Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4 *
5 * (C) SGI 2006, Christoph Lameter
6 * Cleaned up and restructured to ease the addition of alternative
7 * implementations of SLAB allocators.
8 * (C) Linux Foundation 2008-2013
9 * Unified interface for all slab allocators
10 */
11
12#ifndef _LINUX_SLAB_H
13#define _LINUX_SLAB_H
14
15#include <linux/gfp.h>
16#include <linux/overflow.h>
17#include <linux/types.h>
18#include <linux/workqueue.h>
19
20
21/*
22 * Flags to pass to kmem_cache_create().
23 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
24 */
25/* DEBUG: Perform (expensive) checks on alloc/free */
26#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U)
27/* DEBUG: Red zone objs in a cache */
28#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U)
29/* DEBUG: Poison objects */
30#define SLAB_POISON ((slab_flags_t __force)0x00000800U)
31/* Align objs on cache lines */
32#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U)
33/* Use GFP_DMA memory */
34#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U)
35/* Use GFP_DMA32 memory */
36#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U)
37/* DEBUG: Store the last owner for bug hunting */
38#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U)
39/* Panic if kmem_cache_create() fails */
40#define SLAB_PANIC ((slab_flags_t __force)0x00040000U)
41/*
42 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
43 *
44 * This delays freeing the SLAB page by a grace period, it does _NOT_
45 * delay object freeing. This means that if you do kmem_cache_free()
46 * that memory location is free to be reused at any time. Thus it may
47 * be possible to see another object there in the same RCU grace period.
48 *
49 * This feature only ensures the memory location backing the object
50 * stays valid, the trick to using this is relying on an independent
51 * object validation pass. Something like:
52 *
53 * rcu_read_lock()
54 * again:
55 * obj = lockless_lookup(key);
56 * if (obj) {
57 * if (!try_get_ref(obj)) // might fail for free objects
58 * goto again;
59 *
60 * if (obj->key != key) { // not the object we expected
61 * put_ref(obj);
62 * goto again;
63 * }
64 * }
65 * rcu_read_unlock();
66 *
67 * This is useful if we need to approach a kernel structure obliquely,
68 * from its address obtained without the usual locking. We can lock
69 * the structure to stabilize it and check it's still at the given address,
70 * only if we can be sure that the memory has not been meanwhile reused
71 * for some other kind of object (which our subsystem's lock might corrupt).
72 *
73 * rcu_read_lock before reading the address, then rcu_read_unlock after
74 * taking the spinlock within the structure expected at that address.
75 *
76 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
77 */
78/* Defer freeing slabs to RCU */
79#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U)
80/* Spread some memory over cpuset */
81#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U)
82/* Trace allocations and frees */
83#define SLAB_TRACE ((slab_flags_t __force)0x00200000U)
84
85/* Flag to prevent checks on free */
86#ifdef CONFIG_DEBUG_OBJECTS
87# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U)
88#else
89# define SLAB_DEBUG_OBJECTS 0
90#endif
91
92/* Avoid kmemleak tracing */
93#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U)
94
95/* Fault injection mark */
96#ifdef CONFIG_FAILSLAB
97# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U)
98#else
99# define SLAB_FAILSLAB 0
100#endif
101/* Account to memcg */
102#ifdef CONFIG_MEMCG_KMEM
103# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U)
104#else
105# define SLAB_ACCOUNT 0
106#endif
107
108#ifdef CONFIG_KASAN
109#define SLAB_KASAN ((slab_flags_t __force)0x08000000U)
110#else
111#define SLAB_KASAN 0
112#endif
113
114/* The following flags affect the page allocator grouping pages by mobility */
115/* Objects are reclaimable */
116#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U)
117#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
118/*
119 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
120 *
121 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
122 *
123 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
124 * Both make kfree a no-op.
