at v5.1 41 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33}; 34 35#ifdef CONFIG_HAVE_HW_BREAKPOINT 36#include <asm/hw_breakpoint.h> 37#endif 38 39#include <linux/list.h> 40#include <linux/mutex.h> 41#include <linux/rculist.h> 42#include <linux/rcupdate.h> 43#include <linux/spinlock.h> 44#include <linux/hrtimer.h> 45#include <linux/fs.h> 46#include <linux/pid_namespace.h> 47#include <linux/workqueue.h> 48#include <linux/ftrace.h> 49#include <linux/cpu.h> 50#include <linux/irq_work.h> 51#include <linux/static_key.h> 52#include <linux/jump_label_ratelimit.h> 53#include <linux/atomic.h> 54#include <linux/sysfs.h> 55#include <linux/perf_regs.h> 56#include <linux/cgroup.h> 57#include <linux/refcount.h> 58#include <asm/local.h> 59 60struct perf_callchain_entry { 61 __u64 nr; 62 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */ 63}; 64 65struct perf_callchain_entry_ctx { 66 struct perf_callchain_entry *entry; 67 u32 max_stack; 68 u32 nr; 69 short contexts; 70 bool contexts_maxed; 71}; 72 73typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 74 unsigned long off, unsigned long len); 75 76struct perf_raw_frag { 77 union { 78 struct perf_raw_frag *next; 79 unsigned long pad; 80 }; 81 perf_copy_f copy; 82 void *data; 83 u32 size; 84} __packed; 85 86struct perf_raw_record { 87 struct perf_raw_frag frag; 88 u32 size; 89}; 90 91/* 92 * branch stack layout: 93 * nr: number of taken branches stored in entries[] 94 * 95 * Note that nr can vary from sample to sample 96 * branches (to, from) are stored from most recent 97 * to least recent, i.e., entries[0] contains the most 98 * recent branch. 99 */ 100struct perf_branch_stack { 101 __u64 nr; 102 struct perf_branch_entry entries[0]; 103}; 104 105struct task_struct; 106 107/* 108 * extra PMU register associated with an event 109 */ 110struct hw_perf_event_extra { 111 u64 config; /* register value */ 112 unsigned int reg; /* register address or index */ 113 int alloc; /* extra register already allocated */ 114 int idx; /* index in shared_regs->regs[] */ 115}; 116 117/** 118 * struct hw_perf_event - performance event hardware details: 119 */ 120struct hw_perf_event { 121#ifdef CONFIG_PERF_EVENTS 122 union { 123 struct { /* hardware */ 124 u64 config; 125 u64 last_tag; 126 unsigned long config_base; 127 unsigned long event_base; 128 int event_base_rdpmc; 129 int idx; 130 int last_cpu; 131 int flags; 132 133 struct hw_perf_event_extra extra_reg; 134 struct hw_perf_event_extra branch_reg; 135 }; 136 struct { /* software */ 137 struct hrtimer hrtimer; 138 }; 139 struct { /* tracepoint */ 140 /* for tp_event->class */ 141 struct list_head tp_list; 142 }; 143 struct { /* amd_power */ 144 u64 pwr_acc; 145 u64 ptsc; 146 }; 147#ifdef CONFIG_HAVE_HW_BREAKPOINT 148 struct { /* breakpoint */ 149 /* 150 * Crufty hack to avoid the chicken and egg 151 * problem hw_breakpoint has with context 152 * creation and event initalization. 153 */ 154 struct arch_hw_breakpoint info; 155 struct list_head bp_list; 156 }; 157#endif 158 struct { /* amd_iommu */ 159 u8 iommu_bank; 160 u8 iommu_cntr; 161 u16 padding; 162 u64 conf; 163 u64 conf1; 164 }; 165 }; 166 /* 167 * If the event is a per task event, this will point to the task in 168 * question. See the comment in perf_event_alloc(). 169 */ 170 struct task_struct *target; 171 172 /* 173 * PMU would store hardware filter configuration 174 * here. 175 */ 176 void *addr_filters; 177 178 /* Last sync'ed generation of filters */ 179 unsigned long addr_filters_gen; 180 181/* 182 * hw_perf_event::state flags; used to track the PERF_EF_* state. 183 */ 184#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 185#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 186#define PERF_HES_ARCH 0x04 187 188 int state; 189 190 /* 191 * The last observed hardware counter value, updated with a 192 * local64_cmpxchg() such that pmu::read() can be called nested. 193 */ 194 local64_t prev_count; 195 196 /* 197 * The period to start the next sample with. 198 */ 199 u64 sample_period; 200 201 /* 202 * The period we started this sample with. 203 */ 204 u64 last_period; 205 206 /* 207 * However much is left of the current period; note that this is 208 * a full 64bit value and allows for generation of periods longer 209 * than hardware might allow. 210 */ 211 local64_t period_left; 212 213 /* 214 * State for throttling the event, see __perf_event_overflow() and 215 * perf_adjust_freq_unthr_context(). 216 */ 217 u64 interrupts_seq; 218 u64 interrupts; 219 220 /* 221 * State for freq target events, see __perf_event_overflow() and 222 * perf_adjust_freq_unthr_context(). 