Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 */
6
7#include <linux/module.h>
8#include <linux/kernel.h>
9#include <linux/slab.h>
10#include <linux/netdevice.h>
11#include <linux/if_arp.h>
12#include <linux/workqueue.h>
13#include <linux/can.h>
14#include <linux/can/can-ml.h>
15#include <linux/can/dev.h>
16#include <linux/can/skb.h>
17#include <linux/can/netlink.h>
18#include <linux/can/led.h>
19#include <linux/of.h>
20#include <net/rtnetlink.h>
21
22#define MOD_DESC "CAN device driver interface"
23
24MODULE_DESCRIPTION(MOD_DESC);
25MODULE_LICENSE("GPL v2");
26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
27
28/* CAN DLC to real data length conversion helpers */
29
30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
31 8, 12, 16, 20, 24, 32, 48, 64};
32
33/* get data length from can_dlc with sanitized can_dlc */
34u8 can_dlc2len(u8 can_dlc)
35{
36 return dlc2len[can_dlc & 0x0F];
37}
38EXPORT_SYMBOL_GPL(can_dlc2len);
39
40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */
41 9, 9, 9, 9, /* 9 - 12 */
42 10, 10, 10, 10, /* 13 - 16 */
43 11, 11, 11, 11, /* 17 - 20 */
44 12, 12, 12, 12, /* 21 - 24 */
45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */
46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */
47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */
48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */
49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */
50
51/* map the sanitized data length to an appropriate data length code */
52u8 can_len2dlc(u8 len)
53{
54 if (unlikely(len > 64))
55 return 0xF;
56
57 return len2dlc[len];
58}
59EXPORT_SYMBOL_GPL(can_len2dlc);
60
61#ifdef CONFIG_CAN_CALC_BITTIMING
62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
63
64/* Bit-timing calculation derived from:
65 *
66 * Code based on LinCAN sources and H8S2638 project
67 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
68 * Copyright 2005 Stanislav Marek
69 * email: pisa@cmp.felk.cvut.cz
70 *
71 * Calculates proper bit-timing parameters for a specified bit-rate
72 * and sample-point, which can then be used to set the bit-timing
73 * registers of the CAN controller. You can find more information
74 * in the header file linux/can/netlink.h.
75 */
76static int
77can_update_sample_point(const struct can_bittiming_const *btc,
78 unsigned int sample_point_nominal, unsigned int tseg,
79 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
80 unsigned int *sample_point_error_ptr)
81{
82 unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
83 unsigned int sample_point, best_sample_point = 0;
84 unsigned int tseg1, tseg2;
85 int i;
86
87 for (i = 0; i <= 1; i++) {
88 tseg2 = tseg + CAN_SYNC_SEG -
89 (sample_point_nominal * (tseg + CAN_SYNC_SEG)) /
90 1000 - i;
91 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
92 tseg1 = tseg - tseg2;
93 if (tseg1 > btc->tseg1_max) {
94 tseg1 = btc->tseg1_max;
95 tseg2 = tseg - tseg1;
96 }
97
98 sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
99 (tseg + CAN_SYNC_SEG);
100 sample_point_error = abs(sample_point_nominal - sample_point);
101
102 if (sample_point <= sample_point_nominal &&
103 sample_point_error < best_sample_point_error) {
104 best_sample_point = sample_point;
105 best_sample_point_error = sample_point_error;
106 *tseg1_ptr = tseg1;
107 *tseg2_ptr = tseg2;
108 }
109 }
110
111 if (sample_point_error_ptr)
112 *sample_point_error_ptr = best_sample_point_error;
113
114 return best_sample_point;
115}
116
117static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
118 const struct can_bittiming_const *btc)
119{
120 struct can_priv *priv = netdev_priv(dev);
121 unsigned int bitrate; /* current bitrate */
122 unsigned int bitrate_error; /* difference between current and nominal value */
123 unsigned int best_bitrate_error = UINT_MAX;
124 unsigned int sample_point_error; /* difference between current and nominal value */
125 unsigned int best_sample_point_error = UINT_MAX;
126 unsigned int sample_point_nominal; /* nominal sample point */
127 unsigned int best_tseg = 0; /* current best value for tseg */
128 unsigned int best_brp = 0; /* current best value for brp */
129 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
130 u64 v64;
131
132 /* Use CiA recommended sample points */
133 if (bt->sample_point) {
134 sample_point_nominal = bt->sample_point;
135 } else {
136 if (bt->bitrate > 800000)
137 sample_point_nominal = 750;
138 else if (bt->bitrate > 500000)
139 sample_point_nominal = 800;
140 else
141 sample_point_nominal = 875;
142 }
143
144 /* tseg even = round down, odd = round up */
145 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
146 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
147 tsegall = CAN_SYNC_SEG + tseg / 2;
148
149 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