125 */
126#define ZERO_SIZE_PTR ((void *)16)
127
128#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
129 (unsigned long)ZERO_SIZE_PTR)
130
131#include <linux/kasan.h>
132
133struct mem_cgroup;
134/*
135 * struct kmem_cache related prototypes
136 */
137void __init kmem_cache_init(void);
138bool slab_is_available(void);
139
140extern bool usercopy_fallback;
141
142struct kmem_cache *kmem_cache_create(const char *name, unsigned int size,
143 unsigned int align, slab_flags_t flags,
144 void (*ctor)(void *));
145struct kmem_cache *kmem_cache_create_usercopy(const char *name,
146 unsigned int size, unsigned int align,
147 slab_flags_t flags,
148 unsigned int useroffset, unsigned int usersize,
149 void (*ctor)(void *));
150void kmem_cache_destroy(struct kmem_cache *);
151int kmem_cache_shrink(struct kmem_cache *);
152
153void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
154void memcg_deactivate_kmem_caches(struct mem_cgroup *);
155void memcg_destroy_kmem_caches(struct mem_cgroup *);
156
157/*
158 * Please use this macro to create slab caches. Simply specify the
159 * name of the structure and maybe some flags that are listed above.
160 *
161 * The alignment of the struct determines object alignment. If you
162 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
163 * then the objects will be properly aligned in SMP configurations.
164 */
165#define KMEM_CACHE(__struct, __flags) \
166 kmem_cache_create(#__struct, sizeof(struct __struct), \
167 __alignof__(struct __struct), (__flags), NULL)
168
169/*
170 * To whitelist a single field for copying to/from usercopy, use this
171 * macro instead for KMEM_CACHE() above.
172 */
173#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \
174 kmem_cache_create_usercopy(#__struct, \
175 sizeof(struct __struct), \
176 __alignof__(struct __struct), (__flags), \
177 offsetof(struct __struct, __field), \
178 sizeof_field(struct __struct, __field), NULL)
179
180/*
181 * Common kmalloc functions provided by all allocators
182 */
183void * __must_check __krealloc(const void *, size_t, gfp_t);
184void * __must_check krealloc(const void *, size_t, gfp_t);
185void kfree(const void *);
186void kzfree(const void *);
187size_t ksize(const void *);
188
189#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
190void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
191 bool to_user);
192#else
193static inline void __check_heap_object(const void *ptr, unsigned long n,
194 struct page *page, bool to_user) { }
195#endif
196
197/*
198 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
199 * alignment larger than the alignment of a 64-bit integer.
200 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
201 */
202#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
203#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
204#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
205#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
206#else
207#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
208#endif
209
210/*
211 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
212 * Intended for arches that get misalignment faults even for 64 bit integer
213 * aligned buffers.
214 */
215#ifndef ARCH_SLAB_MINALIGN
216#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
217#endif
218
219/*
220 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
221 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
222 * aligned pointers.
223 */
224#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
225#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
226#define __assume_page_alignment __assume_aligned(PAGE_SIZE)
227
228/*
229 * Kmalloc array related definitions
230 */
231
232#ifdef CONFIG_SLAB
233/*
234 * The largest kmalloc size supported by the SLAB allocators is
235 * 32 megabyte (2^25) or the maximum allocatable page order if that is
236 * less than 32 MB.
237 *
238 * WARNING: Its not easy to increase this value since the allocators have
239 * to do various tricks to work around compiler limitations in order to
240 * ensure proper constant folding.
241 */
242#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
243 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
244#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH
245#ifndef KMALLOC_SHIFT_LOW
246#define KMALLOC_SHIFT_LOW 5
247#endif
248#endif
249
250#ifdef CONFIG_SLUB
251/*
252 * SLUB directly allocates requests fitting in to an order-1 page
253 * (PAGE_SIZE*2). Larger requests are passed to the page allocator.
254 */
255#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1)
256#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
257#ifndef KMALLOC_SHIFT_LOW
258#define KMALLOC_SHIFT_LOW 3
259#endif
260#endif
261
262#ifdef CONFIG_SLOB
263/*
264 * SLOB passes all requests larger than one page to the page allocator.
