at v5.1 124 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 */ 8#ifndef _UAPI__LINUX_BPF_H__ 9#define _UAPI__LINUX_BPF_H__ 10 11#include <linux/types.h> 12#include <linux/bpf_common.h> 13 14/* Extended instruction set based on top of classic BPF */ 15 16/* instruction classes */ 17#define BPF_JMP32 0x06 /* jmp mode in word width */ 18#define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20/* ld/ldx fields */ 21#define BPF_DW 0x18 /* double word (64-bit) */ 22#define BPF_XADD 0xc0 /* exclusive add */ 23 24/* alu/jmp fields */ 25#define BPF_MOV 0xb0 /* mov reg to reg */ 26#define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28/* change endianness of a register */ 29#define BPF_END 0xd0 /* flags for endianness conversion: */ 30#define BPF_TO_LE 0x00 /* convert to little-endian */ 31#define BPF_TO_BE 0x08 /* convert to big-endian */ 32#define BPF_FROM_LE BPF_TO_LE 33#define BPF_FROM_BE BPF_TO_BE 34 35/* jmp encodings */ 36#define BPF_JNE 0x50 /* jump != */ 37#define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38#define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39#define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40#define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41#define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42#define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43#define BPF_CALL 0x80 /* function call */ 44#define BPF_EXIT 0x90 /* function return */ 45 46/* Register numbers */ 47enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60}; 61 62/* BPF has 10 general purpose 64-bit registers and stack frame. */ 63#define MAX_BPF_REG __MAX_BPF_REG 64 65struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71}; 72 73/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77}; 78 79struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82}; 83 84/* BPF syscall commands, see bpf(2) man-page for details. */ 85enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108}; 109 110enum bpf_map_type { 111 BPF_MAP_TYPE_UNSPEC, 112 BPF_MAP_TYPE_HASH, 113 BPF_MAP_TYPE_ARRAY, 114 BPF_MAP_TYPE_PROG_ARRAY, 115 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 116 BPF_MAP_TYPE_PERCPU_HASH, 117 BPF_MAP_TYPE_PERCPU_ARRAY, 118 BPF_MAP_TYPE_STACK_TRACE, 119 BPF_MAP_TYPE_CGROUP_ARRAY, 120 BPF_MAP_TYPE_LRU_HASH, 121 BPF_MAP_TYPE_LRU_PERCPU_HASH, 122 BPF_MAP_TYPE_LPM_TRIE, 123 BPF_MAP_TYPE_ARRAY_OF_MAPS, 124 BPF_MAP_TYPE_HASH_OF_MAPS, 125 BPF_MAP_TYPE_DEVMAP, 126 BPF_MAP_TYPE_SOCKMAP, 127 BPF_MAP_TYPE_CPUMAP, 128 BPF_MAP_TYPE_XSKMAP, 129 BPF_MAP_TYPE_SOCKHASH, 130 BPF_MAP_TYPE_CGROUP_STORAGE, 131 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 132 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 133 BPF_MAP_TYPE_QUEUE, 134 BPF_MAP_TYPE_STACK, 135}; 136 137/* Note that tracing related programs such as 138 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 139 * are not subject to a stable API since kernel internal data 140 * structures can change from release to release and may 141 * therefore break existing tracing BPF programs. Tracing BPF 142 * programs correspond to /a/ specific kernel which is to be 143 * analyzed, and not /a/ specific kernel /and/ all future ones. 144 */ 145enum bpf_prog_type { 146 BPF_PROG_TYPE_UNSPEC, 147 BPF_PROG_TYPE_SOCKET_FILTER, 148 BPF_PROG_TYPE_KPROBE, 149 BPF_PROG_TYPE_SCHED_CLS, 150 BPF_PROG_TYPE_SCHED_ACT, 151 BPF_PROG_TYPE_TRACEPOINT, 152 BPF_PROG_TYPE_XDP, 153 BPF_PROG_TYPE_PERF_EVENT, 154 BPF_PROG_TYPE_CGROUP_SKB, 155 BPF_PROG_TYPE_CGROUP_SOCK, 156 BPF_PROG_TYPE_LWT_IN, 157 BPF_PROG_TYPE_LWT_OUT, 158 BPF_PROG_TYPE_LWT_XMIT, 159 BPF_PROG_TYPE_SOCK_OPS, 160 BPF_PROG_TYPE_SK_SKB, 161 BPF_PROG_TYPE_CGROUP_DEVICE, 162 BPF_PROG_TYPE_SK_MSG, 163 BPF_PROG_TYPE_RAW_TRACEPOINT, 164 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 165 BPF_PROG_TYPE_LWT_SEG6LOCAL, 166 BPF_PROG_TYPE_LIRC_MODE2, 167 BPF_PROG_TYPE_SK_REUSEPORT, 168 BPF_PROG_TYPE_FLOW_DISSECTOR, 169}; 170 171enum bpf_attach_type { 172 BPF_CGROUP_INET_INGRESS, 173 BPF_CGROUP_INET_EGRESS, 174 BPF_CGROUP_INET_SOCK_CREATE, 175 BPF_CGROUP_SOCK_OPS, 176 BPF_SK_SKB_STREAM_PARSER, 177 BPF_SK_SKB_STREAM_VERDICT, 178 BPF_CGROUP_DEVICE, 179 BPF_SK_MSG_VERDICT, 180 BPF_CGROUP_INET4_BIND, 181 BPF_CGROUP_INET6_BIND, 182 BPF_CGROUP_INET4_CONNECT, 183 BPF_CGROUP_INET6_CONNECT, 184 BPF_CGROUP_INET4_POST_BIND, 185 BPF_CGROUP_INET6_POST_BIND, 186 BPF_CGROUP_UDP4_SENDMSG, 187 BPF_CGROUP_UDP6_SENDMSG, 188 BPF_LIRC_MODE2, 189 BPF_FLOW_DISSECTOR, 190 __MAX_BPF_ATTACH_TYPE 191}; 192 193#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 194 195/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 196 * 197 * NONE(default): No further bpf programs allowed in the subtree. 198 * 199 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 200 * the program in this cgroup yields to sub-cgroup program. 201 * 202 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 203 * that cgroup program gets run in addition to the program in this cgroup. 204 * 205 * Only one program is allowed to be attached to a cgroup with 206 * NONE or BPF_F_ALLOW_OVERRIDE flag. 207 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 208 * release old program and attach the new one. Attach flags has to match. 209 * 210 * Multiple programs are allowed to be attached to a cgroup with 211 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 212 * (those that were attached first, run first) 213 * The programs of sub-cgroup are executed first, then programs of 214 * this cgroup and then programs of parent cgroup. 215 * When children program makes decision (like picking TCP CA or sock bind) 216 * parent program has a chance to override it. 217 * 218 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 219 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 220 * Ex1: 221 * cgrp1 (MULTI progs A, B) -> 222 * cgrp2 (OVERRIDE prog C) -> 223 * cgrp3 (MULTI prog D) -> 224 * cgrp4 (OVERRIDE prog E) -> 225 * cgrp5 (NONE prog F) 226 * the event in cgrp5 triggers execution of F,D,A,B in that order. 227 * if prog F is detached, the execution is E,D,A,B 228 * if prog F and D are detached, the execution is E,A,B 229 * if prog F, E and D are detached, the execution is C,A,B 230 * 231 * All eligible programs are executed regardless of return code from 232 * earlier programs. 233 */ 234#define BPF_F_ALLOW_OVERRIDE (1U << 0) 235#define BPF_F_ALLOW_MULTI (1U << 1) 236 237/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 238 * verifier will perform strict alignment checking as if the kernel 239 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 240 * and NET_IP_ALIGN defined to 2. 241 */ 242#define BPF_F_STRICT_ALIGNMENT (1U << 0) 243 244/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 245 * verifier will allow any alignment whatsoever. On platforms 246 * with strict alignment requirements for loads ands stores (such 247 * as sparc and mips) the verifier validates that all loads and 248 * stores provably follow this requirement. This flag turns that 249 * checking and enforcement off. 250 * 251 * It is mostly used for testing when we want to validate the 252 * context and memory access aspects of the verifier, but because 253 * of an unaligned access the alignment check would trigger before 254 * the one we are interested in. 255 */ 256#define BPF_F_ANY_ALIGNMENT (1U << 1) 257 258/* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */ 259#define BPF_PSEUDO_MAP_FD 1 260 261/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 262 * offset to another bpf function 263 */ 264#define BPF_PSEUDO_CALL 1 265 266/* flags for BPF_MAP_UPDATE_ELEM command */ 267#define BPF_ANY 0 /* create new element or update existing */ 268#define BPF_NOEXIST 1 /* create new element if it didn't exist */ 269#define BPF_EXIST 2 /* update existing element */ 270#define BPF_F_LOCK 4 /* spin_lock-ed map_lookup/map_update */ 271 272/* flags for BPF_MAP_CREATE command */ 273#define BPF_F_NO_PREALLOC (1U << 0) 274/* Instead of having one common LRU list in the 275 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 276 * which can scale and perform better. 277 * Note, the LRU nodes (including free nodes) cannot be moved 278 * across different LRU lists. 279 */ 280#define BPF_F_NO_COMMON_LRU (1U << 1) 281/* Specify numa node during map creation */ 282#define BPF_F_NUMA_NODE (1U << 2) 283 284#define BPF_OBJ_NAME_LEN 16U 285 286/* Flags for accessing BPF object */ 287#define BPF_F_RDONLY (1U << 3) 288#define BPF_F_WRONLY (1U << 4) 289 290/* Flag for stack_map, store build_id+offset instead of pointer */ 291#define BPF_F_STACK_BUILD_ID (1U << 5) 292 293/* Zero-initialize hash function seed. This should only be used for testing. */ 294#define BPF_F_ZERO_SEED (1U << 6) 295 296/* flags for BPF_PROG_QUERY */ 297#define BPF_F_QUERY_EFFECTIVE (1U << 0) 298 299enum bpf_stack_build_id_status { 300 /* user space need an empty entry to identify end of a trace */ 301 BPF_STACK_BUILD_ID_EMPTY = 0, 302 /* with valid build_id and offset */ 303 BPF_STACK_BUILD_ID_VALID = 1, 304 /* couldn't get build_id, fallback to ip */ 305 BPF_STACK_BUILD_ID_IP = 2, 306}; 307 308#define BPF_BUILD_ID_SIZE 20 309struct bpf_stack_build_id { 310 __s32 status; 311 unsigned char build_id[BPF_BUILD_ID_SIZE]; 312 union { 313 __u64 offset; 314 __u64 ip; 315 }; 316}; 317 318union bpf_attr { 319 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 320 __u32 map_type; /* one of enum bpf_map_type */ 321 __u32 key_size; /* size of key in bytes */ 322 __u32 value_size; /* size of value in bytes */ 323 __u32 max_entries; /* max number of entries in a map */ 324 __u32 map_flags; /* BPF_MAP_CREATE related 325 * flags defined above. 326 */ 327 __u32 inner_map_fd; /* fd pointing to the inner map */ 328 __u32 numa_node; /* numa node (effective only if 329 * BPF_F_NUMA_NODE is set). 330 */ 331 char map_name[BPF_OBJ_NAME_LEN]; 332 __u32 map_ifindex; /* ifindex of netdev to create on */ 333 __u32 btf_fd; /* fd pointing to a BTF type data */ 334 __u32 btf_key_type_id; /* BTF type_id of the key */ 335 __u32 btf_value_type_id; /* BTF type_id of the value */ 336 }; 337 338 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 339 __u32 map_fd; 340 __aligned_u64 key; 341 union { 342 __aligned_u64 value; 343 __aligned_u64 next_key; 344 }; 345 __u64 flags; 346 }; 347 348 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 349 __u32 prog_type; /* one of enum bpf_prog_type */ 350 __u32 insn_cnt; 351 __aligned_u64 insns; 352 __aligned_u64 license; 353 __u32 log_level; /* verbosity level of verifier */ 354 __u32 log_size; /* size of user buffer */ 355 __aligned_u64 log_buf; /* user supplied buffer */ 356 __u32 kern_version; /* not used */ 357 __u32 prog_flags; 358 char prog_name[BPF_OBJ_NAME_LEN]; 359 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 360 /* For some prog types expected attach type must be known at 361 * load time to verify attach type specific parts of prog 362 * (context accesses, allowed helpers, etc). 363 */ 364 __u32 expected_attach_type; 365 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 366 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 367 __aligned_u64 func_info; /* func info */ 368 __u32 func_info_cnt; /* number of bpf_func_info records */ 369 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 370 __aligned_u64 line_info; /* line info */ 371 __u32 line_info_cnt; /* number of bpf_line_info records */ 372 }; 373 374 struct { /* anonymous struct used by BPF_OBJ_* commands */ 375 __aligned_u64 pathname; 376 __u32 bpf_fd; 377 __u32 file_flags; 378 }; 379 380 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 381 __u32 target_fd; /* container object to attach to */ 382 __u32 attach_bpf_fd; /* eBPF program to attach */ 383 __u32 attach_type; 384 __u32 attach_flags; 385 }; 386 387 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 388 __u32 prog_fd; 389 __u32 retval; 390 __u32 data_size_in; /* input: len of data_in */ 391 __u32 data_size_out; /* input/output: len of data_out 392 * returns ENOSPC if data_out 393 * is too small. 394 */ 395 __aligned_u64 data_in; 396 __aligned_u64 data_out; 397 __u32 repeat; 398 __u32 duration; 399 } test; 400 401 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 402 union { 403 __u32 start_id; 404 __u32 prog_id; 405 __u32 map_id; 406 __u32 btf_id; 407 }; 408 __u32 next_id; 409 __u32 open_flags; 410 }; 411 412 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 413 __u32 bpf_fd; 414 __u32 info_len; 415 __aligned_u64 info; 416 } info; 417 418 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 419 __u32 target_fd; /* container object to query */ 420 __u32 attach_type; 421 __u32 query_flags; 422 __u32 attach_flags; 423 __aligned_u64 prog_ids; 424 __u32 prog_cnt; 425 } query; 426 427 struct { 428 __u64 name; 429 __u32 prog_fd; 430 } raw_tracepoint; 431 432 struct { /* anonymous struct for BPF_BTF_LOAD */ 433 __aligned_u64 btf; 434 __aligned_u64 btf_log_buf; 435 __u32 btf_size; 436 __u32 btf_log_size; 437 __u32 btf_log_level; 438 }; 439 440 struct { 441 __u32 pid; /* input: pid */ 442 __u32 fd; /* input: fd */ 443 __u32 flags; /* input: flags */ 444 __u32 buf_len; /* input/output: buf len */ 445 __aligned_u64 buf; /* input/output: 446 * tp_name for tracepoint 447 * symbol for kprobe 448 * filename for uprobe 449 */ 450 __u32 prog_id; /* output: prod_id */ 451 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 452 __u64 probe_offset; /* output: probe_offset */ 453 __u64 probe_addr; /* output: probe_addr */ 454 } task_fd_query; 455} __attribute__((aligned(8))); 456 457/* The description below is an attempt at providing documentation to eBPF 458 * developers about the multiple available eBPF helper functions. It can be 459 * parsed and used to produce a manual page. The workflow is the following, 460 * and requires the rst2man utility: 461 * 462 * $ ./scripts/bpf_helpers_doc.py \ 463 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 464 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 465 * $ man /tmp/bpf-helpers.7 466 * 467 * Note that in order to produce this external documentation, some RST 468 * formatting is used in the descriptions to get "bold" and "italics" in 469 * manual pages. Also note that the few trailing white spaces are 470 * intentional, removing them would break paragraphs for rst2man. 471 * 472 * Start of BPF helper function descriptions: 473 * 474 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 475 * Description 476 * Perform a lookup in *map* for an entry associated to *key*. 477 * Return 478 * Map value associated to *key*, or **NULL** if no entry was 479 * found. 480 * 481 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 482 * Description 483 * Add or update the value of the entry associated to *key* in 484 * *map* with *value*. *flags* is one of: 485 * 486 * **BPF_NOEXIST** 487 * The entry for *key* must not exist in the map. 488 * **BPF_EXIST** 489 * The entry for *key* must already exist in the map. 490 * **BPF_ANY** 491 * No condition on the existence of the entry for *key*. 492 * 493 * Flag value **BPF_NOEXIST** cannot be used for maps of types 494 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 495 * elements always exist), the helper would return an error. 496 * Return 497 * 0 on success, or a negative error in case of failure. 498 * 499 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 500 * Description 501 * Delete entry with *key* from *map*. 502 * Return 503 * 0 on success, or a negative error in case of failure. 504 * 505 * int bpf_probe_read(void *dst, u32 size, const void *src) 506 * Description 507 * For tracing programs, safely attempt to read *size* bytes from 508 * address *src* and store the data in *dst*. 509 * Return 510 * 0 on success, or a negative error in case of failure. 511 * 512 * u64 bpf_ktime_get_ns(void) 513 * Description 514 * Return the time elapsed since system boot, in nanoseconds. 515 * Return 516 * Current *ktime*. 