223 */ 224 u64 freq_time_stamp; 225 u64 freq_count_stamp; 226#endif 227}; 228 229struct perf_event; 230 231/* 232 * Common implementation detail of pmu::{start,commit,cancel}_txn 233 */ 234#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 235#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 236 237/** 238 * pmu::capabilities flags 239 */ 240#define PERF_PMU_CAP_NO_INTERRUPT 0x01 241#define PERF_PMU_CAP_NO_NMI 0x02 242#define PERF_PMU_CAP_AUX_NO_SG 0x04 243#define PERF_PMU_CAP_EXCLUSIVE 0x10 244#define PERF_PMU_CAP_ITRACE 0x20 245#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 246#define PERF_PMU_CAP_NO_EXCLUDE 0x80 247 248/** 249 * struct pmu - generic performance monitoring unit 250 */ 251struct pmu { 252 struct list_head entry; 253 254 struct module *module; 255 struct device *dev; 256 const struct attribute_group **attr_groups; 257 const char *name; 258 int type; 259 260 /* 261 * various common per-pmu feature flags 262 */ 263 int capabilities; 264 265 int __percpu *pmu_disable_count; 266 struct perf_cpu_context __percpu *pmu_cpu_context; 267 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 268 int task_ctx_nr; 269 int hrtimer_interval_ms; 270 271 /* number of address filters this PMU can do */ 272 unsigned int nr_addr_filters; 273 274 /* 275 * Fully disable/enable this PMU, can be used to protect from the PMI 276 * as well as for lazy/batch writing of the MSRs. 277 */ 278 void (*pmu_enable) (struct pmu *pmu); /* optional */ 279 void (*pmu_disable) (struct pmu *pmu); /* optional */ 280 281 /* 282 * Try and initialize the event for this PMU. 283 * 284 * Returns: 285 * -ENOENT -- @event is not for this PMU 286 * 287 * -ENODEV -- @event is for this PMU but PMU not present 288 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 289 * -EINVAL -- @event is for this PMU but @event is not valid 290 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 291 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges 292 * 293 * 0 -- @event is for this PMU and valid 294 * 295 * Other error return values are allowed. 296 */ 297 int (*event_init) (struct perf_event *event); 298 299 /* 300 * Notification that the event was mapped or unmapped. Called 301 * in the context of the mapping task. 302 */ 303 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 304 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 305 306 /* 307 * Flags for ->add()/->del()/ ->start()/->stop(). There are 308 * matching hw_perf_event::state flags. 309 */ 310#define PERF_EF_START 0x01 /* start the counter when adding */ 311#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 312#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 313 314 /* 315 * Adds/Removes a counter to/from the PMU, can be done inside a 316 * transaction, see the ->*_txn() methods. 317 * 318 * The add/del callbacks will reserve all hardware resources required 319 * to service the event, this includes any counter constraint 320 * scheduling etc. 321 * 322 * Called with IRQs disabled and the PMU disabled on the CPU the event 323 * is on. 324 * 325 * ->add() called without PERF_EF_START should result in the same state 326 * as ->add() followed by ->stop(). 327 * 328 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 329 * ->stop() that must deal with already being stopped without 330 * PERF_EF_UPDATE. 331 */ 332 int (*add) (struct perf_event *event, int flags); 333 void (*del) (struct perf_event *event, int flags); 334 335 /* 336 * Starts/Stops a counter present on the PMU. 337 * 338 * The PMI handler should stop the counter when perf_event_overflow() 339 * returns !0. ->start() will be used to continue. 340 * 341 * Also used to change the sample period. 342 * 343 * Called with IRQs disabled and the PMU disabled on the CPU the event 344 * is on -- will be called from NMI context with the PMU generates 345 * NMIs. 346 * 347 * ->stop() with PERF_EF_UPDATE will read the counter and update 348 * period/count values like ->read() would. 349 * 350 * ->start() with PERF_EF_RELOAD will reprogram the the counter 351 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 352 */ 353 void (*start) (struct perf_event *event, int flags); 354 void (*stop) (struct perf_event *event, int flags); 355 356 /* 357 * Updates the counter value of the event. 358 * 359 * For sampling capable PMUs this will also update the software period 360 * hw_perf_event::period_left field. 361 */ 362 void (*read) (struct perf_event *event); 363 364 /* 365 * Group events scheduling is treated as a transaction, add 366 * group events as a whole and perform one schedulability test. 367 * If the test fails, roll back the whole group 368 * 369 * Start the transaction, after this ->add() doesn't need to 370 * do schedulability tests. 371 * 372 * Optional. 373 */ 374 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 375 /* 376 * If ->start_txn() disabled the ->add() schedulability test 377 * then ->commit_txn() is required to perform one. On success 378 * the transaction is closed. On error the transaction is kept 379 * open until ->cancel_txn() is called. 380 * 381 * Optional. 382 */ 383 int (*commit_txn) (struct pmu *pmu); 384 /* 385 * Will cancel the transaction, assumes ->del() is called 386 * for each successful ->add() during the transaction. 387 * 388 * Optional. 389 */ 390 void (*cancel_txn) (struct pmu *pmu); 391 392 /* 393 * Will return the value for perf_event_mmap_page::index for this event, 394 * if no implementation is provided it will default to: event->hw.idx + 1. 395 */ 396 int (*event_idx) (struct perf_event *event); /*optional */ 397 398 /* 399 * context-switches callback 400 */ 401 void (*sched_task) (struct perf_event_context *ctx, 402 bool sched_in); 403 /* 404 * PMU specific data size 405 */ 406 size_t task_ctx_size; 407 408 409 /* 410 * Set up pmu-private data structures for an AUX area 411 */ 412 void *(*setup_aux) (struct perf_event *event, void **pages, 413 int nr_pages, bool overwrite); 414 /* optional */ 415 416 /* 417 * Free pmu-private AUX data structures 418 */ 419 void (*free_aux) (void *aux); /* optional */ 420 421 /* 422 * Validate address range filters: make sure the HW supports the 423 * requested configuration and number of filters; return 0 if the 424 * supplied filters are valid, -errno otherwise. 