at v5.1 17 kB view raw
1/* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2006 Nick Piggin 5 * Copyright (C) 2012 Konstantin Khlebnikov 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2, or (at 10 * your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21#ifndef _LINUX_RADIX_TREE_H 22#define _LINUX_RADIX_TREE_H 23 24#include <linux/bitops.h> 25#include <linux/kernel.h> 26#include <linux/list.h> 27#include <linux/preempt.h> 28#include <linux/rcupdate.h> 29#include <linux/spinlock.h> 30#include <linux/types.h> 31#include <linux/xarray.h> 32 33/* Keep unconverted code working */ 34#define radix_tree_root xarray 35#define radix_tree_node xa_node 36 37/* 38 * The bottom two bits of the slot determine how the remaining bits in the 39 * slot are interpreted: 40 * 41 * 00 - data pointer 42 * 10 - internal entry 43 * x1 - value entry 44 * 45 * The internal entry may be a pointer to the next level in the tree, a 46 * sibling entry, or an indicator that the entry in this slot has been moved 47 * to another location in the tree and the lookup should be restarted. While 48 * NULL fits the 'data pointer' pattern, it means that there is no entry in 49 * the tree for this index (no matter what level of the tree it is found at). 50 * This means that storing a NULL entry in the tree is the same as deleting 51 * the entry from the tree. 52 */ 53#define RADIX_TREE_ENTRY_MASK 3UL 54#define RADIX_TREE_INTERNAL_NODE 2UL 55 56static inline bool radix_tree_is_internal_node(void *ptr) 57{ 58 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) == 59 RADIX_TREE_INTERNAL_NODE; 60} 61 62/*** radix-tree API starts here ***/ 63 64#define RADIX_TREE_MAP_SHIFT XA_CHUNK_SHIFT 65#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 66#define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 67 68#define RADIX_TREE_MAX_TAGS XA_MAX_MARKS 69#define RADIX_TREE_TAG_LONGS XA_MARK_LONGS 70 71#define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 72#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 73 RADIX_TREE_MAP_SHIFT)) 74 75/* The IDR tag is stored in the low bits of xa_flags */ 76#define ROOT_IS_IDR ((__force gfp_t)4) 77/* The top bits of xa_flags are used to store the root tags */ 78#define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT) 79 80#define RADIX_TREE_INIT(name, mask) XARRAY_INIT(name, mask) 81 82#define RADIX_TREE(name, mask) \ 83 struct radix_tree_root name = RADIX_TREE_INIT(name, mask) 84 85#define INIT_RADIX_TREE(root, mask) xa_init_flags(root, mask) 86 87static inline bool radix_tree_empty(const struct radix_tree_root *root) 88{ 89 return root->xa_head == NULL; 90} 91 92/** 93 * struct radix_tree_iter - radix tree iterator state 94 * 95 * @index: index of current slot 96 * @next_index: one beyond the last index for this chunk 97 * @tags: bit-mask for tag-iterating 98 * @node: node that contains current slot 99 * 100 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a 101 * subinterval of slots contained within one radix tree leaf node. It is 102 * described by a pointer to its first slot and a struct radix_tree_iter 103 * which holds the chunk's position in the tree and its size. For tagged 104 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen 105 * radix tree tag. 106 */ 107struct radix_tree_iter { 108 unsigned long index; 109 unsigned long next_index; 110 unsigned long tags; 111 struct radix_tree_node *node; 112}; 113 114/** 115 * Radix-tree synchronization 116 * 117 * The radix-tree API requires that users provide all synchronisation (with 118 * specific exceptions, noted below). 119 * 120 * Synchronization of access to the data items being stored in the tree, and 121 * management of their lifetimes must be completely managed by API users. 122 * 123 * For API usage, in general, 124 * - any function _modifying_ the tree or tags (inserting or deleting 125 * items, setting or clearing tags) must exclude other modifications, and 126 * exclude any functions reading the tree. 127 * - any function _reading_ the tree or tags (looking up items or tags, 128 * gang lookups) must exclude modifications to the tree, but may occur 129 * concurrently with other readers. 