at v5.1 88 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30 31struct mempolicy; 32struct anon_vma; 33struct anon_vma_chain; 34struct file_ra_state; 35struct user_struct; 36struct writeback_control; 37struct bdi_writeback; 38 39void init_mm_internals(void); 40 41#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42extern unsigned long max_mapnr; 43 44static inline void set_max_mapnr(unsigned long limit) 45{ 46 max_mapnr = limit; 47} 48#else 49static inline void set_max_mapnr(unsigned long limit) { } 50#endif 51 52extern atomic_long_t _totalram_pages; 53static inline unsigned long totalram_pages(void) 54{ 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56} 57 58static inline void totalram_pages_inc(void) 59{ 60 atomic_long_inc(&_totalram_pages); 61} 62 63static inline void totalram_pages_dec(void) 64{ 65 atomic_long_dec(&_totalram_pages); 66} 67 68static inline void totalram_pages_add(long count) 69{ 70 atomic_long_add(count, &_totalram_pages); 71} 72 73static inline void totalram_pages_set(long val) 74{ 75 atomic_long_set(&_totalram_pages, val); 76} 77 78extern void * high_memory; 79extern int page_cluster; 80 81#ifdef CONFIG_SYSCTL 82extern int sysctl_legacy_va_layout; 83#else 84#define sysctl_legacy_va_layout 0 85#endif 86 87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88extern const int mmap_rnd_bits_min; 89extern const int mmap_rnd_bits_max; 90extern int mmap_rnd_bits __read_mostly; 91#endif 92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93extern const int mmap_rnd_compat_bits_min; 94extern const int mmap_rnd_compat_bits_max; 95extern int mmap_rnd_compat_bits __read_mostly; 96#endif 97 98#include <asm/page.h> 99#include <asm/pgtable.h> 100#include <asm/processor.h> 101 102#ifndef __pa_symbol 103#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 104#endif 105 106#ifndef page_to_virt 107#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 108#endif 109 110#ifndef lm_alias 111#define lm_alias(x) __va(__pa_symbol(x)) 112#endif 113 114/* 115 * To prevent common memory management code establishing 116 * a zero page mapping on a read fault. 117 * This macro should be defined within <asm/pgtable.h>. 118 * s390 does this to prevent multiplexing of hardware bits 119 * related to the physical page in case of virtualization. 120 */ 121#ifndef mm_forbids_zeropage 122#define mm_forbids_zeropage(X) (0) 123#endif 124 125/* 126 * On some architectures it is expensive to call memset() for small sizes. 127 * Those architectures should provide their own implementation of "struct page" 128 * zeroing by defining this macro in <asm/pgtable.h>. 129 */ 130#ifndef mm_zero_struct_page 131#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 132#endif 133 134/* 135 * Default maximum number of active map areas, this limits the number of vmas 136 * per mm struct. Users can overwrite this number by sysctl but there is a 137 * problem. 138 * 139 * When a program's coredump is generated as ELF format, a section is created 140 * per a vma. In ELF, the number of sections is represented in unsigned short. 141 * This means the number of sections should be smaller than 65535 at coredump. 142 * Because the kernel adds some informative sections to a image of program at 143 * generating coredump, we need some margin. The number of extra sections is 144 * 1-3 now and depends on arch. We use "5" as safe margin, here. 145 * 146 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 147 * not a hard limit any more. Although some userspace tools can be surprised by 148 * that. 149 */ 150#define MAPCOUNT_ELF_CORE_MARGIN (5) 151#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 152 153extern int sysctl_max_map_count; 154 155extern unsigned long sysctl_user_reserve_kbytes; 156extern unsigned long sysctl_admin_reserve_kbytes; 157 158extern int sysctl_overcommit_memory; 159extern int sysctl_overcommit_ratio; 160extern unsigned long sysctl_overcommit_kbytes; 161 162extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 163 size_t *, loff_t *); 164extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 165 size_t *, loff_t *); 166 167#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 168 169/* to align the pointer to the (next) page boundary */ 170#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 171 172/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 173#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 174 175#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 176 177/* 178 * Linux kernel virtual memory manager primitives. 179 * The idea being to have a "virtual" mm in the same way 180 * we have a virtual fs - giving a cleaner interface to the 181 * mm details, and allowing different kinds of memory mappings 182 * (from shared memory to executable loading to arbitrary 183 * mmap() functions). 184 */ 185 186struct vm_area_struct *vm_area_alloc(struct mm_struct *); 187struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 188void vm_area_free(struct vm_area_struct *); 189 190#ifndef CONFIG_MMU 191extern struct rb_root nommu_region_tree; 192extern struct rw_semaphore nommu_region_sem; 193 194extern unsigned int kobjsize(const void *objp); 195#endif 196 197/* 198 * vm_flags in vm_area_struct, see mm_types.h. 199 * When changing, update also include/trace/events/mmflags.h 200 */ 201#define VM_NONE 0x00000000 202 203#define VM_READ 0x00000001 /* currently active flags */ 204#define VM_WRITE 0x00000002 205#define VM_EXEC 0x00000004 206#define VM_SHARED 0x00000008 207 208/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 209#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 210#define VM_MAYWRITE 0x00000020 211#define VM_MAYEXEC 0x00000040 212#define VM_MAYSHARE 0x00000080 213 214#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 215#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 216#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 217#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 218#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 219 220#define VM_LOCKED 0x00002000 221#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 222 223 /* Used by sys_madvise() */ 224#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 225#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 226 227#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 228#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 229#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 230#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 231#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 232#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 233#define VM_SYNC 0x00800000 /* Synchronous page faults */ 234#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 235#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 236#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 237 238#ifdef CONFIG_MEM_SOFT_DIRTY 239# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 240#else 241# define VM_SOFTDIRTY 0 242#endif 243 244#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 245#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 246#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 247#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 248 249#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 250#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 251#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 252#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 253#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 254#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 255#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 256#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 257#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 258#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 259#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 260#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 261 262#ifdef CONFIG_ARCH_HAS_PKEYS 263# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 264# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 265# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 266# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 267# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 268#ifdef CONFIG_PPC 269# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 270#else 271# define VM_PKEY_BIT4 0 272#endif 273#endif /* CONFIG_ARCH_HAS_PKEYS */ 274 275#if defined(CONFIG_X86) 276# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 277#elif defined(CONFIG_PPC) 278# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 279#elif defined(CONFIG_PARISC) 280# define VM_GROWSUP VM_ARCH_1 281#elif defined(CONFIG_IA64) 282# define VM_GROWSUP VM_ARCH_1 283#elif defined(CONFIG_SPARC64) 284# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 285# define VM_ARCH_CLEAR VM_SPARC_ADI 286#elif !defined(CONFIG_MMU) 287# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 288#endif 289 290#if defined(CONFIG_X86_INTEL_MPX) 291/* MPX specific bounds table or bounds directory */ 292# define VM_MPX VM_HIGH_ARCH_4 293#else 294# define VM_MPX VM_NONE 295#endif 296 297#ifndef VM_GROWSUP 298# define VM_GROWSUP VM_NONE 299#endif 300 301/* Bits set in the VMA until the stack is in its final location */ 302#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 303 304#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 305#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 306#endif 307 308#ifdef CONFIG_STACK_GROWSUP 309#define VM_STACK VM_GROWSUP 310#else 311#define VM_STACK VM_GROWSDOWN 312#endif 313 314#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 315 316/* 317 * Special vmas that are non-mergable, non-mlock()able. 318 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 319 */ 320#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 321 322/* This mask defines which mm->def_flags a process can inherit its parent */ 323#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 324 325/* This mask is used to clear all the VMA flags used by mlock */ 326#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 327 328/* Arch-specific flags to clear when updating VM flags on protection change */ 329#ifndef VM_ARCH_CLEAR 330# define VM_ARCH_CLEAR VM_NONE 331#endif 332#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 333 334/* 335 * mapping from the currently active vm_flags protection bits (the 336 * low four bits) to a page protection mask.. 337 */ 338extern pgprot_t protection_map[16]; 339 340#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 341#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 342#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 343#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 344#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 345#define FAULT_FLAG_TRIED 0x20 /* Second try */ 346#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 347#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 348#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 349 350#define FAULT_FLAG_TRACE \ 351 { FAULT_FLAG_WRITE, "WRITE" }, \ 352 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 353 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 354 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 355 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 356 { FAULT_FLAG_TRIED, "TRIED" }, \ 357 { FAULT_FLAG_USER, "USER" }, \ 358 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 359 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 360 361/* 362 * vm_fault is filled by the the pagefault handler and passed to the vma's 363 * ->fault function. The vma's ->fault is responsible for returning a bitmask 364 * of VM_FAULT_xxx flags that give details about how the fault was handled. 