 147 tsegall = CAN_SYNC_SEG + tseg / 2; 148 149 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 150 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 151 152 /* choose brp step which is possible in system */ 153 brp = (brp / btc->brp_inc) * btc->brp_inc; 154 if (brp < btc->brp_min || brp > btc->brp_max) 155 continue; 156 157 bitrate = priv->clock.freq / (brp * tsegall); 158 bitrate_error = abs(bt->bitrate - bitrate); 159 160 /* tseg brp biterror */ 161 if (bitrate_error > best_bitrate_error) 162 continue; 163 164 /* reset sample point error if we have a better bitrate */ 165 if (bitrate_error < best_bitrate_error) 166 best_sample_point_error = UINT_MAX; 167 168 can_update_sample_point(btc, sample_point_nominal, tseg / 2, 169 &tseg1, &tseg2, &sample_point_error); 170 if (sample_point_error > best_sample_point_error) 171 continue; 172 173 best_sample_point_error = sample_point_error; 174 best_bitrate_error = bitrate_error; 175 best_tseg = tseg / 2; 176 best_brp = brp; 177 178 if (bitrate_error == 0 && sample_point_error == 0) 179 break; 180 } 181 182 if (best_bitrate_error) { 183 /* Error in one-tenth of a percent */ 184 v64 = (u64)best_bitrate_error * 1000; 185 do_div(v64, bt->bitrate); 186 bitrate_error = (u32)v64; 187 if (bitrate_error > CAN_CALC_MAX_ERROR) { 188 netdev_err(dev, 189 "bitrate error %d.%d%% too high\n", 190 bitrate_error / 10, bitrate_error % 10); 191 return -EDOM; 192 } 193 netdev_warn(dev, "bitrate error %d.%d%%\n", 194 bitrate_error / 10, bitrate_error % 10); 195 } 196 197 /* real sample point */ 198 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, 199 best_tseg, &tseg1, &tseg2, 200 NULL); 201 202 v64 = (u64)best_brp * 1000 * 1000 * 1000; 203 do_div(v64, priv->clock.freq); 204 bt->tq = (u32)v64; 205 bt->prop_seg = tseg1 / 2; 206 bt->phase_seg1 = tseg1 - bt->prop_seg; 207 bt->phase_seg2 = tseg2; 208 209 /* check for sjw user settings */ 210 if (!bt->sjw || !btc->sjw_max) { 211 bt->sjw = 1; 212 } else { 213 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 214 if (bt->sjw > btc->sjw_max) 215 bt->sjw = btc->sjw_max; 216 /* bt->sjw must not be higher than tseg2 */ 217 if (tseg2 < bt->sjw) 218 bt->sjw = tseg2; 219 } 220 221 bt->brp = best_brp; 222 223 /* real bitrate */ 224 bt->bitrate = priv->clock.freq / 225 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2)); 226 227 return 0; 228} 229#else /* !CONFIG_CAN_CALC_BITTIMING */ 230static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 231 const struct can_bittiming_const *btc) 232{ 233 netdev_err(dev, "bit-timing calculation not available\n"); 234 return -EINVAL; 235} 236#endif /* CONFIG_CAN_CALC_BITTIMING */ 237 238/* Checks the validity of the specified bit-timing parameters prop_seg, 239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 240 * prescaler value brp. You can find more information in the header 241 * file linux/can/netlink.h. 242 */ 243static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 244 const struct can_bittiming_const *btc) 245{ 246 struct can_priv *priv = netdev_priv(dev); 247 int tseg1, alltseg; 248 u64 brp64; 249 250 tseg1 = bt->prop_seg + bt->phase_seg1; 251 if (!bt->sjw) 252 bt->sjw = 1; 253 if (bt->sjw > btc->sjw_max || 254 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 255 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 256 return -ERANGE; 257 258 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 259 if (btc->brp_inc > 1) 260 do_div(brp64, btc->brp_inc); 261 brp64 += 500000000UL - 1; 262 do_div(brp64, 1000000000UL); /* the practicable BRP */ 263 if (btc->brp_inc > 1) 264 brp64 *= btc->brp_inc; 265 bt->brp = (u32)brp64; 266 267 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 268 return -EINVAL; 269 270 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 271 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 272 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 273 274 return 0; 275} 276 277/* Checks the validity of predefined bitrate settings */ 278static int 279can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 280 const u32 *bitrate_const, 281 const unsigned int bitrate_const_cnt) 282{ 283 struct can_priv *priv = netdev_priv(dev); 284 unsigned int i; 285 286 