517 * 518 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 519 * Description 520 * This helper is a "printk()-like" facility for debugging. It 521 * prints a message defined by format *fmt* (of size *fmt_size*) 522 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 523 * available. It can take up to three additional **u64** 524 * arguments (as an eBPF helpers, the total number of arguments is 525 * limited to five). 526 * 527 * Each time the helper is called, it appends a line to the trace. 528 * The format of the trace is customizable, and the exact output 529 * one will get depends on the options set in 530 * *\/sys/kernel/debug/tracing/trace_options* (see also the 531 * *README* file under the same directory). However, it usually 532 * defaults to something like: 533 * 534 * :: 535 * 536 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 537 * 538 * In the above: 539 * 540 * * ``telnet`` is the name of the current task. 541 * * ``470`` is the PID of the current task. 542 * * ``001`` is the CPU number on which the task is 543 * running. 544 * * In ``.N..``, each character refers to a set of 545 * options (whether irqs are enabled, scheduling 546 * options, whether hard/softirqs are running, level of 547 * preempt_disabled respectively). **N** means that 548 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 549 * are set. 550 * * ``419421.045894`` is a timestamp. 551 * * ``0x00000001`` is a fake value used by BPF for the 552 * instruction pointer register. 553 * * ``<formatted msg>`` is the message formatted with 554 * *fmt*. 555 * 556 * The conversion specifiers supported by *fmt* are similar, but 557 * more limited than for printk(). They are **%d**, **%i**, 558 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 559 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 560 * of field, padding with zeroes, etc.) is available, and the 561 * helper will return **-EINVAL** (but print nothing) if it 562 * encounters an unknown specifier. 563 * 564 * Also, note that **bpf_trace_printk**\ () is slow, and should 565 * only be used for debugging purposes. For this reason, a notice 566 * bloc (spanning several lines) is printed to kernel logs and 567 * states that the helper should not be used "for production use" 568 * the first time this helper is used (or more precisely, when 569 * **trace_printk**\ () buffers are allocated). For passing values 570 * to user space, perf events should be preferred. 571 * Return 572 * The number of bytes written to the buffer, or a negative error 573 * in case of failure. 574 * 575 * u32 bpf_get_prandom_u32(void) 576 * Description 577 * Get a pseudo-random number. 578 * 579 * From a security point of view, this helper uses its own 580 * pseudo-random internal state, and cannot be used to infer the 581 * seed of other random functions in the kernel. However, it is 582 * essential to note that the generator used by the helper is not 583 * cryptographically secure. 584 * Return 585 * A random 32-bit unsigned value. 586 * 587 * u32 bpf_get_smp_processor_id(void) 588 * Description 589 * Get the SMP (symmetric multiprocessing) processor id. Note that 590 * all programs run with preemption disabled, which means that the 591 * SMP processor id is stable during all the execution of the 592 * program. 593 * Return 594 * The SMP id of the processor running the program. 595 * 596 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 597 * Description 598 * Store *len* bytes from address *from* into the packet 599 * associated to *skb*, at *offset*. *flags* are a combination of 600 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 601 * checksum for the packet after storing the bytes) and 602 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 603 * **->swhash** and *skb*\ **->l4hash** to 0). 604 * 605 * A call to this helper is susceptible to change the underlaying 606 * packet buffer. Therefore, at load time, all checks on pointers 607 * previously done by the verifier are invalidated and must be 608 * performed again, if the helper is used in combination with 609 * direct packet access. 610 * Return 611 * 0 on success, or a negative error in case of failure. 612 * 613 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 614 * Description 615 * Recompute the layer 3 (e.g. IP) checksum for the packet 616 * associated to *skb*. Computation is incremental, so the helper 617 * must know the former value of the header field that was 618 * modified (*from*), the new value of this field (*to*), and the 619 * number of bytes (2 or 4) for this field, stored in *size*. 620 * Alternatively, it is possible to store the difference between 621 * the previous and the new values of the header field in *to*, by 622 * setting *from* and *size* to 0. For both methods, *offset* 623 * indicates the location of the IP checksum within the packet. 624 * 625 * This helper works in combination with **bpf_csum_diff**\ (), 626 * which does not update the checksum in-place, but offers more 627 * flexibility and can handle sizes larger than 2 or 4 for the 628 * checksum to update. 629 * 630 * A call to this helper is susceptible to change the underlaying 631 * packet buffer. Therefore, at load time, all checks on pointers 632 * previously done by the verifier are invalidated and must be 633 * performed again, if the helper is used in combination with 634 * direct packet access. 635 * Return 636 * 0 on success, or a negative error in case of failure. 637 * 638 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 639 * Description 640 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 641 * packet associated to *skb*. Computation is incremental, so the 642 * helper must know the former value of the header field that was 643 * modified (*from*), the new value of this field (*to*), and the 644 * number of bytes (2 or 4) for this field, stored on the lowest 645 * four bits of *flags*. Alternatively, it is possible to store 646 * the difference between the previous and the new values of the 647 * header field in *to*, by setting *from* and the four lowest 648 * bits of *flags* to 0. For both methods, *offset* indicates the 649 * location of the IP checksum within the packet. In addition to 650 * the size of the field, *flags* can be added (bitwise OR) actual 651 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 652 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 653 * for updates resulting in a null checksum the value is set to 654 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 655 * the checksum is to be computed against a pseudo-header. 656 * 657 * This helper works in combination with **bpf_csum_diff**\ (), 658 * which does not update the checksum in-place, but offers more 659 * flexibility and can handle sizes larger than 2 or 4 for the 660 * checksum to update. 661 * 662 * A call to this helper is susceptible to change the underlaying 663 * packet buffer. Therefore, at load time, all checks on pointers 664 * previously done by the verifier are invalidated and must be 665 * performed again, if the helper is used in combination with 666 * direct packet access. 667 * Return 668 * 0 on success, or a negative error in case of failure. 669 * 670 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 671 * Description 672 * This special helper is used to trigger a "tail call", or in 673 * other words, to jump into another eBPF program. The same stack 674 * frame is used (but values on stack and in registers for the 675 * caller are not accessible to the callee). This mechanism allows 676 * for program chaining, either for raising the maximum number of 677 * available eBPF instructions, or to execute given programs in 678 * conditional blocks. For security reasons, there is an upper 679 * limit to the number of successive tail calls that can be 680 * performed. 681 * 682 * Upon call of this helper, the program attempts to jump into a 683 * program referenced at index *index* in *prog_array_map*, a 684 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 685 * *ctx*, a pointer to the context. 686 * 687 * If the call succeeds, the kernel immediately runs the first 688 * instruction of the new program. This is not a function call, 689 * and it never returns to the previous program. If the call 690 * fails, then the helper has no effect, and the caller continues 691 * to run its subsequent instructions. A call can fail if the 692 * destination program for the jump does not exist (i.e. *index* 693 * is superior to the number of entries in *prog_array_map*), or 694 * if the maximum number of tail calls has been reached for this 695 * chain of programs. This limit is defined in the kernel by the 696 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 697 * which is currently set to 32. 698 * Return 699 * 0 on success, or a negative error in case of failure. 700 * 701 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 702 * Description 703 * Clone and redirect the packet associated to *skb* to another 704 * net device of index *ifindex*. Both ingress and egress 705 * interfaces can be used for redirection. The **BPF_F_INGRESS** 706 * value in *flags* is used to make the distinction (ingress path 707 * is selected if the flag is present, egress path otherwise). 708 * This is the only flag supported for now. 709 * 710 * In comparison with **bpf_redirect**\ () helper, 711 * **bpf_clone_redirect**\ () has the associated cost of 712 * duplicating the packet buffer, but this can be executed out of 713 * the eBPF program. Conversely, **bpf_redirect**\ () is more 714 * efficient, but it is handled through an action code where the 715 * redirection happens only after the eBPF program has returned. 716 * 717 * A call to this helper is susceptible to change the underlaying 718 * packet buffer. Therefore, at load time, all checks on pointers 719 * previously done by the verifier are invalidated and must be 720 * performed again, if the helper is used in combination with 721 * direct packet access. 722 * Return 723 * 0 on success, or a negative error in case of failure. 724 * 725 * u64 bpf_get_current_pid_tgid(void) 726 * Return 727 * A 64-bit integer containing the current tgid and pid, and 728 * created as such: 729 * *current_task*\ **->tgid << 32 \|** 730 * *current_task*\ **->pid**. 731 * 732 * u64 bpf_get_current_uid_gid(void) 733 * Return 734 * A 64-bit integer containing the current GID and UID, and 735 * created as such: *current_gid* **<< 32 \|** *current_uid*. 736 * 737 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 738 * Description 739 * Copy the **comm** attribute of the current task into *buf* of 740 * *size_of_buf*. The **comm** attribute contains the name of 741 * the executable (excluding the path) for the current task. The 742 * *size_of_buf* must be strictly positive. On success, the 743 * helper makes sure that the *buf* is NUL-terminated. On failure, 744 * it is filled with zeroes. 745 * Return 746 * 0 on success, or a negative error in case of failure. 747 * 748 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 749 * Description 750 * Retrieve the classid for the current task, i.e. for the net_cls 751 * cgroup to which *skb* belongs. 752 * 753 * This helper can be used on TC egress path, but not on ingress. 754 * 755 * The net_cls cgroup provides an interface to tag network packets 756 * based on a user-provided identifier for all traffic coming from 757 * the tasks belonging to the related cgroup. See also the related 758 * kernel documentation, available from the Linux sources in file 759 * *Documentation/cgroup-v1/net_cls.txt*. 760 * 761 * The Linux kernel has two versions for cgroups: there are 762 * cgroups v1 and cgroups v2. Both are available to users, who can 763 * use a mixture of them, but note that the net_cls cgroup is for 764 * cgroup v1 only. This makes it incompatible with BPF programs 765 * run on cgroups, which is a cgroup-v2-only feature (a socket can 766 * only hold data for one version of cgroups at a time). 767 * 768 * This helper is only available is the kernel was compiled with 769 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 770 * "**y**" or to "**m**". 771 * Return 772 * The classid, or 0 for the default unconfigured classid. 773 * 774 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 775 * Description 776 * Push a *vlan_tci* (VLAN tag control information) of protocol 777 * *vlan_proto* to the packet associated to *skb*, then update 778 * the checksum. Note that if *vlan_proto* is different from 779 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 780 * be **ETH_P_8021Q**. 781 * 782 * A call to this helper is susceptible to change the underlaying 783 * packet buffer. Therefore, at load time, all checks on pointers 784 * previously done by the verifier are invalidated and must be 785 * performed again, if the helper is used in combination with 786 * direct packet access. 787 * Return 788 * 0 on success, or a negative error in case of failure. 789 * 790 * int bpf_skb_vlan_pop(struct sk_buff *skb) 791 * Description 792 * Pop a VLAN header from the packet associated to *skb*. 793 * 794 * A call to this helper is susceptible to change the underlaying 795 * packet buffer. Therefore, at load time, all checks on pointers 796 * previously done by the verifier are invalidated and must be 797 * performed again, if the helper is used in combination with 798 * direct packet access. 799 * Return 800 * 0 on success, or a negative error in case of failure. 801 * 802 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 803 * Description 804 * Get tunnel metadata. This helper takes a pointer *key* to an 805 * empty **struct bpf_tunnel_key** of **size**, that will be 806 * filled with tunnel metadata for the packet associated to *skb*. 807 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 808 * indicates that the tunnel is based on IPv6 protocol instead of 809 * IPv4. 810 * 811 * The **struct bpf_tunnel_key** is an object that generalizes the 812 * principal parameters used by various tunneling protocols into a 813 * single struct. This way, it can be used to easily make a 814 * decision based on the contents of the encapsulation header, 815 * "summarized" in this struct. In particular, it holds the IP 816 * address of the remote end (IPv4 or IPv6, depending on the case) 817 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 818 * this struct exposes the *key*\ **->tunnel_id**, which is 819 * generally mapped to a VNI (Virtual Network Identifier), making 820 * it programmable together with the **bpf_skb_set_tunnel_key**\ 821 * () helper. 822 * 823 * Let's imagine that the following code is part of a program 824 * attached to the TC ingress interface, on one end of a GRE 825 * tunnel, and is supposed to filter out all messages coming from 826 * remote ends with IPv4 address other than 10.0.0.1: 827 * 828 * :: 829 * 830 * int ret; 831 * struct bpf_tunnel_key key = {}; 832 * 833 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 834 * if (ret < 0) 835 * return TC_ACT_SHOT; // drop packet 836 * 837 * if (key.remote_ipv4 != 0x0a000001) 838 * return TC_ACT_SHOT; // drop packet 839 * 840 * return TC_ACT_OK; // accept packet 841 * 842 * This interface can also be used with all encapsulation devices 843 * that can operate in "collect metadata" mode: instead of having 844 * one network device per specific configuration, the "collect 845 * metadata" mode only requires a single device where the 846 * configuration can be extracted from this helper. 847 * 848 * This can be used together with various tunnels such as VXLan, 849 * Geneve, GRE or IP in IP (IPIP). 850 * Return 851 * 0 on success, or a negative error in case of failure. 852 * 853 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 854 * Description 855 * Populate tunnel metadata for packet associated to *skb.* The 856 * tunnel metadata is set to the contents of *key*, of *size*. The 857 * *flags* can be set to a combination of the following values: 858 * 859 * **BPF_F_TUNINFO_IPV6** 860 * Indicate that the tunnel is based on IPv6 protocol 861 * instead of IPv4. 