at v5.1 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/list.h> 9#include <linux/spinlock.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/uprobes.h> 15#include <linux/page-flags-layout.h> 16#include <linux/workqueue.h> 17 18#include <asm/mmu.h> 19 20#ifndef AT_VECTOR_SIZE_ARCH 21#define AT_VECTOR_SIZE_ARCH 0 22#endif 23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 26struct address_space; 27struct mem_cgroup; 28struct hmm; 29 30/* 31 * Each physical page in the system has a struct page associated with 32 * it to keep track of whatever it is we are using the page for at the 33 * moment. Note that we have no way to track which tasks are using 34 * a page, though if it is a pagecache page, rmap structures can tell us 35 * who is mapping it. 36 * 37 * If you allocate the page using alloc_pages(), you can use some of the 38 * space in struct page for your own purposes. The five words in the main 39 * union are available, except for bit 0 of the first word which must be 40 * kept clear. Many users use this word to store a pointer to an object 41 * which is guaranteed to be aligned. If you use the same storage as 42 * page->mapping, you must restore it to NULL before freeing the page. 43 * 44 * If your page will not be mapped to userspace, you can also use the four 45 * bytes in the mapcount union, but you must call page_mapcount_reset() 46 * before freeing it. 47 * 48 * If you want to use the refcount field, it must be used in such a way 49 * that other CPUs temporarily incrementing and then decrementing the 50 * refcount does not cause problems. On receiving the page from 51 * alloc_pages(), the refcount will be positive. 52 * 53 * If you allocate pages of order > 0, you can use some of the fields 54 * in each subpage, but you may need to restore some of their values 55 * afterwards. 56 * 57 * SLUB uses cmpxchg_double() to atomically update its freelist and 58 * counters. That requires that freelist & counters be adjacent and 59 * double-word aligned. We align all struct pages to double-word 60 * boundaries, and ensure that 'freelist' is aligned within the 61 * struct. 62 */ 63#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 64#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 65#else 66#define _struct_page_alignment 67#endif 68 69struct page { 70 unsigned long flags; /* Atomic flags, some possibly 71 * updated asynchronously */ 72 /* 73 * Five words (20/40 bytes) are available in this union. 74 * WARNING: bit 0 of the first word is used for PageTail(). That 75 * means the other users of this union MUST NOT use the bit to 76 * avoid collision and false-positive PageTail(). 77 */ 78 union { 79 struct { /* Page cache and anonymous pages */ 80 /** 81 * @lru: Pageout list, eg. active_list protected by 82 * pgdat->lru_lock. Sometimes used as a generic list 83 * by the page owner. 84 */ 85 struct list_head lru; 86 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 87 struct address_space *mapping; 88 pgoff_t index; /* Our offset within mapping. */ 89 /** 90 * @private: Mapping-private opaque data. 91 * Usually used for buffer_heads if PagePrivate. 92 * Used for swp_entry_t if PageSwapCache. 93 * Indicates order in the buddy system if PageBuddy. 94 */ 95 unsigned long private; 96 }; 97 struct { /* page_pool used by netstack */ 98 /** 99 * @dma_addr: might require a 64-bit value even on 100 * 32-bit architectures. 101 */ 102 dma_addr_t dma_addr; 103 }; 104 struct { /* slab, slob and slub */ 105 union { 106 struct list_head slab_list; /* uses lru */ 107 struct { /* Partial pages */ 108 struct page *next; 109#ifdef CONFIG_64BIT 110 int pages; /* Nr of pages left */ 111 int pobjects; /* Approximate count */ 112#else 113 short int pages; 114 short int pobjects; 115#endif 116 }; 117 }; 118 struct kmem_cache *slab_cache; /* not slob */ 119 /* Double-word boundary */ 120 void *freelist; /* first free object */ 121 union { 122 void *s_mem; /* slab: first object */ 123 unsigned long counters; /* SLUB */ 124 struct { /* SLUB */ 125 unsigned inuse:16; 126 unsigned objects:15; 127 unsigned frozen:1; 128 }; 129 }; 130 }; 131 struct { /* Tail pages of compound page */ 132 unsigned long compound_head; /* Bit zero is set */ 133 134 /* First tail page only */ 135 unsigned char compound_dtor; 136 unsigned char compound_order; 137 atomic_t compound_mapcount; 138 }; 139 struct { /* Second tail page of compound page */ 140 unsigned long _compound_pad_1; /* compound_head */ 141 unsigned long _compound_pad_2; 142 struct list_head deferred_list; 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152#if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154#else 155 spinlock_t ptl; 156#endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 unsigned long hmm_data; 162 unsigned long _zd_pad_1; /* uses mapping */ 163 }; 164 165 /** @rcu_head: You can use this to free a page by RCU. */ 166 struct rcu_head rcu_head; 167 }; 168 169 union { /* This union is 4 bytes in size. */ 170 /* 171 * If the page can be mapped to userspace, encodes the number 172 * of times this page is referenced by a page table. 