365 * 366 * MM layer fills up gfp_mask for page allocations but fault handler might 367 * alter it if its implementation requires a different allocation context. 368 * 369 * pgoff should be used in favour of virtual_address, if possible. 370 */ 371struct vm_fault { 372 struct vm_area_struct *vma; /* Target VMA */ 373 unsigned int flags; /* FAULT_FLAG_xxx flags */ 374 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 375 pgoff_t pgoff; /* Logical page offset based on vma */ 376 unsigned long address; /* Faulting virtual address */ 377 pmd_t *pmd; /* Pointer to pmd entry matching 378 * the 'address' */ 379 pud_t *pud; /* Pointer to pud entry matching 380 * the 'address' 381 */ 382 pte_t orig_pte; /* Value of PTE at the time of fault */ 383 384 struct page *cow_page; /* Page handler may use for COW fault */ 385 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 386 struct page *page; /* ->fault handlers should return a 387 * page here, unless VM_FAULT_NOPAGE 388 * is set (which is also implied by 389 * VM_FAULT_ERROR). 390 */ 391 /* These three entries are valid only while holding ptl lock */ 392 pte_t *pte; /* Pointer to pte entry matching 393 * the 'address'. NULL if the page 394 * table hasn't been allocated. 395 */ 396 spinlock_t *ptl; /* Page table lock. 397 * Protects pte page table if 'pte' 398 * is not NULL, otherwise pmd. 399 */ 400 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 401 * vm_ops->map_pages() calls 402 * alloc_set_pte() from atomic context. 403 * do_fault_around() pre-allocates 404 * page table to avoid allocation from 405 * atomic context. 406 */ 407}; 408 409/* page entry size for vm->huge_fault() */ 410enum page_entry_size { 411 PE_SIZE_PTE = 0, 412 PE_SIZE_PMD, 413 PE_SIZE_PUD, 414}; 415 416/* 417 * These are the virtual MM functions - opening of an area, closing and 418 * unmapping it (needed to keep files on disk up-to-date etc), pointer 419 * to the functions called when a no-page or a wp-page exception occurs. 420 */ 421struct vm_operations_struct { 422 void (*open)(struct vm_area_struct * area); 423 void (*close)(struct vm_area_struct * area); 424 int (*split)(struct vm_area_struct * area, unsigned long addr); 425 int (*mremap)(struct vm_area_struct * area); 426 vm_fault_t (*fault)(struct vm_fault *vmf); 427 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 428 enum page_entry_size pe_size); 429 void (*map_pages)(struct vm_fault *vmf, 430 pgoff_t start_pgoff, pgoff_t end_pgoff); 431 unsigned long (*pagesize)(struct vm_area_struct * area); 432 433 /* notification that a previously read-only page is about to become 434 * writable, if an error is returned it will cause a SIGBUS */ 435 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 436 437 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 438 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 439 440 /* called by access_process_vm when get_user_pages() fails, typically 441 * for use by special VMAs that can switch between memory and hardware 442 */ 443 int (*access)(struct vm_area_struct *vma, unsigned long addr, 444 void *buf, int len, int write); 445 446 /* Called by the /proc/PID/maps code to ask the vma whether it 447 * has a special name. Returning non-NULL will also cause this 448 * vma to be dumped unconditionally. */ 449 const char *(*name)(struct vm_area_struct *vma); 450 451#ifdef CONFIG_NUMA 452 /* 453 * set_policy() op must add a reference to any non-NULL @new mempolicy 454 * to hold the policy upon return. Caller should pass NULL @new to 455 * remove a policy and fall back to surrounding context--i.e. do not 456 * install a MPOL_DEFAULT policy, nor the task or system default 457 * mempolicy. 458 */ 459 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 460 461 /* 462 * get_policy() op must add reference [mpol_get()] to any policy at 463 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 464 * in mm/mempolicy.c will do this automatically. 465 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 466 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 467 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 468 * must return NULL--i.e., do not "fallback" to task or system default 469 * policy. 470 */ 471 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 472 unsigned long addr); 473#endif 474 /* 475 * Called by vm_normal_page() for special PTEs to find the 476 * page for @addr. This is useful if the default behavior 477 * (using pte_page()) would not find the correct page. 478 */ 479 struct page *(*find_special_page)(struct vm_area_struct *vma, 480 unsigned long addr); 481}; 482 483static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 484{ 485 static const struct vm_operations_struct dummy_vm_ops = {}; 486 487 memset(vma, 0, sizeof(*vma)); 488 vma->vm_mm = mm; 489 vma->vm_ops = &dummy_vm_ops; 490 INIT_LIST_HEAD(&vma->anon_vma_chain); 491} 492 493static inline void vma_set_anonymous(struct vm_area_struct *vma) 494{ 495 vma->vm_ops = NULL; 496} 497 498/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 499#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 500 501struct mmu_gather; 502struct inode; 503 504#define page_private(page) ((page)->private) 505#define set_page_private(page, v) ((page)->private = (v)) 506 507#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 508static inline int pmd_devmap(pmd_t pmd) 509{ 510 return 0; 511} 512static inline int pud_devmap(pud_t pud) 513{ 514 return 0; 515} 516static inline int pgd_devmap(pgd_t pgd) 517{ 518 return 0; 519} 520#endif 521 522/* 523 * FIXME: take this include out, include page-flags.h in 524 * files which need it (119 of them) 525 */ 526#include <linux/page-flags.h> 527#include <linux/huge_mm.h> 528 529/* 530 * Methods to modify the page usage count. 531 * 532 * What counts for a page usage: 533 * - cache mapping (page->mapping) 534 * - private data (page->private) 535 * - page mapped in a task's page tables, each mapping 536 * is counted separately 537 * 538 * Also, many kernel routines increase the page count before a critical 539 * routine so they can be sure the page doesn't go away from under them. 540 */ 541 542/* 543 * Drop a ref, return true if the refcount fell to zero (the page has no users) 544 */ 545static inline int put_page_testzero(struct page *page) 546{ 547 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 548 return page_ref_dec_and_test(page); 549} 550 551/* 552 * Try to grab a ref unless the page has a refcount of zero, return false if 553 * that is the case. 554 * This can be called when MMU is off so it must not access 555 * any of the virtual mappings. 556 */ 557static inline int get_page_unless_zero(struct page *page) 558{ 559 return page_ref_add_unless(page, 1, 0); 560} 561 562extern int page_is_ram(unsigned long pfn); 563 564enum { 565 REGION_INTERSECTS, 566 REGION_DISJOINT, 567 REGION_MIXED, 568}; 569 570int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 571 unsigned long desc); 572 573/* Support for virtually mapped pages */ 574struct page *vmalloc_to_page(const void *addr); 575unsigned long vmalloc_to_pfn(const void *addr); 576 577/* 578 * Determine if an address is within the vmalloc range 579 * 580 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 581 * is no special casing required. 582 */ 583static inline bool is_vmalloc_addr(const void *x) 584{ 585#ifdef CONFIG_MMU 586 unsigned long addr = (unsigned long)x; 587 588 return addr >= VMALLOC_START && addr < VMALLOC_END; 589#else 590 return false; 591#endif 592} 593#ifdef CONFIG_MMU 594extern int is_vmalloc_or_module_addr(const void *x); 595#else 596static inline int is_vmalloc_or_module_addr(const void *x) 597{ 598 return 0; 599} 600#endif 601 602extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 603static inline void *kvmalloc(size_t size, gfp_t flags) 604{ 605 return kvmalloc_node(size, flags, NUMA_NO_NODE); 606} 607static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 608{ 609 return kvmalloc_node(size, flags | __GFP_ZERO, node); 610} 611static inline void *kvzalloc(size_t size, gfp_t flags) 612{ 613 return kvmalloc(size, flags | __GFP_ZERO); 614} 615 616static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 617{ 618 size_t bytes; 619 620 if (unlikely(check_mul_overflow(n, size, &bytes))) 621 return NULL; 622 623 return kvmalloc(bytes, flags); 624} 625 626static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 627{ 628 return kvmalloc_array(n, size, flags | __GFP_ZERO); 629} 630 631extern void kvfree(const void *addr); 632 633static inline atomic_t *compound_mapcount_ptr(struct page *page) 634{ 635 return &page[1].compound_mapcount; 636} 637 638static inline int compound_mapcount(struct page *page) 639{ 640 VM_BUG_ON_PAGE(!PageCompound(page), page); 641 page = compound_head(page); 642 return atomic_read(compound_mapcount_ptr(page)) + 1; 643} 644 645/* 646 * The atomic page->_mapcount, starts from -1: so that transitions 647 * both from it and to it can be tracked, using atomic_inc_and_test 648 * and atomic_add_negative(-1). 649 */ 650static inline void page_mapcount_reset(struct page *page) 651{ 652 atomic_set(&(page)->_mapcount, -1); 653} 654 655int __page_mapcount(struct page *page); 656 657static inline int page_mapcount(struct page *page) 658{ 659 VM_BUG_ON_PAGE(PageSlab(page), page); 660 661 if (unlikely(PageCompound(page))) 662 return __page_mapcount(page); 663 return atomic_read(&page->_mapcount) + 1; 664} 665 666#ifdef CONFIG_TRANSPARENT_HUGEPAGE 667int total_mapcount(struct page *page); 668int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 669#else 670static inline int total_mapcount(struct page *page) 671{ 672 return page_mapcount(page); 673} 674static inline int page_trans_huge_mapcount(struct page *page, 675 int *total_mapcount) 676{ 677 int mapcount = page_mapcount(page); 678 if (total_mapcount) 679 *total_mapcount = mapcount; 680 return mapcount; 681} 682#endif 683 684static inline struct page *virt_to_head_page(const void *x) 685{ 686 struct page *page = virt_to_page(x); 687 688 return compound_head(page); 689} 690 691void __put_page(struct page *page); 692 693void put_pages_list(struct list_head *pages); 694 695void split_page(struct page *page, unsigned int order); 696 697/* 698 * Compound pages have a destructor function. Provide a 699 * prototype for that function and accessor functions. 