for (i = 0; i < bitrate_const_cnt; i++) { 287 if (bt->bitrate == bitrate_const[i]) 288 break; 289 } 290 291 if (i >= priv->bitrate_const_cnt) 292 return -EINVAL; 293 294 return 0; 295} 296 297static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 298 const struct can_bittiming_const *btc, 299 const u32 *bitrate_const, 300 const unsigned int bitrate_const_cnt) 301{ 302 int err; 303 304 /* Depending on the given can_bittiming parameter structure the CAN 305 * timing parameters are calculated based on the provided bitrate OR 306 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 307 * provided directly which are then checked and fixed up. 308 */ 309 if (!bt->tq && bt->bitrate && btc) 310 err = can_calc_bittiming(dev, bt, btc); 311 else if (bt->tq && !bt->bitrate && btc) 312 err = can_fixup_bittiming(dev, bt, btc); 313 else if (!bt->tq && bt->bitrate && bitrate_const) 314 err = can_validate_bitrate(dev, bt, bitrate_const, 315 bitrate_const_cnt); 316 else 317 err = -EINVAL; 318 319 return err; 320} 321 322static void can_update_state_error_stats(struct net_device *dev, 323 enum can_state new_state) 324{ 325 struct can_priv *priv = netdev_priv(dev); 326 327 if (new_state <= priv->state) 328 return; 329 330 switch (new_state) { 331 case CAN_STATE_ERROR_WARNING: 332 priv->can_stats.error_warning++; 333 break; 334 case CAN_STATE_ERROR_PASSIVE: 335 priv->can_stats.error_passive++; 336 break; 337 case CAN_STATE_BUS_OFF: 338 priv->can_stats.bus_off++; 339 break; 340 default: 341 break; 342 } 343} 344 345static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 346{ 347 switch (state) { 348 case CAN_STATE_ERROR_ACTIVE: 349 return CAN_ERR_CRTL_ACTIVE; 350 case CAN_STATE_ERROR_WARNING: 351 return CAN_ERR_CRTL_TX_WARNING; 352 case CAN_STATE_ERROR_PASSIVE: 353 return CAN_ERR_CRTL_TX_PASSIVE; 354 default: 355 return 0; 356 } 357} 358 359static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 360{ 361 switch (state) { 362 case CAN_STATE_ERROR_ACTIVE: 363 return CAN_ERR_CRTL_ACTIVE; 364 case CAN_STATE_ERROR_WARNING: 365 return CAN_ERR_CRTL_RX_WARNING; 366 case CAN_STATE_ERROR_PASSIVE: 367 return CAN_ERR_CRTL_RX_PASSIVE; 368 default: 369 return 0; 370 } 371} 372 373static const char *can_get_state_str(const enum can_state state) 374{ 375 switch (state) { 376 case CAN_STATE_ERROR_ACTIVE: 377 return "Error Active"; 378 case CAN_STATE_ERROR_WARNING: 379 return "Error Warning"; 380 case CAN_STATE_ERROR_PASSIVE: 381 return "Error Passive"; 382 case CAN_STATE_BUS_OFF: 383 return "Bus Off"; 384 case CAN_STATE_STOPPED: 385 return "Stopped"; 386 case CAN_STATE_SLEEPING: 387 return "Sleeping"; 388 default: 389 return "<unknown>"; 390 } 391 392 return "<unknown>"; 393} 394 395void can_change_state(struct net_device *dev, struct can_frame *cf, 396 enum can_state tx_state, enum can_state rx_state) 397{ 398 struct can_priv *priv = netdev_priv(dev); 399 enum can_state new_state = max(tx_state, rx_state); 400 401 if (unlikely(new_state == priv->state)) { 402 netdev_warn(dev, "%s: oops, state did not change", __func__); 403 return; 404 } 405 406 netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n", 407 can_get_state_str(priv->state), priv->state, 408 can_get_state_str(new_state), new_state); 409 410 can_update_state_error_stats(dev, new_state); 411 priv->state = new_state; 412 413 if (!cf) 414 return; 415 416 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 417 cf->can_id |= CAN_ERR_BUSOFF; 418 return; 419 } 420 421 cf->can_id |= CAN_ERR_CRTL; 422 cf->data[1] |= tx_state >= rx_state ? 423 can_tx_state_to_frame(dev, tx_state) : 0; 424 cf->data[1] |= tx_state <= rx_state ? 425 can_rx_state_to_frame(dev, rx_state) : 0; 426} 427EXPORT_SYMBOL_GPL(can_change_state); 428 429/* Local echo of CAN messages 430 * 431 * CAN network devices *should* support a local echo functionality 432 * (see Documentation/networking/can.rst). To test the handling of CAN 433 * interfaces that do not support the local echo both driver types are 434 * implemented. In the case that the driver does not support the echo 435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 436 * to perform the echo as a fallback solution. 