173 */ 174 atomic_t _mapcount; 175 176 /* 177 * If the page is neither PageSlab nor mappable to userspace, 178 * the value stored here may help determine what this page 179 * is used for. See page-flags.h for a list of page types 180 * which are currently stored here. 181 */ 182 unsigned int page_type; 183 184 unsigned int active; /* SLAB */ 185 int units; /* SLOB */ 186 }; 187 188 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 189 atomic_t _refcount; 190 191#ifdef CONFIG_MEMCG 192 struct mem_cgroup *mem_cgroup; 193#endif 194 195 /* 196 * On machines where all RAM is mapped into kernel address space, 197 * we can simply calculate the virtual address. On machines with 198 * highmem some memory is mapped into kernel virtual memory 199 * dynamically, so we need a place to store that address. 200 * Note that this field could be 16 bits on x86 ... ;) 201 * 202 * Architectures with slow multiplication can define 203 * WANT_PAGE_VIRTUAL in asm/page.h 204 */ 205#if defined(WANT_PAGE_VIRTUAL) 206 void *virtual; /* Kernel virtual address (NULL if 207 not kmapped, ie. highmem) */ 208#endif /* WANT_PAGE_VIRTUAL */ 209 210#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 211 int _last_cpupid; 212#endif 213} _struct_page_alignment; 214 215/* 216 * Used for sizing the vmemmap region on some architectures 217 */ 218#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 219 220#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 221#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 222 223struct page_frag_cache { 224 void * va; 225#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 226 __u16 offset; 227 __u16 size; 228#else 229 __u32 offset; 230#endif 231 /* we maintain a pagecount bias, so that we dont dirty cache line 232 * containing page->_refcount every time we allocate a fragment. 233 */ 234 unsigned int pagecnt_bias; 235 bool pfmemalloc; 236}; 237 238typedef unsigned long vm_flags_t; 239 240/* 241 * A region containing a mapping of a non-memory backed file under NOMMU 242 * conditions. These are held in a global tree and are pinned by the VMAs that 243 * map parts of them. 244 */ 245struct vm_region { 246 struct rb_node vm_rb; /* link in global region tree */ 247 vm_flags_t vm_flags; /* VMA vm_flags */ 248 unsigned long vm_start; /* start address of region */ 249 unsigned long vm_end; /* region initialised to here */ 250 unsigned long vm_top; /* region allocated to here */ 251 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 252 struct file *vm_file; /* the backing file or NULL */ 253 254 int vm_usage; /* region usage count (access under nommu_region_sem) */ 255 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 256 * this region */ 257}; 258 259#ifdef CONFIG_USERFAULTFD 260#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 261struct vm_userfaultfd_ctx { 262 struct userfaultfd_ctx *ctx; 263}; 264#else /* CONFIG_USERFAULTFD */ 265#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 266struct vm_userfaultfd_ctx {}; 267#endif /* CONFIG_USERFAULTFD */ 268 269/* 270 * This struct defines a memory VMM memory area. There is one of these 271 * per VM-area/task. A VM area is any part of the process virtual memory 272 * space that has a special rule for the page-fault handlers (ie a shared 273 * library, the executable area etc). 274 */ 275struct vm_area_struct { 276 /* The first cache line has the info for VMA tree walking. */ 277 278 unsigned long vm_start; /* Our start address within vm_mm. */ 279 unsigned long vm_end; /* The first byte after our end address 280 within vm_mm. */ 281 282 /* linked list of VM areas per task, sorted by address */ 283 struct vm_area_struct *vm_next, *vm_prev; 284 285 struct rb_node vm_rb; 286 287 /* 288 * Largest free memory gap in bytes to the left of this VMA. 289 * Either between this VMA and vma->vm_prev, or between one of the 290 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 291 * get_unmapped_area find a free area of the right size. 292 */ 293 unsigned long rb_subtree_gap; 294 295 /* Second cache line starts here. */ 296 297 struct mm_struct *vm_mm; /* The address space we belong to. */ 298 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 299 unsigned long vm_flags; /* Flags, see mm.h. */ 300 301 /* 302 * For areas with an address space and backing store, 303 * linkage into the address_space->i_mmap interval tree. 304 */ 305 struct { 306 struct rb_node rb; 307 unsigned long rb_subtree_last; 308 } shared; 309 