700 * These are _only_ valid on the head of a compound page. 701 */ 702typedef void compound_page_dtor(struct page *); 703 704/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 705enum compound_dtor_id { 706 NULL_COMPOUND_DTOR, 707 COMPOUND_PAGE_DTOR, 708#ifdef CONFIG_HUGETLB_PAGE 709 HUGETLB_PAGE_DTOR, 710#endif 711#ifdef CONFIG_TRANSPARENT_HUGEPAGE 712 TRANSHUGE_PAGE_DTOR, 713#endif 714 NR_COMPOUND_DTORS, 715}; 716extern compound_page_dtor * const compound_page_dtors[]; 717 718static inline void set_compound_page_dtor(struct page *page, 719 enum compound_dtor_id compound_dtor) 720{ 721 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 722 page[1].compound_dtor = compound_dtor; 723} 724 725static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 726{ 727 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 728 return compound_page_dtors[page[1].compound_dtor]; 729} 730 731static inline unsigned int compound_order(struct page *page) 732{ 733 if (!PageHead(page)) 734 return 0; 735 return page[1].compound_order; 736} 737 738static inline void set_compound_order(struct page *page, unsigned int order) 739{ 740 page[1].compound_order = order; 741} 742 743void free_compound_page(struct page *page); 744 745#ifdef CONFIG_MMU 746/* 747 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 748 * servicing faults for write access. In the normal case, do always want 749 * pte_mkwrite. But get_user_pages can cause write faults for mappings 750 * that do not have writing enabled, when used by access_process_vm. 751 */ 752static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 753{ 754 if (likely(vma->vm_flags & VM_WRITE)) 755 pte = pte_mkwrite(pte); 756 return pte; 757} 758 759vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 760 struct page *page); 761vm_fault_t finish_fault(struct vm_fault *vmf); 762vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 763#endif 764 765/* 766 * Multiple processes may "see" the same page. E.g. for untouched 767 * mappings of /dev/null, all processes see the same page full of 768 * zeroes, and text pages of executables and shared libraries have 769 * only one copy in memory, at most, normally. 770 * 771 * For the non-reserved pages, page_count(page) denotes a reference count. 772 * page_count() == 0 means the page is free. page->lru is then used for 773 * freelist management in the buddy allocator. 774 * page_count() > 0 means the page has been allocated. 775 * 776 * Pages are allocated by the slab allocator in order to provide memory 777 * to kmalloc and kmem_cache_alloc. In this case, the management of the 778 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 779 * unless a particular usage is carefully commented. (the responsibility of 780 * freeing the kmalloc memory is the caller's, of course). 781 * 782 * A page may be used by anyone else who does a __get_free_page(). 783 * In this case, page_count still tracks the references, and should only 784 * be used through the normal accessor functions. The top bits of page->flags 785 * and page->virtual store page management information, but all other fields 786 * are unused and could be used privately, carefully. The management of this 787 * page is the responsibility of the one who allocated it, and those who have 788 * subsequently been given references to it. 789 * 790 * The other pages (we may call them "pagecache pages") are completely 791 * managed by the Linux memory manager: I/O, buffers, swapping etc. 792 * The following discussion applies only to them. 793 * 794 * A pagecache page contains an opaque `private' member, which belongs to the 795 * page's address_space. Usually, this is the address of a circular list of 796 * the page's disk buffers. PG_private must be set to tell the VM to call 797 * into the filesystem to release these pages. 798 * 799 * A page may belong to an inode's memory mapping. In this case, page->mapping 800 * is the pointer to the inode, and page->index is the file offset of the page, 801 * in units of PAGE_SIZE. 802 * 803 * If pagecache pages are not associated with an inode, they are said to be 804 * anonymous pages. These may become associated with the swapcache, and in that 805 * case PG_swapcache is set, and page->private is an offset into the swapcache. 806 * 807 * In either case (swapcache or inode backed), the pagecache itself holds one 808 * reference to the page. Setting PG_private should also increment the 809 * refcount. The each user mapping also has a reference to the page. 810 * 811 * The pagecache pages are stored in a per-mapping radix tree, which is 812 * rooted at mapping->i_pages, and indexed by offset. 813 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 814 * lists, we instead now tag pages as dirty/writeback in the radix tree. 815 * 816 * All pagecache pages may be subject to I/O: 817 * - inode pages may need to be read from disk, 818 * - inode pages which have been modified and are MAP_SHARED may need 819 * to be written back to the inode on disk, 820 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 821 * modified may need to be swapped out to swap space and (later) to be read 822 * back into memory. 823 */ 824 825/* 826 * The zone field is never updated after free_area_init_core() 827 * sets it, so none of the operations on it need to be atomic. 828 */ 829 830/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 831#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 832#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 833#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 834#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 835#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 836 837/* 838 * Define the bit shifts to access each section. For non-existent 839 * sections we define the shift as 0; that plus a 0 mask ensures 840 * the compiler will optimise away reference to them. 841 */ 842#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 843#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 844#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 845#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 846#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 847 848/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 849#ifdef NODE_NOT_IN_PAGE_FLAGS 850#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 851#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 852 SECTIONS_PGOFF : ZONES_PGOFF) 853#else 854#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 855#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 856 NODES_PGOFF : ZONES_PGOFF) 857#endif 858 859#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 860 861#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 862#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 863#endif 864 865#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 866#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 867#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 868#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 869#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 870#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 871 872static inline enum zone_type page_zonenum(const struct page *page) 873{ 874 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 875} 876 877#ifdef CONFIG_ZONE_DEVICE 878static inline bool is_zone_device_page(const struct page *page) 879{ 880 return page_zonenum(page) == ZONE_DEVICE; 881} 882extern void memmap_init_zone_device(struct zone *, unsigned long, 883 unsigned long, struct dev_pagemap *); 884#else 885static inline bool is_zone_device_page(const struct page *page) 886{ 887 return false; 888} 889#endif 890 891#ifdef CONFIG_DEV_PAGEMAP_OPS 892void dev_pagemap_get_ops(void); 893void dev_pagemap_put_ops(void); 894void __put_devmap_managed_page(struct page *page); 895DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 896static inline bool put_devmap_managed_page(struct page *page) 897{ 898 if (!static_branch_unlikely(&devmap_managed_key)) 899 return false; 900 if (!is_zone_device_page(page)) 901 return false; 902 switch (page->pgmap->type) { 903 case MEMORY_DEVICE_PRIVATE: 904 case MEMORY_DEVICE_PUBLIC: 905 case MEMORY_DEVICE_FS_DAX: 906 __put_devmap_managed_page(page); 907 return true; 908 default: 909 break; 910 } 911 return false; 912} 913 914static inline bool is_device_private_page(const struct page *page) 915{ 916 return is_zone_device_page(page) && 917 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 918} 919 920static inline bool is_device_public_page(const struct page *page) 921{ 922 return is_zone_device_page(page) && 923 page->pgmap->type == MEMORY_DEVICE_PUBLIC; 924} 925 926#ifdef CONFIG_PCI_P2PDMA 927static inline bool is_pci_p2pdma_page(const struct page *page) 928{ 929 return is_zone_device_page(page) && 930 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 931} 932#else /* CONFIG_PCI_P2PDMA */ 933static inline bool is_pci_p2pdma_page(const struct page *page) 934{ 935 return false; 936} 937#endif /* CONFIG_PCI_P2PDMA */ 938 939#else /* CONFIG_DEV_PAGEMAP_OPS */ 940static inline void dev_pagemap_get_ops(void) 941{ 942} 943 944static inline void dev_pagemap_put_ops(void) 945{ 946} 947 948static inline bool put_devmap_managed_page(struct page *page) 949{ 950 return false; 951} 952 953static inline bool is_device_private_page(const struct page *page) 954{ 955 return false; 956} 957 958static inline bool is_device_public_page(const struct page *page) 959{ 960 return false; 961} 962 963static inline bool is_pci_p2pdma_page(const struct page *page) 964{ 965 return false; 966} 967#endif /* CONFIG_DEV_PAGEMAP_OPS */ 968 969/* 127: arbitrary random number, small enough to assemble well */ 970#define page_ref_zero_or_close_to_overflow(page) \ 971 ((unsigned int) page_ref_count(page) + 127u <= 127u) 972 973static inline void get_page(struct page *page) 974{ 975 page = compound_head(page); 976 /* 977 * Getting a normal page or the head of a compound page 978 * requires to already have an elevated page->_refcount. 979 */ 980 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 981 page_ref_inc(page); 982} 983 984static inline __must_check bool try_get_page(struct page *page) 985{ 986 page = compound_head(page); 987 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 988 return false; 989 page_ref_inc(page); 990 return true; 991} 992 993static inline void put_page(struct page *page) 994{ 995 page = compound_head(page); 996 997 /* 998 * For devmap managed pages we need to catch refcount transition from 999 * 2 to 1, when refcount reach one it means the page is free and we 1000 * need to inform the device driver through callback. See 1001 * include/linux/memremap.h and HMM for details. 1002 */ 1003 if (put_devmap_managed_page(page)) 1004 return; 1005 1006 if (put_page_testzero(page)) 1007 __put_page(page); 1008} 1009 1010#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1011#define SECTION_IN_PAGE_FLAGS 1012#endif 1013 1014/* 1015 * The identification function is mainly used by the buddy allocator for 1016 * determining if two pages could be buddies. We are not really identifying 1017 * the zone since we could be using the section number id if we do not have 1018 * node id available in page flags. 