Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26#include <linux/page_counter.h>
27#include <linux/vmpressure.h>
28#include <linux/eventfd.h>
29#include <linux/mm.h>
30#include <linux/vmstat.h>
31#include <linux/writeback.h>
32#include <linux/page-flags.h>
33
34struct mem_cgroup;
35struct page;
36struct mm_struct;
37struct kmem_cache;
38
39/* Cgroup-specific page state, on top of universal node page state */
40enum memcg_stat_item {
41 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
42 MEMCG_RSS,
43 MEMCG_RSS_HUGE,
44 MEMCG_SWAP,
45 MEMCG_SOCK,
46 /* XXX: why are these zone and not node counters? */
47 MEMCG_KERNEL_STACK_KB,
48 MEMCG_NR_STAT,
49};
50
51enum memcg_memory_event {
52 MEMCG_LOW,
53 MEMCG_HIGH,
54 MEMCG_MAX,
55 MEMCG_OOM,
56 MEMCG_OOM_KILL,
57 MEMCG_SWAP_MAX,
58 MEMCG_SWAP_FAIL,
59 MEMCG_NR_MEMORY_EVENTS,
60};
61
62enum mem_cgroup_protection {
63 MEMCG_PROT_NONE,
64 MEMCG_PROT_LOW,
65 MEMCG_PROT_MIN,
66};
67
68struct mem_cgroup_reclaim_cookie {
69 pg_data_t *pgdat;
70 int priority;
71 unsigned int generation;
72};
73
74#ifdef CONFIG_MEMCG
75
76#define MEM_CGROUP_ID_SHIFT 16
77#define MEM_CGROUP_ID_MAX USHRT_MAX
78
79struct mem_cgroup_id {
80 int id;
81 refcount_t ref;
82};
83
84/*
85 * Per memcg event counter is incremented at every pagein/pageout. With THP,
86 * it will be incremated by the number of pages. This counter is used for
87 * for trigger some periodic events. This is straightforward and better
88 * than using jiffies etc. to handle periodic memcg event.
89 */
90enum mem_cgroup_events_target {
91 MEM_CGROUP_TARGET_THRESH,
92 MEM_CGROUP_TARGET_SOFTLIMIT,
93 MEM_CGROUP_TARGET_NUMAINFO,
94 MEM_CGROUP_NTARGETS,
95};
96
97struct mem_cgroup_stat_cpu {
98 long count[MEMCG_NR_STAT];
99 unsigned long events[NR_VM_EVENT_ITEMS];
100 unsigned long nr_page_events;
101 unsigned long targets[MEM_CGROUP_NTARGETS];
102};
103
104struct mem_cgroup_reclaim_iter {
105 struct mem_cgroup *position;
106 /* scan generation, increased every round-trip */
107 unsigned int generation;
108};
109
110struct lruvec_stat {
111 long count[NR_VM_NODE_STAT_ITEMS];
112};
113
114/*
115 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
116 * which have elements charged to this memcg.
117 */
118struct memcg_shrinker_map {
119 struct rcu_head rcu;
120 unsigned long map[0];
121};
122
123/*
124 * per-zone information in memory controller.
125 */
126struct mem_cgroup_per_node {
127 struct lruvec lruvec;
128
129 struct lruvec_stat __percpu *lruvec_stat_cpu;
130 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
131
132 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
133
134 struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
135
136#ifdef CONFIG_MEMCG_KMEM
137 struct memcg_shrinker_map __rcu *shrinker_map;
138#endif
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 bool congested; /* memcg has many dirty pages */
144 /* backed by a congested BDI */
145
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148};
149
150struct mem_cgroup_threshold {
151 struct eventfd_ctx *eventfd;
152 unsigned long threshold;
153};
154
155/* For threshold */
156struct mem_cgroup_threshold_ary {
157 /* An array index points to threshold just below or equal to usage. */
158 int current_threshold;
159 /* Size of entries[] */
160 unsigned int size;
161 /* Array of thresholds */
162 struct mem_cgroup_threshold entries[0];
163};
164
165struct mem_cgroup_thresholds {
166 /* Primary thresholds array */
167 struct mem_cgroup_threshold_ary *primary;
168 /*
169 * Spare threshold array.