310 /* 311 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 312 * list, after a COW of one of the file pages. A MAP_SHARED vma 313 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 314 * or brk vma (with NULL file) can only be in an anon_vma list. 315 */ 316 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 317 * page_table_lock */ 318 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 319 320 /* Function pointers to deal with this struct. */ 321 const struct vm_operations_struct *vm_ops; 322 323 /* Information about our backing store: */ 324 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 325 units */ 326 struct file * vm_file; /* File we map to (can be NULL). */ 327 void * vm_private_data; /* was vm_pte (shared mem) */ 328 329 atomic_long_t swap_readahead_info; 330#ifndef CONFIG_MMU 331 struct vm_region *vm_region; /* NOMMU mapping region */ 332#endif 333#ifdef CONFIG_NUMA 334 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 335#endif 336 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 337} __randomize_layout; 338 339struct core_thread { 340 struct task_struct *task; 341 struct core_thread *next; 342}; 343 344struct core_state { 345 atomic_t nr_threads; 346 struct core_thread dumper; 347 struct completion startup; 348}; 349 350struct kioctx_table; 351struct mm_struct { 352 struct { 353 struct vm_area_struct *mmap; /* list of VMAs */ 354 struct rb_root mm_rb; 355 u64 vmacache_seqnum; /* per-thread vmacache */ 356#ifdef CONFIG_MMU 357 unsigned long (*get_unmapped_area) (struct file *filp, 358 unsigned long addr, unsigned long len, 359 unsigned long pgoff, unsigned long flags); 360#endif 361 unsigned long mmap_base; /* base of mmap area */ 362 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 363#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 364 /* Base adresses for compatible mmap() */ 365 unsigned long mmap_compat_base; 366 unsigned long mmap_compat_legacy_base; 367#endif 368 unsigned long task_size; /* size of task vm space */ 369 unsigned long highest_vm_end; /* highest vma end address */ 370 pgd_t * pgd; 371 372 /** 373 * @mm_users: The number of users including userspace. 374 * 375 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 376 * drops to 0 (i.e. when the task exits and there are no other 377 * temporary reference holders), we also release a reference on 378 * @mm_count (which may then free the &struct mm_struct if 379 * @mm_count also drops to 0). 380 */ 381 atomic_t mm_users; 382 383 /** 384 * @mm_count: The number of references to &struct mm_struct 385 * (@mm_users count as 1). 386 * 387 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 388 * &struct mm_struct is freed. 389 */ 390 atomic_t mm_count; 391 392#ifdef CONFIG_MMU 393 atomic_long_t pgtables_bytes; /* PTE page table pages */ 394#endif 395 int map_count; /* number of VMAs */ 396 397 spinlock_t page_table_lock; /* Protects page tables and some 398 * counters 399 */ 400 struct rw_semaphore mmap_sem; 401 402 struct list_head mmlist; /* List of maybe swapped mm's. These 403 * are globally strung together off 404 * init_mm.mmlist, and are protected 405 * by mmlist_lock 406 */ 407 408 409 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 410 unsigned long hiwater_vm; /* High-water virtual memory usage */ 411 412 unsigned long total_vm; /* Total pages mapped */ 413 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 414 atomic64_t pinned_vm; /* Refcount permanently increased */ 415 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 416 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 417 unsigned long stack_vm; /* VM_STACK */ 418 unsigned long def_flags; 419 420 spinlock_t arg_lock; /* protect the below fields */ 421 unsigned long start_code, end_code, start_data, end_data; 422 unsigned long start_brk, brk, start_stack; 423 unsigned long arg_start, arg_end, env_start, env_end; 424 425 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 426 427 /* 428 * Special counters, in some configurations protected by the 429 * page_table_lock, in other configurations by being atomic. 430 */ 431 struct mm_rss_stat rss_stat; 432 433 struct linux_binfmt *binfmt; 434 435 /* Architecture-specific MM context */ 436 mm_context_t context; 437 438 unsigned long flags; /* Must use atomic bitops to access */ 439 440 struct core_state *core_state; /* coredumping support */ 441#ifdef CONFIG_MEMBARRIER 442 atomic_t membarrier_state; 443#endif 444#ifdef CONFIG_AIO 445 spinlock_t ioctx_lock; 446 struct kioctx_table __rcu *ioctx_table; 447#endif 448#ifdef CONFIG_MEMCG 449 /* 450 * "owner" points to a task that is regarded as the canonical 451 * user/owner of this mm. All of the following must be true in 452 * order for it to be changed: 453 * 454 * current == mm->owner 455 * current->mm != mm 456 * new_owner->mm == mm 457 * new_owner->alloc_lock is held 458 */ 459 struct task_struct __rcu *owner; 460#endif 461 struct user_namespace *user_ns; 462 463 /* store ref to file /proc/<pid>/exe symlink points to */ 464 struct file __rcu *exe_file; 465#ifdef CONFIG_MMU_NOTIFIER 466 struct mmu_notifier_mm *mmu_notifier_mm; 467#endif 468#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 469 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 470#endif 471#ifdef CONFIG_NUMA_BALANCING 472 /* 473 * numa_next_scan is the next time that the PTEs will be marked 474 * pte_numa. NUMA hinting faults will gather statistics and 475 * migrate pages to new nodes if necessary. 