150 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
151
152 /* choose brp step which is possible in system */
153 brp = (brp / btc->brp_inc) * btc->brp_inc;
154 if (brp < btc->brp_min || brp > btc->brp_max)
155 continue;
156
157 bitrate = priv->clock.freq / (brp * tsegall);
158 bitrate_error = abs(bt->bitrate - bitrate);
159
160 /* tseg brp biterror */
161 if (bitrate_error > best_bitrate_error)
162 continue;
163
164 /* reset sample point error if we have a better bitrate */
165 if (bitrate_error < best_bitrate_error)
166 best_sample_point_error = UINT_MAX;
167
168 can_update_sample_point(btc, sample_point_nominal, tseg / 2,
169 &tseg1, &tseg2, &sample_point_error);
170 if (sample_point_error > best_sample_point_error)
171 continue;
172
173 best_sample_point_error = sample_point_error;
174 best_bitrate_error = bitrate_error;
175 best_tseg = tseg / 2;
176 best_brp = brp;
177
178 if (bitrate_error == 0 && sample_point_error == 0)
179 break;
180 }
181
182 if (best_bitrate_error) {
183 /* Error in one-tenth of a percent */
184 v64 = (u64)best_bitrate_error * 1000;
185 do_div(v64, bt->bitrate);
186 bitrate_error = (u32)v64;
187 if (bitrate_error > CAN_CALC_MAX_ERROR) {
188 netdev_err(dev,
189 "bitrate error %d.%d%% too high\n",
190 bitrate_error / 10, bitrate_error % 10);
191 return -EDOM;
192 }
193 netdev_warn(dev, "bitrate error %d.%d%%\n",
194 bitrate_error / 10, bitrate_error % 10);
195 }
196
197 /* real sample point */
198 bt->sample_point = can_update_sample_point(btc, sample_point_nominal,
199 best_tseg, &tseg1, &tseg2,
200 NULL);
201
202 v64 = (u64)best_brp * 1000 * 1000 * 1000;
203 do_div(v64, priv->clock.freq);
204 bt->tq = (u32)v64;
205 bt->prop_seg = tseg1 / 2;
206 bt->phase_seg1 = tseg1 - bt->prop_seg;
207 bt->phase_seg2 = tseg2;
208
209 /* check for sjw user settings */
210 if (!bt->sjw || !btc->sjw_max) {
211 bt->sjw = 1;
212 } else {
213 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
214 if (bt->sjw > btc->sjw_max)
215 bt->sjw = btc->sjw_max;
216 /* bt->sjw must not be higher than tseg2 */
217 if (tseg2 < bt->sjw)
218 bt->sjw = tseg2;
219 }
220
221 bt->brp = best_brp;
222
223 /* real bitrate */
224 bt->bitrate = priv->clock.freq /
225 (bt->brp * (CAN_SYNC_SEG + tseg1 + tseg2));
226
227 return 0;
228}
229#else /* !CONFIG_CAN_CALC_BITTIMING */
230static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
231 const struct can_bittiming_const *btc)
232{
233 netdev_err(dev, "bit-timing calculation not available\n");
234 return -EINVAL;
235}
236#endif /* CONFIG_CAN_CALC_BITTIMING */
237
238/* Checks the validity of the specified bit-timing parameters prop_seg,
239 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
240 * prescaler value brp. You can find more information in the header
241 * file linux/can/netlink.h.
242 */
243static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
244 const struct can_bittiming_const *btc)
245{
246 struct can_priv *priv = netdev_priv(dev);
247 int tseg1, alltseg;
248 u64 brp64;
249
250 tseg1 = bt->prop_seg + bt->phase_seg1;
251 if (!bt->sjw)
252 bt->sjw = 1;
253 if (bt->sjw > btc->sjw_max ||
254 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
255 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
256 return -ERANGE;
257
258 brp64 = (u64)priv->clock.freq * (u64)bt->tq;
259 if (btc->brp_inc > 1)
260 do_div(brp64, btc->brp_inc);
261 brp64 += 500000000UL - 1;
262 do_div(brp64, 1000000000UL); /* the practicable BRP */
263 if (btc->brp_inc > 1)
264 brp64 *= btc->brp_inc;
265 bt->brp = (u32)brp64;
266
267 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
268 return -EINVAL;
269
270 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
271 bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
272 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
273
274 return 0;
275}
276
277/* Checks the validity of predefined bitrate settings */
278static int
279can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
280 const u32 *bitrate_const,
281 const unsigned int bitrate_const_cnt)
282{
283 struct can_priv *priv = netdev_priv(dev);
284 unsigned int i;
285
286 for (i = 0; i < bitrate_const_cnt; i++) {
287 if (bt->bitrate == bitrate_const[i])
288 break;
289 }
290
291 if (i >= priv->bitrate_const_cnt)
292 return -EINVAL;
293
294 return 0;
295}
296
297static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
298 const struct can_bittiming_const *btc,
299 const u32 *bitrate_const,
300 const unsigned int bitrate_const_cnt)
301{
302 int err;
303
304 /* Depending on the given can_bittiming parameter structure the CAN
305 * timing parameters are calculated based on the provided bitrate OR
306 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
307 * provided directly which are then checked and fixed up.