437 */ 438static void can_flush_echo_skb(struct net_device *dev) 439{ 440 struct can_priv *priv = netdev_priv(dev); 441 struct net_device_stats *stats = &dev->stats; 442 int i; 443 444 for (i = 0; i < priv->echo_skb_max; i++) { 445 if (priv->echo_skb[i]) { 446 kfree_skb(priv->echo_skb[i]); 447 priv->echo_skb[i] = NULL; 448 stats->tx_dropped++; 449 stats->tx_aborted_errors++; 450 } 451 } 452} 453 454/* Put the skb on the stack to be looped backed locally lateron 455 * 456 * The function is typically called in the start_xmit function 457 * of the device driver. The driver must protect access to 458 * priv->echo_skb, if necessary. 459 */ 460int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 461 unsigned int idx) 462{ 463 struct can_priv *priv = netdev_priv(dev); 464 465 BUG_ON(idx >= priv->echo_skb_max); 466 467 /* check flag whether this packet has to be looped back */ 468 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 469 (skb->protocol != htons(ETH_P_CAN) && 470 skb->protocol != htons(ETH_P_CANFD))) { 471 kfree_skb(skb); 472 return 0; 473 } 474 475 if (!priv->echo_skb[idx]) { 476 skb = can_create_echo_skb(skb); 477 if (!skb) 478 return -ENOMEM; 479 480 /* make settings for echo to reduce code in irq context */ 481 skb->pkt_type = PACKET_BROADCAST; 482 skb->ip_summed = CHECKSUM_UNNECESSARY; 483 skb->dev = dev; 484 485 /* save this skb for tx interrupt echo handling */ 486 priv->echo_skb[idx] = skb; 487 } else { 488 /* locking problem with netif_stop_queue() ?? */ 489 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx); 490 kfree_skb(skb); 491 return -EBUSY; 492 } 493 494 return 0; 495} 496EXPORT_SYMBOL_GPL(can_put_echo_skb); 497 498struct sk_buff * 499__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 500{ 501 struct can_priv *priv = netdev_priv(dev); 502 503 if (idx >= priv->echo_skb_max) { 504 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 505 __func__, idx, priv->echo_skb_max); 506 return NULL; 507 } 508 509 if (priv->echo_skb[idx]) { 510 /* Using "struct canfd_frame::len" for the frame 511 * length is supported on both CAN and CANFD frames. 512 */ 513 struct sk_buff *skb = priv->echo_skb[idx]; 514 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 515 u8 len = cf->len; 516 517 *len_ptr = len; 518 priv->echo_skb[idx] = NULL; 519 520 return skb; 521 } 522 523 return NULL; 524} 525 526/* Get the skb from the stack and loop it back locally 527 * 528 * The function is typically called when the TX done interrupt 529 * is handled in the device driver. The driver must protect 530 * access to priv->echo_skb, if necessary. 531 */ 532unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 533{ 534 struct sk_buff *skb; 535 u8 len; 536 537 skb = __can_get_echo_skb(dev, idx, &len); 538 if (!skb) 539 return 0; 540 541 netif_rx(skb); 542 543 return len; 544} 545EXPORT_SYMBOL_GPL(can_get_echo_skb); 546 547/* Remove the skb from the stack and free it. 548 * 549 * The function is typically called when TX failed. 550 */ 551void can_free_echo_skb(struct net_device *dev, unsigned int idx) 552{ 553 struct can_priv *priv = netdev_priv(dev); 554 555 BUG_ON(idx >= priv->echo_skb_max); 556 557 if (priv->echo_skb[idx]) { 558 dev_kfree_skb_any(priv->echo_skb[idx]); 559 priv->echo_skb[idx] = NULL; 560 } 561} 562EXPORT_SYMBOL_GPL(can_free_echo_skb); 563 564/* CAN device restart for bus-off recovery */ 565static void can_restart(struct net_device *dev) 566{ 567 struct can_priv *priv = netdev_priv(dev); 568 struct net_device_stats *stats = &dev->stats; 569 struct sk_buff *skb; 570 struct can_frame *cf; 571 int err; 572 573 BUG_ON(netif_carrier_ok(dev)); 574 575 /* No synchronization needed because the device is bus-off and 576 * no messages can come in or go out. 577 */ 578 can_flush_echo_skb(dev); 579 580 /* send restart message upstream */ 581 skb = alloc_can_err_skb(dev, &cf); 582 if (!skb) 583 goto restart; 584 585 cf->can_id |= CAN_ERR_RESTARTED; 586 587 netif_rx(skb); 588 589 stats->rx_packets++; 590 stats->rx_bytes += cf->can_dlc; 591 592restart: 593 netdev_dbg(dev, "restarted\n"); 594 priv->can_stats.restarts++; 595 596 /* Now restart the device */ 597 err = priv->do_set_mode(dev, CAN_MODE_START); 598 599 netif_carrier_on(dev); 600 if (err) 601 netdev_err(dev, "Error %d during restart", err); 602} 603 604static void can_restart_work(struct work_struct *work) 605{ 606 struct delayed_work *dwork = to_delayed_work(work); 607 struct can_priv *priv = container_of(dwork, struct can_priv, 608 restart_work); 609 610 can_restart(priv->dev); 611} 612 613int can_restart_now(struct net_device *dev) 614{ 615 struct can_priv *priv = netdev_priv(dev); 616 617 /* A manual restart is only permitted if automatic restart is 618 * disabled and the device is in the bus-off state 619 */ 620 if (priv->restart_ms) 621 return -EINVAL; 622 if (priv->state != CAN_STATE_BUS_OFF) 623 return -EBUSY; 624 625 cancel_delayed_work_sync(&priv->restart_work); 626 can_restart(dev); 627 628 return 0; 629} 630 631/* CAN bus-off 632 * 633 * This functions should be called when the device goes bus-off to 634 * tell the netif layer that no more packets can be sent or received. 635 * If enabled, a timer is started to trigger bus-off recovery. 636 */ 637void can_bus_off(struct net_device *dev) 638{ 639 struct can_priv *priv = netdev_priv(dev); 640 641 if (priv->restart_ms) 642 netdev_info(dev, "bus-off, scheduling restart in %d ms\n", 643 priv->restart_ms); 644 else 645 netdev_info(dev, "bus-off\n"); 646 647 netif_carrier_off(dev); 648 649 if (priv->restart_ms) 650 schedule_delayed_work(&priv->restart_work, 651 msecs_to_jiffies(priv->restart_ms)); 652} 653EXPORT_SYMBOL_GPL(can_bus_off); 654 655static void can_setup(struct net_device *dev) 656{ 657 dev->type = ARPHRD_CAN; 658 dev->mtu = CAN_MTU; 659 dev->hard_header_len = 0; 660 dev->addr_len = 0; 661 dev->tx_queue_len = 10; 662 663 /* New-style flags. */ 664 dev->flags = IFF_NOARP; 665 dev->features = NETIF_F_HW_CSUM; 666} 667 668struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 669{ 670 struct sk_buff *skb; 671 672 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 673 sizeof(struct can_frame)); 674 if (unlikely(!skb)) 675 return NULL; 676 677 skb->protocol = htons(ETH_P_CAN); 678 skb->pkt_type = PACKET_BROADCAST; 679 skb->ip_summed = CHECKSUM_UNNECESSARY; 680 681 skb_reset_mac_header(skb); 682 skb_reset_network_header(skb); 683 skb_reset_transport_header(skb); 684 685 can_skb_reserve(skb); 686 can_skb_prv(skb)->ifindex = dev->ifindex; 687 can_skb_prv(skb)->skbcnt = 0; 688 689 *cf = skb_put_zero(skb, sizeof(struct can_frame)); 690 691 return skb; 692} 693EXPORT_SYMBOL_GPL(alloc_can_skb); 694 695struct sk_buff *alloc_canfd_skb(struct net_device *dev, 696 struct canfd_frame **cfd) 697{ 698 struct sk_buff *skb; 699 700 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 701 sizeof(struct canfd_frame)); 702 if (unlikely(!skb)) 703 return NULL; 704 705 skb->protocol = htons(ETH_P_CANFD); 706 skb->pkt_type = PACKET_BROADCAST; 707 skb->ip_summed = CHECKSUM_UNNECESSARY; 708 709 skb_reset_mac_header(skb); 710 skb_reset_network_header(skb); 711 skb_reset_transport_header(skb); 712 713 can_skb_reserve(skb); 714 can_skb_prv(skb)->ifindex = dev->ifindex; 715 can_skb_prv(skb)->skbcnt = 0; 716 717 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); 718 719 return skb; 720} 721EXPORT_SYMBOL_GPL(alloc_canfd_skb); 722 723struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 724{ 725 struct sk_buff *skb; 726 727 skb = alloc_can_skb(dev, cf); 728 if (unlikely(!skb)) 729 return NULL; 730 731 (*cf)->can_id = CAN_ERR_FLAG; 732 (*cf)->can_dlc = CAN_ERR_DLC; 733 734 return skb; 735} 736EXPORT_SYMBOL_GPL(alloc_can_err_skb); 737 738/* Allocate and setup space for the CAN network device */ 739struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max, 740 unsigned int txqs, unsigned int rxqs) 741{ 742 struct net_device *dev; 743 struct can_priv *priv; 744 int size; 745 746 /* We put the driver's priv, the CAN mid layer priv and the 747 * echo skb into the netdevice's priv. The memory layout for 748 * the netdev_priv is like this: 749 * 750 * +-------------------------+ 751 * | driver's priv | 752 * +-------------------------+ 753 * | struct can_ml_priv | 754 * +-------------------------+ 755 * | array of struct sk_buff | 756 * +-------------------------+ 757 */ 758 759 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv); 760 761 if (echo_skb_max) 762 size = ALIGN(size, sizeof(struct