425 * 426 * Runs in the context of the ioctl()ing process and is not serialized 427 * with the rest of the PMU callbacks. 428 */ 429 int (*addr_filters_validate) (struct list_head *filters); 430 /* optional */ 431 432 /* 433 * Synchronize address range filter configuration: 434 * translate hw-agnostic filters into hardware configuration in 435 * event::hw::addr_filters. 436 * 437 * Runs as a part of filter sync sequence that is done in ->start() 438 * callback by calling perf_event_addr_filters_sync(). 439 * 440 * May (and should) traverse event::addr_filters::list, for which its 441 * caller provides necessary serialization. 442 */ 443 void (*addr_filters_sync) (struct perf_event *event); 444 /* optional */ 445 446 /* 447 * Filter events for PMU-specific reasons. 448 */ 449 int (*filter_match) (struct perf_event *event); /* optional */ 450 451 /* 452 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 453 */ 454 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 455}; 456 457enum perf_addr_filter_action_t { 458 PERF_ADDR_FILTER_ACTION_STOP = 0, 459 PERF_ADDR_FILTER_ACTION_START, 460 PERF_ADDR_FILTER_ACTION_FILTER, 461}; 462 463/** 464 * struct perf_addr_filter - address range filter definition 465 * @entry: event's filter list linkage 466 * @inode: object file's inode for file-based filters 467 * @offset: filter range offset 468 * @size: filter range size (size==0 means single address trigger) 469 * @action: filter/start/stop 470 * 471 * This is a hardware-agnostic filter configuration as specified by the user. 472 */ 473struct perf_addr_filter { 474 struct list_head entry; 475 struct path path; 476 unsigned long offset; 477 unsigned long size; 478 enum perf_addr_filter_action_t action; 479}; 480 481/** 482 * struct perf_addr_filters_head - container for address range filters 483 * @list: list of filters for this event 484 * @lock: spinlock that serializes accesses to the @list and event's 485 * (and its children's) filter generations. 486 * @nr_file_filters: number of file-based filters 487 * 488 * A child event will use parent's @list (and therefore @lock), so they are 489 * bundled together; see perf_event_addr_filters(). 490 */ 491struct perf_addr_filters_head { 492 struct list_head list; 493 raw_spinlock_t lock; 494 unsigned int nr_file_filters; 495}; 496 497struct perf_addr_filter_range { 498 unsigned long start; 499 unsigned long size; 500}; 501 502/** 503 * enum perf_event_state - the states of an event: 504 */ 505enum perf_event_state { 506 PERF_EVENT_STATE_DEAD = -4, 507 PERF_EVENT_STATE_EXIT = -3, 508 PERF_EVENT_STATE_ERROR = -2, 509 PERF_EVENT_STATE_OFF = -1, 510 PERF_EVENT_STATE_INACTIVE = 0, 511 PERF_EVENT_STATE_ACTIVE = 1, 512}; 513 514struct file; 515struct perf_sample_data; 516 517typedef void (*perf_overflow_handler_t)(struct perf_event *, 518 struct perf_sample_data *, 519 struct pt_regs *regs); 520 521/* 522 * Event capabilities. For event_caps and groups caps. 523 * 524 * PERF_EV_CAP_SOFTWARE: Is a software event. 525 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 526 * from any CPU in the package where it is active. 527 */ 528#define PERF_EV_CAP_SOFTWARE BIT(0) 529#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 530 531#define SWEVENT_HLIST_BITS 8 532#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 533 534struct swevent_hlist { 535 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 536 struct rcu_head rcu_head; 537}; 538 539#define PERF_ATTACH_CONTEXT 0x01 540#define PERF_ATTACH_GROUP 0x02 541#define PERF_ATTACH_TASK 0x04 542#define PERF_ATTACH_TASK_DATA 0x08 543#define PERF_ATTACH_ITRACE 0x10 544 545struct perf_cgroup; 546struct ring_buffer; 547 548struct pmu_event_list { 549 raw_spinlock_t lock; 550 struct list_head list; 551}; 552 553#define for_each_sibling_event(sibling, event) \ 554 if ((event)->group_leader == (event)) \ 555 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 556 557/** 558 * struct perf_event - performance event kernel representation: 559 */ 560struct perf_event { 561#ifdef CONFIG_PERF_EVENTS 562 /* 563 * entry onto perf_event_context::event_list; 564 * modifications require ctx->lock 565 * RCU safe iterations. 566 */ 567 struct list_head event_entry; 568 569 /* 570 * Locked for modification by both ctx->mutex and ctx->lock; holding 571 * either sufficies for read. 572 */ 573 struct list_head sibling_list; 574 struct list_head active_list; 575 /* 576 * Node on the pinned or flexible tree located at the event context; 577 */ 578 struct rb_node group_node; 579 u64 group_index; 580 /* 581 * We need storage to track the entries in perf_pmu_migrate_context; we 582 * cannot use the event_entry because of RCU and we want to keep the 583 * group in tact which avoids us using the other two entries. 