265 * No kmalloc array is necessary since objects of different sizes can
266 * be allocated from the same page.
267 */
268#define KMALLOC_SHIFT_HIGH PAGE_SHIFT
269#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1)
270#ifndef KMALLOC_SHIFT_LOW
271#define KMALLOC_SHIFT_LOW 3
272#endif
273#endif
274
275/* Maximum allocatable size */
276#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX)
277/* Maximum size for which we actually use a slab cache */
278#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH)
279/* Maximum order allocatable via the slab allocagtor */
280#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT)
281
282/*
283 * Kmalloc subsystem.
284 */
285#ifndef KMALLOC_MIN_SIZE
286#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
287#endif
288
289/*
290 * This restriction comes from byte sized index implementation.
291 * Page size is normally 2^12 bytes and, in this case, if we want to use
292 * byte sized index which can represent 2^8 entries, the size of the object
293 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
294 * If minimum size of kmalloc is less than 16, we use it as minimum object
295 * size and give up to use byte sized index.
296 */
297#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \
298 (KMALLOC_MIN_SIZE) : 16)
299
300/*
301 * Whenever changing this, take care of that kmalloc_type() and
302 * create_kmalloc_caches() still work as intended.
303 */
304enum kmalloc_cache_type {
305 KMALLOC_NORMAL = 0,
306 KMALLOC_RECLAIM,
307#ifdef CONFIG_ZONE_DMA
308 KMALLOC_DMA,
309#endif
310 NR_KMALLOC_TYPES
311};
312
313#ifndef CONFIG_SLOB
314extern struct kmem_cache *
315kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1];
316
317static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags)
318{
319#ifdef CONFIG_ZONE_DMA
320 /*
321 * The most common case is KMALLOC_NORMAL, so test for it
322 * with a single branch for both flags.
323 */
324 if (likely((flags & (__GFP_DMA | __GFP_RECLAIMABLE)) == 0))
325 return KMALLOC_NORMAL;
326
327 /*
328 * At least one of the flags has to be set. If both are, __GFP_DMA
329 * is more important.
330 */
331 return flags & __GFP_DMA ? KMALLOC_DMA : KMALLOC_RECLAIM;
332#else
333 return flags & __GFP_RECLAIMABLE ? KMALLOC_RECLAIM : KMALLOC_NORMAL;
334#endif
335}
336
337/*
338 * Figure out which kmalloc slab an allocation of a certain size
339 * belongs to.
340 * 0 = zero alloc
341 * 1 = 65 .. 96 bytes
342 * 2 = 129 .. 192 bytes
343 * n = 2^(n-1)+1 .. 2^n
344 */
345static __always_inline unsigned int kmalloc_index(size_t size)
346{
347 if (!size)
348 return 0;
349
350 if (size <= KMALLOC_MIN_SIZE)
351 return KMALLOC_SHIFT_LOW;
352
353 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
354 return 1;
355 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
356 return 2;
357 if (size <= 8) return 3;
358 if (size <= 16) return 4;
359 if (size <= 32) return 5;
360 if (size <= 64) return 6;
361 if (size <= 128) return 7;
362 if (size <= 256) return 8;
363 if (size <= 512) return 9;
364 if (size <= 1024) return 10;
365 if (size <= 2 * 1024) return 11;
366 if (size <= 4 * 1024) return 12;
367 if (size <= 8 * 1024) return 13;
368 if (size <= 16 * 1024) return 14;
369 if (size <= 32 * 1024) return 15;
370 if (size <= 64 * 1024) return 16;
371 if (size <= 128 * 1024) return 17;
372 if (size <= 256 * 1024) return 18;
373 if (size <= 512 * 1024) return 19;
374 if (size <= 1024 * 1024) return 20;
375 if (size <= 2 * 1024 * 1024) return 21;
376 if (size <= 4 * 1024 * 1024) return 22;
377 if (size <= 8 * 1024 * 1024) return 23;
378 if (size <= 16 * 1024 * 1024) return 24;
379 if (size <= 32 * 1024 * 1024) return 25;
380 if (size <= 64 * 1024 * 1024) return 26;
381 BUG();
382
383 /* Will never be reached. Needed because the compiler may complain */
384 return -1;
385}
386#endif /* !CONFIG_SLOB */
387
388void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
389void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
390void kmem_cache_free(struct kmem_cache *, void *);
391
392/*
393 * Bulk allocation and freeing operations. These are accelerated in an
394 * allocator specific way to avoid taking locks repeatedly or building
395 * metadata structures unnecessarily.