862 * **BPF_F_ZERO_CSUM_TX** 863 * For IPv4 packets, add a flag to tunnel metadata 864 * indicating that checksum computation should be skipped 865 * and checksum set to zeroes. 866 * **BPF_F_DONT_FRAGMENT** 867 * Add a flag to tunnel metadata indicating that the 868 * packet should not be fragmented. 869 * **BPF_F_SEQ_NUMBER** 870 * Add a flag to tunnel metadata indicating that a 871 * sequence number should be added to tunnel header before 872 * sending the packet. This flag was added for GRE 873 * encapsulation, but might be used with other protocols 874 * as well in the future. 875 * 876 * Here is a typical usage on the transmit path: 877 * 878 * :: 879 * 880 * struct bpf_tunnel_key key; 881 * populate key ... 882 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 883 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 884 * 885 * See also the description of the **bpf_skb_get_tunnel_key**\ () 886 * helper for additional information. 887 * Return 888 * 0 on success, or a negative error in case of failure. 889 * 890 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 891 * Description 892 * Read the value of a perf event counter. This helper relies on a 893 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 894 * the perf event counter is selected when *map* is updated with 895 * perf event file descriptors. The *map* is an array whose size 896 * is the number of available CPUs, and each cell contains a value 897 * relative to one CPU. The value to retrieve is indicated by 898 * *flags*, that contains the index of the CPU to look up, masked 899 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 900 * **BPF_F_CURRENT_CPU** to indicate that the value for the 901 * current CPU should be retrieved. 902 * 903 * Note that before Linux 4.13, only hardware perf event can be 904 * retrieved. 905 * 906 * Also, be aware that the newer helper 907 * **bpf_perf_event_read_value**\ () is recommended over 908 * **bpf_perf_event_read**\ () in general. The latter has some ABI 909 * quirks where error and counter value are used as a return code 910 * (which is wrong to do since ranges may overlap). This issue is 911 * fixed with **bpf_perf_event_read_value**\ (), which at the same 912 * time provides more features over the **bpf_perf_event_read**\ 913 * () interface. Please refer to the description of 914 * **bpf_perf_event_read_value**\ () for details. 915 * Return 916 * The value of the perf event counter read from the map, or a 917 * negative error code in case of failure. 918 * 919 * int bpf_redirect(u32 ifindex, u64 flags) 920 * Description 921 * Redirect the packet to another net device of index *ifindex*. 922 * This helper is somewhat similar to **bpf_clone_redirect**\ 923 * (), except that the packet is not cloned, which provides 924 * increased performance. 925 * 926 * Except for XDP, both ingress and egress interfaces can be used 927 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 928 * to make the distinction (ingress path is selected if the flag 929 * is present, egress path otherwise). Currently, XDP only 930 * supports redirection to the egress interface, and accepts no 931 * flag at all. 932 * 933 * The same effect can be attained with the more generic 934 * **bpf_redirect_map**\ (), which requires specific maps to be 935 * used but offers better performance. 936 * Return 937 * For XDP, the helper returns **XDP_REDIRECT** on success or 938 * **XDP_ABORTED** on error. For other program types, the values 939 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 940 * error. 941 * 942 * u32 bpf_get_route_realm(struct sk_buff *skb) 943 * Description 944 * Retrieve the realm or the route, that is to say the 945 * **tclassid** field of the destination for the *skb*. The 946 * indentifier retrieved is a user-provided tag, similar to the 947 * one used with the net_cls cgroup (see description for 948 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 949 * held by a route (a destination entry), not by a task. 950 * 951 * Retrieving this identifier works with the clsact TC egress hook 952 * (see also **tc-bpf(8)**), or alternatively on conventional 953 * classful egress qdiscs, but not on TC ingress path. In case of 954 * clsact TC egress hook, this has the advantage that, internally, 955 * the destination entry has not been dropped yet in the transmit 956 * path. Therefore, the destination entry does not need to be 957 * artificially held via **netif_keep_dst**\ () for a classful 958 * qdisc until the *skb* is freed. 959 * 960 * This helper is available only if the kernel was compiled with 961 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 962 * Return 963 * The realm of the route for the packet associated to *skb*, or 0 964 * if none was found. 965 * 966 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 967 * Description 968 * Write raw *data* blob into a special BPF perf event held by 969 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 970 * event must have the following attributes: **PERF_SAMPLE_RAW** 971 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 972 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 973 * 974 * The *flags* are used to indicate the index in *map* for which 975 * the value must be put, masked with **BPF_F_INDEX_MASK**. 976 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 977 * to indicate that the index of the current CPU core should be 978 * used. 979 * 980 * The value to write, of *size*, is passed through eBPF stack and 981 * pointed by *data*. 982 * 983 * The context of the program *ctx* needs also be passed to the 984 * helper. 985 * 986 * On user space, a program willing to read the values needs to 987 * call **perf_event_open**\ () on the perf event (either for 988 * one or for all CPUs) and to store the file descriptor into the 989 * *map*. This must be done before the eBPF program can send data 990 * into it. An example is available in file 991 * *samples/bpf/trace_output_user.c* in the Linux kernel source 992 * tree (the eBPF program counterpart is in 993 * *samples/bpf/trace_output_kern.c*). 994 * 995 * **bpf_perf_event_output**\ () achieves better performance 996 * than **bpf_trace_printk**\ () for sharing data with user 997 * space, and is much better suitable for streaming data from eBPF 998 * programs. 999 * 1000 * Note that this helper is not restricted to tracing use cases 1001 * and can be used with programs attached to TC or XDP as well, 1002 * where it allows for passing data to user space listeners. Data 1003 * can be: 1004 * 1005 * * Only custom structs, 1006 * * Only the packet payload, or 1007 * * A combination of both. 1008 * Return 1009 * 0 on success, or a negative error in case of failure. 1010 * 1011 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1012 * Description 1013 * This helper was provided as an easy way to load data from a 1014 * packet. It can be used to load *len* bytes from *offset* from 1015 * the packet associated to *skb*, into the buffer pointed by 1016 * *to*. 1017 * 1018 * Since Linux 4.7, usage of this helper has mostly been replaced 1019 * by "direct packet access", enabling packet data to be 1020 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1021 * pointing respectively to the first byte of packet data and to 1022 * the byte after the last byte of packet data. However, it 1023 * remains useful if one wishes to read large quantities of data 1024 * at once from a packet into the eBPF stack. 1025 * Return 1026 * 0 on success, or a negative error in case of failure. 1027 * 1028 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1029 * Description 1030 * Walk a user or a kernel stack and return its id. To achieve 1031 * this, the helper needs *ctx*, which is a pointer to the context 1032 * on which the tracing program is executed, and a pointer to a 1033 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1034 * 1035 * The last argument, *flags*, holds the number of stack frames to 1036 * skip (from 0 to 255), masked with 1037 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1038 * a combination of the following flags: 1039 * 1040 * **BPF_F_USER_STACK** 1041 * Collect a user space stack instead of a kernel stack. 1042 * **BPF_F_FAST_STACK_CMP** 1043 * Compare stacks by hash only. 1044 * **BPF_F_REUSE_STACKID** 1045 * If two different stacks hash into the same *stackid*, 1046 * discard the old one. 1047 * 1048 * The stack id retrieved is a 32 bit long integer handle which 1049 * can be further combined with other data (including other stack 1050 * ids) and used as a key into maps. This can be useful for 1051 * generating a variety of graphs (such as flame graphs or off-cpu 1052 * graphs). 1053 * 1054 * For walking a stack, this helper is an improvement over 1055 * **bpf_probe_read**\ (), which can be used with unrolled loops 1056 * but is not efficient and consumes a lot of eBPF instructions. 1057 * Instead, **bpf_get_stackid**\ () can collect up to 1058 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1059 * this limit can be controlled with the **sysctl** program, and 1060 * that it should be manually increased in order to profile long 1061 * user stacks (such as stacks for Java programs). To do so, use: 1062 * 1063 * :: 1064 * 1065 * # sysctl kernel.perf_event_max_stack=<new value> 1066 * Return 1067 * The positive or null stack id on success, or a negative error 1068 * in case of failure. 1069 * 1070 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1071 * Description 1072 * Compute a checksum difference, from the raw buffer pointed by 1073 * *from*, of length *from_size* (that must be a multiple of 4), 1074 * towards the raw buffer pointed by *to*, of size *to_size* 1075 * (same remark). An optional *seed* can be added to the value 1076 * (this can be cascaded, the seed may come from a previous call 1077 * to the helper). 1078 * 1079 * This is flexible enough to be used in several ways: 1080 * 1081 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1082 * checksum, it can be used when pushing new data. 1083 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1084 * checksum, it can be used when removing data from a packet. 1085 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1086 * can be used to compute a diff. Note that *from_size* and 1087 * *to_size* do not need to be equal. 1088 * 1089 * This helper can be used in combination with 1090 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1091 * which one can feed in the difference computed with 1092 * **bpf_csum_diff**\ (). 1093 * Return 1094 * The checksum result, or a negative error code in case of 1095 * failure. 1096 * 1097 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1098 * Description 1099 * Retrieve tunnel options metadata for the packet associated to 1100 * *skb*, and store the raw tunnel option data to the buffer *opt* 1101 * of *size*. 1102 * 1103 * This helper can be used with encapsulation devices that can 1104 * operate in "collect metadata" mode (please refer to the related 1105 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1106 * more details). A particular example where this can be used is 1107 * in combination with the Geneve encapsulation protocol, where it 1108 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1109 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1110 * the eBPF program. This allows for full customization of these 1111 * headers. 1112 * Return 1113 * The size of the option data retrieved. 1114 * 1115 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1116 * Description 1117 * Set tunnel options metadata for the packet associated to *skb* 1118 * to the option data contained in the raw buffer *opt* of *size*. 1119 * 1120 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1121 * helper for additional information. 1122 * Return 1123 * 0 on success, or a negative error in case of failure. 1124 * 1125 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1126 * Description 1127 * Change the protocol of the *skb* to *proto*. Currently 1128 * supported are transition from IPv4 to IPv6, and from IPv6 to 1129 * IPv4. The helper takes care of the groundwork for the 1130 * transition, including resizing the socket buffer. The eBPF 1131 * program is expected to fill the new headers, if any, via 1132 * **skb_store_bytes**\ () and to recompute the checksums with 1133 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1134 * (). The main case for this helper is to perform NAT64 1135 * operations out of an eBPF program. 1136 * 1137 * Internally, the GSO type is marked as dodgy so that headers are 1138 * checked and segments are recalculated by the GSO/GRO engine. 1139 * The size for GSO target is adapted as well. 1140 * 1141 * All values for *flags* are reserved for future usage, and must 1142 * be left at zero. 1143 * 1144 * A call to this helper is susceptible to change the underlaying 1145 * packet buffer. Therefore, at load time, all checks on pointers 1146 * previously done by the verifier are invalidated and must be 1147 * performed again, if the helper is used in combination with 1148 * direct packet access. 1149 * Return 1150 * 0 on success, or a negative error in case of failure. 1151 * 1152 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1153 * Description 1154 * Change the packet type for the packet associated to *skb*. This 1155 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1156 * the eBPF program does not have a write access to *skb*\ 1157 * **->pkt_type** beside this helper. Using a helper here allows 1158 * for graceful handling of errors. 1159 * 1160 * The major use case is to change incoming *skb*s to 1161 * **PACKET_HOST** in a programmatic way instead of having to 1162 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1163 * example. 1164 * 1165 * Note that *type* only allows certain values. At this time, they 1166 * are: 1167 * 1168 * **PACKET_HOST** 1169 * Packet is for us. 1170 * **PACKET_BROADCAST** 1171 * Send packet to all. 1172 * **PACKET_MULTICAST** 1173 * Send packet to group. 1174 * **PACKET_OTHERHOST** 1175 * Send packet to someone else. 1176 * Return 1177 * 0 on success, or a negative error in case of failure. 1178 * 1179 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1180 * Description 1181 * Check whether *skb* is a descendant of the cgroup2 held by 1182 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1183 * Return 1184 * The return value depends on the result of the test, and can be: 1185 * 1186 * * 0, if the *skb* failed the cgroup2 descendant test. 1187 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1188 * * A negative error code, if an error occurred. 1189 * 1190 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1191 * Description 1192 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1193 * not set, in particular if the hash was cleared due to mangling, 1194 * recompute this hash. Later accesses to the hash can be done 1195 * directly with *skb*\ **->hash**. 1196 * 1197 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1198 * prototype with **bpf_skb_change_proto**\ (), or calling 1199 * **bpf_skb_store_bytes**\ () with the 1200 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1201 * the hash and to trigger a new computation for the next call to 1202 * **bpf_get_hash_recalc**\ (). 1203 * Return 1204 * The 32-bit hash. 1205 * 1206 * u64 bpf_get_current_task(void) 1207 * Return 1208 * A pointer to the current task struct. 1209 * 1210 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1211 * Description 1212 * Attempt in a safe way to write *len* bytes from the buffer 1213 * *src* to *dst* in memory. It only works for threads that are in 1214 * user context, and *dst* must be a valid user space address. 