584 */ 585 struct list_head migrate_entry; 586 587 struct hlist_node hlist_entry; 588 struct list_head active_entry; 589 int nr_siblings; 590 591 /* Not serialized. Only written during event initialization. */ 592 int event_caps; 593 /* The cumulative AND of all event_caps for events in this group. */ 594 int group_caps; 595 596 struct perf_event *group_leader; 597 struct pmu *pmu; 598 void *pmu_private; 599 600 enum perf_event_state state; 601 unsigned int attach_state; 602 local64_t count; 603 atomic64_t child_count; 604 605 /* 606 * These are the total time in nanoseconds that the event 607 * has been enabled (i.e. eligible to run, and the task has 608 * been scheduled in, if this is a per-task event) 609 * and running (scheduled onto the CPU), respectively. 610 */ 611 u64 total_time_enabled; 612 u64 total_time_running; 613 u64 tstamp; 614 615 /* 616 * timestamp shadows the actual context timing but it can 617 * be safely used in NMI interrupt context. It reflects the 618 * context time as it was when the event was last scheduled in. 619 * 620 * ctx_time already accounts for ctx->timestamp. Therefore to 621 * compute ctx_time for a sample, simply add perf_clock(). 622 */ 623 u64 shadow_ctx_time; 624 625 struct perf_event_attr attr; 626 u16 header_size; 627 u16 id_header_size; 628 u16 read_size; 629 struct hw_perf_event hw; 630 631 struct perf_event_context *ctx; 632 atomic_long_t refcount; 633 634 /* 635 * These accumulate total time (in nanoseconds) that children 636 * events have been enabled and running, respectively. 637 */ 638 atomic64_t child_total_time_enabled; 639 atomic64_t child_total_time_running; 640 641 /* 642 * Protect attach/detach and child_list: 643 */ 644 struct mutex child_mutex; 645 struct list_head child_list; 646 struct perf_event *parent; 647 648 int oncpu; 649 int cpu; 650 651 struct list_head owner_entry; 652 struct task_struct *owner; 653 654 /* mmap bits */ 655 struct mutex mmap_mutex; 656 atomic_t mmap_count; 657 658 struct ring_buffer *rb; 659 struct list_head rb_entry; 660 unsigned long rcu_batches; 661 int rcu_pending; 662 663 /* poll related */ 664 wait_queue_head_t waitq; 665 struct fasync_struct *fasync; 666 667 /* delayed work for NMIs and such */ 668 int pending_wakeup; 669 int pending_kill; 670 int pending_disable; 671 struct irq_work pending; 672 673 atomic_t event_limit; 674 675 /* address range filters */ 676 struct perf_addr_filters_head addr_filters; 677 /* vma address array for file-based filders */ 678 struct perf_addr_filter_range *addr_filter_ranges; 679 unsigned long addr_filters_gen; 680 681 void (*destroy)(struct perf_event *); 682 struct rcu_head rcu_head; 683 684 struct pid_namespace *ns; 685 u64 id; 686 687 u64 (*clock)(void); 688 perf_overflow_handler_t overflow_handler; 689 void *overflow_handler_context; 690#ifdef CONFIG_BPF_SYSCALL 691 perf_overflow_handler_t orig_overflow_handler; 692 struct bpf_prog *prog; 693#endif 694 695#ifdef CONFIG_EVENT_TRACING 696 struct trace_event_call *tp_event; 697 struct event_filter *filter; 698#ifdef CONFIG_FUNCTION_TRACER 699 struct ftrace_ops ftrace_ops; 700#endif 701#endif 702 703#ifdef CONFIG_CGROUP_PERF 704 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 705#endif 706 707 struct list_head sb_list; 708#endif /* CONFIG_PERF_EVENTS */ 709}; 710 711 712struct perf_event_groups { 713 struct rb_root tree; 714 u64 index; 715}; 716 717/** 718 * struct perf_event_context - event context structure 719 * 720 * Used as a container for task events and CPU events as well: 721 */ 722struct perf_event_context { 723 struct pmu *pmu; 724 /* 725 * Protect the states of the events in the list, 726 * nr_active, and the list: 727 */ 728 raw_spinlock_t lock; 729 /* 730 * Protect the list of events. Locking either mutex or lock 731 * is sufficient to ensure the list doesn't change; to change 732 * the list you need to lock both the mutex and the spinlock. 733 */ 734 struct mutex mutex; 735 736 struct list_head active_ctx_list; 737 struct perf_event_groups pinned_groups; 738 struct perf_event_groups flexible_groups; 739 struct list_head event_list; 740 741 struct list_head pinned_active; 742 struct list_head flexible_active; 743 744 int nr_events; 745 int nr_active; 746 int is_active; 747 int nr_stat; 748 int nr_freq; 749 int rotate_disable; 750 refcount_t refcount; 751 struct task_struct *task; 752 753 /* 754 * Context clock, runs when context enabled. 755 */ 756 u64 time; 757 u64 timestamp; 758 759 /* 760 * These fields let us detect when two contexts have both 761 * been cloned (inherited) from a common ancestor. 762 */ 763 struct perf_event_context *parent_ctx; 764 u64 parent_gen; 765 u64 generation; 766 int pin_count; 767#ifdef CONFIG_CGROUP_PERF 768 int nr_cgroups; /* cgroup evts */ 769#endif 770 void *task_ctx_data; /* pmu specific data */ 771 struct rcu_head rcu_head; 772}; 773 774/* 775 * Number of contexts where an event can trigger: 776 * task, softirq, hardirq, nmi. 777 */ 778#define PERF_NR_CONTEXTS 4 779 780/** 781 * struct perf_event_cpu_context - per cpu event context structure 782 */ 783struct perf_cpu_context { 784 struct perf_event_context ctx; 785 struct perf_event_context *task_ctx; 786 int active_oncpu; 787 int exclusive; 788 789 raw_spinlock_t hrtimer_lock; 790 struct hrtimer hrtimer; 791 ktime_t hrtimer_interval; 792 unsigned int hrtimer_active; 793 794#ifdef CONFIG_CGROUP_PERF 795 struct perf_cgroup *cgrp; 796 struct list_head cgrp_cpuctx_entry; 797#endif 798 799 struct list_head sched_cb_entry; 800 int sched_cb_usage; 801 802 int online; 803}; 804 805struct perf_output_handle { 806 struct perf_event *event; 807 struct ring_buffer *rb; 808 unsigned long wakeup; 809 unsigned long size; 810 u64 aux_flags; 811 union { 812 void *addr; 813 unsigned long head; 814 }; 815 int page; 816}; 817 818struct bpf_perf_event_data_kern { 819 bpf_user_pt_regs_t *regs; 820 struct perf_sample_data *data; 821 struct perf_event *event; 822}; 823 824#ifdef CONFIG_CGROUP_PERF 825 826/* 827 * perf_cgroup_info keeps track of time_enabled for a cgroup. 