396 *
397 * Note that interrupts must be enabled when calling these functions.
398 */
399void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
400int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
401
402/*
403 * Caller must not use kfree_bulk() on memory not originally allocated
404 * by kmalloc(), because the SLOB allocator cannot handle this.
405 */
406static __always_inline void kfree_bulk(size_t size, void **p)
407{
408 kmem_cache_free_bulk(NULL, size, p);
409}
410
411#ifdef CONFIG_NUMA
412void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
413void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
414#else
415static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
416{
417 return __kmalloc(size, flags);
418}
419
420static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
421{
422 return kmem_cache_alloc(s, flags);
423}
424#endif
425
426#ifdef CONFIG_TRACING
427extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
428
429#ifdef CONFIG_NUMA
430extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
431 gfp_t gfpflags,
432 int node, size_t size) __assume_slab_alignment __malloc;
433#else
434static __always_inline void *
435kmem_cache_alloc_node_trace(struct kmem_cache *s,
436 gfp_t gfpflags,
437 int node, size_t size)
438{
439 return kmem_cache_alloc_trace(s, gfpflags, size);
440}
441#endif /* CONFIG_NUMA */
442
443#else /* CONFIG_TRACING */
444static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
445 gfp_t flags, size_t size)
446{
447 void *ret = kmem_cache_alloc(s, flags);
448
449 ret = kasan_kmalloc(s, ret, size, flags);
450 return ret;
451}
452
453static __always_inline void *
454kmem_cache_alloc_node_trace(struct kmem_cache *s,
455 gfp_t gfpflags,
456 int node, size_t size)
457{
458 void *ret = kmem_cache_alloc_node(s, gfpflags, node);
459
460 ret = kasan_kmalloc(s, ret, size, gfpflags);
461 return ret;
462}
463#endif /* CONFIG_TRACING */
464
465extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
466
467#ifdef CONFIG_TRACING
468extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
469#else
470static __always_inline void *
471kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
472{
473 return kmalloc_order(size, flags, order);
474}
475#endif
476
477static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
478{
479 unsigned int order = get_order(size);
480 return kmalloc_order_trace(size, flags, order);
481}
482
483/**
484 * kmalloc - allocate memory
485 * @size: how many bytes of memory are required.
486 * @flags: the type of memory to allocate.
487 *
488 * kmalloc is the normal method of allocating memory
489 * for objects smaller than page size in the kernel.
490 *
491 * The @flags argument may be one of the GFP flags defined at
492 * include/linux/gfp.h and described at
493 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
494 *
495 * The recommended usage of the @flags is described at
496 * :ref:`Documentation/core-api/memory-allocation.rst <memory-allocation>`
497 *
498 * Below is a brief outline of the most useful GFP flags
499 *
500 * %GFP_KERNEL
501 * Allocate normal kernel ram. May sleep.
502 *
503 * %GFP_NOWAIT
504 * Allocation will not sleep.
505 *
506 * %GFP_ATOMIC
507 * Allocation will not sleep. May use emergency pools.
508 *
509 * %GFP_HIGHUSER
510 * Allocate memory from high memory on behalf of user.