476 */ 477 unsigned long numa_next_scan; 478 479 /* Restart point for scanning and setting pte_numa */ 480 unsigned long numa_scan_offset; 481 482 /* numa_scan_seq prevents two threads setting pte_numa */ 483 int numa_scan_seq; 484#endif 485 /* 486 * An operation with batched TLB flushing is going on. Anything 487 * that can move process memory needs to flush the TLB when 488 * moving a PROT_NONE or PROT_NUMA mapped page. 489 */ 490 atomic_t tlb_flush_pending; 491#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 492 /* See flush_tlb_batched_pending() */ 493 bool tlb_flush_batched; 494#endif 495 struct uprobes_state uprobes_state; 496#ifdef CONFIG_HUGETLB_PAGE 497 atomic_long_t hugetlb_usage; 498#endif 499 struct work_struct async_put_work; 500 501#if IS_ENABLED(CONFIG_HMM) 502 /* HMM needs to track a few things per mm */ 503 struct hmm *hmm; 504#endif 505 } __randomize_layout; 506 507 /* 508 * The mm_cpumask needs to be at the end of mm_struct, because it 509 * is dynamically sized based on nr_cpu_ids. 510 */ 511 unsigned long cpu_bitmap[]; 512}; 513 514extern struct mm_struct init_mm; 515 516/* Pointer magic because the dynamic array size confuses some compilers. */ 517static inline void mm_init_cpumask(struct mm_struct *mm) 518{ 519 unsigned long cpu_bitmap = (unsigned long)mm; 520 521 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 522 cpumask_clear((struct cpumask *)cpu_bitmap); 523} 524 525/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 526static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 527{ 528 return (struct cpumask *)&mm->cpu_bitmap; 529} 530 531struct mmu_gather; 532extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 533 unsigned long start, unsigned long end); 534extern void tlb_finish_mmu(struct mmu_gather *tlb, 535 unsigned long start, unsigned long end); 536 537static inline void init_tlb_flush_pending(struct mm_struct *mm) 538{ 539 atomic_set(&mm->tlb_flush_pending, 0); 540} 541 542static inline void inc_tlb_flush_pending(struct mm_struct *mm) 543{ 544 atomic_inc(&mm->tlb_flush_pending); 545 /* 546 * The only time this value is relevant is when there are indeed pages 547 * to flush. And we'll only flush pages after changing them, which 548 * requires the PTL. 549 * 550 * So the ordering here is: 551 * 552 * atomic_inc(&mm->tlb_flush_pending); 553 * spin_lock(&ptl); 554 * ... 555 * set_pte_at(); 556 * spin_unlock(&ptl); 557 * 558 * spin_lock(&ptl) 559 * mm_tlb_flush_pending(); 560 * .... 561 * spin_unlock(&ptl); 562 * 563 * flush_tlb_range(); 564 * atomic_dec(&mm->tlb_flush_pending); 565 * 566 * Where the increment if constrained by the PTL unlock, it thus 567 * ensures that the increment is visible if the PTE modification is 568 * visible. After all, if there is no PTE modification, nobody cares 569 * about TLB flushes either. 570 * 571 * This very much relies on users (mm_tlb_flush_pending() and 572 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 573 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 574 * locks (PPC) the unlock of one doesn't order against the lock of 575 * another PTL. 576 * 577 * The decrement is ordered by the flush_tlb_range(), such that 578 * mm_tlb_flush_pending() will not return false unless all flushes have 579 * completed. 580 */ 581} 582 583static inline void dec_tlb_flush_pending(struct mm_struct *mm) 584{ 585 /* 586 * See inc_tlb_flush_pending(). 587 * 588 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 589 * not order against TLB invalidate completion, which is what we need. 590 * 591 * Therefore we must rely on tlb_flush_*() to guarantee order. 592 */ 593 atomic_dec(&mm->tlb_flush_pending); 594} 595 596static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 597{ 598 /* 599 * Must be called after having acquired the PTL; orders against that 600 * PTLs release and therefore ensures that if we observe the modified 601 * PTE we must also observe the increment from inc_tlb_flush_pending(). 