828 * This is a per-cpu dynamically allocated data structure. 829 */ 830struct perf_cgroup_info { 831 u64 time; 832 u64 timestamp; 833}; 834 835struct perf_cgroup { 836 struct cgroup_subsys_state css; 837 struct perf_cgroup_info __percpu *info; 838}; 839 840/* 841 * Must ensure cgroup is pinned (css_get) before calling 842 * this function. In other words, we cannot call this function 843 * if there is no cgroup event for the current CPU context. 844 */ 845static inline struct perf_cgroup * 846perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 847{ 848 return container_of(task_css_check(task, perf_event_cgrp_id, 849 ctx ? lockdep_is_held(&ctx->lock) 850 : true), 851 struct perf_cgroup, css); 852} 853#endif /* CONFIG_CGROUP_PERF */ 854 855#ifdef CONFIG_PERF_EVENTS 856 857extern void *perf_aux_output_begin(struct perf_output_handle *handle, 858 struct perf_event *event); 859extern void perf_aux_output_end(struct perf_output_handle *handle, 860 unsigned long size); 861extern int perf_aux_output_skip(struct perf_output_handle *handle, 862 unsigned long size); 863extern void *perf_get_aux(struct perf_output_handle *handle); 864extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 865extern void perf_event_itrace_started(struct perf_event *event); 866 867extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 868extern void perf_pmu_unregister(struct pmu *pmu); 869 870extern int perf_num_counters(void); 871extern const char *perf_pmu_name(void); 872extern void __perf_event_task_sched_in(struct task_struct *prev, 873 struct task_struct *task); 874extern void __perf_event_task_sched_out(struct task_struct *prev, 875 struct task_struct *next); 876extern int perf_event_init_task(struct task_struct *child); 877extern void perf_event_exit_task(struct task_struct *child); 878extern void perf_event_free_task(struct task_struct *task); 879extern void perf_event_delayed_put(struct task_struct *task); 880extern struct file *perf_event_get(unsigned int fd); 881extern const struct perf_event *perf_get_event(struct file *file); 882extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 883extern void perf_event_print_debug(void); 884extern void perf_pmu_disable(struct pmu *pmu); 885extern void perf_pmu_enable(struct pmu *pmu); 886extern void perf_sched_cb_dec(struct pmu *pmu); 887extern void perf_sched_cb_inc(struct pmu *pmu); 888extern int perf_event_task_disable(void); 889extern int perf_event_task_enable(void); 890extern int perf_event_refresh(struct perf_event *event, int refresh); 891extern void perf_event_update_userpage(struct perf_event *event); 892extern int perf_event_release_kernel(struct perf_event *event); 893extern struct perf_event * 894perf_event_create_kernel_counter(struct perf_event_attr *attr, 895 int cpu, 896 struct task_struct *task, 897 perf_overflow_handler_t callback, 898 void *context); 899extern void perf_pmu_migrate_context(struct pmu *pmu, 900 int src_cpu, int dst_cpu); 901int perf_event_read_local(struct perf_event *event, u64 *value, 902 u64 *enabled, u64 *running); 903extern u64 perf_event_read_value(struct perf_event *event, 904 u64 *enabled, u64 *running); 905 906 907struct perf_sample_data { 908 /* 909 * Fields set by perf_sample_data_init(), group so as to 910 * minimize the cachelines touched. 911 */ 912 u64 addr; 913 struct perf_raw_record *raw; 914 struct perf_branch_stack *br_stack; 915 u64 period; 916 u64 weight; 917 u64 txn; 918 union perf_mem_data_src data_src; 919 920 /* 921 * The other fields, optionally {set,used} by 922 * perf_{prepare,output}_sample(). 923 */ 924 u64 type; 925 u64 ip; 926 struct { 927 u32 pid; 928 u32 tid; 929 } tid_entry; 930 u64 time; 931 u64 id; 932 u64 stream_id; 933 struct { 934 u32 cpu; 935 u32 reserved; 936 } cpu_entry; 937 struct perf_callchain_entry *callchain; 938 939 /* 940 * regs_user may point to task_pt_regs or to regs_user_copy, depending 941 * on arch details. 942 */ 943 struct perf_regs regs_user; 944 struct pt_regs regs_user_copy; 945 946 struct perf_regs regs_intr; 947 u64 stack_user_size; 948 949 u64 phys_addr; 950} ____cacheline_aligned; 951 952/* default value for data source */ 953#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 954 PERF_MEM_S(LVL, NA) |\ 955 PERF_MEM_S(SNOOP, NA) |\ 956 PERF_MEM_S(LOCK, NA) |\ 957 PERF_MEM_S(TLB, NA)) 958 959static inline void perf_sample_data_init(struct perf_sample_data *data, 960 u64 addr, u64 period) 961{ 962 /* remaining struct members initialized in perf_prepare_sample() */ 963 data->addr = addr; 964 data->raw = NULL; 965 data->br_stack = NULL; 966 data->period = period; 967 data->weight = 0; 968 data->data_src.val = PERF_MEM_NA; 969 data->txn = 0; 970} 971 972extern void perf_output_sample(struct perf_output_handle *handle, 973 struct perf_event_header *header, 974 struct perf_sample_data *data, 975 struct perf_event *event); 976extern void perf_prepare_sample(struct perf_event_header *header, 977 struct perf_sample_data *data, 978 struct perf_event *event, 979 