1019 * We only guarantee that it will return the same value for two combinable 1020 * pages in a zone. 1021 */ 1022static inline int page_zone_id(struct page *page) 1023{ 1024 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1025} 1026 1027#ifdef NODE_NOT_IN_PAGE_FLAGS 1028extern int page_to_nid(const struct page *page); 1029#else 1030static inline int page_to_nid(const struct page *page) 1031{ 1032 struct page *p = (struct page *)page; 1033 1034 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1035} 1036#endif 1037 1038#ifdef CONFIG_NUMA_BALANCING 1039static inline int cpu_pid_to_cpupid(int cpu, int pid) 1040{ 1041 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1042} 1043 1044static inline int cpupid_to_pid(int cpupid) 1045{ 1046 return cpupid & LAST__PID_MASK; 1047} 1048 1049static inline int cpupid_to_cpu(int cpupid) 1050{ 1051 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1052} 1053 1054static inline int cpupid_to_nid(int cpupid) 1055{ 1056 return cpu_to_node(cpupid_to_cpu(cpupid)); 1057} 1058 1059static inline bool cpupid_pid_unset(int cpupid) 1060{ 1061 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1062} 1063 1064static inline bool cpupid_cpu_unset(int cpupid) 1065{ 1066 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1067} 1068 1069static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1070{ 1071 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1072} 1073 1074#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1075#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1076static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1077{ 1078 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1079} 1080 1081static inline int page_cpupid_last(struct page *page) 1082{ 1083 return page->_last_cpupid; 1084} 1085static inline void page_cpupid_reset_last(struct page *page) 1086{ 1087 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1088} 1089#else 1090static inline int page_cpupid_last(struct page *page) 1091{ 1092 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1093} 1094 1095extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1096 1097static inline void page_cpupid_reset_last(struct page *page) 1098{ 1099 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1100} 1101#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1102#else /* !CONFIG_NUMA_BALANCING */ 1103static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1104{ 1105 return page_to_nid(page); /* XXX */ 1106} 1107 1108static inline int page_cpupid_last(struct page *page) 1109{ 1110 return page_to_nid(page); /* XXX */ 1111} 1112 1113static inline int cpupid_to_nid(int cpupid) 1114{ 1115 return -1; 1116} 1117 1118static inline int cpupid_to_pid(int cpupid) 1119{ 1120 return -1; 1121} 1122 1123static inline int cpupid_to_cpu(int cpupid) 1124{ 1125 return -1; 1126} 1127 1128static inline int cpu_pid_to_cpupid(int nid, int pid) 1129{ 1130 return -1; 1131} 1132 1133static inline bool cpupid_pid_unset(int cpupid) 1134{ 1135 return 1; 1136} 1137 1138static inline void page_cpupid_reset_last(struct page *page) 1139{ 1140} 1141 1142static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1143{ 1144 return false; 1145} 1146#endif /* CONFIG_NUMA_BALANCING */ 1147 1148#ifdef CONFIG_KASAN_SW_TAGS 1149static inline u8 page_kasan_tag(const struct page *page) 1150{ 1151 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1152} 1153 1154static inline void page_kasan_tag_set(struct page *page, u8 tag) 1155{ 1156 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1157 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1158} 1159 1160static inline void page_kasan_tag_reset(struct page *page) 1161{ 1162 page_kasan_tag_set(page, 0xff); 1163} 1164#else 1165static inline u8 page_kasan_tag(const struct page *page) 1166{ 1167 return 0xff; 1168} 1169 1170static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1171static inline void page_kasan_tag_reset(struct page *page) { } 1172#endif 1173 1174static inline struct zone *page_zone(const struct page *page) 1175{ 1176 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1177} 1178 1179static inline pg_data_t *page_pgdat(const struct page *page) 1180{ 1181 return NODE_DATA(page_to_nid(page)); 1182} 1183 1184#ifdef SECTION_IN_PAGE_FLAGS 1185static inline void set_page_section(struct page *page, unsigned long section) 1186{ 1187 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1188 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1189} 1190 1191static inline unsigned long page_to_section(const struct page *page) 1192{ 1193 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1194} 1195#endif 1196 1197static inline void set_page_zone(struct page *page, enum zone_type zone) 1198{ 1199 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1200 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1201} 1202 1203static inline void set_page_node(struct page *page, unsigned long node) 1204{ 1205 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1206 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1207} 1208 1209static inline void set_page_links(struct page *page, enum zone_type zone, 1210 unsigned long node, unsigned long pfn) 1211{ 1212 set_page_zone(page, zone); 1213 set_page_node(page, node); 1214#ifdef SECTION_IN_PAGE_FLAGS 1215 set_page_section(page, pfn_to_section_nr(pfn)); 1216#endif 1217} 1218 1219#ifdef CONFIG_MEMCG 1220static inline struct mem_cgroup *page_memcg(struct page *page) 1221{ 1222 return page->mem_cgroup; 1223} 1224static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1225{ 1226 WARN_ON_ONCE(!rcu_read_lock_held()); 1227 return READ_ONCE(page->mem_cgroup); 1228} 1229#else 1230static inline struct mem_cgroup *page_memcg(struct page *page) 1231{ 1232 return NULL; 1233} 1234static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1235{ 1236 WARN_ON_ONCE(!rcu_read_lock_held()); 1237 return NULL; 1238} 1239#endif 1240 1241/* 1242 * Some inline functions in vmstat.h depend on page_zone() 1243 */ 1244#include <linux/vmstat.h> 1245 1246static __always_inline void *lowmem_page_address(const struct page *page) 1247{ 1248 return page_to_virt(page); 1249} 1250 1251#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1252#define HASHED_PAGE_VIRTUAL 1253#endif 1254 1255#if defined(WANT_PAGE_VIRTUAL) 1256static inline void *page_address(const struct page *page) 1257{ 1258 return page->virtual; 1259} 1260static inline void set_page_address(struct page *page, void *address) 1261{ 1262 page->virtual = address; 1263} 1264#define page_address_init() do { } while(0) 1265#endif 1266 1267#if defined(HASHED_PAGE_VIRTUAL) 1268void *page_address(const struct page *page); 1269void set_page_address(struct page *page, void *virtual); 1270void page_address_init(void); 1271#endif 1272 1273#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1274#define page_address(page) lowmem_page_address(page) 1275#define set_page_address(page, address) do { } while(0) 1276#define page_address_init() do { } while(0) 1277#endif 1278 1279extern void *page_rmapping(struct page *page); 1280extern struct anon_vma *page_anon_vma(struct page *page); 1281extern struct address_space *page_mapping(struct page *page); 1282 1283extern struct address_space *__page_file_mapping(struct page *); 1284 1285static inline 1286struct address_space *page_file_mapping(struct page *page) 1287{ 1288 if (unlikely(PageSwapCache(page))) 1289 return __page_file_mapping(page); 1290 1291 return page->mapping; 1292} 1293 1294extern pgoff_t __page_file_index(struct page *page); 1295 1296/* 1297 * Return the pagecache index of the passed page. Regular pagecache pages 1298 * use ->index whereas swapcache pages use swp_offset(->private) 1299 */ 1300static inline pgoff_t page_index(struct page *page) 1301{ 1302 if (unlikely(PageSwapCache(page))) 1303 return __page_file_index(page); 1304 return page->index; 1305} 1306 1307bool page_mapped(struct page *page); 1308struct address_space *page_mapping(struct page *page); 1309struct address_space *page_mapping_file(struct page *page); 1310 1311/* 1312 * Return true only if the page has been allocated with 1313 * ALLOC_NO_WATERMARKS and the low watermark was not 1314 * met implying that the system is under some pressure. 1315 */ 1316static inline bool page_is_pfmemalloc(struct page *page) 1317{ 1318 /* 1319 * Page index cannot be this large so this must be 1320 * a pfmemalloc page. 1321 */ 1322 return page->index == -1UL; 1323} 1324 1325/* 1326 * Only to be called by the page allocator on a freshly allocated 1327 * page. 1328 */ 1329static inline void set_page_pfmemalloc(struct page *page) 1330{ 1331 page->index = -1UL; 1332} 1333 1334static inline void clear_page_pfmemalloc(struct page *page) 1335{ 1336 page->index = 0; 1337} 1338 1339/* 1340 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1341 */ 1342extern void pagefault_out_of_memory(void); 1343 1344#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1345 1346/* 1347 * Flags passed to show_mem() and show_free_areas() to suppress output in 1348 * various contexts. 1349 */ 1350#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1351 1352extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1353 1354extern bool can_do_mlock(void); 1355extern int user_shm_lock(size_t, struct user_struct *); 1356extern void user_shm_unlock(size_t, struct user_struct *); 1357 1358/* 1359 * Parameter block passed down to zap_pte_range in exceptional cases. 1360 */ 1361struct zap_details { 1362 struct address_space *check_mapping; /* Check page->mapping if set */ 1363 pgoff_t first_index; /* Lowest page->index to unmap */ 1364 pgoff_t last_index; /* Highest page->index to unmap */ 1365}; 1366 1367struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1368 pte_t pte, bool with_public_device); 1369#define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false) 1370 1371struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1372 pmd_t pmd); 1373 1374void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1375 unsigned long size); 1376void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1377 unsigned long size); 1378void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1379 unsigned long start, unsigned long end); 1380 1381/** 1382 * mm_walk - callbacks for walk_page_range 1383 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1384 * this handler should only handle pud_trans_huge() puds. 1385 * the pmd_entry or pte_entry callbacks will be used for 1386 * regular PUDs. 1387 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1388 * this handler is required to be able to handle 1389 * pmd_trans_huge() pmds. They may simply choose to 1390 * split_huge_page() instead of handling it explicitly. 1391 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1392 * @pte_hole: if set, called for each hole at all levels 1393 * @hugetlb_entry: if set, called for each hugetlb entry 1394 * @test_walk: caller specific callback function to determine whether 1395 * we walk over the current vma or not. Returning 0 1396 * value means "do page table walk over the current vma," 1397 * and a negative one means "abort current page table walk 1398 * right now." 1 means "skip the current vma." 1399 * @mm: mm_struct representing the target process of page table walk 1400 * @vma: vma currently walked (NULL if walking outside vmas) 1401 * @private: private data for callbacks' usage 1402 * 1403 * (see the comment on walk_page_range() for more details) 1404 */ 1405struct mm_walk { 1406 int (*pud_entry)(pud_t *pud, unsigned long addr, 1407 unsigned long next, struct mm_walk *walk); 1408 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1409 unsigned long next, struct mm_walk *walk); 1410 int (*pte_entry)(pte_t *pte, unsigned long addr, 1411 unsigned long next, struct mm_walk *walk); 1412 int (*pte_hole)(unsigned long addr, unsigned long next, 1413 struct mm_walk *walk); 1414 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1415 unsigned long addr, unsigned long next, 1416 struct mm_walk *walk); 1417 int (*test_walk)(unsigned long addr, unsigned long next, 1418 struct mm_walk *walk); 1419 struct mm_struct *mm; 1420 struct vm_area_struct *vma; 1421 void *private; 1422}; 1423 1424struct mmu_notifier_range; 1425 1426int walk_page_range(unsigned long addr, unsigned long end, 1427 struct mm_walk *walk); 1428int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1429void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1430 unsigned long end, unsigned long floor, unsigned long ceiling); 1431int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1432 struct vm_area_struct *vma); 1433int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1434 struct mmu_notifier_range *range, 1435 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1436int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1437 unsigned