at v5.1 33 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36 37/* Exported common interfaces */ 38void call_rcu(struct rcu_head *head, rcu_callback_t func); 39void rcu_barrier_tasks(void); 40void synchronize_rcu(void); 41 42#ifdef CONFIG_PREEMPT_RCU 43 44void __rcu_read_lock(void); 45void __rcu_read_unlock(void); 46 47/* 48 * Defined as a macro as it is a very low level header included from 49 * areas that don't even know about current. This gives the rcu_read_lock() 50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 52 */ 53#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 54 55#else /* #ifdef CONFIG_PREEMPT_RCU */ 56 57static inline void __rcu_read_lock(void) 58{ 59 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 60 preempt_disable(); 61} 62 63static inline void __rcu_read_unlock(void) 64{ 65 if (IS_ENABLED(CONFIG_PREEMPT_COUNT)) 66 preempt_enable(); 67} 68 69static inline int rcu_preempt_depth(void) 70{ 71 return 0; 72} 73 74#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 75 76/* Internal to kernel */ 77void rcu_init(void); 78extern int rcu_scheduler_active __read_mostly; 79void rcu_sched_clock_irq(int user); 80void rcu_report_dead(unsigned int cpu); 81void rcutree_migrate_callbacks(int cpu); 82 83#ifdef CONFIG_RCU_STALL_COMMON 84void rcu_sysrq_start(void); 85void rcu_sysrq_end(void); 86#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 87static inline void rcu_sysrq_start(void) { } 88static inline void rcu_sysrq_end(void) { } 89#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 90 91#ifdef CONFIG_NO_HZ_FULL 92void rcu_user_enter(void); 93void rcu_user_exit(void); 94#else 95static inline void rcu_user_enter(void) { } 96static inline void rcu_user_exit(void) { } 97#endif /* CONFIG_NO_HZ_FULL */ 98 99#ifdef CONFIG_RCU_NOCB_CPU 100void rcu_init_nohz(void); 101#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 102static inline void rcu_init_nohz(void) { } 103#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 104 105/** 106 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 107 * @a: Code that RCU needs to pay attention to. 108 * 109 * RCU read-side critical sections are forbidden in the inner idle loop, 110 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 111 * will happily ignore any such read-side critical sections. However, 112 * things like powertop need tracepoints in the inner idle loop. 113 * 114 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 115 * will tell RCU that it needs to pay attention, invoke its argument 116 * (in this example, calling the do_something_with_RCU() function), 117 * and then tell RCU to go back to ignoring this CPU. It is permissible 118 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 119 * on the order of a million or so, even on 32-bit systems). It is 120 * not legal to block within RCU_NONIDLE(), nor is it permissible to 121 * transfer control either into or out of RCU_NONIDLE()'s statement. 122 */ 123#define RCU_NONIDLE(a) \ 124 do { \ 125 rcu_irq_enter_irqson(); \ 126 do { a; } while (0); \ 127 rcu_irq_exit_irqson(); \ 128 } while (0) 129 130/* 131 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 132 * This is a macro rather than an inline function to avoid #include hell. 133 */ 134#ifdef CONFIG_TASKS_RCU 135#define rcu_tasks_qs(t) \ 136 do { \ 137 if (READ_ONCE((t)->rcu_tasks_holdout)) \ 138 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 139 } while (0) 140#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t) 141void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 142void synchronize_rcu_tasks(void); 143void exit_tasks_rcu_start(void); 144void exit_tasks_rcu_finish(void); 145#else /* #ifdef CONFIG_TASKS_RCU */ 146#define rcu_tasks_qs(t) do { } while (0) 147#define rcu_note_voluntary_context_switch(t) do { } while (0) 148#define call_rcu_tasks call_rcu 149#define synchronize_rcu_tasks synchronize_rcu 150static inline void exit_tasks_rcu_start(void) { } 151static inline void exit_tasks_rcu_finish(void) { } 152#endif /* #else #ifdef CONFIG_TASKS_RCU */ 153 154/** 155 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 156 * 157 * This macro resembles cond_resched(), except that it is defined to 158 * report potential quiescent states to RCU-tasks even if the cond_resched() 159 * machinery were to be shut off, as some advocate for PREEMPT kernels. 