130 * 131 * The notable exceptions to this rule are the following functions: 132 * __radix_tree_lookup 133 * radix_tree_lookup 134 * radix_tree_lookup_slot 135 * radix_tree_tag_get 136 * radix_tree_gang_lookup 137 * radix_tree_gang_lookup_tag 138 * radix_tree_gang_lookup_tag_slot 139 * radix_tree_tagged 140 * 141 * The first 7 functions are able to be called locklessly, using RCU. The 142 * caller must ensure calls to these functions are made within rcu_read_lock() 143 * regions. Other readers (lock-free or otherwise) and modifications may be 144 * running concurrently. 145 * 146 * It is still required that the caller manage the synchronization and lifetimes 147 * of the items. So if RCU lock-free lookups are used, typically this would mean 148 * that the items have their own locks, or are amenable to lock-free access; and 149 * that the items are freed by RCU (or only freed after having been deleted from 150 * the radix tree *and* a synchronize_rcu() grace period). 151 * 152 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control 153 * access to data items when inserting into or looking up from the radix tree) 154 * 155 * Note that the value returned by radix_tree_tag_get() may not be relied upon 156 * if only the RCU read lock is held. Functions to set/clear tags and to 157 * delete nodes running concurrently with it may affect its result such that 158 * two consecutive reads in the same locked section may return different 159 * values. If reliability is required, modification functions must also be 160 * excluded from concurrency. 161 * 162 * radix_tree_tagged is able to be called without locking or RCU. 163 */ 164 165/** 166 * radix_tree_deref_slot - dereference a slot 167 * @slot: slot pointer, returned by radix_tree_lookup_slot 168 * 169 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read 170 * locked across slot lookup and dereference. Not required if write lock is 171 * held (ie. items cannot be concurrently inserted). 172 * 173 * radix_tree_deref_retry must be used to confirm validity of the pointer if 174 * only the read lock is held. 175 * 176 * Return: entry stored in that slot. 177 */ 178static inline void *radix_tree_deref_slot(void __rcu **slot) 179{ 180 return rcu_dereference(*slot); 181} 182 183/** 184 * radix_tree_deref_slot_protected - dereference a slot with tree lock held 185 * @slot: slot pointer, returned by radix_tree_lookup_slot 186 * 187 * Similar to radix_tree_deref_slot. The caller does not hold the RCU read 188 * lock but it must hold the tree lock to prevent parallel updates. 189 * 190 * Return: entry stored in that slot. 191 */ 192static inline void *radix_tree_deref_slot_protected(void __rcu **slot, 193 spinlock_t *treelock) 194{ 195 return rcu_dereference_protected(*slot, lockdep_is_held(treelock)); 196} 197 198/** 199 * radix_tree_deref_retry - check radix_tree_deref_slot 200 * @arg: pointer returned by radix_tree_deref_slot 201 * Returns: 0 if retry is not required, otherwise retry is required 202 * 203 * radix_tree_deref_retry must be used with radix_tree_deref_slot. 204 */ 205static inline int radix_tree_deref_retry(void *arg) 206{ 207 return unlikely(radix_tree_is_internal_node(arg)); 208} 209 210/** 211 * radix_tree_exception - radix_tree_deref_slot returned either exception? 212 * @arg: value returned by radix_tree_deref_slot 213 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception. 214 */ 215static inline int radix_tree_exception(void *arg) 216{ 217 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK); 218} 219 220int radix_tree_insert(struct radix_tree_root *, unsigned long index, 221 void *); 222void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index, 223 struct radix_tree_node **nodep, void __rcu ***slotp); 224void *radix_tree_lookup(const struct radix_tree_root *, unsigned long); 225void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *, 226 unsigned long index); 227void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *, 228 void __rcu **slot, void *entry); 229void radix_tree_iter_replace(struct radix_tree_root *, 230 const struct radix_tree_iter *, void __rcu **slot, void *entry); 231void radix_tree_replace_slot(struct radix_tree_root *, 232 void __rcu **slot, void *entry); 233void radix_tree_iter_delete(struct radix_tree_root *, 234 struct radix_tree_iter *iter, void __rcu **slot); 235void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *); 236void *radix_tree_delete(struct radix_tree_root *, unsigned long); 237unsigned int radix_tree_gang_lookup(const struct radix_tree_root *, 238 void **results, unsigned