170 * This is needed to make mem_cgroup_unregister_event() "never fail".
171 * It must be able to store at least primary->size - 1 entries.
172 */
173 struct mem_cgroup_threshold_ary *spare;
174};
175
176enum memcg_kmem_state {
177 KMEM_NONE,
178 KMEM_ALLOCATED,
179 KMEM_ONLINE,
180};
181
182#if defined(CONFIG_SMP)
183struct memcg_padding {
184 char x[0];
185} ____cacheline_internodealigned_in_smp;
186#define MEMCG_PADDING(name) struct memcg_padding name;
187#else
188#define MEMCG_PADDING(name)
189#endif
190
191/*
192 * The memory controller data structure. The memory controller controls both
193 * page cache and RSS per cgroup. We would eventually like to provide
194 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
195 * to help the administrator determine what knobs to tune.
196 */
197struct mem_cgroup {
198 struct cgroup_subsys_state css;
199
200 /* Private memcg ID. Used to ID objects that outlive the cgroup */
201 struct mem_cgroup_id id;
202
203 /* Accounted resources */
204 struct page_counter memory;
205 struct page_counter swap;
206
207 /* Legacy consumer-oriented counters */
208 struct page_counter memsw;
209 struct page_counter kmem;
210 struct page_counter tcpmem;
211
212 /* Upper bound of normal memory consumption range */
213 unsigned long high;
214
215 /* Range enforcement for interrupt charges */
216 struct work_struct high_work;
217
218 unsigned long soft_limit;
219
220 /* vmpressure notifications */
221 struct vmpressure vmpressure;
222
223 /*
224 * Should the accounting and control be hierarchical, per subtree?
225 */
226 bool use_hierarchy;
227
228 /*
229 * Should the OOM killer kill all belonging tasks, had it kill one?
230 */
231 bool oom_group;
232
233 /* protected by memcg_oom_lock */
234 bool oom_lock;
235 int under_oom;
236
237 int swappiness;
238 /* OOM-Killer disable */
239 int oom_kill_disable;
240
241 /* memory.events */
242 struct cgroup_file events_file;
243
244 /* handle for "memory.swap.events" */
245 struct cgroup_file swap_events_file;
246
247 /* protect arrays of thresholds */
248 struct mutex thresholds_lock;
249
250 /* thresholds for memory usage. RCU-protected */
251 struct mem_cgroup_thresholds thresholds;
252
253 /* thresholds for mem+swap usage. RCU-protected */
254 struct mem_cgroup_thresholds memsw_thresholds;
255
256 /* For oom notifier event fd */
257 struct list_head oom_notify;
258
259 /*
260 * Should we move charges of a task when a task is moved into this
261 * mem_cgroup ? And what type of charges should we move ?
262 */
263 unsigned long move_charge_at_immigrate;
264 /* taken only while moving_account > 0 */
265 spinlock_t move_lock;
266 unsigned long move_lock_flags;
267
268 MEMCG_PADDING(_pad1_);
269
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
274 struct task_struct *move_lock_task;
275
276 /* memory.stat */
277 struct mem_cgroup_stat_cpu __percpu *stat_cpu;
278
279 MEMCG_PADDING(_pad2_);
280
281 atomic_long_t stat[MEMCG_NR_STAT];
282 atomic_long_t events[NR_VM_EVENT_ITEMS];
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284
285 unsigned long socket_pressure;
286
287 /* Legacy tcp memory accounting */
288 bool tcpmem_active;
289 int tcpmem_pressure;
290
291#ifdef CONFIG_MEMCG_KMEM
292 /* Index in the kmem_cache->memcg_params.memcg_caches array */
293 int kmemcg_id;
294 enum memcg_kmem_state kmem_state;
295 struct list_head kmem_caches;
296#endif
297
298 int last_scanned_node;
299#if MAX_NUMNODES > 1
300 nodemask_t scan_nodes;
301 atomic_t numainfo_events;
302 atomic_t numainfo_updating;
303#endif
304
305#ifdef CONFIG_CGROUP_WRITEBACK
306 struct list_head cgwb_list;
307 struct wb_domain cgwb_domain;
308#endif
309
310 /* List of events which userspace want to receive */
311 struct list_head event_list;
312 spinlock_t event_list_lock;
313
314 struct mem_cgroup_per_node *nodeinfo[0];
315 /* WARNING: nodeinfo must be the last member here */
316};
317
318/*
319 * size of first charge trial. "32" comes from vmscan.c's magic value.