1215 * 1216 * This helper should not be used to implement any kind of 1217 * security mechanism because of TOC-TOU attacks, but rather to 1218 * debug, divert, and manipulate execution of semi-cooperative 1219 * processes. 1220 * 1221 * Keep in mind that this feature is meant for experiments, and it 1222 * has a risk of crashing the system and running programs. 1223 * Therefore, when an eBPF program using this helper is attached, 1224 * a warning including PID and process name is printed to kernel 1225 * logs. 1226 * Return 1227 * 0 on success, or a negative error in case of failure. 1228 * 1229 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1230 * Description 1231 * Check whether the probe is being run is the context of a given 1232 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1233 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1234 * Return 1235 * The return value depends on the result of the test, and can be: 1236 * 1237 * * 0, if the *skb* task belongs to the cgroup2. 1238 * * 1, if the *skb* task does not belong to the cgroup2. 1239 * * A negative error code, if an error occurred. 1240 * 1241 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1242 * Description 1243 * Resize (trim or grow) the packet associated to *skb* to the 1244 * new *len*. The *flags* are reserved for future usage, and must 1245 * be left at zero. 1246 * 1247 * The basic idea is that the helper performs the needed work to 1248 * change the size of the packet, then the eBPF program rewrites 1249 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1250 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1251 * and others. This helper is a slow path utility intended for 1252 * replies with control messages. And because it is targeted for 1253 * slow path, the helper itself can afford to be slow: it 1254 * implicitly linearizes, unclones and drops offloads from the 1255 * *skb*. 1256 * 1257 * A call to this helper is susceptible to change the underlaying 1258 * packet buffer. Therefore, at load time, all checks on pointers 1259 * previously done by the verifier are invalidated and must be 1260 * performed again, if the helper is used in combination with 1261 * direct packet access. 1262 * Return 1263 * 0 on success, or a negative error in case of failure. 1264 * 1265 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1266 * Description 1267 * Pull in non-linear data in case the *skb* is non-linear and not 1268 * all of *len* are part of the linear section. Make *len* bytes 1269 * from *skb* readable and writable. If a zero value is passed for 1270 * *len*, then the whole length of the *skb* is pulled. 1271 * 1272 * This helper is only needed for reading and writing with direct 1273 * packet access. 1274 * 1275 * For direct packet access, testing that offsets to access 1276 * are within packet boundaries (test on *skb*\ **->data_end**) is 1277 * susceptible to fail if offsets are invalid, or if the requested 1278 * data is in non-linear parts of the *skb*. On failure the 1279 * program can just bail out, or in the case of a non-linear 1280 * buffer, use a helper to make the data available. The 1281 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1282 * the data. Another one consists in using **bpf_skb_pull_data** 1283 * to pull in once the non-linear parts, then retesting and 1284 * eventually access the data. 1285 * 1286 * At the same time, this also makes sure the *skb* is uncloned, 1287 * which is a necessary condition for direct write. As this needs 1288 * to be an invariant for the write part only, the verifier 1289 * detects writes and adds a prologue that is calling 1290 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1291 * the very beginning in case it is indeed cloned. 1292 * 1293 * A call to this helper is susceptible to change the underlaying 1294 * packet buffer. Therefore, at load time, all checks on pointers 1295 * previously done by the verifier are invalidated and must be 1296 * performed again, if the helper is used in combination with 1297 * direct packet access. 1298 * Return 1299 * 0 on success, or a negative error in case of failure. 1300 * 1301 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1302 * Description 1303 * Add the checksum *csum* into *skb*\ **->csum** in case the 1304 * driver has supplied a checksum for the entire packet into that 1305 * field. Return an error otherwise. This helper is intended to be 1306 * used in combination with **bpf_csum_diff**\ (), in particular 1307 * when the checksum needs to be updated after data has been 1308 * written into the packet through direct packet access. 1309 * Return 1310 * The checksum on success, or a negative error code in case of 1311 * failure. 1312 * 1313 * void bpf_set_hash_invalid(struct sk_buff *skb) 1314 * Description 1315 * Invalidate the current *skb*\ **->hash**. It can be used after 1316 * mangling on headers through direct packet access, in order to 1317 * indicate that the hash is outdated and to trigger a 1318 * recalculation the next time the kernel tries to access this 1319 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1320 * 1321 * int bpf_get_numa_node_id(void) 1322 * Description 1323 * Return the id of the current NUMA node. The primary use case 1324 * for this helper is the selection of sockets for the local NUMA 1325 * node, when the program is attached to sockets using the 1326 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1327 * but the helper is also available to other eBPF program types, 1328 * similarly to **bpf_get_smp_processor_id**\ (). 1329 * Return 1330 * The id of current NUMA node. 1331 * 1332 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1333 * Description 1334 * Grows headroom of packet associated to *skb* and adjusts the 1335 * offset of the MAC header accordingly, adding *len* bytes of 1336 * space. It automatically extends and reallocates memory as 1337 * required. 1338 * 1339 * This helper can be used on a layer 3 *skb* to push a MAC header 1340 * for redirection into a layer 2 device. 1341 * 1342 * All values for *flags* are reserved for future usage, and must 1343 * be left at zero. 1344 * 1345 * A call to this helper is susceptible to change the underlaying 1346 * packet buffer. Therefore, at load time, all checks on pointers 1347 * previously done by the verifier are invalidated and must be 1348 * performed again, if the helper is used in combination with 1349 * direct packet access. 1350 * Return 1351 * 0 on success, or a negative error in case of failure. 1352 * 1353 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1354 * Description 1355 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1356 * it is possible to use a negative value for *delta*. This helper 1357 * can be used to prepare the packet for pushing or popping 1358 * headers. 1359 * 1360 * A call to this helper is susceptible to change the underlaying 1361 * packet buffer. Therefore, at load time, all checks on pointers 1362 * previously done by the verifier are invalidated and must be 1363 * performed again, if the helper is used in combination with 1364 * direct packet access. 1365 * Return 1366 * 0 on success, or a negative error in case of failure. 1367 * 1368 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1369 * Description 1370 * Copy a NUL terminated string from an unsafe address 1371 * *unsafe_ptr* to *dst*. The *size* should include the 1372 * terminating NUL byte. In case the string length is smaller than 1373 * *size*, the target is not padded with further NUL bytes. If the 1374 * string length is larger than *size*, just *size*-1 bytes are 1375 * copied and the last byte is set to NUL. 1376 * 1377 * On success, the length of the copied string is returned. This 1378 * makes this helper useful in tracing programs for reading 1379 * strings, and more importantly to get its length at runtime. See 1380 * the following snippet: 1381 * 1382 * :: 1383 * 1384 * SEC("kprobe/sys_open") 1385 * void bpf_sys_open(struct pt_regs *ctx) 1386 * { 1387 * char buf[PATHLEN]; // PATHLEN is defined to 256 1388 * int res = bpf_probe_read_str(buf, sizeof(buf), 1389 * ctx->di); 1390 * 1391 * // Consume buf, for example push it to 1392 * // userspace via bpf_perf_event_output(); we 1393 * // can use res (the string length) as event 1394 * // size, after checking its boundaries. 1395 * } 1396 * 1397 * In comparison, using **bpf_probe_read()** helper here instead 1398 * to read the string would require to estimate the length at 1399 * compile time, and would often result in copying more memory 1400 * than necessary. 1401 * 1402 * Another useful use case is when parsing individual process 1403 * arguments or individual environment variables navigating 1404 * *current*\ **->mm->arg_start** and *current*\ 1405 * **->mm->env_start**: using this helper and the return value, 1406 * one can quickly iterate at the right offset of the memory area. 1407 * Return 1408 * On success, the strictly positive length of the string, 1409 * including the trailing NUL character. On error, a negative 1410 * value. 1411 * 1412 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1413 * Description 1414 * If the **struct sk_buff** pointed by *skb* has a known socket, 1415 * retrieve the cookie (generated by the kernel) of this socket. 1416 * If no cookie has been set yet, generate a new cookie. Once 1417 * generated, the socket cookie remains stable for the life of the 1418 * socket. This helper can be useful for monitoring per socket 1419 * networking traffic statistics as it provides a unique socket 1420 * identifier per namespace. 1421 * Return 1422 * A 8-byte long non-decreasing number on success, or 0 if the 1423 * socket field is missing inside *skb*. 1424 * 1425 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1426 * Description 1427 * Equivalent to bpf_get_socket_cookie() helper that accepts 1428 * *skb*, but gets socket from **struct bpf_sock_addr** context. 1429 * Return 1430 * A 8-byte long non-decreasing number. 1431 * 1432 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1433 * Description 1434 * Equivalent to bpf_get_socket_cookie() helper that accepts 1435 * *skb*, but gets socket from **struct bpf_sock_ops** context. 1436 * Return 1437 * A 8-byte long non-decreasing number. 1438 * 1439 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1440 * Return 1441 * The owner UID of the socket associated to *skb*. If the socket 1442 * is **NULL**, or if it is not a full socket (i.e. if it is a 1443 * time-wait or a request socket instead), **overflowuid** value 1444 * is returned (note that **overflowuid** might also be the actual 1445 * UID value for the socket). 1446 * 1447 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1448 * Description 1449 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1450 * to value *hash*. 1451 * Return 1452 * 0 1453 * 1454 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1455 * Description 1456 * Emulate a call to **setsockopt()** on the socket associated to 1457 * *bpf_socket*, which must be a full socket. The *level* at 1458 * which the option resides and the name *optname* of the option 1459 * must be specified, see **setsockopt(2)** for more information. 1460 * The option value of length *optlen* is pointed by *optval*. 1461 * 1462 * This helper actually implements a subset of **setsockopt()**. 1463 * It supports the following *level*\ s: 1464 * 1465 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1466 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1467 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1468 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1469 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1470 * **TCP_BPF_SNDCWND_CLAMP**. 1471 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1472 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1473 * Return 1474 * 0 on success, or a negative error in case of failure. 1475 * 1476 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1477 * Description 1478 * Grow or shrink the room for data in the packet associated to 1479 * *skb* by *len_diff*, and according to the selected *mode*. 1480 * 1481 * There is a single supported mode at this time: 1482 * 1483 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1484 * (room space is added or removed below the layer 3 header). 1485 * 1486 * All values for *flags* are reserved for future usage, and must 1487 * be left at zero. 1488 * 1489 * A call to this helper is susceptible to change the underlaying 1490 * packet buffer. Therefore, at load time, all checks on pointers 1491 * previously done by the verifier are invalidated and must be 1492 * performed again, if the helper is used in combination with 1493 * direct packet access. 1494 * Return 1495 * 0 on success, or a negative error in case of failure. 1496 * 1497 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1498 * Description 1499 * Redirect the packet to the endpoint referenced by *map* at 1500 * index *key*. Depending on its type, this *map* can contain 1501 * references to net devices (for forwarding packets through other 1502 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1503 * but this is only implemented for native XDP (with driver 1504 * support) as of this writing). 1505 * 1506 * All values for *flags* are reserved for future usage, and must 1507 * be left at zero. 1508 * 1509 * When used to redirect packets to net devices, this helper 1510 * provides a high performance increase over **bpf_redirect**\ (). 1511 * This is due to various implementation details of the underlying 1512 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1513 * () tries to send packet as a "bulk" to the device. 1514 * Return 1515 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1516 * 1517 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1518 * Description 1519 * Redirect the packet to the socket referenced by *map* (of type 1520 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1521 * egress interfaces can be used for redirection. The 1522 * **BPF_F_INGRESS** value in *flags* is used to make the 1523 * distinction (ingress path is selected if the flag is present, 1524 * egress path otherwise). This is the only flag supported for now. 1525 * Return 1526 * **SK_PASS** on success, or **SK_DROP** on error. 1527 * 1528 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1529 * Description 1530 * Add an entry to, or update a *map* referencing sockets. The 1531 * *skops* is used as a new value for the entry associated to 1532 * *key*. *flags* is one of: 1533 * 1534 * **BPF_NOEXIST** 1535 * The entry for *key* must not exist in the map. 1536 * **BPF_EXIST** 1537 * The entry for *key* must already exist in the map. 1538 * **BPF_ANY** 1539 * No condition on the existence of the entry for *key*. 1540 * 1541 * If the *map* has eBPF programs (parser and verdict), those will 1542 * be inherited by the socket being added. If the socket is 1543 * already attached to eBPF programs, this results in an error. 1544 * Return 1545 * 0 on success, or a negative error in case of failure. 1546 * 1547 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1548 * Description 1549 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1550 * *delta* (which can be positive or negative). Note that this 1551 * operation modifies the address stored in *xdp_md*\ **->data**, 1552 * so the latter must be loaded only after the helper has been 1553 * called. 1554 * 1555 * The use of *xdp_md*\ **->data_meta** is optional and programs 1556 * are not required to use it. The rationale is that when the 1557 * packet is processed with XDP (e.g. as DoS filter), it is 1558 * possible to push further meta data along with it before passing 1559 * to the stack, and to give the guarantee that an ingress eBPF 1560 * program attached as a TC classifier on the same device can pick 1561 * this up for further post-processing. Since TC works with socket 1562 * buffers, it remains possible to set from XDP the **mark** or 1563 * **priority** pointers, or other pointers for the socket buffer. 