long first_index, 239 unsigned int max_items); 240int radix_tree_preload(gfp_t gfp_mask); 241int radix_tree_maybe_preload(gfp_t gfp_mask); 242void radix_tree_init(void); 243void *radix_tree_tag_set(struct radix_tree_root *, 244 unsigned long index, unsigned int tag); 245void *radix_tree_tag_clear(struct radix_tree_root *, 246 unsigned long index, unsigned int tag); 247int radix_tree_tag_get(const struct radix_tree_root *, 248 unsigned long index, unsigned int tag); 249void radix_tree_iter_tag_clear(struct radix_tree_root *, 250 const struct radix_tree_iter *iter, unsigned int tag); 251unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *, 252 void **results, unsigned long first_index, 253 unsigned int max_items, unsigned int tag); 254unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *, 255 void __rcu ***results, unsigned long first_index, 256 unsigned int max_items, unsigned int tag); 257int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag); 258 259static inline void radix_tree_preload_end(void) 260{ 261 preempt_enable(); 262} 263 264void __rcu **idr_get_free(struct radix_tree_root *root, 265 struct radix_tree_iter *iter, gfp_t gfp, 266 unsigned long max); 267 268enum { 269 RADIX_TREE_ITER_TAG_MASK = 0x0f, /* tag index in lower nybble */ 270 RADIX_TREE_ITER_TAGGED = 0x10, /* lookup tagged slots */ 271 RADIX_TREE_ITER_CONTIG = 0x20, /* stop at first hole */ 272}; 273 274/** 275 * radix_tree_iter_init - initialize radix tree iterator 276 * 277 * @iter: pointer to iterator state 278 * @start: iteration starting index 279 * Returns: NULL 280 */ 281static __always_inline void __rcu ** 282radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start) 283{ 284 /* 285 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it 286 * in the case of a successful tagged chunk lookup. If the lookup was 287 * unsuccessful or non-tagged then nobody cares about ->tags. 288 * 289 * Set index to zero to bypass next_index overflow protection. 290 * See the comment in radix_tree_next_chunk() for details. 291 */ 292 iter->index = 0; 293 iter->next_index = start; 294 return NULL; 295} 296 297/** 298 * radix_tree_next_chunk - find next chunk of slots for iteration 299 * 300 * @root: radix tree root 301 * @iter: iterator state 302 * @flags: RADIX_TREE_ITER_* flags and tag index 303 * Returns: pointer to chunk first slot, or NULL if there no more left 304 * 305 * This function looks up the next chunk in the radix tree starting from 306 * @iter->next_index. It returns a pointer to the chunk's first slot. 307 * Also it fills @iter with data about chunk: position in the tree (index), 308 * its end (next_index), and constructs a bit mask for tagged iterating (tags). 309 */ 310void __rcu **radix_tree_next_chunk(const struct radix_tree_root *, 311 struct radix_tree_iter *iter, unsigned flags); 312 313/** 314 * radix_tree_iter_lookup - look up an index in the radix tree 315 * @root: radix tree root 316 * @iter: iterator state 317 * @index: key to look up 318 * 319 * If @index is present in the radix tree, this function returns the slot 320 * containing it and updates @iter to describe the entry. If @index is not 321 * present, it returns NULL. 322 */ 323static inline void __rcu ** 324radix_tree_iter_lookup(const struct radix_tree_root *root, 325 struct radix_tree_iter *iter, unsigned long index) 326{ 327 radix_tree_iter_init(iter, index); 328 return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG); 329} 330 331/** 332 * radix_tree_iter_find - find a present entry 333 * @root: radix tree root 334 * @iter: iterator state 335 * @index: start location 336 * 337 * This function returns the slot containing the entry with the lowest index 338 * which is at least @index. If @index is larger than any present entry, this 339 * function returns NULL. The @iter is updated to describe the entry found. 340 */ 341static inline void __rcu ** 342radix_tree_iter_find(const struct radix_tree_root *root, 343 struct radix_tree_iter *iter, unsigned long index) 344{ 345 radix_tree_iter_init(iter, index); 346 return radix_tree_next_chunk(root, iter, 0); 347} 348 349/** 350 * radix_tree_iter_retry - retry this chunk of the iteration 351 * @iter: iterator state 352 * 353 * If we iterate over a tree protected only by the RCU lock, a race 354 * against deletion or creation may result in seeing a slot for which 355 * radix_tree_deref_retry() returns true. If so, call this function 356 * and continue the iteration. 