308 */
309 if (!bt->tq && bt->bitrate && btc)
310 err = can_calc_bittiming(dev, bt, btc);
311 else if (bt->tq && !bt->bitrate && btc)
312 err = can_fixup_bittiming(dev, bt, btc);
313 else if (!bt->tq && bt->bitrate && bitrate_const)
314 err = can_validate_bitrate(dev, bt, bitrate_const,
315 bitrate_const_cnt);
316 else
317 err = -EINVAL;
318
319 return err;
320}
321
322static void can_update_state_error_stats(struct net_device *dev,
323 enum can_state new_state)
324{
325 struct can_priv *priv = netdev_priv(dev);
326
327 if (new_state <= priv->state)
328 return;
329
330 switch (new_state) {
331 case CAN_STATE_ERROR_WARNING:
332 priv->can_stats.error_warning++;
333 break;
334 case CAN_STATE_ERROR_PASSIVE:
335 priv->can_stats.error_passive++;
336 break;
337 case CAN_STATE_BUS_OFF:
338 priv->can_stats.bus_off++;
339 break;
340 default:
341 break;
342 }
343}
344
345static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
346{
347 switch (state) {
348 case CAN_STATE_ERROR_ACTIVE:
349 return CAN_ERR_CRTL_ACTIVE;
350 case CAN_STATE_ERROR_WARNING:
351 return CAN_ERR_CRTL_TX_WARNING;
352 case CAN_STATE_ERROR_PASSIVE:
353 return CAN_ERR_CRTL_TX_PASSIVE;
354 default:
355 return 0;
356 }
357}
358
359static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
360{
361 switch (state) {
362 case CAN_STATE_ERROR_ACTIVE:
363 return CAN_ERR_CRTL_ACTIVE;
364 case CAN_STATE_ERROR_WARNING:
365 return CAN_ERR_CRTL_RX_WARNING;
366 case CAN_STATE_ERROR_PASSIVE:
367 return CAN_ERR_CRTL_RX_PASSIVE;
368 default:
369 return 0;
370 }
371}
372
373static const char *can_get_state_str(const enum can_state state)
374{
375 switch (state) {
376 case CAN_STATE_ERROR_ACTIVE:
377 return "Error Active";
378 case CAN_STATE_ERROR_WARNING:
379 return "Error Warning";
380 case CAN_STATE_ERROR_PASSIVE:
381 return "Error Passive";
382 case CAN_STATE_BUS_OFF:
383 return "Bus Off";
384 case CAN_STATE_STOPPED:
385 return "Stopped";
386 case CAN_STATE_SLEEPING:
387 return "Sleeping";
388 default:
389 return "<unknown>";
390 }
391
392 return "<unknown>";
393}
394
395void can_change_state(struct net_device *dev, struct can_frame *cf,
396 enum can_state tx_state, enum can_state rx_state)
397{
398 struct can_priv *priv = netdev_priv(dev);
399 enum can_state new_state = max(tx_state, rx_state);
400
401 if (unlikely(new_state == priv->state)) {
402 netdev_warn(dev, "%s: oops, state did not change", __func__);
403 return;
404 }
405
406 netdev_dbg(dev, "Controller changed from %s State (%d) into %s State (%d).\n",
407 can_get_state_str(priv->state), priv->state,
408 can_get_state_str(new_state), new_state);
409
410 can_update_state_error_stats(dev, new_state);
411 priv->state = new_state;
412
413 if (!cf)
414 return;
415
416 if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
417 cf->can_id |= CAN_ERR_BUSOFF;
418 return;
419 }
420
421 cf->can_id |= CAN_ERR_CRTL;
422 cf->data[1] |= tx_state >= rx_state ?
423 can_tx_state_to_frame(dev, tx_state) : 0;
424 cf->data[1] |= tx_state <= rx_state ?
425 can_rx_state_to_frame(dev, rx_state) : 0;
426}
427EXPORT_SYMBOL_GPL(can_change_state);
428
429/* Local echo of CAN messages
430 *
431 * CAN network devices *should* support a local echo functionality
432 * (see Documentation/networking/can.rst). To test the handling of CAN
433 * interfaces that do not support the local echo both driver types are
434 * implemented. In the case that the driver does not support the echo
435 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
436 * to perform the echo as a fallback solution.
437 */
438static void can_flush_echo_skb(struct net_device *dev)
439{
440 struct can_priv *priv = netdev_priv(dev);
441 struct net_device_stats *stats = &dev->stats;
442 int i;
443
444 for (i = 0; i < priv->echo_skb_max; i++) {
445 if (priv->echo_skb[i]) {
446 kfree_skb(priv->echo_skb[i]);
447 priv->echo_skb[i] = NULL;
448 stats->tx_dropped++;
449 stats->tx_aborted_errors++;
450 }
451 }
452}
453
454/* Put the skb on the stack to be looped backed locally lateron
455 *
456 * The function is typically called in the start_xmit function
457 * of the device driver. The driver must protect access to
458 * priv->echo_skb, if necessary.