1564 * Having this scratch space generic and programmable allows for 1565 * more flexibility as the user is free to store whatever meta 1566 * data they need. 1567 * 1568 * A call to this helper is susceptible to change the underlaying 1569 * packet buffer. Therefore, at load time, all checks on pointers 1570 * previously done by the verifier are invalidated and must be 1571 * performed again, if the helper is used in combination with 1572 * direct packet access. 1573 * Return 1574 * 0 on success, or a negative error in case of failure. 1575 * 1576 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1577 * Description 1578 * Read the value of a perf event counter, and store it into *buf* 1579 * of size *buf_size*. This helper relies on a *map* of type 1580 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1581 * counter is selected when *map* is updated with perf event file 1582 * descriptors. The *map* is an array whose size is the number of 1583 * available CPUs, and each cell contains a value relative to one 1584 * CPU. The value to retrieve is indicated by *flags*, that 1585 * contains the index of the CPU to look up, masked with 1586 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1587 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1588 * current CPU should be retrieved. 1589 * 1590 * This helper behaves in a way close to 1591 * **bpf_perf_event_read**\ () helper, save that instead of 1592 * just returning the value observed, it fills the *buf* 1593 * structure. This allows for additional data to be retrieved: in 1594 * particular, the enabled and running times (in *buf*\ 1595 * **->enabled** and *buf*\ **->running**, respectively) are 1596 * copied. In general, **bpf_perf_event_read_value**\ () is 1597 * recommended over **bpf_perf_event_read**\ (), which has some 1598 * ABI issues and provides fewer functionalities. 1599 * 1600 * These values are interesting, because hardware PMU (Performance 1601 * Monitoring Unit) counters are limited resources. When there are 1602 * more PMU based perf events opened than available counters, 1603 * kernel will multiplex these events so each event gets certain 1604 * percentage (but not all) of the PMU time. In case that 1605 * multiplexing happens, the number of samples or counter value 1606 * will not reflect the case compared to when no multiplexing 1607 * occurs. This makes comparison between different runs difficult. 1608 * Typically, the counter value should be normalized before 1609 * comparing to other experiments. The usual normalization is done 1610 * as follows. 1611 * 1612 * :: 1613 * 1614 * normalized_counter = counter * t_enabled / t_running 1615 * 1616 * Where t_enabled is the time enabled for event and t_running is 1617 * the time running for event since last normalization. The 1618 * enabled and running times are accumulated since the perf event 1619 * open. To achieve scaling factor between two invocations of an 1620 * eBPF program, users can can use CPU id as the key (which is 1621 * typical for perf array usage model) to remember the previous 1622 * value and do the calculation inside the eBPF program. 1623 * Return 1624 * 0 on success, or a negative error in case of failure. 1625 * 1626 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1627 * Description 1628 * For en eBPF program attached to a perf event, retrieve the 1629 * value of the event counter associated to *ctx* and store it in 1630 * the structure pointed by *buf* and of size *buf_size*. Enabled 1631 * and running times are also stored in the structure (see 1632 * description of helper **bpf_perf_event_read_value**\ () for 1633 * more details). 1634 * Return 1635 * 0 on success, or a negative error in case of failure. 1636 * 1637 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1638 * Description 1639 * Emulate a call to **getsockopt()** on the socket associated to 1640 * *bpf_socket*, which must be a full socket. The *level* at 1641 * which the option resides and the name *optname* of the option 1642 * must be specified, see **getsockopt(2)** for more information. 1643 * The retrieved value is stored in the structure pointed by 1644 * *opval* and of length *optlen*. 1645 * 1646 * This helper actually implements a subset of **getsockopt()**. 1647 * It supports the following *level*\ s: 1648 * 1649 * * **IPPROTO_TCP**, which supports *optname* 1650 * **TCP_CONGESTION**. 1651 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1652 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1653 * Return 1654 * 0 on success, or a negative error in case of failure. 1655 * 1656 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1657 * Description 1658 * Used for error injection, this helper uses kprobes to override 1659 * the return value of the probed function, and to set it to *rc*. 1660 * The first argument is the context *regs* on which the kprobe 1661 * works. 1662 * 1663 * This helper works by setting setting the PC (program counter) 1664 * to an override function which is run in place of the original 1665 * probed function. This means the probed function is not run at 1666 * all. The replacement function just returns with the required 1667 * value. 1668 * 1669 * This helper has security implications, and thus is subject to 1670 * restrictions. It is only available if the kernel was compiled 1671 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1672 * option, and in this case it only works on functions tagged with 1673 * **ALLOW_ERROR_INJECTION** in the kernel code. 1674 * 1675 * Also, the helper is only available for the architectures having 1676 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1677 * x86 architecture is the only one to support this feature. 1678 * Return 1679 * 0 1680 * 1681 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1682 * Description 1683 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1684 * for the full TCP socket associated to *bpf_sock_ops* to 1685 * *argval*. 1686 * 1687 * The primary use of this field is to determine if there should 1688 * be calls to eBPF programs of type 1689 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1690 * code. A program of the same type can change its value, per 1691 * connection and as necessary, when the connection is 1692 * established. This field is directly accessible for reading, but 1693 * this helper must be used for updates in order to return an 1694 * error if an eBPF program tries to set a callback that is not 1695 * supported in the current kernel. 1696 * 1697 * The supported callback values that *argval* can combine are: 1698 * 1699 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1700 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1701 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1702 * 1703 * Here are some examples of where one could call such eBPF 1704 * program: 1705 * 1706 * * When RTO fires. 1707 * * When a packet is retransmitted. 1708 * * When the connection terminates. 1709 * * When a packet is sent. 1710 * * When a packet is received. 1711 * Return 1712 * Code **-EINVAL** if the socket is not a full TCP socket; 1713 * otherwise, a positive number containing the bits that could not 1714 * be set is returned (which comes down to 0 if all bits were set 1715 * as required). 1716 * 1717 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1718 * Description 1719 * This helper is used in programs implementing policies at the 1720 * socket level. If the message *msg* is allowed to pass (i.e. if 1721 * the verdict eBPF program returns **SK_PASS**), redirect it to 1722 * the socket referenced by *map* (of type 1723 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1724 * egress interfaces can be used for redirection. The 1725 * **BPF_F_INGRESS** value in *flags* is used to make the 1726 * distinction (ingress path is selected if the flag is present, 1727 * egress path otherwise). This is the only flag supported for now. 1728 * Return 1729 * **SK_PASS** on success, or **SK_DROP** on error. 1730 * 1731 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1732 * Description 1733 * For socket policies, apply the verdict of the eBPF program to 1734 * the next *bytes* (number of bytes) of message *msg*. 1735 * 1736 * For example, this helper can be used in the following cases: 1737 * 1738 * * A single **sendmsg**\ () or **sendfile**\ () system call 1739 * contains multiple logical messages that the eBPF program is 1740 * supposed to read and for which it should apply a verdict. 1741 * * An eBPF program only cares to read the first *bytes* of a 1742 * *msg*. If the message has a large payload, then setting up 1743 * and calling the eBPF program repeatedly for all bytes, even 1744 * though the verdict is already known, would create unnecessary 1745 * overhead. 1746 * 1747 * When called from within an eBPF program, the helper sets a 1748 * counter internal to the BPF infrastructure, that is used to 1749 * apply the last verdict to the next *bytes*. If *bytes* is 1750 * smaller than the current data being processed from a 1751 * **sendmsg**\ () or **sendfile**\ () system call, the first 1752 * *bytes* will be sent and the eBPF program will be re-run with 1753 * the pointer for start of data pointing to byte number *bytes* 1754 * **+ 1**. If *bytes* is larger than the current data being 1755 * processed, then the eBPF verdict will be applied to multiple 1756 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1757 * consumed. 1758 * 1759 * Note that if a socket closes with the internal counter holding 1760 * a non-zero value, this is not a problem because data is not 1761 * being buffered for *bytes* and is sent as it is received. 1762 * Return 1763 * 0 1764 * 1765 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1766 * Description 1767 * For socket policies, prevent the execution of the verdict eBPF 1768 * program for message *msg* until *bytes* (byte number) have been 1769 * accumulated. 1770 * 1771 * This can be used when one needs a specific number of bytes 1772 * before a verdict can be assigned, even if the data spans 1773 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1774 * case would be a user calling **sendmsg**\ () repeatedly with 1775 * 1-byte long message segments. Obviously, this is bad for 1776 * performance, but it is still valid. If the eBPF program needs 1777 * *bytes* bytes to validate a header, this helper can be used to 1778 * prevent the eBPF program to be called again until *bytes* have 1779 * been accumulated. 1780 * Return 1781 * 0 1782 * 1783 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1784 * Description 1785 * For socket policies, pull in non-linear data from user space 1786 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1787 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1788 * respectively. 1789 * 1790 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1791 * *msg* it can only parse data that the (**data**, **data_end**) 1792 * pointers have already consumed. For **sendmsg**\ () hooks this 1793 * is likely the first scatterlist element. But for calls relying 1794 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1795 * be the range (**0**, **0**) because the data is shared with 1796 * user space and by default the objective is to avoid allowing 1797 * user space to modify data while (or after) eBPF verdict is 1798 * being decided. This helper can be used to pull in data and to 1799 * set the start and end pointer to given values. Data will be 1800 * copied if necessary (i.e. if data was not linear and if start 1801 * and end pointers do not point to the same chunk). 1802 * 1803 * A call to this helper is susceptible to change the underlaying 1804 * packet buffer. Therefore, at load time, all checks on pointers 1805 * previously done by the verifier are invalidated and must be 1806 * performed again, if the helper is used in combination with 1807 * direct packet access. 1808 * 1809 * All values for *flags* are reserved for future usage, and must 1810 * be left at zero. 1811 * Return 1812 * 0 on success, or a negative error in case of failure. 1813 * 1814 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1815 * Description 1816 * Bind the socket associated to *ctx* to the address pointed by 1817 * *addr*, of length *addr_len*. This allows for making outgoing 1818 * connection from the desired IP address, which can be useful for 1819 * example when all processes inside a cgroup should use one 1820 * single IP address on a host that has multiple IP configured. 1821 * 1822 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1823 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1824 * **AF_INET6**). Looking for a free port to bind to can be 1825 * expensive, therefore binding to port is not permitted by the 1826 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1827 * must be set to zero. 1828 * Return 1829 * 0 on success, or a negative error in case of failure. 1830 * 1831 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1832 * Description 1833 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1834 * only possible to shrink the packet as of this writing, 1835 * therefore *delta* must be a negative integer. 1836 * 1837 * A call to this helper is susceptible to change the underlaying 1838 * packet buffer. Therefore, at load time, all checks on pointers 1839 * previously done by the verifier are invalidated and must be 1840 * performed again, if the helper is used in combination with 1841 * direct packet access. 1842 * Return 1843 * 0 on success, or a negative error in case of failure. 1844 * 1845 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1846 * Description 1847 * Retrieve the XFRM state (IP transform framework, see also 1848 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1849 * 1850 * The retrieved value is stored in the **struct bpf_xfrm_state** 1851 * pointed by *xfrm_state* and of length *size*. 1852 * 1853 * All values for *flags* are reserved for future usage, and must 1854 * be left at zero. 1855 * 1856 * This helper is available only if the kernel was compiled with 1857 * **CONFIG_XFRM** configuration option. 1858 * Return 1859 * 0 on success, or a negative error in case of failure. 1860 * 1861 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1862 * Description 1863 * Return a user or a kernel stack in bpf program provided buffer. 1864 * To achieve this, the helper needs *ctx*, which is a pointer 1865 * to the context on which the tracing program is executed. 1866 * To store the stacktrace, the bpf program provides *buf* with 1867 * a nonnegative *size*. 1868 * 1869 * The last argument, *flags*, holds the number of stack frames to 1870 * skip (from 0 to 255), masked with 1871 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1872 * the following flags: 1873 * 1874 * **BPF_F_USER_STACK** 1875 * Collect a user space stack instead of a kernel stack. 1876 * **BPF_F_USER_BUILD_ID** 1877 * Collect buildid+offset instead of ips for user stack, 1878 * only valid if **BPF_F_USER_STACK** is also specified. 1879 * 1880 * **bpf_get_stack**\ () can collect up to 1881 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1882 * to sufficient large buffer size. Note that 1883 * this limit can be controlled with the **sysctl** program, and 1884 * that it should be manually increased in order to profile long 1885 * user stacks (such as stacks for Java programs). To do so, use: 1886 * 1887 * :: 1888 * 1889 * # sysctl kernel.perf_event_max_stack=<new value> 1890 * Return 1891 * A non-negative value equal to or less than *size* on success, 1892 * or a negative error in case of failure. 