long *pfn); 1438int follow_phys(struct vm_area_struct *vma, unsigned long address, 1439 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1440int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1441 void *buf, int len, int write); 1442 1443extern void truncate_pagecache(struct inode *inode, loff_t new); 1444extern void truncate_setsize(struct inode *inode, loff_t newsize); 1445void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1446void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1447int truncate_inode_page(struct address_space *mapping, struct page *page); 1448int generic_error_remove_page(struct address_space *mapping, struct page *page); 1449int invalidate_inode_page(struct page *page); 1450 1451#ifdef CONFIG_MMU 1452extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1453 unsigned long address, unsigned int flags); 1454extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1455 unsigned long address, unsigned int fault_flags, 1456 bool *unlocked); 1457void unmap_mapping_pages(struct address_space *mapping, 1458 pgoff_t start, pgoff_t nr, bool even_cows); 1459void unmap_mapping_range(struct address_space *mapping, 1460 loff_t const holebegin, loff_t const holelen, int even_cows); 1461#else 1462static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1463 unsigned long address, unsigned int flags) 1464{ 1465 /* should never happen if there's no MMU */ 1466 BUG(); 1467 return VM_FAULT_SIGBUS; 1468} 1469static inline int fixup_user_fault(struct task_struct *tsk, 1470 struct mm_struct *mm, unsigned long address, 1471 unsigned int fault_flags, bool *unlocked) 1472{ 1473 /* should never happen if there's no MMU */ 1474 BUG(); 1475 return -EFAULT; 1476} 1477static inline void unmap_mapping_pages(struct address_space *mapping, 1478 pgoff_t start, pgoff_t nr, bool even_cows) { } 1479static inline void unmap_mapping_range(struct address_space *mapping, 1480 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1481#endif 1482 1483static inline void unmap_shared_mapping_range(struct address_space *mapping, 1484 loff_t const holebegin, loff_t const holelen) 1485{ 1486 unmap_mapping_range(mapping, holebegin, holelen, 0); 1487} 1488 1489extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1490 void *buf, int len, unsigned int gup_flags); 1491extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1492 void *buf, int len, unsigned int gup_flags); 1493extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1494 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1495 1496long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1497 unsigned long start, unsigned long nr_pages, 1498 unsigned int gup_flags, struct page **pages, 1499 struct vm_area_struct **vmas, int *locked); 1500long get_user_pages(unsigned long start, unsigned long nr_pages, 1501 unsigned int gup_flags, struct page **pages, 1502 struct vm_area_struct **vmas); 1503long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1504 unsigned int gup_flags, struct page **pages, int *locked); 1505long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1506 struct page **pages, unsigned int gup_flags); 1507 1508#if defined(CONFIG_FS_DAX) || defined(CONFIG_CMA) 1509long get_user_pages_longterm(unsigned long start, unsigned long nr_pages, 1510 unsigned int gup_flags, struct page **pages, 1511 struct vm_area_struct **vmas); 1512#else 1513static inline long get_user_pages_longterm(unsigned long start, 1514 unsigned long nr_pages, unsigned int gup_flags, 1515 struct page **pages, struct vm_area_struct **vmas) 1516{ 1517 return get_user_pages(start, nr_pages, gup_flags, pages, vmas); 1518} 1519#endif /* CONFIG_FS_DAX */ 1520 1521int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1522 struct page **pages); 1523 1524/* Container for pinned pfns / pages */ 1525struct frame_vector { 1526 unsigned int nr_allocated; /* Number of frames we have space for */ 1527 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1528 bool got_ref; /* Did we pin pages by getting page ref? */ 1529 bool is_pfns; /* Does array contain pages or pfns? */ 1530 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1531 * pfns_vector_pages() or pfns_vector_pfns() 1532 * for access */ 1533}; 1534 1535struct frame_vector *frame_vector_create(unsigned int nr_frames); 1536void frame_vector_destroy(struct frame_vector *vec); 1537int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1538 unsigned int gup_flags, struct frame_vector *vec); 1539void put_vaddr_frames(struct frame_vector *vec); 1540int frame_vector_to_pages(struct frame_vector *vec); 1541void frame_vector_to_pfns(struct frame_vector *vec); 1542 1543static inline unsigned int frame_vector_count(struct frame_vector *vec) 1544{ 1545 return vec->nr_frames; 1546} 1547 1548static inline struct page **frame_vector_pages(struct frame_vector *vec) 1549{ 1550 if (vec->is_pfns) { 1551 int err = frame_vector_to_pages(vec); 1552 1553 if (err) 1554 return ERR_PTR(err); 1555 } 1556 return (struct page **)(vec->ptrs); 1557} 1558 1559static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1560{ 1561 if (!vec->is_pfns) 1562 frame_vector_to_pfns(vec); 1563 return (unsigned long *)(vec->ptrs); 1564} 1565 1566struct kvec; 1567int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1568 struct page **pages); 1569int get_kernel_page(unsigned long start, int write, struct page **pages); 1570struct page *get_dump_page(unsigned long addr); 1571 1572extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1573extern void do_invalidatepage(struct page *page, unsigned int offset, 1574 unsigned int length); 1575 1576void __set_page_dirty(struct page *, struct address_space *, int warn); 1577int __set_page_dirty_nobuffers(struct page *page); 1578int __set_page_dirty_no_writeback(struct page *page); 1579int redirty_page_for_writepage(struct writeback_control *wbc, 1580 struct page *page); 1581void account_page_dirtied(struct page *page, struct address_space *mapping); 1582void account_page_cleaned(struct page *page, struct address_space *mapping, 1583 struct bdi_writeback *wb); 1584int set_page_dirty(struct page *page); 1585int set_page_dirty_lock(struct page *page); 1586void __cancel_dirty_page(struct page *page); 1587static inline void cancel_dirty_page(struct page *page) 1588{ 1589 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1590 if (PageDirty(page)) 1591 __cancel_dirty_page(page); 1592} 1593int clear_page_dirty_for_io(struct page *page); 1594 1595int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1596 1597static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1598{ 1599 return !vma->vm_ops; 1600} 1601 1602#ifdef CONFIG_SHMEM 1603/* 1604 * The vma_is_shmem is not inline because it is used only by slow 1605 * paths in userfault. 1606 */ 1607bool vma_is_shmem(struct vm_area_struct *vma); 1608#else 1609static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1610#endif 1611 1612int vma_is_stack_for_current(struct vm_area_struct *vma); 1613 1614extern unsigned long move_page_tables(struct vm_area_struct *vma, 1615 unsigned long old_addr, struct vm_area_struct *new_vma, 1616 unsigned long new_addr, unsigned long len, 1617 bool need_rmap_locks); 1618extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1619 unsigned long end, pgprot_t newprot, 1620 int dirty_accountable, int prot_numa); 1621extern int mprotect_fixup(struct vm_area_struct *vma, 1622 struct vm_area_struct **pprev, unsigned long start, 1623 unsigned long end, unsigned long newflags); 1624 1625/* 1626 * doesn't attempt to fault and will return short. 1627 */ 1628int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1629 struct page **pages); 1630/* 1631 * per-process(per-mm_struct) statistics. 1632 */ 1633static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1634{ 1635 long val = atomic_long_read(&mm->rss_stat.count[member]); 1636 1637#ifdef SPLIT_RSS_COUNTING 1638 /* 1639 * counter is updated in asynchronous manner and may go to minus. 1640 * But it's never be expected number for users. 1641 */ 1642 if (val < 0) 1643 val = 0; 1644#endif 1645 return (unsigned long)val; 1646} 1647 1648static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1649{ 1650 atomic_long_add(value, &mm->rss_stat.count[member]); 1651} 1652 1653static inline void inc_mm_counter(struct mm_struct *mm, int member) 1654{ 1655 atomic_long_inc(&mm->rss_stat.count[member]); 1656} 1657 1658static inline void dec_mm_counter(struct mm_struct *mm, int member) 1659{ 1660 atomic_long_dec(&mm->rss_stat.count[member]); 1661} 1662 1663/* Optimized variant when page is already known not to be PageAnon */ 1664static inline int mm_counter_file(struct page *page) 1665{ 1666 if (PageSwapBacked(page)) 1667 return MM_SHMEMPAGES; 1668 return MM_FILEPAGES; 1669} 1670 1671static inline int mm_counter(struct page *page) 1672{ 1673 if (PageAnon(page)) 1674 return MM_ANONPAGES; 1675 return mm_counter_file(page); 1676} 1677 1678static inline unsigned long get_mm_rss(struct mm_struct *mm) 1679{ 1680 return get_mm_counter(mm, MM_FILEPAGES) + 1681 get_mm_counter(mm, MM_ANONPAGES) + 1682 get_mm_counter(mm, MM_SHMEMPAGES); 1683} 1684 1685static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1686{ 1687 return max(mm->hiwater_rss, get_mm_rss(mm)); 1688} 1689 1690static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1691{ 1692 return max(mm->hiwater_vm, mm->total_vm); 1693} 1694 1695static inline void update_hiwater_rss(struct mm_struct *mm) 1696{ 1697 unsigned long _rss = get_mm_rss(mm); 1698 1699 if ((mm)->hiwater_rss < _rss) 1700 (mm)->hiwater_rss = _rss; 1701} 1702 1703static inline void update_hiwater_vm(struct mm_struct *mm) 1704{ 1705 if (mm->hiwater_vm < mm->total_vm) 1706 mm->hiwater_vm = mm->total_vm; 1707} 1708 1709static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1710{ 1711 mm->hiwater_rss = get_mm_rss(mm); 1712} 1713 1714static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1715 struct mm_struct *mm) 1716{ 1717 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1718 1719 if (*maxrss < hiwater_rss) 1720 *maxrss = hiwater_rss; 1721} 1722 1723#if defined(SPLIT_RSS_COUNTING) 1724void sync_mm_rss(struct mm_struct *mm); 1725#else 1726static inline void sync_mm_rss(struct mm_struct *mm) 1727{ 1728} 1729#endif 1730 1731#ifndef __HAVE_ARCH_PTE_DEVMAP 1732static inline int pte_devmap(pte_t pte) 1733{ 1734 return 0; 1735} 1736#endif 1737 1738int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1739 1740extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1741 spinlock_t **ptl); 1742static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1743 spinlock_t **ptl) 1744{ 1745 pte_t *ptep; 1746 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1747 return ptep; 1748} 1749 1750#ifdef __PAGETABLE_P4D_FOLDED 1751static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1752 unsigned long address) 1753{ 1754 return 0; 1755} 1756#else 1757int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1758#endif 1759 1760#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1761static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1762 unsigned long address) 1763{ 1764 return 0; 1765} 1766static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1767static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1768 1769#else 1770int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1771 1772static inline void mm_inc_nr_puds(struct mm_struct *mm) 1773{ 1774 if (mm_pud_folded(mm)) 1775 return; 1776 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1777} 1778 1779static inline void