459 */
460int can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
461 unsigned int idx)
462{
463 struct can_priv *priv = netdev_priv(dev);
464
465 BUG_ON(idx >= priv->echo_skb_max);
466
467 /* check flag whether this packet has to be looped back */
468 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
469 (skb->protocol != htons(ETH_P_CAN) &&
470 skb->protocol != htons(ETH_P_CANFD))) {
471 kfree_skb(skb);
472 return 0;
473 }
474
475 if (!priv->echo_skb[idx]) {
476 skb = can_create_echo_skb(skb);
477 if (!skb)
478 return -ENOMEM;
479
480 /* make settings for echo to reduce code in irq context */
481 skb->pkt_type = PACKET_BROADCAST;
482 skb->ip_summed = CHECKSUM_UNNECESSARY;
483 skb->dev = dev;
484
485 /* save this skb for tx interrupt echo handling */
486 priv->echo_skb[idx] = skb;
487 } else {
488 /* locking problem with netif_stop_queue() ?? */
489 netdev_err(dev, "%s: BUG! echo_skb %d is occupied!\n", __func__, idx);
490 kfree_skb(skb);
491 return -EBUSY;
492 }
493
494 return 0;
495}
496EXPORT_SYMBOL_GPL(can_put_echo_skb);
497
498struct sk_buff *
499__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
500{
501 struct can_priv *priv = netdev_priv(dev);
502
503 if (idx >= priv->echo_skb_max) {
504 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
505 __func__, idx, priv->echo_skb_max);
506 return NULL;
507 }
508
509 if (priv->echo_skb[idx]) {
510 /* Using "struct canfd_frame::len" for the frame
511 * length is supported on both CAN and CANFD frames.
512 */
513 struct sk_buff *skb = priv->echo_skb[idx];
514 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
515 u8 len = cf->len;
516
517 *len_ptr = len;
518 priv->echo_skb[idx] = NULL;
519
520 return skb;
521 }
522
523 return NULL;
524}
525
526/* Get the skb from the stack and loop it back locally
527 *
528 * The function is typically called when the TX done interrupt
529 * is handled in the device driver. The driver must protect
530 * access to priv->echo_skb, if necessary.
531 */
532unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
533{
534 struct sk_buff *skb;
535 u8 len;
536
537 skb = __can_get_echo_skb(dev, idx, &len);
538 if (!skb)
539 return 0;
540
541 netif_rx(skb);
542
543 return len;
544}
545EXPORT_SYMBOL_GPL(can_get_echo_skb);
546
547/* Remove the skb from the stack and free it.
548 *
549 * The function is typically called when TX failed.
550 */
551void can_free_echo_skb(struct net_device *dev, unsigned int idx)
552{
553 struct can_priv *priv = netdev_priv(dev);
554
555 BUG_ON(idx >= priv->echo_skb_max);
556
557 if (priv->echo_skb[idx]) {
558 dev_kfree_skb_any(priv->echo_skb[idx]);
559 priv->echo_skb[idx] = NULL;
560 }
561}
562EXPORT_SYMBOL_GPL(can_free_echo_skb);
563
564/* CAN device restart for bus-off recovery */
565static void can_restart(struct net_device *dev)
566{
567 struct can_priv *priv = netdev_priv(dev);
568 struct net_device_stats *stats = &dev->stats;
569 struct sk_buff *skb;
570 struct can_frame *cf;
571 int err;
572
573 BUG_ON(netif_carrier_ok(dev));
574
575 /* No synchronization needed because the device is bus-off and
576 * no messages can come in or go out.
577 */
578 can_flush_echo_skb(dev);
579
580 /* send restart message upstream */
581 skb = alloc_can_err_skb(dev, &cf);
582 if (!skb)
583 goto restart;
584
585 cf->can_id |= CAN_ERR_RESTARTED;
586
587 netif_rx(skb);
588
589 stats->rx_packets++;
590 stats->rx_bytes += cf->can_dlc;
591
592restart:
593 netdev_dbg(dev, "restarted\n");
594 priv->can_stats.restarts++;
595
596 /* Now restart the device */
597 err = priv->do_set_mode(dev, CAN_MODE_START);
598
599 netif_carrier_on(dev);
600 if (err)
601 netdev_err(dev, "Error %d during restart", err);
602}
603
604static void can_restart_work(struct work_struct *work)
605{
606 struct delayed_work *dwork = to_delayed_work(work);
607 struct can_priv *priv = container_of(dwork, struct can_priv,
608 restart_work);
609
610 can_restart(priv->dev);
611}
612
613int can_restart_now(struct net_device *dev)
614{
615 struct can_priv *priv = netdev_priv(dev);
616
617 /* A manual restart is only permitted if automatic restart is
618 * disabled and the device is in the bus-off state
619 */
620 if (priv->restart_ms)
621 return -EINVAL;
622 if (priv->state != CAN_STATE_BUS_OFF)
623 return -EBUSY;
624
625 cancel_delayed_work_sync(&priv->restart_work);
626 can_restart(dev);
627
628 return 0;
629}
630
631/* CAN bus-off
632 *
633 * This functions should be called when the device goes bus-off to
634 * tell the netif layer that no more packets can be sent or received.
635 * If enabled, a timer is started to trigger bus-off recovery.