320 * TODO: maybe necessary to use big numbers in big irons.
321 */
322#define MEMCG_CHARGE_BATCH 32U
323
324extern struct mem_cgroup *root_mem_cgroup;
325
326static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
327{
328 return (memcg == root_mem_cgroup);
329}
330
331static inline bool mem_cgroup_disabled(void)
332{
333 return !cgroup_subsys_enabled(memory_cgrp_subsys);
334}
335
336enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
337 struct mem_cgroup *memcg);
338
339int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
340 gfp_t gfp_mask, struct mem_cgroup **memcgp,
341 bool compound);
342int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
344 bool compound);
345void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
346 bool lrucare, bool compound);
347void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
348 bool compound);
349void mem_cgroup_uncharge(struct page *page);
350void mem_cgroup_uncharge_list(struct list_head *page_list);
351
352void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
353
354static struct mem_cgroup_per_node *
355mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
356{
357 return memcg->nodeinfo[nid];
358}
359
360/**
361 * mem_cgroup_lruvec - get the lru list vector for a node or a memcg zone
362 * @node: node of the wanted lruvec
363 * @memcg: memcg of the wanted lruvec
364 *
365 * Returns the lru list vector holding pages for a given @node or a given
366 * @memcg and @zone. This can be the node lruvec, if the memory controller
367 * is disabled.
368 */
369static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
370 struct mem_cgroup *memcg)
371{
372 struct mem_cgroup_per_node *mz;
373 struct lruvec *lruvec;
374
375 if (mem_cgroup_disabled()) {
376 lruvec = node_lruvec(pgdat);
377 goto out;
378 }
379
380 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
381 lruvec = &mz->lruvec;
382out:
383 /*
384 * Since a node can be onlined after the mem_cgroup was created,
385 * we have to be prepared to initialize lruvec->pgdat here;
386 * and if offlined then reonlined, we need to reinitialize it.
387 */
388 if (unlikely(lruvec->pgdat != pgdat))
389 lruvec->pgdat = pgdat;
390 return lruvec;
391}
392
393struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
394
395bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
396struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
397
398struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
399
400struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
401
402static inline
403struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
404 return css ? container_of(css, struct mem_cgroup, css) : NULL;
405}
406
407static inline void mem_cgroup_put(struct mem_cgroup *memcg)
408{
409 if (memcg)
410 css_put(&memcg->css);
411}
412
413#define mem_cgroup_from_counter(counter, member) \
414 container_of(counter, struct mem_cgroup, member)
415
416struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
417 struct mem_cgroup *,
418 struct mem_cgroup_reclaim_cookie *);
419void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
420int mem_cgroup_scan_tasks(struct mem_cgroup *,
421 int (*)(struct task_struct *, void *), void *);
422
423static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
424{
425 if (mem_cgroup_disabled())
426 return 0;
427
428 return memcg->id.id;
429}
430struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
431
432static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
433{
434 return mem_cgroup_from_css(seq_css(m));
435}
436
437static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
438{
439 struct mem_cgroup_per_node *mz;
440
441 if (mem_cgroup_disabled())
442 return NULL;
443
444 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
445 return mz->memcg;
446}
447
448/**
449 * parent_mem_cgroup - find the accounting parent of a memcg
450 * @memcg: memcg whose parent to find
451 *
452 * Returns the parent memcg, or NULL if this is the root or the memory
453 * controller is in legacy no-hierarchy mode.