mm_dec_nr_puds(struct mm_struct *mm) 1780{ 1781 if (mm_pud_folded(mm)) 1782 return; 1783 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1784} 1785#endif 1786 1787#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1788static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1789 unsigned long address) 1790{ 1791 return 0; 1792} 1793 1794static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1795static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1796 1797#else 1798int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1799 1800static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1801{ 1802 if (mm_pmd_folded(mm)) 1803 return; 1804 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1805} 1806 1807static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1808{ 1809 if (mm_pmd_folded(mm)) 1810 return; 1811 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1812} 1813#endif 1814 1815#ifdef CONFIG_MMU 1816static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1817{ 1818 atomic_long_set(&mm->pgtables_bytes, 0); 1819} 1820 1821static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1822{ 1823 return atomic_long_read(&mm->pgtables_bytes); 1824} 1825 1826static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1827{ 1828 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1829} 1830 1831static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1832{ 1833 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1834} 1835#else 1836 1837static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1838static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1839{ 1840 return 0; 1841} 1842 1843static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1844static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1845#endif 1846 1847int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1848int __pte_alloc_kernel(pmd_t *pmd); 1849 1850/* 1851 * The following ifdef needed to get the 4level-fixup.h header to work. 1852 * Remove it when 4level-fixup.h has been removed. 1853 */ 1854#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1855 1856#ifndef __ARCH_HAS_5LEVEL_HACK 1857static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1858 unsigned long address) 1859{ 1860 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1861 NULL : p4d_offset(pgd, address); 1862} 1863 1864static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1865 unsigned long address) 1866{ 1867 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1868 NULL : pud_offset(p4d, address); 1869} 1870#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1871 1872static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1873{ 1874 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1875 NULL: pmd_offset(pud, address); 1876} 1877#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1878 1879#if USE_SPLIT_PTE_PTLOCKS 1880#if ALLOC_SPLIT_PTLOCKS 1881void __init ptlock_cache_init(void); 1882extern bool ptlock_alloc(struct page *page); 1883extern void ptlock_free(struct page *page); 1884 1885static inline spinlock_t *ptlock_ptr(struct page *page) 1886{ 1887 return page->ptl; 1888} 1889#else /* ALLOC_SPLIT_PTLOCKS */ 1890static inline void ptlock_cache_init(void) 1891{ 1892} 1893 1894static inline bool ptlock_alloc(struct page *page) 1895{ 1896 return true; 1897} 1898 1899static inline void ptlock_free(struct page *page) 1900{ 1901} 1902 1903static inline spinlock_t *ptlock_ptr(struct page *page) 1904{ 1905 return &page->ptl; 1906} 1907#endif /* ALLOC_SPLIT_PTLOCKS */ 1908 1909static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1910{ 1911 return ptlock_ptr(pmd_page(*pmd)); 1912} 1913 1914static inline bool ptlock_init(struct page *page) 1915{ 1916 /* 1917 * prep_new_page() initialize page->private (and therefore page->ptl) 1918 * with 0. Make sure nobody took it in use in between. 1919 * 1920 * It can happen if arch try to use slab for page table allocation: 1921 * slab code uses page->slab_cache, which share storage with page->ptl. 1922 */ 1923 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1924 if (!ptlock_alloc(page)) 1925 return false; 1926 spin_lock_init(ptlock_ptr(page)); 1927 return true; 1928} 1929 1930#else /* !USE_SPLIT_PTE_PTLOCKS */ 1931/* 1932 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1933 */ 1934static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1935{ 1936 return &mm->page_table_lock; 1937} 1938static inline void ptlock_cache_init(void) {} 1939static inline bool ptlock_init(struct page *page) { return true; } 1940static inline void ptlock_free(struct page *page) {} 1941#endif /* USE_SPLIT_PTE_PTLOCKS */ 1942 1943static inline void pgtable_init(void) 1944{ 1945 ptlock_cache_init(); 1946 pgtable_cache_init(); 1947} 1948 1949static inline bool pgtable_page_ctor(struct page *page) 1950{ 1951 if (!ptlock_init(page)) 1952 return false; 1953 __SetPageTable(page); 1954 inc_zone_page_state(page, NR_PAGETABLE); 1955 return true; 1956} 1957 1958static inline void pgtable_page_dtor(struct page *page) 1959{ 1960 ptlock_free(page); 1961 __ClearPageTable(page); 1962 dec_zone_page_state(page, NR_PAGETABLE); 1963} 1964 1965#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1966({ \ 1967 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1968 pte_t *__pte = pte_offset_map(pmd, address); \ 1969 *(ptlp) = __ptl; \ 1970 spin_lock(__ptl); \ 1971 __pte; \ 1972}) 1973 1974#define pte_unmap_unlock(pte, ptl) do { \ 1975 spin_unlock(ptl); \ 1976 pte_unmap(pte); \ 1977} while (0) 1978 1979#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1980 1981#define pte_alloc_map(mm, pmd, address) \ 1982 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1983 1984#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1985 (pte_alloc(mm, pmd) ? \ 1986 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1987 1988#define pte_alloc_kernel(pmd, address) \ 1989 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1990 NULL: pte_offset_kernel(pmd, address)) 1991 1992#if USE_SPLIT_PMD_PTLOCKS 1993 1994static struct page *pmd_to_page(pmd_t *pmd) 1995{ 1996 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1997 return virt_to_page((void *)((unsigned long) pmd & mask)); 1998} 1999 2000static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2001{ 2002 return ptlock_ptr(pmd_to_page(pmd)); 2003} 2004 2005static inline bool pgtable_pmd_page_ctor(struct page *page) 2006{ 2007#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2008 page->pmd_huge_pte = NULL; 2009#endif 2010 return ptlock_init(page); 2011} 2012 2013static inline void pgtable_pmd_page_dtor(struct page *page) 2014{ 2015#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2016 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2017#endif 2018 ptlock_free(page); 2019} 2020 2021#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2022 2023#else 2024 2025static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2026{ 2027 return &mm->page_table_lock; 2028} 2029 2030static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2031static inline void pgtable_pmd_page_dtor(struct page *page) {} 2032 2033#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2034 2035#endif 2036 2037static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2038{ 2039 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2040 spin_lock(ptl); 2041 return ptl; 2042} 2043 2044/* 2045 * No scalability reason to split PUD locks yet, but follow the same pattern 2046 * as the PMD locks to make it easier if we decide to. The VM should not be 2047 * considered ready to switch to split PUD locks yet; there may be places 2048 * which need to be converted from page_table_lock. 2049 */ 2050static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2051{ 2052 return &mm->page_table_lock; 2053} 2054 2055static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2056{ 2057 spinlock_t *ptl = pud_lockptr(mm, pud); 2058 2059 spin_lock(ptl); 2060 return ptl; 2061} 2062 2063extern void __init pagecache_init(void); 2064extern void free_area_init(unsigned long * zones_size); 2065extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2066 unsigned long zone_start_pfn, unsigned long *zholes_size); 2067extern void free_initmem(void); 2068 2069/* 2070 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2071 * into the buddy system. The freed pages will be poisoned with pattern 2072 * "poison" if it's within range [0, UCHAR_MAX]. 2073 * Return pages freed into the buddy system. 2074 */ 2075extern unsigned long free_reserved_area(void *start, void *end, 2076 int poison, const char *s); 2077 2078#ifdef CONFIG_HIGHMEM 2079/* 2080 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2081 * and totalram_pages. 2082 */ 2083extern void free_highmem_page(struct page *page); 2084#endif 2085 2086extern void adjust_managed_page_count(struct page *page, long count); 2087extern void mem_init_print_info(const char *str); 2088 2089extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2090 2091/* Free the reserved page into the buddy system, so it gets managed. */ 2092static inline void __free_reserved_page(struct page *page) 2093{ 2094 ClearPageReserved(page); 2095 init_page_count(page); 2096 __free_page(page); 2097} 2098 2099static inline void free_reserved_page(struct page *page) 2100{ 2101 __free_reserved_page(page); 2102 adjust_managed_page_count(page, 1); 2103} 2104 2105static inline void mark_page_reserved(struct page *page) 2106{ 2107 SetPageReserved(page); 2108 adjust_managed_page_count(page, -1); 2109} 2110 2111/* 2112 * Default method to free all the __init memory into the buddy system. 2113 * The freed pages will be poisoned with pattern "poison" if it's within 2114 * range [0, UCHAR_MAX]. 2115 * Return pages freed into the buddy system. 2116 */ 2117static inline unsigned long free_initmem_default(int poison) 2118{ 2119 extern char __init_begin[], __init_end[]; 2120 2121 return free_reserved_area(&__init_begin, &__init_end, 2122 poison, "unused kernel"); 2123} 2124 2125static inline unsigned long get_num_physpages(void) 2126{ 2127 int nid; 2128 unsigned long phys_pages = 0; 2129 2130 for_each_online_node(nid) 2131 phys_pages += node_present_pages(nid); 2132 2133 return phys_pages; 2134} 2135 2136#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2137/* 2138 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2139 * zones, allocate the backing mem_map and account for memory holes in a more 2140 * architecture independent manner. This is a substitute for creating the 2141 * zone_sizes[] and zholes_size[] arrays and passing them to 2142 * free_area_init_node() 2143 * 2144 * An architecture is expected to register range of page frames backed by 2145 * physical memory with memblock_add[_node]() before calling 2146 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2147 * usage, an architecture is expected to do something like 2148 * 2149 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2150 * max_highmem_pfn}; 2151 * for_each_valid_physical_page_range() 2152 * memblock_add_node(base, size, nid) 2153 * free_area_init_nodes(max_zone_pfns); 2154 * 2155 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2156 * registered physical page range. Similarly 2157 * sparse_memory_present_with_active_regions() calls memory_present() for 2158 * each range when SPARSEMEM is enabled. 