636 */
637void can_bus_off(struct net_device *dev)
638{
639 struct can_priv *priv = netdev_priv(dev);
640
641 if (priv->restart_ms)
642 netdev_info(dev, "bus-off, scheduling restart in %d ms\n",
643 priv->restart_ms);
644 else
645 netdev_info(dev, "bus-off\n");
646
647 netif_carrier_off(dev);
648
649 if (priv->restart_ms)
650 schedule_delayed_work(&priv->restart_work,
651 msecs_to_jiffies(priv->restart_ms));
652}
653EXPORT_SYMBOL_GPL(can_bus_off);
654
655static void can_setup(struct net_device *dev)
656{
657 dev->type = ARPHRD_CAN;
658 dev->mtu = CAN_MTU;
659 dev->hard_header_len = 0;
660 dev->addr_len = 0;
661 dev->tx_queue_len = 10;
662
663 /* New-style flags. */
664 dev->flags = IFF_NOARP;
665 dev->features = NETIF_F_HW_CSUM;
666}
667
668struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
669{
670 struct sk_buff *skb;
671
672 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
673 sizeof(struct can_frame));
674 if (unlikely(!skb))
675 return NULL;
676
677 skb->protocol = htons(ETH_P_CAN);
678 skb->pkt_type = PACKET_BROADCAST;
679 skb->ip_summed = CHECKSUM_UNNECESSARY;
680
681 skb_reset_mac_header(skb);
682 skb_reset_network_header(skb);
683 skb_reset_transport_header(skb);
684
685 can_skb_reserve(skb);
686 can_skb_prv(skb)->ifindex = dev->ifindex;
687 can_skb_prv(skb)->skbcnt = 0;
688
689 *cf = skb_put_zero(skb, sizeof(struct can_frame));
690
691 return skb;
692}
693EXPORT_SYMBOL_GPL(alloc_can_skb);
694
695struct sk_buff *alloc_canfd_skb(struct net_device *dev,
696 struct canfd_frame **cfd)
697{
698 struct sk_buff *skb;
699
700 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
701 sizeof(struct canfd_frame));
702 if (unlikely(!skb))
703 return NULL;
704
705 skb->protocol = htons(ETH_P_CANFD);
706 skb->pkt_type = PACKET_BROADCAST;
707 skb->ip_summed = CHECKSUM_UNNECESSARY;
708
709 skb_reset_mac_header(skb);
710 skb_reset_network_header(skb);
711 skb_reset_transport_header(skb);
712
713 can_skb_reserve(skb);
714 can_skb_prv(skb)->ifindex = dev->ifindex;
715 can_skb_prv(skb)->skbcnt = 0;
716
717 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
718
719 return skb;
720}
721EXPORT_SYMBOL_GPL(alloc_canfd_skb);
722
723struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
724{
725 struct sk_buff *skb;
726
727 skb = alloc_can_skb(dev, cf);
728 if (unlikely(!skb))
729 return NULL;
730
731 (*cf)->can_id = CAN_ERR_FLAG;
732 (*cf)->can_dlc = CAN_ERR_DLC;
733
734 return skb;
735}
736EXPORT_SYMBOL_GPL(alloc_can_err_skb);
737
738/* Allocate and setup space for the CAN network device */
739struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
740 unsigned int txqs, unsigned int rxqs)
741{
742 struct net_device *dev;
743 struct can_priv *priv;
744 int size;
745
746 /* We put the driver's priv, the CAN mid layer priv and the
747 * echo skb into the netdevice's priv. The memory layout for
748 * the netdev_priv is like this:
749 *
750 * +-------------------------+
751 * | driver's priv |
752 * +-------------------------+
753 * | struct can_ml_priv |
754 * +-------------------------+
755 * | array of struct sk_buff |
756 * +-------------------------+
757 */
758
759 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv);
760
761 if (echo_skb_max)
762 size = ALIGN(size, sizeof(struct sk_buff *)) +
763 echo_skb_max * sizeof(struct sk_buff *);
764
765 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
766 txqs, rxqs);
767 if (!dev)
768 return NULL;
769
770 priv = netdev_priv(dev);
771 priv->dev = dev;
772
773 dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN);
774
775 if (echo_skb_max) {
776 priv->echo_skb_max = echo_skb_max;
777 priv->echo_skb = (void *)priv +
778 (size - echo_skb_max * sizeof(struct sk_buff *));
779 }
780
781 priv->state = CAN_STATE_STOPPED;
782
783 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
784
785 return dev;
786}
787EXPORT_SYMBOL_GPL(alloc_candev_mqs);
788
789/* Free space of the CAN network device */
790void free_candev(struct net_device *dev)
791{
792 free_netdev(dev);
793}
794EXPORT_SYMBOL_GPL(free_candev);
795
796/* changing MTU and control mode for CAN/CANFD devices */
797int can_change_mtu(struct net_device *dev, int new_mtu)
798{
799 struct can_priv *priv = netdev_priv(dev);
800
801 /* Do not allow changing the MTU while running */
802 if (dev->flags & IFF_UP)
803 return -EBUSY;
804
805 /* allow change of MTU according to the CANFD ability of the device */
806 switch (new_mtu) {
807 case CAN_MTU:
808 /* 'CANFD-only' controllers can not switch to CAN_MTU */
809 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
810 return -EINVAL;
811
812 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
813 break;
814
815 case CANFD_MTU:
816 /* check for potential CANFD ability */
817 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
818 !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
819 return -EINVAL;
820
821 priv->ctrlmode |= CAN_CTRLMODE_FD;
822 break;
823
824 default:
825 return -EINVAL;
826 }
827
828 dev->mtu = new_mtu;
829 return 0;
830}
831EXPORT_SYMBOL_GPL(can_change_mtu);
832
833/* Common open function when the device gets opened.