357 */ 358static inline __must_check 359void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter) 360{ 361 iter->next_index = iter->index; 362 iter->tags = 0; 363 return NULL; 364} 365 366static inline unsigned long 367__radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots) 368{ 369 return iter->index + slots; 370} 371 372/** 373 * radix_tree_iter_resume - resume iterating when the chunk may be invalid 374 * @slot: pointer to current slot 375 * @iter: iterator state 376 * Returns: New slot pointer 377 * 378 * If the iterator needs to release then reacquire a lock, the chunk may 379 * have been invalidated by an insertion or deletion. Call this function 380 * before releasing the lock to continue the iteration from the next index. 381 */ 382void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot, 383 struct radix_tree_iter *iter); 384 385/** 386 * radix_tree_chunk_size - get current chunk size 387 * 388 * @iter: pointer to radix tree iterator 389 * Returns: current chunk size 390 */ 391static __always_inline long 392radix_tree_chunk_size(struct radix_tree_iter *iter) 393{ 394 return iter->next_index - iter->index; 395} 396 397/** 398 * radix_tree_next_slot - find next slot in chunk 399 * 400 * @slot: pointer to current slot 401 * @iter: pointer to interator state 402 * @flags: RADIX_TREE_ITER_*, should be constant 403 * Returns: pointer to next slot, or NULL if there no more left 404 * 405 * This function updates @iter->index in the case of a successful lookup. 406 * For tagged lookup it also eats @iter->tags. 407 * 408 * There are several cases where 'slot' can be passed in as NULL to this 409 * function. These cases result from the use of radix_tree_iter_resume() or 410 * radix_tree_iter_retry(). In these cases we don't end up dereferencing 411 * 'slot' because either: 412 * a) we are doing tagged iteration and iter->tags has been set to 0, or 413 * b) we are doing non-tagged iteration, and iter->index and iter->next_index 414 * have been set up so that radix_tree_chunk_size() returns 1 or 0. 415 */ 416static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot, 417 struct radix_tree_iter *iter, unsigned flags) 418{ 419 if (flags & RADIX_TREE_ITER_TAGGED) { 420 iter->tags >>= 1; 421 if (unlikely(!iter->tags)) 422 return NULL; 423 if (likely(iter->tags & 1ul)) { 424 iter->index = __radix_tree_iter_add(iter, 1); 425 slot++; 426 goto found; 427 } 428 if (!(flags & RADIX_TREE_ITER_CONTIG)) { 429 unsigned offset = __ffs(iter->tags); 430 431 iter->tags >>= offset++; 432 iter->index = __radix_tree_iter_add(iter, offset); 433 slot += offset; 434 goto found; 435 } 436 } else { 437 long count = radix_tree_chunk_size(iter); 438 439 while (--count > 0) { 440 slot++; 441 iter->index = __radix_tree_iter_add(iter, 1); 442 443 if (likely(*slot)) 444 goto found; 445 if (flags & RADIX_TREE_ITER_CONTIG) { 446 /* forbid switching to the next chunk */ 447 iter->next_index = 0; 448 break; 449 } 450 } 451 } 452 return NULL; 453 454 found: 455 return slot; 456} 457 458/** 459 * radix_tree_for_each_slot - iterate over non-empty slots 460 * 461 * @slot: the void** variable for pointer to slot 462 * @root: the struct radix_tree_root pointer 463 * @iter: the struct radix_tree_iter pointer 464 * @start: iteration starting index 465 * 466 * @slot points to radix tree slot, @iter->index contains its index. 467 */ 468#define radix_tree_for_each_slot(slot, root, iter, start) \ 469 for (slot = radix_tree_iter_init(iter, start) ; \ 470 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \ 471 slot = radix_tree_next_slot(slot, iter, 0)) 472 473/** 474 * radix_tree_for_each_tagged - iterate over tagged slots 475 * 476 * @slot: the void** variable for pointer to slot 477 * @root: the struct radix_tree_root pointer 478 * @iter: the struct radix_tree_iter pointer 479 * @start: iteration starting index 480 * @tag: tag index 481 * 482 * @slot points to radix tree slot, @iter->index contains its index. 483 */ 484#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \ 485 for (slot = radix_tree_iter_init(iter, start) ; \ 486 slot || (slot = radix_tree_next_chunk(root, iter, \ 487 RADIX_TREE_ITER_TAGGED | tag)) ; \ 488 slot = radix_tree_next_slot(slot, iter, \ 489 RADIX_TREE_ITER_TAGGED | tag)) 490 491#endif /* _LINUX_RADIX_TREE_H */