2159 * 2160 * See mm/page_alloc.c for more information on each function exposed by 2161 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2162 */ 2163extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2164unsigned long node_map_pfn_alignment(void); 2165unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2166 unsigned long end_pfn); 2167extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2168 unsigned long end_pfn); 2169extern void get_pfn_range_for_nid(unsigned int nid, 2170 unsigned long *start_pfn, unsigned long *end_pfn); 2171extern unsigned long find_min_pfn_with_active_regions(void); 2172extern void free_bootmem_with_active_regions(int nid, 2173 unsigned long max_low_pfn); 2174extern void sparse_memory_present_with_active_regions(int nid); 2175 2176#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2177 2178#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2179 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2180static inline int __early_pfn_to_nid(unsigned long pfn, 2181 struct mminit_pfnnid_cache *state) 2182{ 2183 return 0; 2184} 2185#else 2186/* please see mm/page_alloc.c */ 2187extern int __meminit early_pfn_to_nid(unsigned long pfn); 2188/* there is a per-arch backend function. */ 2189extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2190 struct mminit_pfnnid_cache *state); 2191#endif 2192 2193#if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2194void zero_resv_unavail(void); 2195#else 2196static inline void zero_resv_unavail(void) {} 2197#endif 2198 2199extern void set_dma_reserve(unsigned long new_dma_reserve); 2200extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2201 enum memmap_context, struct vmem_altmap *); 2202extern void setup_per_zone_wmarks(void); 2203extern int __meminit init_per_zone_wmark_min(void); 2204extern void mem_init(void); 2205extern void __init mmap_init(void); 2206extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2207extern long si_mem_available(void); 2208extern void si_meminfo(struct sysinfo * val); 2209extern void si_meminfo_node(struct sysinfo *val, int nid); 2210#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2211extern unsigned long arch_reserved_kernel_pages(void); 2212#endif 2213 2214extern __printf(3, 4) 2215void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2216 2217extern void setup_per_cpu_pageset(void); 2218 2219extern void zone_pcp_update(struct zone *zone); 2220extern void zone_pcp_reset(struct zone *zone); 2221 2222/* page_alloc.c */ 2223extern int min_free_kbytes; 2224extern int watermark_boost_factor; 2225extern int watermark_scale_factor; 2226 2227/* nommu.c */ 2228extern atomic_long_t mmap_pages_allocated; 2229extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2230 2231/* interval_tree.c */ 2232void vma_interval_tree_insert(struct vm_area_struct *node, 2233 struct rb_root_cached *root); 2234void vma_interval_tree_insert_after(struct vm_area_struct *node, 2235 struct vm_area_struct *prev, 2236 struct rb_root_cached *root); 2237void vma_interval_tree_remove(struct vm_area_struct *node, 2238 struct rb_root_cached *root); 2239struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2240 unsigned long start, unsigned long last); 2241struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2242 unsigned long start, unsigned long last); 2243 2244#define vma_interval_tree_foreach(vma, root, start, last) \ 2245 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2246 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2247 2248void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2249 struct rb_root_cached *root); 2250void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2251 struct rb_root_cached *root); 2252struct anon_vma_chain * 2253anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2254 unsigned long start, unsigned long last); 2255struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2256 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2257#ifdef CONFIG_DEBUG_VM_RB 2258void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2259#endif 2260 2261#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2262 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2263 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2264 2265/* mmap.c */ 2266extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2267extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2268 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2269 struct vm_area_struct *expand); 2270static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2271 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2272{ 2273 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2274} 2275extern struct vm_area_struct *vma_merge(struct mm_struct *, 2276 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2277 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2278 struct mempolicy *, struct vm_userfaultfd_ctx); 2279extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2280extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2281 unsigned long addr, int new_below); 2282extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2283 unsigned long addr, int new_below); 2284extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2285extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2286 struct rb_node **, struct rb_node *); 2287extern void unlink_file_vma(struct vm_area_struct *); 2288extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2289 unsigned long addr, unsigned long len, pgoff_t pgoff, 2290 bool *need_rmap_locks); 2291extern void exit_mmap(struct mm_struct *); 2292 2293static inline int check_data_rlimit(unsigned long rlim, 2294 unsigned long new, 2295 unsigned long start, 2296 unsigned long end_data, 2297 unsigned long start_data) 2298{ 2299 if (rlim < RLIM_INFINITY) { 2300 if (((new - start) + (end_data - start_data)) > rlim) 2301 return -ENOSPC; 2302 } 2303 2304 return 0; 2305} 2306 2307extern int mm_take_all_locks(struct mm_struct *mm); 2308extern void mm_drop_all_locks(struct mm_struct *mm); 2309 2310extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2311extern struct file *get_mm_exe_file(struct mm_struct *mm); 2312extern struct file *get_task_exe_file(struct task_struct *task); 2313 2314extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2315extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2316 2317extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2318 const struct vm_special_mapping *sm); 2319extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2320 unsigned long addr, unsigned long len, 2321 unsigned long flags, 2322 const struct vm_special_mapping *spec); 2323/* This is an obsolete alternative to _install_special_mapping. */ 2324extern int install_special_mapping(struct mm_struct *mm, 2325 unsigned long addr, unsigned long len, 2326 unsigned long flags, struct page **pages); 2327 2328extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2329 2330extern unsigned long mmap_region(struct file *file, unsigned long addr, 2331 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2332 struct list_head *uf); 2333extern unsigned long do_mmap(struct file *file, unsigned long addr, 2334 unsigned long len, unsigned long prot, unsigned long flags, 2335 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2336 struct list_head *uf); 2337extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2338 struct list_head *uf, bool downgrade); 2339extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2340 struct list_head *uf); 2341 2342static inline unsigned long 2343do_mmap_pgoff(struct file *file, unsigned long addr, 2344 unsigned long len, unsigned long prot, unsigned long flags, 2345 unsigned long pgoff, unsigned long *populate, 2346 struct list_head *uf) 2347{ 2348 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2349} 2350 2351#ifdef CONFIG_MMU 2352extern int __mm_populate(unsigned long addr, unsigned long len, 2353 int ignore_errors); 2354static inline void mm_populate(unsigned long addr, unsigned long len) 2355{ 2356 /* Ignore errors */ 2357 (void) __mm_populate(addr, len, 1); 2358} 2359#else 2360static inline void mm_populate(unsigned long addr, unsigned long len) {} 2361#endif 2362 2363/* These take the mm semaphore themselves */ 2364extern int __must_check vm_brk(unsigned long, unsigned long); 2365extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2366extern int vm_munmap(unsigned long, size_t); 2367extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2368 unsigned long, unsigned long, 2369 unsigned long, unsigned long); 2370 2371struct vm_unmapped_area_info { 2372#define VM_UNMAPPED_AREA_TOPDOWN 1 2373 unsigned long flags; 2374 unsigned long length; 2375 unsigned long low_limit; 2376 unsigned long high_limit; 2377 unsigned long align_mask; 2378 unsigned long align_offset; 2379}; 2380 2381extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2382extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2383 2384/* 2385 * Search for an unmapped address range. 2386 * 2387 * We are looking for a range that: 2388 * - does not intersect with any VMA; 2389 * - is contained within the [low_limit, high_limit) interval; 2390 * - is at least the desired size. 2391 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2392 */ 2393static inline unsigned long 2394vm_unmapped_area(struct vm_unmapped_area_info *info) 2395{ 2396 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2397 return unmapped_area_topdown(info); 2398 else 2399 return unmapped_area(info); 2400} 2401 2402/* truncate.c */ 2403extern void truncate_inode_pages(struct address_space *, loff_t); 2404extern void truncate_inode_pages_range(struct address_space *, 2405 loff_t lstart, loff_t lend); 2406extern void truncate_inode_pages_final(struct address_space *); 2407 2408/* generic vm_area_ops exported for stackable file systems */ 2409extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2410extern void filemap_map_pages(struct vm_fault *vmf, 2411 pgoff_t start_pgoff, pgoff_t end_pgoff); 2412extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2413 2414/* mm/page-writeback.c */ 2415int __must_check write_one_page(struct page *page); 2416void task_dirty_inc(struct task_struct *tsk); 2417 2418/* readahead.c */ 2419#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2420 2421int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2422 pgoff_t offset, unsigned long nr_to_read); 2423 2424void page_cache_sync_readahead(struct address_space *mapping, 2425 struct file_ra_state *ra, 2426 struct file *filp, 2427 pgoff_t offset, 2428 unsigned long size); 2429 2430void page_cache_async_readahead(struct address_space *mapping, 2431 struct file_ra_state *ra, 2432 struct file *filp, 2433 struct page *pg, 2434 pgoff_t offset, 2435 unsigned long size); 2436 2437extern unsigned long stack_guard_gap; 2438/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2439extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2440 2441/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2442extern int expand_downwards(struct vm_area_struct *vma, 2443 unsigned long address); 2444#if VM_GROWSUP 2445extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2446#else 2447 #define expand_upwards(vma, address) (0) 2448#endif 2449 2450/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2451extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2452extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2453 struct vm_area_struct **pprev); 2454 2455/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2456 NULL if none. Assume start_addr < end_addr. */ 2457static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2458{ 2459 struct vm_area_struct * vma = find_vma(mm,start_addr); 2460 2461 if (vma && end_addr <= vma->vm_start) 2462 vma = NULL; 2463 