454 */
455static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
456{
457 if (!memcg->memory.parent)
458 return NULL;
459 return mem_cgroup_from_counter(memcg->memory.parent, memory);
460}
461
462static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
463 struct mem_cgroup *root)
464{
465 if (root == memcg)
466 return true;
467 if (!root->use_hierarchy)
468 return false;
469 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
470}
471
472static inline bool mm_match_cgroup(struct mm_struct *mm,
473 struct mem_cgroup *memcg)
474{
475 struct mem_cgroup *task_memcg;
476 bool match = false;
477
478 rcu_read_lock();
479 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
480 if (task_memcg)
481 match = mem_cgroup_is_descendant(task_memcg, memcg);
482 rcu_read_unlock();
483 return match;
484}
485
486struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
487ino_t page_cgroup_ino(struct page *page);
488
489static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
490{
491 if (mem_cgroup_disabled())
492 return true;
493 return !!(memcg->css.flags & CSS_ONLINE);
494}
495
496/*
497 * For memory reclaim.
498 */
499int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
500
501void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
502 int zid, int nr_pages);
503
504unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
505 int nid, unsigned int lru_mask);
506
507static inline
508unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
509{
510 struct mem_cgroup_per_node *mz;
511 unsigned long nr_pages = 0;
512 int zid;
513
514 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
515 for (zid = 0; zid < MAX_NR_ZONES; zid++)
516 nr_pages += mz->lru_zone_size[zid][lru];
517 return nr_pages;
518}
519
520static inline
521unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
522 enum lru_list lru, int zone_idx)
523{
524 struct mem_cgroup_per_node *mz;
525
526 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
527 return mz->lru_zone_size[zone_idx][lru];
528}
529
530void mem_cgroup_handle_over_high(void);
531
532unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
533
534void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
535 struct task_struct *p);
536
537void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
538
539static inline void mem_cgroup_enter_user_fault(void)
540{
541 WARN_ON(current->in_user_fault);
542 current->in_user_fault = 1;
543}
544
545static inline void mem_cgroup_exit_user_fault(void)
546{
547 WARN_ON(!current->in_user_fault);
548 current->in_user_fault = 0;
549}
550
551static inline bool task_in_memcg_oom(struct task_struct *p)
552{
553 return p->memcg_in_oom;
554}
555
556bool mem_cgroup_oom_synchronize(bool wait);
557struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
558 struct mem_cgroup *oom_domain);
559void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
560
561#ifdef CONFIG_MEMCG_SWAP
562extern int do_swap_account;
563#endif
564
565struct mem_cgroup *lock_page_memcg(struct page *page);
566void __unlock_page_memcg(struct mem_cgroup *memcg);
567void unlock_page_memcg(struct page *page);
568
569/*
570 * idx can be of type enum memcg_stat_item or node_stat_item.
571 * Keep in sync with memcg_exact_page_state().
572 */
573static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
574 int idx)
575{
576 long x = atomic_long_read(&memcg->stat[idx]);
577#ifdef CONFIG_SMP
578 if (x < 0)
579 x = 0;
580#endif
581 return x;
582}
583
584/* idx can be of type enum memcg_stat_item or node_stat_item */
585static inline void __mod_memcg_state(struct mem_cgroup *memcg,
586 int idx, int val)
587{
588 long x;
589
590 if (mem_cgroup_disabled())
591 return;
592
593 x = val + __this_cpu_read(memcg->stat_cpu->count[idx]);
594 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
595 atomic_long_add(x, &memcg->stat[idx]);
596 x = 0;
597 }
598 __this_cpu_write(memcg->stat_cpu->count[idx], x);
599}
600
601/* idx can be of type enum memcg_stat_item or node_stat_item */
602static inline void mod_memcg_state(struct mem_cgroup *memcg,
603 int idx, int val)
604{
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_memcg_state(memcg, idx, val);
609 local_irq_restore(flags);
610}
611
612/**
613 * mod_memcg_page_state - update page state statistics
614 * @page: the page
615 * @idx: page state item to account
616 * @val: number of pages (positive or negative)
617 *
618 * The @page must be locked or the caller must use lock_page_memcg()
619 * to prevent double accounting when the page is concurrently being
620 * moved to another memcg:
621 *
622 * lock_page(page) or lock_page_memcg(page)
623 * if (TestClearPageState(page))
624 * mod_memcg_page_state(page, state, -1);
625 * unlock_page(page) or unlock_page_memcg(page)
626 *
627 * Kernel pages are an exception to this, since they'll never move.