sk_buff *)) + 763 echo_skb_max * sizeof(struct sk_buff *); 764 765 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup, 766 txqs, rxqs); 767 if (!dev) 768 return NULL; 769 770 priv = netdev_priv(dev); 771 priv->dev = dev; 772 773 dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN); 774 775 if (echo_skb_max) { 776 priv->echo_skb_max = echo_skb_max; 777 priv->echo_skb = (void *)priv + 778 (size - echo_skb_max * sizeof(struct sk_buff *)); 779 } 780 781 priv->state = CAN_STATE_STOPPED; 782 783 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 784 785 return dev; 786} 787EXPORT_SYMBOL_GPL(alloc_candev_mqs); 788 789/* Free space of the CAN network device */ 790void free_candev(struct net_device *dev) 791{ 792 free_netdev(dev); 793} 794EXPORT_SYMBOL_GPL(free_candev); 795 796/* changing MTU and control mode for CAN/CANFD devices */ 797int can_change_mtu(struct net_device *dev, int new_mtu) 798{ 799 struct can_priv *priv = netdev_priv(dev); 800 801 /* Do not allow changing the MTU while running */ 802 if (dev->flags & IFF_UP) 803 return -EBUSY; 804 805 /* allow change of MTU according to the CANFD ability of the device */ 806 switch (new_mtu) { 807 case CAN_MTU: 808 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 809 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 810 return -EINVAL; 811 812 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 813 break; 814 815 case CANFD_MTU: 816 /* check for potential CANFD ability */ 817 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 818 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 819 return -EINVAL; 820 821 priv->ctrlmode |= CAN_CTRLMODE_FD; 822 break; 823 824 default: 825 return -EINVAL; 826 } 827 828 dev->mtu = new_mtu; 829 return 0; 830} 831EXPORT_SYMBOL_GPL(can_change_mtu); 832 833/* Common open function when the device gets opened. 834 * 835 * This function should be called in the open function of the device 836 * driver. 837 */ 838int open_candev(struct net_device *dev) 839{ 840 struct can_priv *priv = netdev_priv(dev); 841 842 if (!priv->bittiming.bitrate) { 843 netdev_err(dev, "bit-timing not yet defined\n"); 844 return -EINVAL; 845 } 846 847 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 848 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 849 (!priv->data_bittiming.bitrate || 850 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) { 851 netdev_err(dev, "incorrect/missing data bit-timing\n"); 852 return -EINVAL; 853 } 854 855 /* Switch carrier on if device was stopped while in bus-off state */ 856 if (!netif_carrier_ok(dev)) 857 netif_carrier_on(dev); 858 859 return 0; 860} 861EXPORT_SYMBOL_GPL(open_candev); 862 863#ifdef CONFIG_OF 864/* Common function that can be used to understand the limitation of 865 * a transceiver when it provides no means to determine these limitations 866 * at runtime. 867 */ 868void of_can_transceiver(struct net_device *dev) 869{ 870 struct device_node *dn; 871 struct can_priv *priv = netdev_priv(dev); 872 struct device_node *np = dev->dev.parent->of_node; 873 int ret; 874 875 dn = of_get_child_by_name(np, "can-transceiver"); 876 if (!dn) 877 return; 878 879 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 880 of_node_put(dn); 881 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 882 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 883} 884EXPORT_SYMBOL_GPL(of_can_transceiver); 885#endif 886 887/* Common close function for cleanup before the device gets closed. 888 * 889 * This function should be called in the close function of the device 890 * driver. 891 */ 892void close_candev(struct net_device *dev) 893{ 894 struct can_priv *priv = netdev_priv(dev); 895 896 cancel_delayed_work_sync(&priv->restart_work); 897 can_flush_echo_skb(dev); 898} 899EXPORT_SYMBOL_GPL(close_candev); 900 901/* CAN netlink interface */ 902static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 903 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 904 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 905 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 906 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 907 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 908 [IFLA_CAN_BITTIMING_CONST] 