return vma; 2464} 2465 2466static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2467{ 2468 unsigned long vm_start = vma->vm_start; 2469 2470 if (vma->vm_flags & VM_GROWSDOWN) { 2471 vm_start -= stack_guard_gap; 2472 if (vm_start > vma->vm_start) 2473 vm_start = 0; 2474 } 2475 return vm_start; 2476} 2477 2478static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2479{ 2480 unsigned long vm_end = vma->vm_end; 2481 2482 if (vma->vm_flags & VM_GROWSUP) { 2483 vm_end += stack_guard_gap; 2484 if (vm_end < vma->vm_end) 2485 vm_end = -PAGE_SIZE; 2486 } 2487 return vm_end; 2488} 2489 2490static inline unsigned long vma_pages(struct vm_area_struct *vma) 2491{ 2492 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2493} 2494 2495/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2496static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2497 unsigned long vm_start, unsigned long vm_end) 2498{ 2499 struct vm_area_struct *vma = find_vma(mm, vm_start); 2500 2501 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2502 vma = NULL; 2503 2504 return vma; 2505} 2506 2507static inline bool range_in_vma(struct vm_area_struct *vma, 2508 unsigned long start, unsigned long end) 2509{ 2510 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2511} 2512 2513#ifdef CONFIG_MMU 2514pgprot_t vm_get_page_prot(unsigned long vm_flags); 2515void vma_set_page_prot(struct vm_area_struct *vma); 2516#else 2517static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2518{ 2519 return __pgprot(0); 2520} 2521static inline void vma_set_page_prot(struct vm_area_struct *vma) 2522{ 2523 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2524} 2525#endif 2526 2527#ifdef CONFIG_NUMA_BALANCING 2528unsigned long change_prot_numa(struct vm_area_struct *vma, 2529 unsigned long start, unsigned long end); 2530#endif 2531 2532struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2533int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2534 unsigned long pfn, unsigned long size, pgprot_t); 2535int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2536vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2537 unsigned long pfn); 2538vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2539 unsigned long pfn, pgprot_t pgprot); 2540vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2541 pfn_t pfn); 2542vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2543 unsigned long addr, pfn_t pfn); 2544int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2545 2546static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2547 unsigned long addr, struct page *page) 2548{ 2549 int err = vm_insert_page(vma, addr, page); 2550 2551 if (err == -ENOMEM) 2552 return VM_FAULT_OOM; 2553 if (err < 0 && err != -EBUSY) 2554 return VM_FAULT_SIGBUS; 2555 2556 return VM_FAULT_NOPAGE; 2557} 2558 2559static inline vm_fault_t vmf_error(int err) 2560{ 2561 if (err == -ENOMEM) 2562 return VM_FAULT_OOM; 2563 return VM_FAULT_SIGBUS; 2564} 2565 2566struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2567 unsigned int foll_flags); 2568 2569#define FOLL_WRITE 0x01 /* check pte is writable */ 2570#define FOLL_TOUCH 0x02 /* mark page accessed */ 2571#define FOLL_GET 0x04 /* do get_page on page */ 2572#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2573#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2574#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2575 * and return without waiting upon it */ 2576#define FOLL_POPULATE 0x40 /* fault in page */ 2577#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2578#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2579#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2580#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2581#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2582#define FOLL_MLOCK 0x1000 /* lock present pages */ 2583#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2584#define FOLL_COW 0x4000 /* internal GUP flag */ 2585#define FOLL_ANON 0x8000 /* don't do file mappings */ 2586 2587static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2588{ 2589 if (vm_fault & VM_FAULT_OOM) 2590 return -ENOMEM; 2591 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2592 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2593 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2594 return -EFAULT; 2595 return 0; 2596} 2597 2598typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2599 void *data); 2600extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2601 unsigned long size, pte_fn_t fn, void *data); 2602 2603 2604#ifdef CONFIG_PAGE_POISONING 2605extern bool page_poisoning_enabled(void); 2606extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2607#else 2608static inline bool page_poisoning_enabled(void) { return false; } 2609static inline void kernel_poison_pages(struct page *page, int numpages, 2610 int enable) { } 2611#endif 2612 2613#ifdef CONFIG_DEBUG_PAGEALLOC 2614extern bool _debug_pagealloc_enabled; 2615extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2616 2617static inline bool debug_pagealloc_enabled(void) 2618{ 2619 return _debug_pagealloc_enabled; 2620} 2621 2622static inline void 2623kernel_map_pages(struct page *page, int numpages, int enable) 2624{ 2625 if (!debug_pagealloc_enabled()) 2626 return; 2627 2628 __kernel_map_pages(page, numpages, enable); 2629} 2630#ifdef CONFIG_HIBERNATION 2631extern bool kernel_page_present(struct page *page); 2632#endif /* CONFIG_HIBERNATION */ 2633#else /* CONFIG_DEBUG_PAGEALLOC */ 2634static inline void 2635kernel_map_pages(struct page *page, int numpages, int enable) {} 2636#ifdef CONFIG_HIBERNATION 2637static inline bool kernel_page_present(struct page *page) { return true; } 2638#endif /* CONFIG_HIBERNATION */ 2639static inline bool debug_pagealloc_enabled(void) 2640{ 2641 return false; 2642} 2643#endif /* CONFIG_DEBUG_PAGEALLOC */ 2644 2645#ifdef __HAVE_ARCH_GATE_AREA 2646extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2647extern int in_gate_area_no_mm(unsigned long addr); 2648extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2649#else 2650static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2651{ 2652 return NULL; 2653} 2654static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2655static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2656{ 2657 return 0; 2658} 2659#endif /* __HAVE_ARCH_GATE_AREA */ 2660 2661extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2662 2663#ifdef CONFIG_SYSCTL 2664extern int sysctl_drop_caches; 2665int drop_caches_sysctl_handler(struct ctl_table *, int, 2666 void __user *, size_t *, loff_t *); 2667#endif 2668 2669void drop_slab(void); 2670void drop_slab_node(int nid); 2671 2672#ifndef CONFIG_MMU 2673#define randomize_va_space 0 2674#else 2675extern int randomize_va_space; 2676#endif 2677 2678const char * arch_vma_name(struct vm_area_struct *vma); 2679void print_vma_addr(char *prefix, unsigned long rip); 2680 2681void *sparse_buffer_alloc(unsigned long size); 2682struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2683 struct vmem_altmap *altmap); 2684pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2685p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2686pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2687pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2688pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2689void *vmemmap_alloc_block(unsigned long size, int node); 2690struct vmem_altmap; 2691void *vmemmap_alloc_block_buf(unsigned long size, int node); 2692void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2693void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2694int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2695 int node); 2696int vmemmap_populate(unsigned long start, unsigned long end, int node, 2697 struct vmem_altmap *altmap); 2698void vmemmap_populate_print_last(void); 2699#ifdef CONFIG_MEMORY_HOTPLUG 2700void vmemmap_free(unsigned long start, unsigned long end, 2701 struct vmem_altmap *altmap); 2702#endif 2703void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2704 unsigned long nr_pages); 2705 2706enum mf_flags { 2707 MF_COUNT_INCREASED = 1 << 0, 2708 MF_ACTION_REQUIRED = 1 << 1, 2709 MF_MUST_KILL = 1 << 2, 2710 MF_SOFT_OFFLINE = 1 << 3, 2711}; 2712extern int memory_failure(unsigned long pfn, int flags); 2713extern void memory_failure_queue(unsigned long pfn, int flags); 2714extern int unpoison_memory(unsigned long pfn); 2715extern int get_hwpoison_page(struct page *page); 2716#define put_hwpoison_page(page) put_page(page) 2717extern int sysctl_memory_failure_early_kill; 2718extern int sysctl_memory_failure_recovery; 2719extern void shake_page(struct page *p, int access); 2720extern atomic_long_t num_poisoned_pages __read_mostly; 2721extern int soft_offline_page(struct page *page, int flags); 2722 2723 2724/* 2725 * Error handlers for various types of pages. 2726 */ 2727enum mf_result { 2728 MF_IGNORED, /* Error: cannot be handled */ 2729 MF_FAILED, /* Error: handling failed */ 2730 MF_DELAYED, /* Will be handled later */ 2731 MF_RECOVERED, /* Successfully recovered */ 2732}; 2733 2734enum mf_action_page_type { 2735 MF_MSG_KERNEL, 2736 MF_MSG_KERNEL_HIGH_ORDER, 2737 MF_MSG_SLAB, 2738 MF_MSG_DIFFERENT_COMPOUND, 2739 MF_MSG_POISONED_HUGE, 2740 MF_MSG_HUGE, 2741 MF_MSG_FREE_HUGE, 2742 MF_MSG_NON_PMD_HUGE, 2743 MF_MSG_UNMAP_FAILED, 2744 MF_MSG_DIRTY_SWAPCACHE, 2745 MF_MSG_CLEAN_SWAPCACHE, 2746 MF_MSG_DIRTY_MLOCKED_LRU, 2747 MF_MSG_CLEAN_MLOCKED_LRU, 2748 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2749 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2750 MF_MSG_DIRTY_LRU, 2751 MF_MSG_CLEAN_LRU, 2752 MF_MSG_TRUNCATED_LRU, 2753 MF_MSG_BUDDY, 2754 MF_MSG_BUDDY_2ND, 2755 MF_MSG_DAX, 2756 MF_MSG_UNKNOWN, 2757}; 2758 2759#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2760extern void clear_huge_page(struct page *page, 2761 unsigned long addr_hint, 2762 unsigned int pages_per_huge_page); 2763extern void copy_user_huge_page(struct page *dst, struct page *src, 2764 unsigned long addr_hint, 2765 struct vm_area_struct *vma, 2766 unsigned int pages_per_huge_page); 2767extern long copy_huge_page_from_user(struct page *dst_page, 2768 const void __user *usr_src, 2769 unsigned int pages_per_huge_page, 2770 bool allow_pagefault); 2771#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2772 2773extern struct page_ext_operations debug_guardpage_ops; 2774 2775#ifdef CONFIG_DEBUG_PAGEALLOC 2776extern unsigned int _debug_guardpage_minorder; 2777extern bool _debug_guardpage_enabled; 2778 2779static inline unsigned int debug_guardpage_minorder(void) 2780{ 2781 return _debug_guardpage_minorder; 2782} 2783 2784static inline bool debug_guardpage_enabled(void) 2785{ 2786 return _debug_guardpage_enabled; 2787} 2788 2789static inline bool page_is_guard(struct page *page) 2790{ 2791 struct page_ext *page_ext; 2792 2793 if (!debug_guardpage_enabled()) 2794 return false; 2795 2796 page_ext = lookup_page_ext(page); 2797 if (unlikely(!page_ext)) 2798 return false; 2799 2800 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2801} 2802#else 2803static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2804static inline bool debug_guardpage_enabled(void) { return false; } 2805static inline bool page_is_guard(struct page *page) { return false; } 2806#endif /* CONFIG_DEBUG_PAGEALLOC */ 2807 2808#if MAX_NUMNODES > 1 2809void __init setup_nr_node_ids(void); 2810#else 2811static inline void setup_nr_node_ids(void) {} 2812#endif 2813 2814#endif /* __KERNEL__ */ 2815#endif /* _LINUX_MM_H */