struct pt_regs *regs); 980 981extern int perf_event_overflow(struct perf_event *event, 982 struct perf_sample_data *data, 983 struct pt_regs *regs); 984 985extern void perf_event_output_forward(struct perf_event *event, 986 struct perf_sample_data *data, 987 struct pt_regs *regs); 988extern void perf_event_output_backward(struct perf_event *event, 989 struct perf_sample_data *data, 990 struct pt_regs *regs); 991extern int perf_event_output(struct perf_event *event, 992 struct perf_sample_data *data, 993 struct pt_regs *regs); 994 995static inline bool 996is_default_overflow_handler(struct perf_event *event) 997{ 998 if (likely(event->overflow_handler == perf_event_output_forward)) 999 return true; 1000 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1001 return true; 1002 return false; 1003} 1004 1005extern void 1006perf_event_header__init_id(struct perf_event_header *header, 1007 struct perf_sample_data *data, 1008 struct perf_event *event); 1009extern void 1010perf_event__output_id_sample(struct perf_event *event, 1011 struct perf_output_handle *handle, 1012 struct perf_sample_data *sample); 1013 1014extern void 1015perf_log_lost_samples(struct perf_event *event, u64 lost); 1016 1017static inline bool event_has_any_exclude_flag(struct perf_event *event) 1018{ 1019 struct perf_event_attr *attr = &event->attr; 1020 1021 return attr->exclude_idle || attr->exclude_user || 1022 attr->exclude_kernel || attr->exclude_hv || 1023 attr->exclude_guest || attr->exclude_host; 1024} 1025 1026static inline bool is_sampling_event(struct perf_event *event) 1027{ 1028 return event->attr.sample_period != 0; 1029} 1030 1031/* 1032 * Return 1 for a software event, 0 for a hardware event 1033 */ 1034static inline int is_software_event(struct perf_event *event) 1035{ 1036 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1037} 1038 1039/* 1040 * Return 1 for event in sw context, 0 for event in hw context 1041 */ 1042static inline int in_software_context(struct perf_event *event) 1043{ 1044 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1045} 1046 1047extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1048 1049extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1050extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1051 1052#ifndef perf_arch_fetch_caller_regs 1053static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1054#endif 1055 1056/* 1057 * Take a snapshot of the regs. Skip ip and frame pointer to 1058 * the nth caller. We only need a few of the regs: 1059 * - ip for PERF_SAMPLE_IP 1060 * - cs for user_mode() tests 1061 * - bp for callchains 1062 * - eflags, for future purposes, just in case 1063 */ 1064static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1065{ 1066 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1067} 1068 1069static __always_inline void 1070perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1071{ 1072 if (static_key_false(&perf_swevent_enabled[event_id])) 1073 __perf_sw_event(event_id, nr, regs, addr); 1074} 1075 1076DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1077 1078/* 1079 * 'Special' version for the scheduler, it hard assumes no recursion, 1080 * which is guaranteed by us not actually scheduling inside other swevents 1081 * because those disable preemption. 1082 */ 1083static __always_inline void 1084perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1085{ 1086 if (static_key_false(&perf_swevent_enabled[event_id])) { 1087 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1088 1089 perf_fetch_caller_regs(regs); 1090 ___perf_sw_event(event_id, nr, regs, addr); 1091 } 1092} 1093 1094extern struct static_key_false perf_sched_events; 1095 1096static __always_inline bool 1097perf_sw_migrate_enabled(void) 1098{ 1099 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1100 return true; 1101 return false; 1102} 1103 1104static inline void perf_event_task_migrate(struct task_struct *task) 1105{ 1106 if (perf_sw_migrate_enabled()) 1107 task->sched_migrated = 1; 1108} 1109 1110static inline void perf_event_task_sched_in(struct task_struct *prev, 1111 struct task_struct *task) 1112{ 1113 if (static_branch_unlikely(&perf_sched_events)) 1114 __perf_event_task_sched_in(prev, task); 1115 1116 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1117 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1118 1119 perf_fetch_caller_regs(regs); 1120 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1121 task->sched_migrated = 0; 1122 } 1123} 1124 1125static inline void perf_event_task_sched_out(struct task_struct *prev, 1126 struct task_struct *next) 1127{ 1128 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1129 1130 if (static_branch_unlikely(&perf_sched_events)) 1131 __perf_event_task_sched_out(prev, next); 1132} 1133 1134extern void perf_event_mmap(struct vm_area_struct *vma); 1135 1136extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1137 bool unregister, const char *sym); 1138extern void perf_event_bpf_event(struct bpf_prog *prog, 1139 enum perf_bpf_event_type type, 1140 u16 flags); 1141 1142extern struct perf_guest_info_callbacks *perf_guest_cbs; 1143extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1144extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1145 1146extern void perf_event_exec(void); 1147extern void perf_event_comm(struct task_struct *tsk, bool exec); 1148extern void perf_event_namespaces(struct task_struct *tsk); 1149extern void perf_event_fork(struct task_struct *tsk); 1150 1151/* Callchains */ 1152DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1153 1154extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1155extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1156extern struct perf_callchain_entry * 1157get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1158 u32 max_stack, bool crosstask, bool add_mark); 1159extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1160extern int get_callchain_buffers(int max_stack); 1161extern void put_callchain_buffers(void); 1162 1163extern int sysctl_perf_event_max_stack; 1164extern int sysctl_perf_event_max_contexts_per_stack; 1165 1166static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1167{ 1168 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1169 struct perf_callchain_entry *entry = ctx->entry; 1170 entry->ip[entry->nr++] = ip; 1171 ++ctx->contexts; 1172 return 0; 1173 } else { 1174 ctx->contexts_maxed = true; 1175 return -1; /* no more room, stop walking the stack */ 1176 } 1177} 1178 1179static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1180{ 1181 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1182 struct perf_callchain_entry *entry = ctx->entry; 1183 entry->ip[entry->nr++] = ip; 1184 ++ctx->nr; 1185 return 0; 1186 } else { 1187 return -1; /* no more room, stop walking the stack */ 1188 } 1189} 1190 1191extern int sysctl_perf_event_paranoid; 1192extern int sysctl_perf_event_mlock; 1193extern int sysctl_perf_event_sample_rate; 1194extern int sysctl_perf_cpu_time_max_percent; 1195 1196extern void perf_sample_event_took(u64 sample_len_ns); 1197 1198extern int perf_proc_update_handler(struct ctl_table *table, int write, 1199 void __user *buffer, size_t *lenp, 1200 loff_t *ppos); 1201extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1202 void __user *buffer, size_t *lenp, 1203 loff_t *ppos); 1204 1205int perf_event_max_stack_handler(struct ctl_table *table, int write, 1206 void __user *buffer, size_t *lenp, loff_t *ppos); 1207 1208static inline bool perf_paranoid_tracepoint_raw(void) 1209{ 1210 return sysctl_perf_event_paranoid > -1; 1211} 1212 1213static inline bool perf_paranoid_cpu(void) 1214{ 1215 return sysctl_perf_event_paranoid > 0; 1216} 1217 1218static inline bool perf_paranoid_kernel(void) 1219{ 1220 return sysctl_perf_event_paranoid > 1; 1221} 1222 1223extern void perf_event_init(void); 1224extern void perf_tp_event(u16 event_type, u64 count, void *record, 1225 int entry_size, struct pt_regs *regs, 1226 struct hlist_head *head, int rctx, 1227 struct task_struct *task); 1228extern void perf_bp_event(struct perf_event *event, void *data); 1229 1230#ifndef perf_misc_flags 1231# define perf_misc_flags(regs) \ 1232 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1233# define perf_instruction_pointer(regs) instruction_pointer(regs) 1234#endif 1235#ifndef perf_arch_bpf_user_pt_regs 1236# define perf_arch_bpf_user_pt_regs(regs) regs 1237#endif 1238 1239static inline bool has_branch_stack(struct perf_event *event) 1240{ 1241 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1242} 1243 1244static inline bool needs_branch_stack(struct perf_event *event) 1245{ 1246 return event->attr.branch_sample_type != 0; 1247} 1248 1249static inline bool has_aux(struct perf_event *event) 1250{ 1251 return event->pmu->setup_aux; 1252} 1253 1254static inline bool is_write_backward(struct perf_event *event) 1255{ 1256 return !!event->attr.write_backward; 1257} 1258 1259static inline bool has_addr_filter(struct perf_event *event) 1260{ 1261 return event->pmu->nr_addr_filters; 1262} 1263 1264/* 1265 * An inherited event uses parent's filters 1266 */ 1267static inline struct perf_addr_filters_head * 1268perf_event_addr_filters(struct perf_event *event) 1269{ 1270 struct perf_addr_filters_head *ifh = &event->addr_filters; 1271 1272 if (event->parent) 1273 ifh = &event->parent->addr_filters; 1274 1275 return ifh; 1276} 1277 1278extern void perf_event_addr_filters_sync(struct perf_event *event); 1279 1280extern int perf_output_begin(struct perf_output_handle *handle, 1281 struct perf_event *event, unsigned int size); 1282extern int perf_output_begin_forward(struct perf_output_handle *handle, 1283 struct perf_event *event, 1284 unsigned int size); 1285extern int perf_output_begin_backward(struct perf_output_handle *handle, 1286 struct perf_event *event, 1287 unsigned int size); 1288 1289extern void perf_output_end(struct perf_output_handle *handle); 1290extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1291 const void *buf, unsigned int len); 1292extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1293 unsigned int len); 1294extern int perf_swevent_get_recursion_context(void); 1295extern void perf_swevent_put_recursion_context(int rctx); 1296extern u64 perf_swevent_set_period(struct perf_event *event); 1297extern void perf_event_enable(struct perf_event *event); 1298extern void perf_event_disable(struct perf_event *event); 1299extern void perf_event_disable_local(struct perf_event *event); 1300extern void perf_event_disable_inatomic(struct perf_event *event); 1301extern void perf_event_task_tick(void); 1302extern int perf_event_account_interrupt(struct perf_event *event); 