909 = { .len = sizeof(struct can_bittiming_const) }, 910 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 911 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 912 [IFLA_CAN_DATA_BITTIMING] 913 = { .len = sizeof(struct can_bittiming) }, 914 [IFLA_CAN_DATA_BITTIMING_CONST] 915 = { .len = sizeof(struct can_bittiming_const) }, 916 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 }, 917}; 918 919static int can_validate(struct nlattr *tb[], struct nlattr *data[], 920 struct netlink_ext_ack *extack) 921{ 922 bool is_can_fd = false; 923 924 /* Make sure that valid CAN FD configurations always consist of 925 * - nominal/arbitration bittiming 926 * - data bittiming 927 * - control mode with CAN_CTRLMODE_FD set 928 */ 929 930 if (!data) 931 return 0; 932 933 if (data[IFLA_CAN_CTRLMODE]) { 934 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 935 936 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 937 } 938 939 if (is_can_fd) { 940 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 941 return -EOPNOTSUPP; 942 } 943 944 if (data[IFLA_CAN_DATA_BITTIMING]) { 945 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 946 return -EOPNOTSUPP; 947 } 948 949 return 0; 950} 951 952static int can_changelink(struct net_device *dev, struct nlattr *tb[], 953 struct nlattr *data[], 954 struct netlink_ext_ack *extack) 955{ 956 struct can_priv *priv = netdev_priv(dev); 957 int err; 958 959 /* We need synchronization with dev->stop() */ 960 ASSERT_RTNL(); 961 962 if (data[IFLA_CAN_BITTIMING]) { 963 struct can_bittiming bt; 964 965 /* Do not allow changing bittiming while running */ 966 if (dev->flags & IFF_UP) 967 return -EBUSY; 968 969 /* Calculate bittiming parameters based on 970 * bittiming_const if set, otherwise pass bitrate 971 * directly via do_set_bitrate(). Bail out if neither 972 * is given. 973 */ 974 if (!priv->bittiming_const && !priv->do_set_bittiming) 975 return -EOPNOTSUPP; 976 977 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 978 err = can_get_bittiming(dev, &bt, 979 priv->bittiming_const, 980 priv->bitrate_const, 981 priv->bitrate_const_cnt); 982 if (err) 983 return err; 984 985 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 986 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 987 priv->bitrate_max); 988 return -EINVAL; 989 } 990 991 memcpy(&priv->bittiming, &bt, sizeof(bt)); 992 993 if (priv->do_set_bittiming) { 994 /* Finally, set the bit-timing registers */ 995 err = priv->do_set_bittiming(dev); 996 if (err) 997 return err; 998 } 999 } 1000 1001 if (data[IFLA_CAN_CTRLMODE]) { 1002 struct can_ctrlmode *cm; 1003 u32 ctrlstatic; 1004 u32 maskedflags; 1005 1006 /* Do not allow changing controller mode while running */ 1007 if (dev->flags & IFF_UP) 1008 return -EBUSY; 1009 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 1010 ctrlstatic = priv->ctrlmode_static; 1011 maskedflags = cm->flags & cm->mask; 1012 1013 /* check whether provided bits are allowed to be passed */ 1014 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 1015 return -EOPNOTSUPP; 1016 1017 /* do not check for static fd-non-iso if 'fd' is disabled */ 1018 if (!(maskedflags & CAN_CTRLMODE_FD)) 1019 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 1020 1021 /* make sure static options are provided by configuration */ 1022 if ((maskedflags & ctrlstatic) != ctrlstatic) 1023 return -EOPNOTSUPP; 1024 1025 /* clear bits to be modified and copy the flag values */ 1026 priv->ctrlmode &= ~cm->mask; 1027 priv->ctrlmode |= maskedflags; 1028 1029 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 1030 if (priv->ctrlmode & CAN_CTRLMODE_FD) 1031 dev->mtu = CANFD_MTU; 1032 else 1033 dev->mtu = CAN_MTU; 1034 } 1035 1036 if (data[IFLA_CAN_RESTART_MS]) { 1037 /* Do not allow changing restart delay while running */ 1038 if (dev->flags & IFF_UP) 1039 return -EBUSY; 1040 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 1041 } 1042 1043 if (data[IFLA_CAN_RESTART]) { 1044 /* Do not allow a restart while not running */ 1045 if (!