1893 * 1894 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1895 * Description 1896 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1897 * it provides an easy way to load *len* bytes from *offset* 1898 * from the packet associated to *skb*, into the buffer pointed 1899 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1900 * a fifth argument *start_header* exists in order to select a 1901 * base offset to start from. *start_header* can be one of: 1902 * 1903 * **BPF_HDR_START_MAC** 1904 * Base offset to load data from is *skb*'s mac header. 1905 * **BPF_HDR_START_NET** 1906 * Base offset to load data from is *skb*'s network header. 1907 * 1908 * In general, "direct packet access" is the preferred method to 1909 * access packet data, however, this helper is in particular useful 1910 * in socket filters where *skb*\ **->data** does not always point 1911 * to the start of the mac header and where "direct packet access" 1912 * is not available. 1913 * Return 1914 * 0 on success, or a negative error in case of failure. 1915 * 1916 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1917 * Description 1918 * Do FIB lookup in kernel tables using parameters in *params*. 1919 * If lookup is successful and result shows packet is to be 1920 * forwarded, the neighbor tables are searched for the nexthop. 1921 * If successful (ie., FIB lookup shows forwarding and nexthop 1922 * is resolved), the nexthop address is returned in ipv4_dst 1923 * or ipv6_dst based on family, smac is set to mac address of 1924 * egress device, dmac is set to nexthop mac address, rt_metric 1925 * is set to metric from route (IPv4/IPv6 only), and ifindex 1926 * is set to the device index of the nexthop from the FIB lookup. 1927 * 1928 * *plen* argument is the size of the passed in struct. 1929 * *flags* argument can be a combination of one or more of the 1930 * following values: 1931 * 1932 * **BPF_FIB_LOOKUP_DIRECT** 1933 * Do a direct table lookup vs full lookup using FIB 1934 * rules. 1935 * **BPF_FIB_LOOKUP_OUTPUT** 1936 * Perform lookup from an egress perspective (default is 1937 * ingress). 1938 * 1939 * *ctx* is either **struct xdp_md** for XDP programs or 1940 * **struct sk_buff** tc cls_act programs. 1941 * Return 1942 * * < 0 if any input argument is invalid 1943 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1944 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1945 * packet is not forwarded or needs assist from full stack 1946 * 1947 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1948 * Description 1949 * Add an entry to, or update a sockhash *map* referencing sockets. 1950 * The *skops* is used as a new value for the entry associated to 1951 * *key*. *flags* is one of: 1952 * 1953 * **BPF_NOEXIST** 1954 * The entry for *key* must not exist in the map. 1955 * **BPF_EXIST** 1956 * The entry for *key* must already exist in the map. 1957 * **BPF_ANY** 1958 * No condition on the existence of the entry for *key*. 1959 * 1960 * If the *map* has eBPF programs (parser and verdict), those will 1961 * be inherited by the socket being added. If the socket is 1962 * already attached to eBPF programs, this results in an error. 1963 * Return 1964 * 0 on success, or a negative error in case of failure. 1965 * 1966 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 1967 * Description 1968 * This helper is used in programs implementing policies at the 1969 * socket level. If the message *msg* is allowed to pass (i.e. if 1970 * the verdict eBPF program returns **SK_PASS**), redirect it to 1971 * the socket referenced by *map* (of type 1972 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1973 * egress interfaces can be used for redirection. The 1974 * **BPF_F_INGRESS** value in *flags* is used to make the 1975 * distinction (ingress path is selected if the flag is present, 1976 * egress path otherwise). This is the only flag supported for now. 1977 * Return 1978 * **SK_PASS** on success, or **SK_DROP** on error. 1979 * 1980 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 1981 * Description 1982 * This helper is used in programs implementing policies at the 1983 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 1984 * if the verdeict eBPF program returns **SK_PASS**), redirect it 1985 * to the socket referenced by *map* (of type 1986 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1987 * egress interfaces can be used for redirection. The 1988 * **BPF_F_INGRESS** value in *flags* is used to make the 1989 * distinction (ingress path is selected if the flag is present, 1990 * egress otherwise). This is the only flag supported for now. 1991 * Return 1992 * **SK_PASS** on success, or **SK_DROP** on error. 1993 * 1994 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 1995 * Description 1996 * Encapsulate the packet associated to *skb* within a Layer 3 1997 * protocol header. This header is provided in the buffer at 1998 * address *hdr*, with *len* its size in bytes. *type* indicates 1999 * the protocol of the header and can be one of: 2000 * 2001 * **BPF_LWT_ENCAP_SEG6** 2002 * IPv6 encapsulation with Segment Routing Header 2003 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2004 * the IPv6 header is computed by the kernel. 2005 * **BPF_LWT_ENCAP_SEG6_INLINE** 2006 * Only works if *skb* contains an IPv6 packet. Insert a 2007 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2008 * the IPv6 header. 2009 * **BPF_LWT_ENCAP_IP** 2010 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header 2011 * must be IPv4 or IPv6, followed by zero or more 2012 * additional headers, up to LWT_BPF_MAX_HEADROOM total 2013 * bytes in all prepended headers. Please note that 2014 * if skb_is_gso(skb) is true, no more than two headers 2015 * can be prepended, and the inner header, if present, 2016 * should be either GRE or UDP/GUE. 2017 * 2018 * BPF_LWT_ENCAP_SEG6*** types can be called by bpf programs of 2019 * type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type can be called 2020 * by bpf programs of types BPF_PROG_TYPE_LWT_IN and 2021 * BPF_PROG_TYPE_LWT_XMIT. 2022 * 2023 * A call to this helper is susceptible to change the underlaying 2024 * packet buffer. Therefore, at load time, all checks on pointers 2025 * previously done by the verifier are invalidated and must be 2026 * performed again, if the helper is used in combination with 2027 * direct packet access. 2028 * Return 2029 * 0 on success, or a negative error in case of failure. 2030 * 2031 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2032 * Description 2033 * Store *len* bytes from address *from* into the packet 2034 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2035 * inside the outermost IPv6 Segment Routing Header can be 2036 * modified through this helper. 2037 * 2038 * A call to this helper is susceptible to change the underlaying 2039 * packet buffer. Therefore, at load time, all checks on pointers 2040 * previously done by the verifier are invalidated and must be 2041 * performed again, if the helper is used in combination with 2042 * direct packet access. 2043 * Return 2044 * 0 on success, or a negative error in case of failure. 2045 * 2046 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2047 * Description 2048 * Adjust the size allocated to TLVs in the outermost IPv6 2049 * Segment Routing Header contained in the packet associated to 2050 * *skb*, at position *offset* by *delta* bytes. Only offsets 2051 * after the segments are accepted. *delta* can be as well 2052 * positive (growing) as negative (shrinking). 2053 * 2054 * A call to this helper is susceptible to change the underlaying 2055 * packet buffer. Therefore, at load time, all checks on pointers 2056 * previously done by the verifier are invalidated and must be 2057 * performed again, if the helper is used in combination with 2058 * direct packet access. 2059 * Return 2060 * 0 on success, or a negative error in case of failure. 2061 * 2062 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2063 * Description 2064 * Apply an IPv6 Segment Routing action of type *action* to the 2065 * packet associated to *skb*. Each action takes a parameter 2066 * contained at address *param*, and of length *param_len* bytes. 2067 * *action* can be one of: 2068 * 2069 * **SEG6_LOCAL_ACTION_END_X** 2070 * End.X action: Endpoint with Layer-3 cross-connect. 2071 * Type of *param*: **struct in6_addr**. 2072 * **SEG6_LOCAL_ACTION_END_T** 2073 * End.T action: Endpoint with specific IPv6 table lookup. 2074 * Type of *param*: **int**. 2075 * **SEG6_LOCAL_ACTION_END_B6** 2076 * End.B6 action: Endpoint bound to an SRv6 policy. 2077 * Type of param: **struct ipv6_sr_hdr**. 2078 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2079 * End.B6.Encap action: Endpoint bound to an SRv6 2080 * encapsulation policy. 2081 * Type of param: **struct ipv6_sr_hdr**. 2082 * 2083 * A call to this helper is susceptible to change the underlaying 2084 * packet buffer. Therefore, at load time, all checks on pointers 2085 * previously done by the verifier are invalidated and must be 2086 * performed again, if the helper is used in combination with 2087 * direct packet access. 2088 * Return 2089 * 0 on success, or a negative error in case of failure. 2090 * 2091 * int bpf_rc_repeat(void *ctx) 2092 * Description 2093 * This helper is used in programs implementing IR decoding, to 2094 * report a successfully decoded repeat key message. This delays 2095 * the generation of a key up event for previously generated 2096 * key down event. 2097 * 2098 * Some IR protocols like NEC have a special IR message for 2099 * repeating last button, for when a button is held down. 2100 * 2101 * The *ctx* should point to the lirc sample as passed into 2102 * the program. 2103 * 2104 * This helper is only available is the kernel was compiled with 2105 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2106 * "**y**". 2107 * Return 2108 * 0 2109 * 2110 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2111 * Description 2112 * This helper is used in programs implementing IR decoding, to 2113 * report a successfully decoded key press with *scancode*, 2114 * *toggle* value in the given *protocol*. The scancode will be 2115 * translated to a keycode using the rc keymap, and reported as 2116 * an input key down event. After a period a key up event is 2117 * generated. This period can be extended by calling either 2118 * **bpf_rc_keydown**\ () again with the same values, or calling 2119 * **bpf_rc_repeat**\ (). 2120 * 2121 * Some protocols include a toggle bit, in case the button was 2122 * released and pressed again between consecutive scancodes. 2123 * 2124 * The *ctx* should point to the lirc sample as passed into 2125 * the program. 2126 * 2127 * The *protocol* is the decoded protocol number (see 2128 * **enum rc_proto** for some predefined values). 2129 * 2130 * This helper is only available is the kernel was compiled with 2131 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2132 * "**y**". 2133 * Return 2134 * 0 2135 * 2136 * u64 bpf_skb_cgroup_id(struct sk_buff *skb) 2137 * Description 2138 * Return the cgroup v2 id of the socket associated with the *skb*. 2139 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2140 * helper for cgroup v1 by providing a tag resp. identifier that 2141 * can be matched on or used for map lookups e.g. to implement 2142 * policy. The cgroup v2 id of a given path in the hierarchy is 2143 * exposed in user space through the f_handle API in order to get 2144 * to the same 64-bit id. 2145 * 2146 * This helper can be used on TC egress path, but not on ingress, 2147 * and is available only if the kernel was compiled with the 2148 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2149 * Return 2150 * The id is returned or 0 in case the id could not be retrieved. 2151 * 2152 * u64 bpf_get_current_cgroup_id(void) 2153 * Return 2154 * A 64-bit integer containing the current cgroup id based 2155 * on the cgroup within which the current task is running. 2156 * 2157 * void *bpf_get_local_storage(void *map, u64 flags) 2158 * Description 2159 * Get the pointer to the local storage area. 2160 * The type and the size of the local storage is defined 2161 * by the *map* argument. 2162 * The *flags* meaning is specific for each map type, 2163 * and has to be 0 for cgroup local storage. 2164 * 2165 * Depending on the BPF program type, a local storage area 2166 * can be shared between multiple instances of the BPF program, 2167 * running simultaneously. 2168 * 2169 * A user should care about the synchronization by himself. 2170 * For example, by using the **BPF_STX_XADD** instruction to alter 2171 * the shared data. 2172 * Return 2173 * A pointer to the local storage area. 2174 * 2175 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2176 * Description 2177 * Select a **SO_REUSEPORT** socket from a 2178 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2179 * It checks the selected socket is matching the incoming 2180 * request in the socket buffer. 2181 * Return 2182 * 0 on success, or a negative error in case of failure. 2183 * 2184 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2185 * Description 2186 * Return id of cgroup v2 that is ancestor of cgroup associated 2187 * with the *skb* at the *ancestor_level*. The root cgroup is at 2188 * *ancestor_level* zero and each step down the hierarchy 2189 * increments the level. If *ancestor_level* == level of cgroup 2190 * associated with *skb*, then return value will be same as that 2191 * of **bpf_skb_cgroup_id**\ (). 2192 * 2193 * The helper is useful to implement policies based on cgroups 2194 * that are upper in hierarchy than immediate cgroup associated 2195 * with *skb*. 2196 * 2197 * The format of returned id and helper limitations are same as in 2198 * **bpf_skb_cgroup_id**\ (). 2199 * Return 2200 * The id is returned or 0 in case the id could not be retrieved. 2201 * 2202 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2203 * Description 2204 * Look for TCP socket matching *tuple*, optionally in a child 2205 * network namespace *netns*. The return value must be checked, 2206 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2207 * 2208 * The *ctx* should point to the context of the program, such as 2209 * the skb or socket (depending on the hook in use). This is used 2210 * to determine the base network namespace for the lookup. 2211 * 2212 * *tuple_size* must be one of: 2213 * 2214 * **sizeof**\ (*tuple*\ **->ipv4**) 2215 * Look for an IPv4 socket. 2216 * **sizeof**\ (*tuple*\ **->ipv6**) 2217 * Look for an IPv6 socket. 2218 * 2219 * If the *netns* is a negative signed 32-bit integer, then the 2220 * socket lookup table in the netns associated with the *ctx* will 2221 * will be used. For the TC hooks, this is the netns of the device 2222 * in the skb. For socket hooks, this is the netns of the socket. 2223 * If *netns* is any other signed 32-bit value greater than or 2224 * equal to zero then it specifies the ID of the netns relative to 2225 * the netns associated with the *ctx*. *netns* values beyond the 2226 * range of 32-bit integers are reserved for future use. 2227 * 2228 * All values for *flags* are reserved for future usage, and must 2229 * be left at zero. 2230 * 2231 * This helper is available only if the kernel was compiled with 2232 * **CONFIG_NET** configuration option. 2233 * Return 2234 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2235 * For sockets with reuseport option, the **struct bpf_sock** 2236 * result is from **reuse->socks**\ [] using the hash of the tuple. 2237 * 2238 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2239 * Description 2240 * Look for UDP socket matching *tuple*, optionally in a child 2241 * network namespace *netns*. The return value must be checked, 2242 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2243 * 2244 * The *ctx* should point to the context of the program, such as 2245 * the skb or socket (depending on the hook in use). This is used 2246 * to determine the base network namespace for the lookup. 2247 * 2248 * *tuple_size* must be one of: 2249 * 2250 * **sizeof**\ (*tuple*\ **->ipv4**) 2251 * Look for an IPv4 socket. 