628 */
629static inline void __mod_memcg_page_state(struct page *page,
630 int idx, int val)
631{
632 if (page->mem_cgroup)
633 __mod_memcg_state(page->mem_cgroup, idx, val);
634}
635
636static inline void mod_memcg_page_state(struct page *page,
637 int idx, int val)
638{
639 if (page->mem_cgroup)
640 mod_memcg_state(page->mem_cgroup, idx, val);
641}
642
643static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
644 enum node_stat_item idx)
645{
646 struct mem_cgroup_per_node *pn;
647 long x;
648
649 if (mem_cgroup_disabled())
650 return node_page_state(lruvec_pgdat(lruvec), idx);
651
652 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653 x = atomic_long_read(&pn->lruvec_stat[idx]);
654#ifdef CONFIG_SMP
655 if (x < 0)
656 x = 0;
657#endif
658 return x;
659}
660
661static inline void __mod_lruvec_state(struct lruvec *lruvec,
662 enum node_stat_item idx, int val)
663{
664 struct mem_cgroup_per_node *pn;
665 long x;
666
667 /* Update node */
668 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
669
670 if (mem_cgroup_disabled())
671 return;
672
673 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674
675 /* Update memcg */
676 __mod_memcg_state(pn->memcg, idx, val);
677
678 /* Update lruvec */
679 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
680 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
681 atomic_long_add(x, &pn->lruvec_stat[idx]);
682 x = 0;
683 }
684 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
685}
686
687static inline void mod_lruvec_state(struct lruvec *lruvec,
688 enum node_stat_item idx, int val)
689{
690 unsigned long flags;
691
692 local_irq_save(flags);
693 __mod_lruvec_state(lruvec, idx, val);
694 local_irq_restore(flags);
695}
696
697static inline void __mod_lruvec_page_state(struct page *page,
698 enum node_stat_item idx, int val)
699{
700 pg_data_t *pgdat = page_pgdat(page);
701 struct lruvec *lruvec;
702
703 /* Untracked pages have no memcg, no lruvec. Update only the node */
704 if (!page->mem_cgroup) {
705 __mod_node_page_state(pgdat, idx, val);
706 return;
707 }
708
709 lruvec = mem_cgroup_lruvec(pgdat, page->mem_cgroup);
710 __mod_lruvec_state(lruvec, idx, val);
711}
712
713static inline void mod_lruvec_page_state(struct page *page,
714 enum node_stat_item idx, int val)
715{
716 unsigned long flags;
717
718 local_irq_save(flags);
719 __mod_lruvec_page_state(page, idx, val);
720 local_irq_restore(flags);
721}
722
723unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
724 gfp_t gfp_mask,
725 unsigned long *total_scanned);
726
727static inline void __count_memcg_events(struct mem_cgroup *memcg,
728 enum vm_event_item idx,
729 unsigned long count)
730{
731 unsigned long x;
732
733 if (mem_cgroup_disabled())
734 return;
735
736 x = count + __this_cpu_read(memcg->stat_cpu->events[idx]);
737 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
738 atomic_long_add(x, &memcg->events[idx]);
739 x = 0;
740 }
741 __this_cpu_write(memcg->stat_cpu->events[idx], x);
742}
743
744static inline void count_memcg_events(struct mem_cgroup *memcg,
745 enum vm_event_item idx,
746 unsigned long count)
747{
748 unsigned long flags;
749
750 local_irq_save(flags);
751 __count_memcg_events(memcg, idx, count);
752 local_irq_restore(flags);
753}
754
755static inline void count_memcg_page_event(struct page *page,
756 enum vm_event_item idx)
757{
758 if (page->mem_cgroup)
759 count_memcg_events(page->mem_cgroup, idx, 1);
760}
761
762static inline void count_memcg_event_mm(struct mm_struct *mm,
763 enum vm_event_item idx)
764{
765 struct mem_cgroup *memcg;
766
767 if (mem_cgroup_disabled())
768 return;
769
770 rcu_read_lock();
771 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
772 if (likely(memcg))
773 count_memcg_events(memcg, idx, 1);
774 rcu_read_unlock();
775}
776
777static inline void memcg_memory_event(struct mem_cgroup *memcg,
778 enum memcg_memory_event event)
779{