511 *
512 * Also it is possible to set different flags by OR'ing
513 * in one or more of the following additional @flags:
514 *
515 * %__GFP_HIGH
516 * This allocation has high priority and may use emergency pools.
517 *
518 * %__GFP_NOFAIL
519 * Indicate that this allocation is in no way allowed to fail
520 * (think twice before using).
521 *
522 * %__GFP_NORETRY
523 * If memory is not immediately available,
524 * then give up at once.
525 *
526 * %__GFP_NOWARN
527 * If allocation fails, don't issue any warnings.
528 *
529 * %__GFP_RETRY_MAYFAIL
530 * Try really hard to succeed the allocation but fail
531 * eventually.
532 */
533static __always_inline void *kmalloc(size_t size, gfp_t flags)
534{
535 if (__builtin_constant_p(size)) {
536#ifndef CONFIG_SLOB
537 unsigned int index;
538#endif
539 if (size > KMALLOC_MAX_CACHE_SIZE)
540 return kmalloc_large(size, flags);
541#ifndef CONFIG_SLOB
542 index = kmalloc_index(size);
543
544 if (!index)
545 return ZERO_SIZE_PTR;
546
547 return kmem_cache_alloc_trace(
548 kmalloc_caches[kmalloc_type(flags)][index],
549 flags, size);
550#endif
551 }
552 return __kmalloc(size, flags);
553}
554
555/*
556 * Determine size used for the nth kmalloc cache.
557 * return size or 0 if a kmalloc cache for that
558 * size does not exist
559 */
560static __always_inline unsigned int kmalloc_size(unsigned int n)
561{
562#ifndef CONFIG_SLOB
563 if (n > 2)
564 return 1U << n;
565
566 if (n == 1 && KMALLOC_MIN_SIZE <= 32)
567 return 96;
568
569 if (n == 2 && KMALLOC_MIN_SIZE <= 64)
570 return 192;
571#endif
572 return 0;
573}
574
575static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
576{
577#ifndef CONFIG_SLOB
578 if (__builtin_constant_p(size) &&
579 size <= KMALLOC_MAX_CACHE_SIZE) {
580 unsigned int i = kmalloc_index(size);
581
582 if (!i)
583 return ZERO_SIZE_PTR;
584
585 return kmem_cache_alloc_node_trace(
586 kmalloc_caches[kmalloc_type(flags)][i],
587 flags, node, size);
588 }
589#endif
590 return __kmalloc_node(size, flags, node);
591}
592
593struct memcg_cache_array {
594 struct rcu_head rcu;
595 struct kmem_cache *entries[0];
596};
597
598/*
599 * This is the main placeholder for memcg-related information in kmem caches.
600 * Both the root cache and the child caches will have it. For the root cache,
601 * this will hold a dynamically allocated array large enough to hold
602 * information about the currently limited memcgs in the system. To allow the
603 * array to be accessed without taking any locks, on relocation we free the old
604 * version only after a grace period.
605 *
606 * Root and child caches hold different metadata.
607 *
608 * @root_cache: Common to root and child caches. NULL for root, pointer to
609 * the root cache for children.
610 *
611 * The following fields are specific to root caches.
612 *
613 * @memcg_caches: kmemcg ID indexed table of child caches. This table is
614 * used to index child cachces during allocation and cleared
615 * early during shutdown.
616 *
617 * @root_caches_node: List node for slab_root_caches list.
618 *
619 * @children: List of all child caches. While the child caches are also
620 * reachable through @memcg_caches, a child cache remains on
621 * this list until it is actually destroyed.
622 *
623 * The following fields are specific to child caches.
624 *
625 * @memcg: Pointer to the memcg this cache belongs to.
626 *
627 * @children_node: List node for @root_cache->children list.
628 *
629 * @kmem_caches_node: List node for @memcg->kmem_caches list.