834 *
835 * This function should be called in the open function of the device
836 * driver.
837 */
838int open_candev(struct net_device *dev)
839{
840 struct can_priv *priv = netdev_priv(dev);
841
842 if (!priv->bittiming.bitrate) {
843 netdev_err(dev, "bit-timing not yet defined\n");
844 return -EINVAL;
845 }
846
847 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
848 if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
849 (!priv->data_bittiming.bitrate ||
850 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) {
851 netdev_err(dev, "incorrect/missing data bit-timing\n");
852 return -EINVAL;
853 }
854
855 /* Switch carrier on if device was stopped while in bus-off state */
856 if (!netif_carrier_ok(dev))
857 netif_carrier_on(dev);
858
859 return 0;
860}
861EXPORT_SYMBOL_GPL(open_candev);
862
863#ifdef CONFIG_OF
864/* Common function that can be used to understand the limitation of
865 * a transceiver when it provides no means to determine these limitations
866 * at runtime.
867 */
868void of_can_transceiver(struct net_device *dev)
869{
870 struct device_node *dn;
871 struct can_priv *priv = netdev_priv(dev);
872 struct device_node *np = dev->dev.parent->of_node;
873 int ret;
874
875 dn = of_get_child_by_name(np, "can-transceiver");
876 if (!dn)
877 return;
878
879 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
880 of_node_put(dn);
881 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
882 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
883}
884EXPORT_SYMBOL_GPL(of_can_transceiver);
885#endif
886
887/* Common close function for cleanup before the device gets closed.
888 *
889 * This function should be called in the close function of the device
890 * driver.
891 */
892void close_candev(struct net_device *dev)
893{
894 struct can_priv *priv = netdev_priv(dev);
895
896 cancel_delayed_work_sync(&priv->restart_work);
897 can_flush_echo_skb(dev);
898}
899EXPORT_SYMBOL_GPL(close_candev);
900
901/* CAN netlink interface */
902static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
903 [IFLA_CAN_STATE] = { .type = NLA_U32 },
904 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
905 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
906 [IFLA_CAN_RESTART] = { .type = NLA_U32 },
907 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
908 [IFLA_CAN_BITTIMING_CONST]
909 = { .len = sizeof(struct can_bittiming_const) },
910 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
911 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
912 [IFLA_CAN_DATA_BITTIMING]
913 = { .len = sizeof(struct can_bittiming) },
914 [IFLA_CAN_DATA_BITTIMING_CONST]
915 = { .len = sizeof(struct can_bittiming_const) },
916 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 },
917};
918
919static int can_validate(struct nlattr *tb[], struct nlattr *data[],
920 struct netlink_ext_ack *extack)
921{
922 bool is_can_fd = false;
923
924 /* Make sure that valid CAN FD configurations always consist of
925 * - nominal/arbitration bittiming
926 * - data bittiming
927 * - control mode with CAN_CTRLMODE_FD set
928 */
929
930 if (!data)
931 return 0;
932
933 if (data[IFLA_CAN_CTRLMODE]) {
934 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
935
936 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
937 }
938
939 if (is_can_fd) {
940 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
941 return -EOPNOTSUPP;
942 }
943
944 if (data[IFLA_CAN_DATA_BITTIMING]) {
945 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
946 return -EOPNOTSUPP;
947 }
948
949 return 0;
950}
951
952static int can_changelink(struct net_device *dev, struct nlattr *tb[],
953 struct nlattr *data[],
954 struct netlink_ext_ack *extack)
955{
956 struct can_priv *priv = netdev_priv(dev);
957 int err;
958
959 /* We need synchronization with dev->stop() */
960 ASSERT_RTNL();
961
962 if (data[IFLA_CAN_BITTIMING]) {
963 struct can_bittiming bt;
964
965 /* Do not allow changing bittiming while running */
966 if (dev->flags & IFF_UP)
967 return -EBUSY;
968
969 /* Calculate bittiming parameters based on
970 * bittiming_const if set, otherwise pass bitrate
971 * directly via do_set_bitrate(). Bail out if neither
972 * is given.