2252 * **sizeof**\ (*tuple*\ **->ipv6**) 2253 * Look for an IPv6 socket. 2254 * 2255 * If the *netns* is a negative signed 32-bit integer, then the 2256 * socket lookup table in the netns associated with the *ctx* will 2257 * will be used. For the TC hooks, this is the netns of the device 2258 * in the skb. For socket hooks, this is the netns of the socket. 2259 * If *netns* is any other signed 32-bit value greater than or 2260 * equal to zero then it specifies the ID of the netns relative to 2261 * the netns associated with the *ctx*. *netns* values beyond the 2262 * range of 32-bit integers are reserved for future use. 2263 * 2264 * All values for *flags* are reserved for future usage, and must 2265 * be left at zero. 2266 * 2267 * This helper is available only if the kernel was compiled with 2268 * **CONFIG_NET** configuration option. 2269 * Return 2270 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2271 * For sockets with reuseport option, the **struct bpf_sock** 2272 * result is from **reuse->socks**\ [] using the hash of the tuple. 2273 * 2274 * int bpf_sk_release(struct bpf_sock *sock) 2275 * Description 2276 * Release the reference held by *sock*. *sock* must be a 2277 * non-**NULL** pointer that was returned from 2278 * **bpf_sk_lookup_xxx**\ (). 2279 * Return 2280 * 0 on success, or a negative error in case of failure. 2281 * 2282 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 2283 * Description 2284 * Push an element *value* in *map*. *flags* is one of: 2285 * 2286 * **BPF_EXIST** 2287 * If the queue/stack is full, the oldest element is 2288 * removed to make room for this. 2289 * Return 2290 * 0 on success, or a negative error in case of failure. 2291 * 2292 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2293 * Description 2294 * Pop an element from *map*. 2295 * Return 2296 * 0 on success, or a negative error in case of failure. 2297 * 2298 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2299 * Description 2300 * Get an element from *map* without removing it. 2301 * Return 2302 * 0 on success, or a negative error in case of failure. 2303 * 2304 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2305 * Description 2306 * For socket policies, insert *len* bytes into *msg* at offset 2307 * *start*. 2308 * 2309 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2310 * *msg* it may want to insert metadata or options into the *msg*. 2311 * This can later be read and used by any of the lower layer BPF 2312 * hooks. 2313 * 2314 * This helper may fail if under memory pressure (a malloc 2315 * fails) in these cases BPF programs will get an appropriate 2316 * error and BPF programs will need to handle them. 2317 * Return 2318 * 0 on success, or a negative error in case of failure. 2319 * 2320 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2321 * Description 2322 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2323 * This may result in **ENOMEM** errors under certain situations if 2324 * an allocation and copy are required due to a full ring buffer. 2325 * However, the helper will try to avoid doing the allocation 2326 * if possible. Other errors can occur if input parameters are 2327 * invalid either due to *start* byte not being valid part of *msg* 2328 * payload and/or *pop* value being to large. 2329 * Return 2330 * 0 on success, or a negative error in case of failure. 2331 * 2332 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2333 * Description 2334 * This helper is used in programs implementing IR decoding, to 2335 * report a successfully decoded pointer movement. 2336 * 2337 * The *ctx* should point to the lirc sample as passed into 2338 * the program. 2339 * 2340 * This helper is only available is the kernel was compiled with 2341 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2342 * "**y**". 2343 * Return 2344 * 0 2345 * 2346 * int bpf_spin_lock(struct bpf_spin_lock *lock) 2347 * Description 2348 * Acquire a spinlock represented by the pointer *lock*, which is 2349 * stored as part of a value of a map. Taking the lock allows to 2350 * safely update the rest of the fields in that value. The 2351 * spinlock can (and must) later be released with a call to 2352 * **bpf_spin_unlock**\ (\ *lock*\ ). 2353 * 2354 * Spinlocks in BPF programs come with a number of restrictions 2355 * and constraints: 2356 * 2357 * * **bpf_spin_lock** objects are only allowed inside maps of 2358 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this 2359 * list could be extended in the future). 2360 * * BTF description of the map is mandatory. 2361 * * The BPF program can take ONE lock at a time, since taking two 2362 * or more could cause dead locks. 2363 * * Only one **struct bpf_spin_lock** is allowed per map element. 2364 * * When the lock is taken, calls (either BPF to BPF or helpers) 2365 * are not allowed. 2366 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not 2367 * allowed inside a spinlock-ed region. 2368 * * The BPF program MUST call **bpf_spin_unlock**\ () to release 2369 * the lock, on all execution paths, before it returns. 2370 * * The BPF program can access **struct bpf_spin_lock** only via 2371 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ () 2372 * helpers. Loading or storing data into the **struct 2373 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed. 2374 * * To use the **bpf_spin_lock**\ () helper, the BTF description 2375 * of the map value must be a struct and have **struct 2376 * bpf_spin_lock** *anyname*\ **;** field at the top level. 2377 * Nested lock inside another struct is not allowed. 2378 * * The **struct bpf_spin_lock** *lock* field in a map value must 2379 * be aligned on a multiple of 4 bytes in that value. 2380 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy 2381 * the **bpf_spin_lock** field to user space. 2382 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from 2383 * a BPF program, do not update the **bpf_spin_lock** field. 2384 * * **bpf_spin_lock** cannot be on the stack or inside a 2385 * networking packet (it can only be inside of a map values). 2386 * * **bpf_spin_lock** is available to root only. 2387 * * Tracing programs and socket filter programs cannot use 2388 * **bpf_spin_lock**\ () due to insufficient preemption checks 2389 * (but this may change in the future). 2390 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map. 2391 * Return 2392 * 0 2393 * 2394 * int bpf_spin_unlock(struct bpf_spin_lock *lock) 2395 * Description 2396 * Release the *lock* previously locked by a call to 2397 * **bpf_spin_lock**\ (\ *lock*\ ). 2398 * Return 2399 * 0 2400 * 2401 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk) 2402 * Description 2403 * This helper gets a **struct bpf_sock** pointer such 2404 * that all the fields in this **bpf_sock** can be accessed. 2405 * Return 2406 * A **struct bpf_sock** pointer on success, or **NULL** in 2407 * case of failure. 2408 * 2409 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk) 2410 * Description 2411 * This helper gets a **struct bpf_tcp_sock** pointer from a 2412 * **struct bpf_sock** pointer. 2413 * Return 2414 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in 2415 * case of failure. 2416 * 2417 * int bpf_skb_ecn_set_ce(struct sk_buf *skb) 2418 * Description 2419 * Set ECN (Explicit Congestion Notification) field of IP header 2420 * to **CE** (Congestion Encountered) if current value is **ECT** 2421 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6 2422 * and IPv4. 2423 * Return 2424 * 1 if the **CE** flag is set (either by the current helper call 2425 * or because it was already present), 0 if it is not set. 2426 * 2427 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk) 2428 * Description 2429 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state. 2430 * **bpf_sk_release**\ () is unnecessary and not allowed. 2431 * Return 2432 * A **struct bpf_sock** pointer on success, or **NULL** in 2433 * case of failure. 2434 */ 2435#define __BPF_FUNC_MAPPER(FN) \ 2436 FN(unspec), \ 2437 FN(map_lookup_elem), \ 2438 FN(map_update_elem), \ 2439 FN(map_delete_elem), \ 2440 FN(probe_read), \ 2441 FN(ktime_get_ns), \ 2442 FN(trace_printk), \ 2443 FN(get_prandom_u32), \ 2444 FN(get_smp_processor_id), \ 2445 FN(skb_store_bytes), \ 2446 FN(l3_csum_replace), \ 2447 FN(l4_csum_replace), \ 2448 FN(tail_call), \ 2449 FN(clone_redirect), \ 2450 FN(get_current_pid_tgid), \ 2451 FN(get_current_uid_gid), \ 2452 FN(get_current_comm), \ 2453 FN(get_cgroup_classid), \ 2454 FN(skb_vlan_push), \ 2455 FN(skb_vlan_pop), \ 2456 FN(skb_get_tunnel_key), \ 2457 FN(skb_set_tunnel_key), \ 2458 FN(perf_event_read), \ 2459 FN(redirect), \ 2460 FN(get_route_realm), \ 2461 FN(perf_event_output), \ 2462 FN(skb_load_bytes), \ 2463 FN(get_stackid), \ 2464 FN(csum_diff), \ 2465 FN(skb_get_tunnel_opt), \ 2466 FN(skb_set_tunnel_opt), \ 2467 FN(skb_change_proto), \ 2468 FN(skb_change_type), \ 2469 FN(skb_under_cgroup), \ 2470 FN(get_hash_recalc), \ 2471 FN(get_current_task), \ 2472 FN(probe_write_user), \ 2473 FN(current_task_under_cgroup), \ 2474 FN(skb_change_tail), \ 2475 FN(skb_pull_data), \ 2476 FN(csum_update), \ 2477 FN(set_hash_invalid), \ 2478 FN(get_numa_node_id), \ 2479 FN(skb_change_head), \ 2480 FN(xdp_adjust_head), \ 2481 FN(probe_read_str), \ 2482 FN(get_socket_cookie), \ 2483 FN(get_socket_uid), \ 2484 FN(set_hash), \ 2485 FN(setsockopt), \ 2486 FN(skb_adjust_room), \ 2487 FN(redirect_map), \ 2488 FN(sk_redirect_map), \ 2489 FN(sock_map_update), \ 2490 FN(xdp_adjust_meta), \ 2491 FN(perf_event_read_value), \ 2492 FN(perf_prog_read_value), \ 2493 FN(getsockopt), \ 2494 FN(override_return), \ 2495 FN(sock_ops_cb_flags_set), \ 2496 FN(msg_redirect_map), \ 2497 FN(msg_apply_bytes), \ 2498 FN(msg_cork_bytes), \ 2499 FN(msg_pull_data), \ 2500 FN(bind), \ 2501 FN(xdp_adjust_tail), \ 2502 FN(skb_get_xfrm_state), \ 2503 FN(get_stack), \ 2504 FN(skb_load_bytes_relative), \ 2505 FN(fib_lookup), \ 2506 FN(sock_hash_update), \ 2507 FN(msg_redirect_hash), \ 2508 FN(sk_redirect_hash), \ 2509 FN(lwt_push_encap), \ 2510 FN(lwt_seg6_store_bytes), \ 2511 FN(lwt_seg6_adjust_srh), \ 2512 FN(lwt_seg6_action), \ 2513 FN(rc_repeat), \ 2514 FN(rc_keydown), \ 2515 FN(skb_cgroup_id), \ 2516 FN(get_current_cgroup_id), \ 2517 FN(get_local_storage), \ 2518 FN(sk_select_reuseport), \ 2519 FN(skb_ancestor_cgroup_id), \ 2520 FN(sk_lookup_tcp), \ 2521 FN(sk_lookup_udp), \ 2522 FN(sk_release), \ 2523 FN(map_push_elem), \ 2524 FN(map_pop_elem), \ 2525 FN(map_peek_elem), \ 2526 FN(msg_push_data), \ 2527 FN(msg_pop_data), \ 2528 FN(rc_pointer_rel), \ 2529 FN(spin_lock), \ 2530 FN(spin_unlock), \ 2531 FN(sk_fullsock), \ 2532 FN(tcp_sock), \ 2533 FN(skb_ecn_set_ce), \ 2534 FN(get_listener_sock), 2535 2536/* integer value in 'imm' field of BPF_CALL instruction selects which helper 2537 * function eBPF program intends to call 2538 */ 2539#define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2540enum bpf_func_id { 2541 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2542 __BPF_FUNC_MAX_ID, 2543}; 2544#undef __BPF_ENUM_FN 2545 2546/* All flags used by eBPF helper functions, placed here. */ 2547 2548/* BPF_FUNC_skb_store_bytes flags. */ 2549#define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2550#define BPF_F_INVALIDATE_HASH (1ULL << 1) 2551 2552/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2553 * First 4 bits are for passing the header field size. 2554 */ 2555#define BPF_F_HDR_FIELD_MASK 0xfULL 2556 2557/* BPF_FUNC_l4_csum_replace flags. */ 2558#define BPF_F_PSEUDO_HDR (1ULL << 4) 2559#define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2560#define BPF_F_MARK_ENFORCE (1ULL << 6) 2561 2562/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2563#define BPF_F_INGRESS (1ULL << 0) 2564 2565/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2566#define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2567 2568/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2569#define BPF_F_SKIP_FIELD_MASK 0xffULL 2570#define BPF_F_USER_STACK (1ULL << 8) 2571/* flags used by BPF_FUNC_get_stackid only. */ 2572#define BPF_F_FAST_STACK_CMP (1ULL << 9) 2573#define BPF_F_REUSE_STACKID (1ULL << 10) 2574/* flags used by BPF_FUNC_get_stack only. */ 2575#define BPF_F_USER_BUILD_ID (1ULL << 11) 2576 2577/* BPF_FUNC_skb_set_tunnel_key flags. */ 2578#define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2579#define BPF_F_DONT_FRAGMENT (1ULL << 2) 2580#define BPF_F_SEQ_NUMBER (1ULL << 3) 2581 2582/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2583 * BPF_FUNC_perf_event_read_value flags. 2584 */ 2585#define BPF_F_INDEX_MASK 0xffffffffULL 2586#define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2587/* BPF_FUNC_perf_event_output for sk_buff input context. */ 2588#define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2589 2590/* Current network namespace */ 2591#define BPF_F_CURRENT_NETNS (-1L) 2592 2593/* Mode for BPF_FUNC_skb_adjust_room helper. */ 2594enum bpf_adj_room_mode { 2595 BPF_ADJ_ROOM_NET, 2596}; 2597 2598/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2599enum bpf_hdr_start_off { 2600 BPF_HDR_START_MAC, 2601 BPF_HDR_START_NET, 2602}; 2603 2604/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2605enum bpf_lwt_encap_mode { 2606 BPF_LWT_ENCAP_SEG6, 2607 BPF_LWT_ENCAP_SEG6_INLINE, 2608 BPF_LWT_ENCAP_IP, 2609}; 2610 2611#define __bpf_md_ptr(type, name) \ 2612union { \ 2613 type name; \ 2614 __u64 :64; \ 2615} __attribute__((aligned(8))) 2616 2617/* user accessible mirror of in-kernel sk_buff. 2618 * new fields can only be added to the end of this structure 2619 */ 2620struct __sk_buff { 2621 __u32 len; 2622 __u32 pkt_type; 2623 __u32 mark; 2624 __u32 queue_mapping; 2625 __u32 protocol; 2626 __u32 vlan_present; 2627 __u32 vlan_tci; 2628 __u32 vlan_proto; 2629 __u32 priority; 2630 __u32 ingress_ifindex; 2631 __u32 ifindex; 2632 __u32 tc_index; 2633 __u32 cb[5]; 2634 __u32 hash; 2635 __u32 tc_classid; 2636 __u32 data; 2637 __u32 data_end; 2638 __u32 napi_id; 2639 2640 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2641 __u32 family; 2642 __u32 remote_ip4; /* Stored in network byte order */ 2643 __u32 local_ip4; /* Stored in network byte order */ 2644 __u32 remote_ip6[4]; /* Stored in network byte order */ 2645 __u32 local_ip6[4]; /* Stored in network byte order */ 2646 __u32 remote_port; /* Stored in network byte order */ 2647 __u32 local_port; /* stored in host byte order */ 2648 /* ... here. */ 2649 2650 __u32 data_meta; 2651 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2652 __u64 tstamp; 2653 __u32 wire_len; 2654 __u32 gso_segs; 2655 __bpf_md_ptr(struct bpf_sock *, sk); 2656}; 2657 2658struct bpf_tunnel_key { 2659 __u32 tunnel_id; 2660 union { 2661 __u32 remote_ipv4; 2662 __u32 remote_ipv6[4]; 2663 }; 2664 __u8 tunnel_tos; 2665 __u8 tunnel_ttl; 2666 __u16 tunnel_ext; /* Padding, future use. */ 2667 __u32 tunnel_label; 2668}; 2669 2670/* user accessible mirror of in-kernel xfrm_state. 2671 * new fields can only be added to the end of this structure 2672 */ 2673struct bpf_xfrm_state { 2674 __u32 reqid; 2675 __u32 spi; /* Stored in network byte order */ 2676 __u16 family; 2677 __u16 ext; /* Padding, future use. */ 2678 union { 2679 __u32 remote_ipv4; /* Stored in network byte order */ 2680 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2681 }; 2682}; 2683 2684/* Generic BPF return codes which all BPF program types may support. 2685 * The values are binary compatible with their TC_ACT_* counter-part to 2686 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2687 * programs. 2688 * 2689 * XDP is handled seprately, see XDP_*. 2690 */ 2691enum bpf_ret_code { 2692 BPF_OK = 0, 2693 /* 1 reserved */ 2694 BPF_DROP = 2, 2695 /* 3-6 reserved */ 2696 BPF_REDIRECT = 7, 2697 /* >127 are reserved for prog type specific return codes. 2698 * 2699 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and 2700 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been 2701 * changed and should be routed based on its new L3 header. 