630 */
631struct memcg_cache_params {
632 struct kmem_cache *root_cache;
633 union {
634 struct {
635 struct memcg_cache_array __rcu *memcg_caches;
636 struct list_head __root_caches_node;
637 struct list_head children;
638 bool dying;
639 };
640 struct {
641 struct mem_cgroup *memcg;
642 struct list_head children_node;
643 struct list_head kmem_caches_node;
644
645 void (*deact_fn)(struct kmem_cache *);
646 union {
647 struct rcu_head deact_rcu_head;
648 struct work_struct deact_work;
649 };
650 };
651 };
652};
653
654int memcg_update_all_caches(int num_memcgs);
655
656/**
657 * kmalloc_array - allocate memory for an array.
658 * @n: number of elements.
659 * @size: element size.
660 * @flags: the type of memory to allocate (see kmalloc).
661 */
662static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
663{
664 size_t bytes;
665
666 if (unlikely(check_mul_overflow(n, size, &bytes)))
667 return NULL;
668 if (__builtin_constant_p(n) && __builtin_constant_p(size))
669 return kmalloc(bytes, flags);
670 return __kmalloc(bytes, flags);
671}
672
673/**
674 * kcalloc - allocate memory for an array. The memory is set to zero.
675 * @n: number of elements.
676 * @size: element size.
677 * @flags: the type of memory to allocate (see kmalloc).
678 */
679static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
680{
681 return kmalloc_array(n, size, flags | __GFP_ZERO);
682}
683
684/*
685 * kmalloc_track_caller is a special version of kmalloc that records the
686 * calling function of the routine calling it for slab leak tracking instead
687 * of just the calling function (confusing, eh?).
688 * It's useful when the call to kmalloc comes from a widely-used standard
689 * allocator where we care about the real place the memory allocation
690 * request comes from.
691 */
692extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
693#define kmalloc_track_caller(size, flags) \
694 __kmalloc_track_caller(size, flags, _RET_IP_)
695
696static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags,
697 int node)
698{
699 size_t bytes;
700
701 if (unlikely(check_mul_overflow(n, size, &bytes)))
702 return NULL;
703 if (__builtin_constant_p(n) && __builtin_constant_p(size))
704 return kmalloc_node(bytes, flags, node);
705 return __kmalloc_node(bytes, flags, node);
706}
707
708static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node)
709{
710 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node);
711}
712
713
714#ifdef CONFIG_NUMA
715extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
716#define kmalloc_node_track_caller(size, flags, node) \
717 __kmalloc_node_track_caller(size, flags, node, \
718 _RET_IP_)
719
720#else /* CONFIG_NUMA */
721
722#define kmalloc_node_track_caller(size, flags, node) \
723 kmalloc_track_caller(size, flags)
724
725#endif /* CONFIG_NUMA */
726
727/*
728 * Shortcuts
729 */
730static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
731{
732 return kmem_cache_alloc(k, flags | __GFP_ZERO);
733}
734
735/**
736 * kzalloc - allocate memory. The memory is set to zero.
737 * @size: how many bytes of memory are required.
738 * @flags: the type of memory to allocate (see kmalloc).
739 */
740static inline void *kzalloc(size_t size, gfp_t flags)
741{
742 return kmalloc(size, flags | __GFP_ZERO);
743}
744
745/**
746 * kzalloc_node - allocate zeroed memory from a particular memory node.
747 * @size: how many bytes of memory are required.
748 * @flags: the type of memory to allocate (see kmalloc).
749 * @node: memory node from which to allocate
750 */
751static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
752{
753 return kmalloc_node(size, flags | __GFP_ZERO, node);
754}
755
756unsigned int kmem_cache_size(struct kmem_cache *s);
757void __init kmem_cache_init_late(void);
758
759#if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
760int slab_prepare_cpu(unsigned int cpu);
761int slab_dead_cpu(unsigned int cpu);
762#else
763#define slab_prepare_cpu NULL
764#define slab_dead_cpu NULL
765#endif
766
767#endif /* _LINUX_SLAB_H */