160 */ 161#define cond_resched_tasks_rcu_qs() \ 162do { \ 163 rcu_tasks_qs(current); \ 164 cond_resched(); \ 165} while (0) 166 167/* 168 * Infrastructure to implement the synchronize_() primitives in 169 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 170 */ 171 172#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 173#include <linux/rcutree.h> 174#elif defined(CONFIG_TINY_RCU) 175#include <linux/rcutiny.h> 176#else 177#error "Unknown RCU implementation specified to kernel configuration" 178#endif 179 180/* 181 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 182 * are needed for dynamic initialization and destruction of rcu_head 183 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 184 * dynamic initialization and destruction of statically allocated rcu_head 185 * structures. However, rcu_head structures allocated dynamically in the 186 * heap don't need any initialization. 187 */ 188#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 189void init_rcu_head(struct rcu_head *head); 190void destroy_rcu_head(struct rcu_head *head); 191void init_rcu_head_on_stack(struct rcu_head *head); 192void destroy_rcu_head_on_stack(struct rcu_head *head); 193#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 194static inline void init_rcu_head(struct rcu_head *head) { } 195static inline void destroy_rcu_head(struct rcu_head *head) { } 196static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 197static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 198#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 199 200#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 201bool rcu_lockdep_current_cpu_online(void); 202#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 203static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 204#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 205 206#ifdef CONFIG_DEBUG_LOCK_ALLOC 207 208static inline void rcu_lock_acquire(struct lockdep_map *map) 209{ 210 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 211} 212 213static inline void rcu_lock_release(struct lockdep_map *map) 214{ 215 lock_release(map, 1, _THIS_IP_); 216} 217 218extern struct lockdep_map rcu_lock_map; 219extern struct lockdep_map rcu_bh_lock_map; 220extern struct lockdep_map rcu_sched_lock_map; 221extern struct lockdep_map rcu_callback_map; 222int debug_lockdep_rcu_enabled(void); 223int rcu_read_lock_held(void); 224int rcu_read_lock_bh_held(void); 225int rcu_read_lock_sched_held(void); 226 227#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 228 229# define rcu_lock_acquire(a) do { } while (0) 230# define rcu_lock_release(a) do { } while (0) 231 232static inline int rcu_read_lock_held(void) 233{ 234 return 1; 235} 236 237static inline int rcu_read_lock_bh_held(void) 238{ 239 return 1; 240} 241 242static inline int rcu_read_lock_sched_held(void) 243{ 244 return !preemptible(); 245} 246#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 247 248#ifdef CONFIG_PROVE_RCU 249 250/** 251 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 252 * @c: condition to check 253 * @s: informative message 254 */ 255#define RCU_LOCKDEP_WARN(c, s) \ 256 do { \ 257 static bool __section(.data.unlikely) __warned; \ 258 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 259 __warned = true; \ 260 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 261 } \ 262 } while (0) 263 264#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 265static inline void rcu_preempt_sleep_check(void) 266{ 267 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 268 "Illegal context switch in RCU read-side critical section"); 269} 270#else /* #ifdef CONFIG_PROVE_RCU */ 271static inline void rcu_preempt_sleep_check(void) { } 272#endif /* #else #ifdef CONFIG_PROVE_RCU */ 273 274#define rcu_sleep_check() \ 275 do { \ 276 rcu_preempt_sleep_check(); \ 277 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 278 "Illegal context switch in RCU-bh read-side critical section"); \ 279 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 280 "Illegal context switch in RCU-sched read-side critical section"); \ 281 } while (0) 282 283#else /* #ifdef CONFIG_PROVE_RCU */ 284 285#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 286#define rcu_sleep_check() do { } while (0) 287 288#endif /* #else #ifdef CONFIG_PROVE_RCU */ 289 290/* 291 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 292 * and rcu_assign_pointer(). Some of these could be folded into their 293 * callers, but they are left separate in order to ease introduction of 294 * multiple pointers markings to match different RCU implementations 295 * (e.g., __srcu), should this make sense in the future. 