2702 * (This is an L3 redirect, as opposed to L2 redirect 2703 * represented by BPF_REDIRECT above). 2704 */ 2705 BPF_LWT_REROUTE = 128, 2706}; 2707 2708struct bpf_sock { 2709 __u32 bound_dev_if; 2710 __u32 family; 2711 __u32 type; 2712 __u32 protocol; 2713 __u32 mark; 2714 __u32 priority; 2715 /* IP address also allows 1 and 2 bytes access */ 2716 __u32 src_ip4; 2717 __u32 src_ip6[4]; 2718 __u32 src_port; /* host byte order */ 2719 __u32 dst_port; /* network byte order */ 2720 __u32 dst_ip4; 2721 __u32 dst_ip6[4]; 2722 __u32 state; 2723}; 2724 2725struct bpf_tcp_sock { 2726 __u32 snd_cwnd; /* Sending congestion window */ 2727 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */ 2728 __u32 rtt_min; 2729 __u32 snd_ssthresh; /* Slow start size threshold */ 2730 __u32 rcv_nxt; /* What we want to receive next */ 2731 __u32 snd_nxt; /* Next sequence we send */ 2732 __u32 snd_una; /* First byte we want an ack for */ 2733 __u32 mss_cache; /* Cached effective mss, not including SACKS */ 2734 __u32 ecn_flags; /* ECN status bits. */ 2735 __u32 rate_delivered; /* saved rate sample: packets delivered */ 2736 __u32 rate_interval_us; /* saved rate sample: time elapsed */ 2737 __u32 packets_out; /* Packets which are "in flight" */ 2738 __u32 retrans_out; /* Retransmitted packets out */ 2739 __u32 total_retrans; /* Total retransmits for entire connection */ 2740 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn 2741 * total number of segments in. 2742 */ 2743 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn 2744 * total number of data segments in. 2745 */ 2746 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut 2747 * The total number of segments sent. 2748 */ 2749 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut 2750 * total number of data segments sent. 2751 */ 2752 __u32 lost_out; /* Lost packets */ 2753 __u32 sacked_out; /* SACK'd packets */ 2754 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived 2755 * sum(delta(rcv_nxt)), or how many bytes 2756 * were acked. 2757 */ 2758 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked 2759 * sum(delta(snd_una)), or how many bytes 2760 * were acked. 2761 */ 2762}; 2763 2764struct bpf_sock_tuple { 2765 union { 2766 struct { 2767 __be32 saddr; 2768 __be32 daddr; 2769 __be16 sport; 2770 __be16 dport; 2771 } ipv4; 2772 struct { 2773 __be32 saddr[4]; 2774 __be32 daddr[4]; 2775 __be16 sport; 2776 __be16 dport; 2777 } ipv6; 2778 }; 2779}; 2780 2781#define XDP_PACKET_HEADROOM 256 2782 2783/* User return codes for XDP prog type. 2784 * A valid XDP program must return one of these defined values. All other 2785 * return codes are reserved for future use. Unknown return codes will 2786 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 2787 */ 2788enum xdp_action { 2789 XDP_ABORTED = 0, 2790 XDP_DROP, 2791 XDP_PASS, 2792 XDP_TX, 2793 XDP_REDIRECT, 2794}; 2795 2796/* user accessible metadata for XDP packet hook 2797 * new fields must be added to the end of this structure 2798 */ 2799struct xdp_md { 2800 __u32 data; 2801 __u32 data_end; 2802 __u32 data_meta; 2803 /* Below access go through struct xdp_rxq_info */ 2804 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 2805 __u32 rx_queue_index; /* rxq->queue_index */ 2806}; 2807 2808enum sk_action { 2809 SK_DROP = 0, 2810 SK_PASS, 2811}; 2812 2813/* user accessible metadata for SK_MSG packet hook, new fields must 2814 * be added to the end of this structure 2815 */ 2816struct sk_msg_md { 2817 __bpf_md_ptr(void *, data); 2818 __bpf_md_ptr(void *, data_end); 2819 2820 __u32 family; 2821 __u32 remote_ip4; /* Stored in network byte order */ 2822 __u32 local_ip4; /* Stored in network byte order */ 2823 __u32 remote_ip6[4]; /* Stored in network byte order */ 2824 __u32 local_ip6[4]; /* Stored in network byte order */ 2825 __u32 remote_port; /* Stored in network byte order */ 2826 __u32 local_port; /* stored in host byte order */ 2827 __u32 size; /* Total size of sk_msg */ 2828}; 2829 2830struct sk_reuseport_md { 2831 /* 2832 * Start of directly accessible data. It begins from 2833 * the tcp/udp header. 2834 */ 2835 __bpf_md_ptr(void *, data); 2836 /* End of directly accessible data */ 2837 __bpf_md_ptr(void *, data_end); 2838 /* 2839 * Total length of packet (starting from the tcp/udp header). 2840 * Note that the directly accessible bytes (data_end - data) 2841 * could be less than this "len". Those bytes could be 2842 * indirectly read by a helper "bpf_skb_load_bytes()". 2843 */ 2844 __u32 len; 2845 /* 2846 * Eth protocol in the mac header (network byte order). e.g. 2847 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 2848 */ 2849 __u32 eth_protocol; 2850 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 2851 __u32 bind_inany; /* Is sock bound to an INANY address? */ 2852 __u32 hash; /* A hash of the packet 4 tuples */ 2853}; 2854 2855#define BPF_TAG_SIZE 8 2856 2857struct bpf_prog_info { 2858 __u32 type; 2859 __u32 id; 2860 __u8 tag[BPF_TAG_SIZE]; 2861 __u32 jited_prog_len; 2862 __u32 xlated_prog_len; 2863 __aligned_u64 jited_prog_insns; 2864 __aligned_u64 xlated_prog_insns; 2865 __u64 load_time; /* ns since boottime */ 2866 __u32 created_by_uid; 2867 __u32 nr_map_ids; 2868 __aligned_u64 map_ids; 2869 char name[BPF_OBJ_NAME_LEN]; 2870 __u32 ifindex; 2871 __u32 gpl_compatible:1; 2872 __u64 netns_dev; 2873 __u64 netns_ino; 2874 __u32 nr_jited_ksyms; 2875 __u32 nr_jited_func_lens; 2876 __aligned_u64 jited_ksyms; 2877 __aligned_u64 jited_func_lens; 2878 __u32 btf_id; 2879 __u32 func_info_rec_size; 2880 __aligned_u64 func_info; 2881 __u32 nr_func_info; 2882 __u32 nr_line_info; 2883 __aligned_u64 line_info; 2884 __aligned_u64 jited_line_info; 2885 __u32 nr_jited_line_info; 2886 __u32 line_info_rec_size; 2887 __u32 jited_line_info_rec_size; 2888 __u32 nr_prog_tags; 2889 __aligned_u64 prog_tags; 2890 __u64 run_time_ns; 2891 __u64 run_cnt; 2892} __attribute__((aligned(8))); 2893 2894struct bpf_map_info { 2895 __u32 type; 2896 __u32 id; 2897 __u32 key_size; 2898 __u32 value_size; 2899 __u32 max_entries; 2900 __u32 map_flags; 2901 char name[BPF_OBJ_NAME_LEN]; 2902 __u32 ifindex; 2903 __u32 :32; 2904 __u64 netns_dev; 2905 __u64 netns_ino; 2906 __u32 btf_id; 2907 __u32 btf_key_type_id; 2908 __u32 btf_value_type_id; 2909} __attribute__((aligned(8))); 2910 2911struct bpf_btf_info { 2912 __aligned_u64 btf; 2913 __u32 btf_size; 2914 __u32 id; 2915} __attribute__((aligned(8))); 2916 2917/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 2918 * by user and intended to be used by socket (e.g. to bind to, depends on 2919 * attach attach type). 2920 */ 2921struct bpf_sock_addr { 2922 __u32 user_family; /* Allows 4-byte read, but no write. */ 2923 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 2924 * Stored in network byte order. 2925 */ 2926 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2927 * Stored in network byte order. 2928 */ 2929 __u32 user_port; /* Allows 4-byte read and write. 2930 * Stored in network byte order 2931 */ 2932 __u32 family; /* Allows 4-byte read, but no write */ 2933 __u32 type; /* Allows 4-byte read, but no write */ 2934 __u32 protocol; /* Allows 4-byte read, but no write */ 2935 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 2936 * Stored in network byte order. 2937 */ 2938 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2939 * Stored in network byte order. 2940 */ 2941}; 2942 2943/* User bpf_sock_ops struct to access socket values and specify request ops 2944 * and their replies. 2945 * Some of this fields are in network (bigendian) byte order and may need 2946 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 2947 * New fields can only be added at the end of this structure 2948 */ 2949struct bpf_sock_ops { 2950 __u32 op; 2951 union { 2952 __u32 args[4]; /* Optionally passed to bpf program */ 2953 __u32 reply; /* Returned by bpf program */ 2954 __u32 replylong[4]; /* Optionally returned by bpf prog */ 2955 }; 2956 __u32 family; 2957 __u32 remote_ip4; /* Stored in network byte order */ 2958 __u32 local_ip4; /* Stored in network byte order */ 2959 __u32 remote_ip6[4]; /* Stored in network byte order */ 2960 __u32 local_ip6[4]; /* Stored in network byte order */ 2961 __u32 remote_port; /* Stored in network byte order */ 2962 __u32 local_port; /* stored in host byte order */ 2963 __u32 is_fullsock; /* Some TCP fields are only valid if 2964 * there is a full socket. If not, the 2965 * fields read as zero. 2966 */ 2967 __u32 snd_cwnd; 2968 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 2969 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 2970 __u32 state; 2971 __u32 rtt_min; 2972 __u32 snd_ssthresh; 2973 __u32 rcv_nxt; 2974 __u32 snd_nxt; 2975 __u32 snd_una; 2976 __u32 mss_cache; 2977 __u32 ecn_flags; 2978 __u32 rate_delivered; 2979 __u32 rate_interval_us; 2980 __u32 packets_out; 2981 __u32 retrans_out; 2982 __u32 total_retrans; 2983 __u32 segs_in; 2984 __u32 data_segs_in; 2985 __u32 segs_out; 2986 __u32 data_segs_out; 2987 __u32 lost_out; 2988 __u32 sacked_out; 2989 __u32 sk_txhash; 2990 __u64 bytes_received; 2991 __u64 bytes_acked; 2992}; 2993 2994/* Definitions for bpf_sock_ops_cb_flags */ 2995#define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 2996#define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 2997#define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 2998#define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 2999 * supported cb flags 3000 */ 3001 3002/* List of known BPF sock_ops operators. 3003 * New entries can only be added at the end 3004 */ 3005enum { 3006 BPF_SOCK_OPS_VOID, 3007 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 3008 * -1 if default value should be used 3009 */ 3010 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 3011 * window (in packets) or -1 if default 3012 * value should be used 3013 */ 3014 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 3015 * active connection is initialized 3016 */ 3017 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 3018 * active connection is 3019 * established 3020 */ 3021 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 3022 * passive connection is 3023 * established 3024 */ 3025 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 3026 * needs ECN 3027 */ 3028 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 3029 * based on the path and may be 3030 * dependent on the congestion control 3031 * algorithm. In general it indicates 3032 * a congestion threshold. RTTs above 3033 * this indicate congestion 3034 */ 3035 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 3036 * Arg1: value of icsk_retransmits 3037 * Arg2: value of icsk_rto 3038 * Arg3: whether RTO has expired 3039 */ 3040 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 3041 * Arg1: sequence number of 1st byte 3042 * Arg2: # segments 3043 * Arg3: return value of 3044 * tcp_transmit_skb (0 => success) 3045 */ 3046 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 3047 * Arg1: old_state 3048 * Arg2: new_state 3049 */ 3050 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 3051 * socket transition to LISTEN state. 3052 */ 3053}; 3054 3055/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 3056 * changes between the TCP and BPF versions. Ideally this should never happen. 3057 * If it does, we need to add code to convert them before calling 3058 * the BPF sock_ops function. 3059 */ 3060enum { 3061 BPF_TCP_ESTABLISHED = 1, 3062 BPF_TCP_SYN_SENT, 3063 BPF_TCP_SYN_RECV, 3064 BPF_TCP_FIN_WAIT1, 3065 BPF_TCP_FIN_WAIT2, 3066 BPF_TCP_TIME_WAIT, 3067 BPF_TCP_CLOSE, 3068 BPF_TCP_CLOSE_WAIT, 3069 BPF_TCP_LAST_ACK, 3070 BPF_TCP_LISTEN, 3071 BPF_TCP_CLOSING, /* Now a valid state */ 3072 BPF_TCP_NEW_SYN_RECV, 3073 3074 BPF_TCP_MAX_STATES /* Leave at the end! */ 3075}; 3076 3077#define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 3078#define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 3079 3080struct bpf_perf_event_value { 3081 __u64 counter; 3082 __u64 enabled; 3083 __u64 running; 3084}; 3085 3086#define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 3087#define BPF_DEVCG_ACC_READ (1ULL << 1) 3088#define BPF_DEVCG_ACC_WRITE (1ULL << 2) 3089 3090#define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 3091#define BPF_DEVCG_DEV_CHAR (1ULL << 1) 3092 3093struct bpf_cgroup_dev_ctx { 3094 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 3095 __u32 access_type; 3096 __u32 major; 3097 __u32 minor; 3098}; 3099 3100struct bpf_raw_tracepoint_args { 3101 __u64 args[0]; 3102}; 3103 3104/* DIRECT: Skip the FIB rules and go to FIB table associated with device 3105 * OUTPUT: Do lookup from egress perspective; default is ingress 3106 */ 3107#define BPF_FIB_LOOKUP_DIRECT BIT(0) 3108#define BPF_FIB_LOOKUP_OUTPUT BIT(1) 3109 3110enum { 3111 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 3112 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 3113 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 3114 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 3115 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 3116 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 3117 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 3118 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 3119 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 3120}; 3121 3122struct bpf_fib_lookup { 3123 /* input: network family for lookup (AF_INET, AF_INET6) 3124 * output: network family of egress nexthop 3125 */ 3126 __u8 family; 3127 3128 /* set if lookup is to consider L4 data - e.g., FIB rules */ 3129 __u8 l4_protocol; 3130 __be16 sport; 3131 __be16 dport; 3132 3133 /* total length of packet from network header - used for MTU check */ 3134 __u16 tot_len; 3135 3136 /* input: L3 device index for lookup 3137 * output: device index from FIB lookup 3138 */ 3139 __u32 ifindex; 3140 3141 union { 3142 /* inputs to lookup */ 3143 __u8 tos; /* AF_INET */ 3144 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 3145 3146 /* output: metric of fib result (IPv4/IPv6 only) */ 3147 __u32 rt_metric; 3148 }; 3149 3150 union { 3151 __be32 ipv4_src; 3152 __u32 ipv6_src[4]; /* in6_addr; network order */ 3153 }; 3154 3155 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 3156 * network header. output: bpf_fib_lookup sets to gateway address 3157 * if FIB lookup returns gateway route 3158 */ 3159 union { 3160 __be32 ipv4_dst; 3161 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3162 }; 3163 3164 /* output */ 3165 __be16 h_vlan_proto; 3166 __be16 h_vlan_TCI; 3167 __u8 smac[6]; /* ETH_ALEN */ 3168 __u8 dmac[6]; /* ETH_ALEN */ 3169}; 3170 3171enum bpf_task_fd_type { 3172 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3173 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3174 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3175 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3176 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3177 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3178}; 3179 3180struct bpf_flow_keys { 3181 __u16 nhoff; 3182 __u16 thoff; 3183 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3184 __u8 is_frag; 3185 __u8 is_first_frag; 3186 __u8 is_encap; 3187 __u8 ip_proto; 3188 __be16 n_proto; 3189 __be16 sport; 3190 __be16 dport; 3191 union { 3192 struct { 3193 __be32 ipv4_src; 3194 __be32 ipv4_dst; 3195 }; 3196 struct { 3197 __u32 ipv6_src[4]; /* in6_addr; network order */ 3198 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3199 }; 3200 }; 3201}; 3202 3203struct bpf_func_info { 3204 __u32 insn_off; 3205 __u32 type_id; 3206}; 3207 3208#define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3209#define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3210 3211struct bpf_line_info { 3212 __u32 insn_off; 3213 __u32 file_name_off; 3214 __u32 line_off; 3215 __u32 line_col; 3216}; 3217 3218struct bpf_spin_lock { 3219 __u32 val; 3220}; 3221#endif /* _UAPI__LINUX_BPF_H__ */