(dev->flags & IFF_UP)) 1046 return -EINVAL; 1047 err = can_restart_now(dev); 1048 if (err) 1049 return err; 1050 } 1051 1052 if (data[IFLA_CAN_DATA_BITTIMING]) { 1053 struct can_bittiming dbt; 1054 1055 /* Do not allow changing bittiming while running */ 1056 if (dev->flags & IFF_UP) 1057 return -EBUSY; 1058 1059 /* Calculate bittiming parameters based on 1060 * data_bittiming_const if set, otherwise pass bitrate 1061 * directly via do_set_bitrate(). Bail out if neither 1062 * is given. 1063 */ 1064 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1065 return -EOPNOTSUPP; 1066 1067 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1068 sizeof(dbt)); 1069 err = can_get_bittiming(dev, &dbt, 1070 priv->data_bittiming_const, 1071 priv->data_bitrate_const, 1072 priv->data_bitrate_const_cnt); 1073 if (err) 1074 return err; 1075 1076 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1077 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1078 priv->bitrate_max); 1079 return -EINVAL; 1080 } 1081 1082 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1083 1084 if (priv->do_set_data_bittiming) { 1085 /* Finally, set the bit-timing registers */ 1086 err = priv->do_set_data_bittiming(dev); 1087 if (err) 1088 return err; 1089 } 1090 } 1091 1092 if (data[IFLA_CAN_TERMINATION]) { 1093 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1094 const unsigned int num_term = priv->termination_const_cnt; 1095 unsigned int i; 1096 1097 if (!priv->do_set_termination) 1098 return -EOPNOTSUPP; 1099 1100 /* check whether given value is supported by the interface */ 1101 for (i = 0; i < num_term; i++) { 1102 if (termval == priv->termination_const[i]) 1103 break; 1104 } 1105 if (i >= num_term) 1106 return -EINVAL; 1107 1108 /* Finally, set the termination value */ 1109 err = priv->do_set_termination(dev, termval); 1110 if (err) 1111 return err; 1112 1113 priv->termination = termval; 1114 } 1115 1116 return 0; 1117} 1118 1119static size_t can_get_size(const struct net_device *dev) 1120{ 1121 struct can_priv *priv = netdev_priv(dev); 1122 size_t size = 0; 1123 1124 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1125 size += nla_total_size(sizeof(struct can_bittiming)); 1126 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1127 size += nla_total_size(sizeof(struct can_bittiming_const)); 1128 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1129 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1130 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1131 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1132 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1133 size += nla_total_size(sizeof(struct can_berr_counter)); 1134 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1135 size += nla_total_size(sizeof(struct can_bittiming)); 1136 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1137 size += nla_total_size(sizeof(struct can_bittiming_const)); 1138 if (priv->termination_const) { 1139 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1140 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1141 priv->termination_const_cnt); 1142 } 1143 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1144 size += nla_total_size(sizeof(*priv->bitrate_const) * 1145 priv->bitrate_const_cnt); 1146 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1147 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1148 priv->data_bitrate_const_cnt); 1149 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1150 1151 return size; 1152} 1153 1154static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1155{ 1156 struct can_priv *priv = netdev_priv(dev); 1157 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1158 struct can_berr_counter bec; 1159 enum can_state state = priv->state; 1160 1161 if (priv->do_get_state) 1162 priv->do_get_state(dev, &state); 1163 1164 if ((priv->bittiming.bitrate && 1165 nla_put(skb, IFLA_CAN_BITTIMING, 1166 sizeof(priv->bittiming), &priv->bittiming)) || 1167 1168 (priv->bittiming_const && 1169 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1170 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1171 1172 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1173 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1174 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1175 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1176 1177 (priv->do_get_berr_counter && 1178 !priv->do_get_berr_counter(dev, &bec) && 