602 * 603 * That is, it only guarantees to return true if there is a flush 604 * pending for _this_ PTL. 605 */ 606 return atomic_read(&mm->tlb_flush_pending); 607} 608 609static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 610{ 611 /* 612 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 613 * for which there is a TLB flush pending in order to guarantee 614 * we've seen both that PTE modification and the increment. 615 * 616 * (no requirement on actually still holding the PTL, that is irrelevant) 617 */ 618 return atomic_read(&mm->tlb_flush_pending) > 1; 619} 620 621struct vm_fault; 622 623/** 624 * typedef vm_fault_t - Return type for page fault handlers. 625 * 626 * Page fault handlers return a bitmask of %VM_FAULT values. 627 */ 628typedef __bitwise unsigned int vm_fault_t; 629 630/** 631 * enum vm_fault_reason - Page fault handlers return a bitmask of 632 * these values to tell the core VM what happened when handling the 633 * fault. Used to decide whether a process gets delivered SIGBUS or 634 * just gets major/minor fault counters bumped up. 635 * 636 * @VM_FAULT_OOM: Out Of Memory 637 * @VM_FAULT_SIGBUS: Bad access 638 * @VM_FAULT_MAJOR: Page read from storage 639 * @VM_FAULT_WRITE: Special case for get_user_pages 640 * @VM_FAULT_HWPOISON: Hit poisoned small page 641 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 642 * in upper bits 643 * @VM_FAULT_SIGSEGV: segmentation fault 644 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 645 * @VM_FAULT_LOCKED: ->fault locked the returned page 646 * @VM_FAULT_RETRY: ->fault blocked, must retry 647 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 648 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 649 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 650 * fsync() to complete (for synchronous page faults 651 * in DAX) 652 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 653 * 654 */ 655enum vm_fault_reason { 656 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 657 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 658 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 659 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 660 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 661 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 662 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 663 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 664 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 665 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 666 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 667 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 668 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 669 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 670}; 671 672/* Encode hstate index for a hwpoisoned large page */ 673#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 674#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 675 676#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 677 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 678 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 679 680#define VM_FAULT_RESULT_TRACE \ 681 { VM_FAULT_OOM, "OOM" }, \ 682 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 683 { VM_FAULT_MAJOR, "MAJOR" }, \ 684 { VM_FAULT_WRITE, "WRITE" }, \ 685 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 686 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 687 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 688 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 689 { VM_FAULT_LOCKED, "LOCKED" }, \ 690 { VM_FAULT_RETRY, "RETRY" }, \ 691 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 692 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 693 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 694 695struct vm_special_mapping { 696 const char *name; /* The name, e.g. "[vdso]". */ 697 698 /* 699 * If .fault is not provided, this points to a 700 * NULL-terminated array of pages that back the special mapping. 701 * 702 * This must not be NULL unless .fault is provided. 703 */ 704 struct page **pages; 705 706 /* 707 * If non-NULL, then this is called to resolve page faults 708 * on the special mapping. If used, .pages is not checked. 709 */ 710 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 711 struct vm_area_struct *vma, 712 struct vm_fault *vmf); 713 714 int (*mremap)(const struct vm_special_mapping *sm, 715 struct vm_area_struct *new_vma); 716}; 717 718enum tlb_flush_reason { 719 TLB_FLUSH_ON_TASK_SWITCH, 720 TLB_REMOTE_SHOOTDOWN, 721 TLB_LOCAL_SHOOTDOWN, 722 TLB_LOCAL_MM_SHOOTDOWN, 723 TLB_REMOTE_SEND_IPI, 724 NR_TLB_FLUSH_REASONS, 725}; 726 727 /* 728 * A swap entry has to fit into a "unsigned long", as the entry is hidden 729 * in the "index" field of the swapper address space. 730 */ 731typedef struct { 732 unsigned long val; 733} swp_entry_t; 734 735#endif /* _LINUX_MM_TYPES_H */