296 */ 297 298#ifdef __CHECKER__ 299#define rcu_check_sparse(p, space) \ 300 ((void)(((typeof(*p) space *)p) == p)) 301#else /* #ifdef __CHECKER__ */ 302#define rcu_check_sparse(p, space) 303#endif /* #else #ifdef __CHECKER__ */ 304 305#define __rcu_access_pointer(p, space) \ 306({ \ 307 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 308 rcu_check_sparse(p, space); \ 309 ((typeof(*p) __force __kernel *)(_________p1)); \ 310}) 311#define __rcu_dereference_check(p, c, space) \ 312({ \ 313 /* Dependency order vs. p above. */ \ 314 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 315 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 316 rcu_check_sparse(p, space); \ 317 ((typeof(*p) __force __kernel *)(________p1)); \ 318}) 319#define __rcu_dereference_protected(p, c, space) \ 320({ \ 321 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 322 rcu_check_sparse(p, space); \ 323 ((typeof(*p) __force __kernel *)(p)); \ 324}) 325#define rcu_dereference_raw(p) \ 326({ \ 327 /* Dependency order vs. p above. */ \ 328 typeof(p) ________p1 = READ_ONCE(p); \ 329 ((typeof(*p) __force __kernel *)(________p1)); \ 330}) 331 332/** 333 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 334 * @v: The value to statically initialize with. 335 */ 336#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 337 338/** 339 * rcu_assign_pointer() - assign to RCU-protected pointer 340 * @p: pointer to assign to 341 * @v: value to assign (publish) 342 * 343 * Assigns the specified value to the specified RCU-protected 344 * pointer, ensuring that any concurrent RCU readers will see 345 * any prior initialization. 346 * 347 * Inserts memory barriers on architectures that require them 348 * (which is most of them), and also prevents the compiler from 349 * reordering the code that initializes the structure after the pointer 350 * assignment. More importantly, this call documents which pointers 351 * will be dereferenced by RCU read-side code. 352 * 353 * In some special cases, you may use RCU_INIT_POINTER() instead 354 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 355 * to the fact that it does not constrain either the CPU or the compiler. 356 * That said, using RCU_INIT_POINTER() when you should have used 357 * rcu_assign_pointer() is a very bad thing that results in 358 * impossible-to-diagnose memory corruption. So please be careful. 359 * See the RCU_INIT_POINTER() comment header for details. 360 * 361 * Note that rcu_assign_pointer() evaluates each of its arguments only 362 * once, appearances notwithstanding. One of the "extra" evaluations 363 * is in typeof() and the other visible only to sparse (__CHECKER__), 364 * neither of which actually execute the argument. As with most cpp 365 * macros, this execute-arguments-only-once property is important, so 366 * please be careful when making changes to rcu_assign_pointer() and the 367 * other macros that it invokes. 368 */ 369#define rcu_assign_pointer(p, v) \ 370({ \ 371 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 372 rcu_check_sparse(p, __rcu); \ 373 \ 374 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 375 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 376 else \ 377 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 378 _r_a_p__v; \ 379}) 380 381/** 382 * rcu_swap_protected() - swap an RCU and a regular pointer 383 * @rcu_ptr: RCU pointer 384 * @ptr: regular pointer 385 * @c: the conditions under which the dereference will take place 386 * 387 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and 388 * @c is the argument that is passed to the rcu_dereference_protected() call 389 * used to read that pointer. 390 */ 391#define rcu_swap_protected(rcu_ptr, ptr, c) do { \ 392 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 393 rcu_assign_pointer((rcu_ptr), (ptr)); \ 394 (ptr) = __tmp; \ 395} while (0) 396 397/** 398 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 399 * @p: The pointer to read 400 * 401 * Return the value of the specified RCU-protected pointer, but omit the 402 * lockdep checks for being in an RCU read-side critical section. This is 403 * useful when the value of this pointer is accessed, but the pointer is 404 * not dereferenced, for example, when testing an RCU-protected pointer 405 * against NULL. Although rcu_access_pointer() may also be used in cases 406 * where update-side locks prevent the value of the pointer from changing, 407 * you should instead use rcu_dereference_protected() for this use case. 408 * 409 * It is also permissible to use rcu_access_pointer() when read-side 410 * access to the pointer was removed at least one grace period ago, as 411 * is the case in the context of the RCU callback that is freeing up 412 * the data, or after a synchronize_rcu() returns. This can be useful 413 * when tearing down multi-linked structures after a grace period 414 * has elapsed. 415 */ 416#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 417 418/** 419 * rcu_dereference_check() - rcu_dereference with debug checking 420 * @p: The pointer to read, prior to dereferencing 421 * @c: The conditions under which the dereference will take place 422 * 423 * Do an rcu_dereference(), but check that the conditions under which the 424 * dereference will take place are correct. Typically the conditions 425 * indicate the various locking conditions that should be held at that 426 * point. The check should return true if the conditions are satisfied. 