1303#else /* !CONFIG_PERF_EVENTS: */ 1304static inline void * 1305perf_aux_output_begin(struct perf_output_handle *handle, 1306 struct perf_event *event) { return NULL; } 1307static inline void 1308perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1309 { } 1310static inline int 1311perf_aux_output_skip(struct perf_output_handle *handle, 1312 unsigned long size) { return -EINVAL; } 1313static inline void * 1314perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1315static inline void 1316perf_event_task_migrate(struct task_struct *task) { } 1317static inline void 1318perf_event_task_sched_in(struct task_struct *prev, 1319 struct task_struct *task) { } 1320static inline void 1321perf_event_task_sched_out(struct task_struct *prev, 1322 struct task_struct *next) { } 1323static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1324static inline void perf_event_exit_task(struct task_struct *child) { } 1325static inline void perf_event_free_task(struct task_struct *task) { } 1326static inline void perf_event_delayed_put(struct task_struct *task) { } 1327static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1328static inline const struct perf_event *perf_get_event(struct file *file) 1329{ 1330 return ERR_PTR(-EINVAL); 1331} 1332static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1333{ 1334 return ERR_PTR(-EINVAL); 1335} 1336static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1337 u64 *enabled, u64 *running) 1338{ 1339 return -EINVAL; 1340} 1341static inline void perf_event_print_debug(void) { } 1342static inline int perf_event_task_disable(void) { return -EINVAL; } 1343static inline int perf_event_task_enable(void) { return -EINVAL; } 1344static inline int perf_event_refresh(struct perf_event *event, int refresh) 1345{ 1346 return -EINVAL; 1347} 1348 1349static inline void 1350perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1351static inline void 1352perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1353static inline void 1354perf_bp_event(struct perf_event *event, void *data) { } 1355 1356static inline int perf_register_guest_info_callbacks 1357(struct perf_guest_info_callbacks *callbacks) { return 0; } 1358static inline int perf_unregister_guest_info_callbacks 1359(struct perf_guest_info_callbacks *callbacks) { return 0; } 1360 1361static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1362 1363typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1364static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1365 bool unregister, const char *sym) { } 1366static inline void perf_event_bpf_event(struct bpf_prog *prog, 1367 enum perf_bpf_event_type type, 1368 u16 flags) { } 1369static inline void perf_event_exec(void) { } 1370static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1371static inline void perf_event_namespaces(struct task_struct *tsk) { } 1372static inline void perf_event_fork(struct task_struct *tsk) { } 1373static inline void perf_event_init(void) { } 1374static inline int perf_swevent_get_recursion_context(void) { return -1; } 1375static inline void perf_swevent_put_recursion_context(int rctx) { } 1376static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1377static inline void perf_event_enable(struct perf_event *event) { } 1378static inline void perf_event_disable(struct perf_event *event) { } 1379static inline int __perf_event_disable(void *info) { return -1; } 1380static inline void perf_event_task_tick(void) { } 1381static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1382#endif 1383 1384#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1385extern void perf_restore_debug_store(void); 1386#else 1387static inline void perf_restore_debug_store(void) { } 1388#endif 1389 1390static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1391{ 1392 return frag->pad < sizeof(u64); 1393} 1394 1395#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1396 1397struct perf_pmu_events_attr { 1398 struct device_attribute attr; 1399 u64 id; 1400 const char *event_str; 1401}; 1402 1403struct perf_pmu_events_ht_attr { 1404 struct device_attribute attr; 1405 u64 id; 1406 const char *event_str_ht; 1407 const char *event_str_noht; 1408}; 1409 1410ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1411 char *page); 1412 1413#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1414static struct perf_pmu_events_attr _var = { \ 1415 .attr = __ATTR(_name, 0444, _show, NULL), \ 1416 .id = _id, \ 1417}; 1418 1419#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1420static struct perf_pmu_events_attr _var = { \ 1421 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1422 .id = 0, \ 1423 .event_str = _str, \ 1424}; 1425 1426#define PMU_FORMAT_ATTR(_name, _format) \ 1427static ssize_t \ 1428_name##_show(struct device *dev, \ 1429 struct device_attribute *attr, \ 1430 char *page) \ 1431{ \ 1432 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1433 return sprintf(page, _format "\n"); \ 1434} \ 1435 \ 1436static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1437 1438/* Performance counter hotplug functions */ 1439#ifdef CONFIG_PERF_EVENTS 1440int perf_event_init_cpu(unsigned int cpu); 1441int perf_event_exit_cpu(unsigned int cpu); 1442#else 1443#define perf_event_init_cpu NULL 1444#define perf_event_exit_cpu NULL 1445#endif 1446 1447#endif /* _LINUX_PERF_EVENT_H */