1179 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1180 1181 (priv->data_bittiming.bitrate && 1182 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1183 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1184 1185 (priv->data_bittiming_const && 1186 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1187 sizeof(*priv->data_bittiming_const), 1188 priv->data_bittiming_const)) || 1189 1190 (priv->termination_const && 1191 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1192 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1193 sizeof(*priv->termination_const) * 1194 priv->termination_const_cnt, 1195 priv->termination_const))) || 1196 1197 (priv->bitrate_const && 1198 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1199 sizeof(*priv->bitrate_const) * 1200 priv->bitrate_const_cnt, 1201 priv->bitrate_const)) || 1202 1203 (priv->data_bitrate_const && 1204 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1205 sizeof(*priv->data_bitrate_const) * 1206 priv->data_bitrate_const_cnt, 1207 priv->data_bitrate_const)) || 1208 1209 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1210 sizeof(priv->bitrate_max), 1211 &priv->bitrate_max)) 1212 ) 1213 1214 return -EMSGSIZE; 1215 1216 return 0; 1217} 1218 1219static size_t can_get_xstats_size(const struct net_device *dev) 1220{ 1221 return sizeof(struct can_device_stats); 1222} 1223 1224static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1225{ 1226 struct can_priv *priv = netdev_priv(dev); 1227 1228 if (nla_put(skb, IFLA_INFO_XSTATS, 1229 sizeof(priv->can_stats), &priv->can_stats)) 1230 goto nla_put_failure; 1231 return 0; 1232 1233nla_put_failure: 1234 return -EMSGSIZE; 1235} 1236 1237static int can_newlink(struct net *src_net, struct net_device *dev, 1238 struct nlattr *tb[], struct nlattr *data[], 1239 struct netlink_ext_ack *extack) 1240{ 1241 return -EOPNOTSUPP; 1242} 1243 1244static void can_dellink(struct net_device *dev, struct list_head *head) 1245{ 1246} 1247 1248static struct rtnl_link_ops can_link_ops __read_mostly = { 1249 .kind = "can", 1250 .maxtype = IFLA_CAN_MAX, 1251 .policy = can_policy, 1252 .setup = can_setup, 1253 .validate = can_validate, 1254 .newlink = can_newlink, 1255 .changelink = can_changelink, 1256 .dellink = can_dellink, 1257 .get_size = can_get_size, 1258 .fill_info = can_fill_info, 1259 .get_xstats_size = can_get_xstats_size, 1260 .fill_xstats = can_fill_xstats, 1261}; 1262 1263/* Register the CAN network device */ 1264int register_candev(struct net_device *dev) 1265{ 1266 struct can_priv *priv = netdev_priv(dev); 1267 1268 /* Ensure termination_const, termination_const_cnt and 1269 * do_set_termination consistency. All must be either set or 1270 * unset. 1271 */ 1272 if ((!priv->termination_const != !priv->termination_const_cnt) || 1273 (!priv->termination_const != !priv->do_set_termination)) 1274 return -EINVAL; 1275 1276 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1277 return -EINVAL; 1278 1279 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1280 return -EINVAL; 1281 1282 dev->rtnl_link_ops = &can_link_ops; 1283 netif_carrier_off(dev); 1284 1285 return register_netdev(dev); 1286} 1287EXPORT_SYMBOL_GPL(register_candev); 1288 1289/* Unregister the CAN network device */ 1290void unregister_candev(struct net_device *dev) 1291{ 1292 unregister_netdev(dev); 1293} 1294EXPORT_SYMBOL_GPL(unregister_candev); 1295 1296/* Test if a network device is a candev based device 1297 * and return the can_priv* if so. 1298 */ 1299struct can_priv *safe_candev_priv(struct net_device *dev) 1300{ 1301 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops) 1302 return NULL; 1303 1304 return netdev_priv(dev); 1305} 1306EXPORT_SYMBOL_GPL(safe_candev_priv); 1307 1308static __init int can_dev_init(void) 1309{ 1310 int err; 1311 1312 can_led_notifier_init(); 1313 1314 err = rtnl_link_register(&can_link_ops); 1315 if (!err) 1316 pr_info(MOD_DESC "\n"); 1317 1318 return err; 1319} 1320module_init(can_dev_init); 1321 1322static __exit void can_dev_exit(void) 1323{ 1324 rtnl_link_unregister(&can_link_ops); 1325 1326 can_led_notifier_exit(); 1327} 1328module_exit(can_dev_exit); 1329 1330MODULE_ALIAS_RTNL_LINK("can");