427 * An implicit check for being in an RCU read-side critical section 428 * (rcu_read_lock()) is included. 429 * 430 * For example: 431 * 432 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 433 * 434 * could be used to indicate to lockdep that foo->bar may only be dereferenced 435 * if either rcu_read_lock() is held, or that the lock required to replace 436 * the bar struct at foo->bar is held. 437 * 438 * Note that the list of conditions may also include indications of when a lock 439 * need not be held, for example during initialisation or destruction of the 440 * target struct: 441 * 442 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 443 * atomic_read(&foo->usage) == 0); 444 * 445 * Inserts memory barriers on architectures that require them 446 * (currently only the Alpha), prevents the compiler from refetching 447 * (and from merging fetches), and, more importantly, documents exactly 448 * which pointers are protected by RCU and checks that the pointer is 449 * annotated as __rcu. 450 */ 451#define rcu_dereference_check(p, c) \ 452 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 453 454/** 455 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 456 * @p: The pointer to read, prior to dereferencing 457 * @c: The conditions under which the dereference will take place 458 * 459 * This is the RCU-bh counterpart to rcu_dereference_check(). 460 */ 461#define rcu_dereference_bh_check(p, c) \ 462 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 463 464/** 465 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 466 * @p: The pointer to read, prior to dereferencing 467 * @c: The conditions under which the dereference will take place 468 * 469 * This is the RCU-sched counterpart to rcu_dereference_check(). 470 */ 471#define rcu_dereference_sched_check(p, c) \ 472 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 473 __rcu) 474 475/* 476 * The tracing infrastructure traces RCU (we want that), but unfortunately 477 * some of the RCU checks causes tracing to lock up the system. 478 * 479 * The no-tracing version of rcu_dereference_raw() must not call 480 * rcu_read_lock_held(). 481 */ 482#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 483 484/** 485 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 486 * @p: The pointer to read, prior to dereferencing 487 * @c: The conditions under which the dereference will take place 488 * 489 * Return the value of the specified RCU-protected pointer, but omit 490 * the READ_ONCE(). This is useful in cases where update-side locks 491 * prevent the value of the pointer from changing. Please note that this 492 * primitive does *not* prevent the compiler from repeating this reference 493 * or combining it with other references, so it should not be used without 494 * protection of appropriate locks. 495 * 496 * This function is only for update-side use. Using this function 497 * when protected only by rcu_read_lock() will result in infrequent 498 * but very ugly failures. 499 */ 500#define rcu_dereference_protected(p, c) \ 501 __rcu_dereference_protected((p), (c), __rcu) 502 503 504/** 505 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 506 * @p: The pointer to read, prior to dereferencing 507 * 508 * This is a simple wrapper around rcu_dereference_check(). 509 */ 510#define rcu_dereference(p) rcu_dereference_check(p, 0) 511 512/** 513 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 514 * @p: The pointer to read, prior to dereferencing 515 * 516 * Makes rcu_dereference_check() do the dirty work. 517 */ 518#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 519 520/** 521 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 522 * @p: The pointer to read, prior to dereferencing 523 * 524 * Makes rcu_dereference_check() do the dirty work. 525 */ 526#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 527 528/** 529 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 530 * @p: The pointer to hand off 531 * 532 * This is simply an identity function, but it documents where a pointer 533 * is handed off from RCU to some other synchronization mechanism, for 534 * example, reference counting or locking. In C11, it would map to 535 * kill_dependency(). It could be used as follows:: 536 * 537 * rcu_read_lock(); 538 * p = rcu_dereference(gp); 539 * long_lived = is_long_lived(p); 540 * if (long_lived) { 541 * if (!atomic_inc_not_zero(p->refcnt)) 542 * long_lived = false; 543 * else 544 * p = rcu_pointer_handoff(p); 545 * } 546 * rcu_read_unlock(); 547 */ 548#define rcu_pointer_handoff(p) (p) 549 550/** 551 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 552 * 553 * When synchronize_rcu() is invoked on one CPU while other CPUs 554 * are within RCU read-side critical sections, then the 555 * synchronize_rcu() is guaranteed to block until after all the other 556 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 557 * on one CPU while other CPUs are within RCU read-side critical 558 * sections, invocation of the corresponding RCU callback is deferred 559 * until after the all the other CPUs exit their critical sections. 