973 */
974 if (!priv->bittiming_const && !priv->do_set_bittiming)
975 return -EOPNOTSUPP;
976
977 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
978 err = can_get_bittiming(dev, &bt,
979 priv->bittiming_const,
980 priv->bitrate_const,
981 priv->bitrate_const_cnt);
982 if (err)
983 return err;
984
985 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
986 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
987 priv->bitrate_max);
988 return -EINVAL;
989 }
990
991 memcpy(&priv->bittiming, &bt, sizeof(bt));
992
993 if (priv->do_set_bittiming) {
994 /* Finally, set the bit-timing registers */
995 err = priv->do_set_bittiming(dev);
996 if (err)
997 return err;
998 }
999 }
1000
1001 if (data[IFLA_CAN_CTRLMODE]) {
1002 struct can_ctrlmode *cm;
1003 u32 ctrlstatic;
1004 u32 maskedflags;
1005
1006 /* Do not allow changing controller mode while running */
1007 if (dev->flags & IFF_UP)
1008 return -EBUSY;
1009 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
1010 ctrlstatic = priv->ctrlmode_static;
1011 maskedflags = cm->flags & cm->mask;
1012
1013 /* check whether provided bits are allowed to be passed */
1014 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
1015 return -EOPNOTSUPP;
1016
1017 /* do not check for static fd-non-iso if 'fd' is disabled */
1018 if (!(maskedflags & CAN_CTRLMODE_FD))
1019 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
1020
1021 /* make sure static options are provided by configuration */
1022 if ((maskedflags & ctrlstatic) != ctrlstatic)
1023 return -EOPNOTSUPP;
1024
1025 /* clear bits to be modified and copy the flag values */
1026 priv->ctrlmode &= ~cm->mask;
1027 priv->ctrlmode |= maskedflags;
1028
1029 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1030 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1031 dev->mtu = CANFD_MTU;
1032 else
1033 dev->mtu = CAN_MTU;
1034 }
1035
1036 if (data[IFLA_CAN_RESTART_MS]) {
1037 /* Do not allow changing restart delay while running */
1038 if (dev->flags & IFF_UP)
1039 return -EBUSY;
1040 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1041 }
1042
1043 if (data[IFLA_CAN_RESTART]) {
1044 /* Do not allow a restart while not running */
1045 if (!(dev->flags & IFF_UP))
1046 return -EINVAL;
1047 err = can_restart_now(dev);
1048 if (err)
1049 return err;
1050 }
1051
1052 if (data[IFLA_CAN_DATA_BITTIMING]) {
1053 struct can_bittiming dbt;
1054
1055 /* Do not allow changing bittiming while running */
1056 if (dev->flags & IFF_UP)
1057 return -EBUSY;
1058
1059 /* Calculate bittiming parameters based on
1060 * data_bittiming_const if set, otherwise pass bitrate
1061 * directly via do_set_bitrate(). Bail out if neither
1062 * is given.
1063 */
1064 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1065 return -EOPNOTSUPP;
1066
1067 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1068 sizeof(dbt));
1069 err = can_get_bittiming(dev, &dbt,
1070 priv->data_bittiming_const,
1071 priv->data_bitrate_const,
1072 priv->data_bitrate_const_cnt);
1073 if (err)
1074 return err;
1075
1076 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1077 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1078 priv->bitrate_max);
1079 return -EINVAL;
1080 }
1081
1082 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1083
1084 if (priv->do_set_data_bittiming) {
1085 /* Finally, set the bit-timing registers */
1086 err = priv->do_set_data_bittiming(dev);
1087 if (err)
1088 return err;
1089 }
1090 }
1091
1092 if (data[IFLA_CAN_TERMINATION]) {
1093 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1094 const unsigned int num_term = priv->termination_const_cnt;
1095 unsigned int i;
1096
1097 if (!priv->do_set_termination)
1098 return -EOPNOTSUPP;
1099
1100 /* check whether given value is supported by the interface */
1101 for (i = 0; i < num_term; i++) {
1102 if (termval == priv->termination_const[i])
1103 break;
1104 }
1105 if (i >= num_term)
1106 return -EINVAL;
1107
1108 /* Finally, set the termination value */
1109 err = priv->do_set_termination(dev, termval);
1110 if (err)
1111 return err;
1112
1113 priv->termination = termval;
1114 }
1115
1116 return 0;
1117}
1118
1119static size_t can_get_size(const struct net_device *dev)
1120{
1121 struct can_priv *priv = netdev_priv(dev);
1122 size_t size = 0;
1123
1124 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */
1125 size += nla_total_size(sizeof(struct can_bittiming));
1126 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
1127 size += nla_total_size(sizeof(struct can_bittiming_const));
1128 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */
1129 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
1130 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */
1131 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
1132 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */
1133 size += nla_total_size(sizeof(struct can_berr_counter));
1134 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */
1135 size += nla_total_size(sizeof(struct can_bittiming));
1136 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */
1137 size += nla_total_size(sizeof(struct can_bittiming_const));
1138 if (priv->termination_const) {
1139 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */
1140 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */
1141 priv->termination_const_cnt);
1142 }
1143 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */
1144 size += nla_total_size(sizeof(*priv->bitrate_const) *