560 * 561 * Note, however, that RCU callbacks are permitted to run concurrently 562 * with new RCU read-side critical sections. One way that this can happen 563 * is via the following sequence of events: (1) CPU 0 enters an RCU 564 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 565 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 566 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 567 * callback is invoked. This is legal, because the RCU read-side critical 568 * section that was running concurrently with the call_rcu() (and which 569 * therefore might be referencing something that the corresponding RCU 570 * callback would free up) has completed before the corresponding 571 * RCU callback is invoked. 572 * 573 * RCU read-side critical sections may be nested. Any deferred actions 574 * will be deferred until the outermost RCU read-side critical section 575 * completes. 576 * 577 * You can avoid reading and understanding the next paragraph by 578 * following this rule: don't put anything in an rcu_read_lock() RCU 579 * read-side critical section that would block in a !PREEMPT kernel. 580 * But if you want the full story, read on! 581 * 582 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 583 * it is illegal to block while in an RCU read-side critical section. 584 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 585 * kernel builds, RCU read-side critical sections may be preempted, 586 * but explicit blocking is illegal. Finally, in preemptible RCU 587 * implementations in real-time (with -rt patchset) kernel builds, RCU 588 * read-side critical sections may be preempted and they may also block, but 589 * only when acquiring spinlocks that are subject to priority inheritance. 590 */ 591static inline void rcu_read_lock(void) 592{ 593 __rcu_read_lock(); 594 __acquire(RCU); 595 rcu_lock_acquire(&rcu_lock_map); 596 RCU_LOCKDEP_WARN(!rcu_is_watching(), 597 "rcu_read_lock() used illegally while idle"); 598} 599 600/* 601 * So where is rcu_write_lock()? It does not exist, as there is no 602 * way for writers to lock out RCU readers. This is a feature, not 603 * a bug -- this property is what provides RCU's performance benefits. 604 * Of course, writers must coordinate with each other. The normal 605 * spinlock primitives work well for this, but any other technique may be 606 * used as well. RCU does not care how the writers keep out of each 607 * others' way, as long as they do so. 608 */ 609 610/** 611 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 612 * 613 * In most situations, rcu_read_unlock() is immune from deadlock. 614 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 615 * is responsible for deboosting, which it does via rt_mutex_unlock(). 616 * Unfortunately, this function acquires the scheduler's runqueue and 617 * priority-inheritance spinlocks. This means that deadlock could result 618 * if the caller of rcu_read_unlock() already holds one of these locks or 619 * any lock that is ever acquired while holding them. 620 * 621 * That said, RCU readers are never priority boosted unless they were 622 * preempted. Therefore, one way to avoid deadlock is to make sure 623 * that preemption never happens within any RCU read-side critical 624 * section whose outermost rcu_read_unlock() is called with one of 625 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 626 * a number of ways, for example, by invoking preempt_disable() before 627 * critical section's outermost rcu_read_lock(). 628 * 629 * Given that the set of locks acquired by rt_mutex_unlock() might change 630 * at any time, a somewhat more future-proofed approach is to make sure 631 * that that preemption never happens within any RCU read-side critical 632 * section whose outermost rcu_read_unlock() is called with irqs disabled. 633 * This approach relies on the fact that rt_mutex_unlock() currently only 634 * acquires irq-disabled locks. 635 * 636 * The second of these two approaches is best in most situations, 637 * however, the first approach can also be useful, at least to those 638 * developers willing to keep abreast of the set of locks acquired by 639 * rt_mutex_unlock(). 640 * 641 * See rcu_read_lock() for more information. 642 */ 643static inline void rcu_read_unlock(void) 644{ 645 RCU_LOCKDEP_WARN(!rcu_is_watching(), 646 "rcu_read_unlock() used illegally while idle"); 647 __release(RCU); 648 __rcu_read_unlock(); 649 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 650} 651 652/** 653 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 654 * 655 * This is equivalent of rcu_read_lock(), but also disables softirqs. 656 * Note that anything else that disables softirqs can also serve as 657 * an RCU read-side critical section. 658 * 659 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 660 * must occur in the same context, for example, it is illegal to invoke 661 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 662 * was invoked from some other task. 663 */ 664static inline void rcu_read_lock_bh(void) 665{ 666 local_bh_disable(); 667 __acquire(RCU_BH); 668 rcu_lock_acquire(&rcu_bh_lock_map); 669 RCU_LOCKDEP_WARN(!rcu_is_watching(), 670 "rcu_read_lock_bh() used illegally while idle"); 671} 672 673/* 674 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 675 * 676 * See rcu_read_lock_bh() for more information. 677 */ 678static inline void rcu_read_unlock_bh(void) 679{ 680 RCU_LOCKDEP_WARN(!rcu_is_watching(), 681 "rcu_read_unlock_bh() used illegally while idle"); 682 rcu_lock_release(&rcu_bh_lock_map); 683 __release(RCU_BH); 684 local_bh_enable(); 685} 686 687/** 688 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 689 * 690 * This is equivalent of rcu_read_lock(), but disables preemption. 691 * Read-side critical sections can also be introduced by anything else 692 * that disables preemption, including local_irq_disable() and friends. 693 * 694 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 695 * must occur in the same context, for example, it is illegal to invoke 696 * rcu_read_unlock_sched() from process context if the matching 697 * rcu_read_lock_sched() was invoked from an NMI handler. 698 */ 699static inline void rcu_read_lock_sched(void) 700{ 701 preempt_disable(); 702 __acquire(RCU_SCHED); 703 rcu_lock_acquire(&rcu_sched_lock_map); 704 RCU_LOCKDEP_WARN(!rcu_is_watching(), 705 "rcu_read_lock_sched() used illegally while idle"); 706} 707 708/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 709static inline notrace void rcu_read_lock_sched_notrace(void) 710{ 711 preempt_disable_notrace(); 712 __acquire(RCU_SCHED); 713} 714 715/* 716 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 717 * 718 * See rcu_read_lock_sched for more information. 719 */ 720static inline void rcu_read_unlock_sched(void) 721{ 722 RCU_LOCKDEP_WARN(!rcu_is_watching(), 723 "rcu_read_unlock_sched() used illegally while idle"); 724 rcu_lock_release(&rcu_sched_lock_map); 725 __release(RCU_SCHED); 726 preempt_enable(); 727} 728 729/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 730static inline notrace void rcu_read_unlock_sched_notrace(void) 731{ 732 __release(RCU_SCHED); 733 preempt_enable_notrace(); 734} 735 736/** 737 * RCU_INIT_POINTER() - initialize an RCU protected pointer 738 * @p: The pointer to be initialized. 739 * @v: The value to initialized the pointer to. 740 * 741 * Initialize an RCU-protected pointer in special cases where readers 742 * do not need ordering constraints on the CPU or the compiler. These 743 * special cases are: 744 * 745 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 746 * 2. The caller has taken whatever steps are required to prevent 747 * RCU readers from concurrently accessing this pointer *or* 748 * 3. The referenced data structure has already been exposed to 749 * readers either at compile time or via rcu_assign_pointer() *and* 750 * 751 * a. You have not made *any* reader-visible changes to 752 * this structure since then *or* 753 * b. It is OK for readers accessing this structure from its 754 * new location to see the old state of the structure. (For 755 * example, the changes were to statistical counters or to 756 * other state where exact synchronization is not required.) 757 * 758 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 759 * result in impossible-to-diagnose memory corruption. As in the structures 760 * will look OK in crash dumps, but any concurrent RCU readers might 761 * see pre-initialized values of the referenced data structure. So 762 * please be very careful how you use RCU_INIT_POINTER()!!! 763 * 764 * If you are creating an RCU-protected linked structure that is accessed 765 * by a single external-to-structure RCU-protected pointer, then you may 766 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 767 * pointers, but you must use rcu_assign_pointer() to initialize the 768 * external-to-structure pointer *after* you have completely initialized 769 * the reader-accessible portions of the linked structure. 