1145 priv->bitrate_const_cnt);
1146 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */
1147 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1148 priv->data_bitrate_const_cnt);
1149 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */
1150
1151 return size;
1152}
1153
1154static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1155{
1156 struct can_priv *priv = netdev_priv(dev);
1157 struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1158 struct can_berr_counter bec;
1159 enum can_state state = priv->state;
1160
1161 if (priv->do_get_state)
1162 priv->do_get_state(dev, &state);
1163
1164 if ((priv->bittiming.bitrate &&
1165 nla_put(skb, IFLA_CAN_BITTIMING,
1166 sizeof(priv->bittiming), &priv->bittiming)) ||
1167
1168 (priv->bittiming_const &&
1169 nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1170 sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1171
1172 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1173 nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1174 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1175 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1176
1177 (priv->do_get_berr_counter &&
1178 !priv->do_get_berr_counter(dev, &bec) &&
1179 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1180
1181 (priv->data_bittiming.bitrate &&
1182 nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1183 sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1184
1185 (priv->data_bittiming_const &&
1186 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1187 sizeof(*priv->data_bittiming_const),
1188 priv->data_bittiming_const)) ||
1189
1190 (priv->termination_const &&
1191 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1192 nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1193 sizeof(*priv->termination_const) *
1194 priv->termination_const_cnt,
1195 priv->termination_const))) ||
1196
1197 (priv->bitrate_const &&
1198 nla_put(skb, IFLA_CAN_BITRATE_CONST,
1199 sizeof(*priv->bitrate_const) *
1200 priv->bitrate_const_cnt,
1201 priv->bitrate_const)) ||
1202
1203 (priv->data_bitrate_const &&
1204 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1205 sizeof(*priv->data_bitrate_const) *
1206 priv->data_bitrate_const_cnt,
1207 priv->data_bitrate_const)) ||
1208
1209 (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1210 sizeof(priv->bitrate_max),
1211 &priv->bitrate_max))
1212 )
1213
1214 return -EMSGSIZE;
1215
1216 return 0;
1217}
1218
1219static size_t can_get_xstats_size(const struct net_device *dev)
1220{
1221 return sizeof(struct can_device_stats);
1222}
1223
1224static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1225{
1226 struct can_priv *priv = netdev_priv(dev);
1227
1228 if (nla_put(skb, IFLA_INFO_XSTATS,
1229 sizeof(priv->can_stats), &priv->can_stats))
1230 goto nla_put_failure;
1231 return 0;
1232
1233nla_put_failure:
1234 return -EMSGSIZE;
1235}
1236
1237static int can_newlink(struct net *src_net, struct net_device *dev,
1238 struct nlattr *tb[], struct nlattr *data[],
1239 struct netlink_ext_ack *extack)
1240{
1241 return -EOPNOTSUPP;
1242}
1243
1244static void can_dellink(struct net_device *dev, struct list_head *head)
1245{
1246}
1247
1248static struct rtnl_link_ops can_link_ops __read_mostly = {
1249 .kind = "can",
1250 .maxtype = IFLA_CAN_MAX,
1251 .policy = can_policy,
1252 .setup = can_setup,
1253 .validate = can_validate,
1254 .newlink = can_newlink,
1255 .changelink = can_changelink,
1256 .dellink = can_dellink,
1257 .get_size = can_get_size,
1258 .fill_info = can_fill_info,
1259 .get_xstats_size = can_get_xstats_size,
1260 .fill_xstats = can_fill_xstats,
1261};
1262
1263/* Register the CAN network device */
1264int register_candev(struct net_device *dev)
1265{
1266 struct can_priv *priv = netdev_priv(dev);
1267
1268 /* Ensure termination_const, termination_const_cnt and
1269 * do_set_termination consistency. All must be either set or
1270 * unset.
1271 */
1272 if ((!priv->termination_const != !priv->termination_const_cnt) ||
1273 (!priv->termination_const != !priv->do_set_termination))
1274 return -EINVAL;
1275
1276 if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1277 return -EINVAL;
1278
1279 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1280 return -EINVAL;
1281
1282 dev->rtnl_link_ops = &can_link_ops;
1283 netif_carrier_off(dev);
1284
1285 return register_netdev(dev);
1286}
1287EXPORT_SYMBOL_GPL(register_candev);
1288
1289/* Unregister the CAN network device */
1290void unregister_candev(struct net_device *dev)
1291{
1292 unregister_netdev(dev);
1293}
1294EXPORT_SYMBOL_GPL(unregister_candev);
1295
1296/* Test if a network device is a candev based device
1297 * and return the can_priv* if so.
1298 */
1299struct can_priv *safe_candev_priv(struct net_device *dev)
1300{
1301 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops)
1302 return NULL;
1303
1304 return netdev_priv(dev);
1305}
1306EXPORT_SYMBOL_GPL(safe_candev_priv);
1307
1308static __init int can_dev_init(void)
1309{
1310 int err;
1311
1312 can_led_notifier_init();
1313
1314 err = rtnl_link_register(&can_link_ops);
1315 if (!err)
1316 pr_info(MOD_DESC "\n");
1317
1318 return err;
1319}
1320module_init(can_dev_init);
1321
1322static __exit void can_dev_exit(void)
1323{
1324 rtnl_link_unregister(&can_link_ops);
1325
1326 can_led_notifier_exit();
1327}
1328module_exit(can_dev_exit);
1329
1330MODULE_ALIAS_RTNL_LINK("can");