770 * 771 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 772 * ordering guarantees for either the CPU or the compiler. 773 */ 774#define RCU_INIT_POINTER(p, v) \ 775 do { \ 776 rcu_check_sparse(p, __rcu); \ 777 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 778 } while (0) 779 780/** 781 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 782 * @p: The pointer to be initialized. 783 * @v: The value to initialized the pointer to. 784 * 785 * GCC-style initialization for an RCU-protected pointer in a structure field. 786 */ 787#define RCU_POINTER_INITIALIZER(p, v) \ 788 .p = RCU_INITIALIZER(v) 789 790/* 791 * Does the specified offset indicate that the corresponding rcu_head 792 * structure can be handled by kfree_rcu()? 793 */ 794#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 795 796/* 797 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 798 */ 799#define __kfree_rcu(head, offset) \ 800 do { \ 801 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 802 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 803 } while (0) 804 805/** 806 * kfree_rcu() - kfree an object after a grace period. 807 * @ptr: pointer to kfree 808 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 809 * 810 * Many rcu callbacks functions just call kfree() on the base structure. 811 * These functions are trivial, but their size adds up, and furthermore 812 * when they are used in a kernel module, that module must invoke the 813 * high-latency rcu_barrier() function at module-unload time. 814 * 815 * The kfree_rcu() function handles this issue. Rather than encoding a 816 * function address in the embedded rcu_head structure, kfree_rcu() instead 817 * encodes the offset of the rcu_head structure within the base structure. 818 * Because the functions are not allowed in the low-order 4096 bytes of 819 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 820 * If the offset is larger than 4095 bytes, a compile-time error will 821 * be generated in __kfree_rcu(). If this error is triggered, you can 822 * either fall back to use of call_rcu() or rearrange the structure to 823 * position the rcu_head structure into the first 4096 bytes. 824 * 825 * Note that the allowable offset might decrease in the future, for example, 826 * to allow something like kmem_cache_free_rcu(). 827 * 828 * The BUILD_BUG_ON check must not involve any function calls, hence the 829 * checks are done in macros here. 830 */ 831#define kfree_rcu(ptr, rcu_head) \ 832 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 833 834 835/* 836 * Place this after a lock-acquisition primitive to guarantee that 837 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 838 * if the UNLOCK and LOCK are executed by the same CPU or if the 839 * UNLOCK and LOCK operate on the same lock variable. 840 */ 841#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 842#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 843#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 844#define smp_mb__after_unlock_lock() do { } while (0) 845#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 846 847 848/* Has the specified rcu_head structure been handed to call_rcu()? */ 849 850/** 851 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 852 * @rhp: The rcu_head structure to initialize. 853 * 854 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 855 * given rcu_head structure has already been passed to call_rcu(), then 856 * you must also invoke this rcu_head_init() function on it just after 857 * allocating that structure. Calls to this function must not race with 858 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 859 */ 860static inline void rcu_head_init(struct rcu_head *rhp) 861{ 862 rhp->func = (rcu_callback_t)~0L; 863} 864 865/** 866 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()? 867 * @rhp: The rcu_head structure to test. 868 * @f: The function passed to call_rcu() along with @rhp. 869 * 870 * Returns @true if the @rhp has been passed to call_rcu() with @func, 871 * and @false otherwise. Emits a warning in any other case, including 872 * the case where @rhp has already been invoked after a grace period. 873 * Calls to this function must not race with callback invocation. One way 874 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 875 * in an RCU read-side critical section that includes a read-side fetch 876 * of the pointer to the structure containing @rhp. 877 */ 878static inline bool 879rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 880{ 881 if (READ_ONCE(rhp->func) == f) 882 return true; 883 WARN_ON_ONCE(READ_ONCE(rhp->func) != (rcu_callback_t)~0L); 884 return false; 885} 886 887#endif /* __LINUX_RCUPDATE_H */