780 atomic_long_inc(&memcg->memory_events[event]);
781 cgroup_file_notify(&memcg->events_file);
782}
783
784static inline void memcg_memory_event_mm(struct mm_struct *mm,
785 enum memcg_memory_event event)
786{
787 struct mem_cgroup *memcg;
788
789 if (mem_cgroup_disabled())
790 return;
791
792 rcu_read_lock();
793 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
794 if (likely(memcg))
795 memcg_memory_event(memcg, event);
796 rcu_read_unlock();
797}
798
799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
800void mem_cgroup_split_huge_fixup(struct page *head);
801#endif
802
803#else /* CONFIG_MEMCG */
804
805#define MEM_CGROUP_ID_SHIFT 0
806#define MEM_CGROUP_ID_MAX 0
807
808struct mem_cgroup;
809
810static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
811{
812 return true;
813}
814
815static inline bool mem_cgroup_disabled(void)
816{
817 return true;
818}
819
820static inline void memcg_memory_event(struct mem_cgroup *memcg,
821 enum memcg_memory_event event)
822{
823}
824
825static inline void memcg_memory_event_mm(struct mm_struct *mm,
826 enum memcg_memory_event event)
827{
828}
829
830static inline enum mem_cgroup_protection mem_cgroup_protected(
831 struct mem_cgroup *root, struct mem_cgroup *memcg)
832{
833 return MEMCG_PROT_NONE;
834}
835
836static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
837 gfp_t gfp_mask,
838 struct mem_cgroup **memcgp,
839 bool compound)
840{
841 *memcgp = NULL;
842 return 0;
843}
844
845static inline int mem_cgroup_try_charge_delay(struct page *page,
846 struct mm_struct *mm,
847 gfp_t gfp_mask,
848 struct mem_cgroup **memcgp,
849 bool compound)
850{
851 *memcgp = NULL;
852 return 0;
853}
854
855static inline void mem_cgroup_commit_charge(struct page *page,
856 struct mem_cgroup *memcg,
857 bool lrucare, bool compound)
858{
859}
860
861static inline void mem_cgroup_cancel_charge(struct page *page,
862 struct mem_cgroup *memcg,
863 bool compound)
864{
865}
866
867static inline void mem_cgroup_uncharge(struct page *page)
868{
869}
870
871static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
872{
873}
874
875static inline void mem_cgroup_migrate(struct page *old, struct page *new)
876{
877}
878
879static inline struct lruvec *mem_cgroup_lruvec(struct pglist_data *pgdat,
880 struct mem_cgroup *memcg)
881{
882 return node_lruvec(pgdat);
883}
884
885static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
886 struct pglist_data *pgdat)
887{
888 return &pgdat->lruvec;
889}
890
891static inline bool mm_match_cgroup(struct mm_struct *mm,
892 struct mem_cgroup *memcg)
893{
894 return true;
895}
896
897static inline bool task_in_mem_cgroup(struct task_struct *task,
898 const struct mem_cgroup *memcg)
899{
900 return true;
901}
902
903static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
904{
905 return NULL;
906}
907
908static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
909{
910 return NULL;
911}
912
913static inline void mem_cgroup_put(struct mem_cgroup *memcg)
914{
915}
916
917static inline struct mem_cgroup *
918mem_cgroup_iter(struct mem_cgroup *root,
919 struct mem_cgroup *prev,
920 struct mem_cgroup_reclaim_cookie *reclaim)
921{
922 return NULL;
923}
924
925static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
926 struct mem_cgroup *prev)
927{
928}
929
930static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
931 int (*fn)(struct task_struct *, void *), void *arg)
932{
933 return 0;
934}
935
936static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
937{
938 return 0;
939}
940
941static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
942{
943 WARN_ON_ONCE(id);
944 /* XXX: This should always return root_mem_cgroup */
945 return NULL;
946}
947
948static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
949{
950 return NULL;
951}
952
953static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
954{
955 return NULL;
956}
957
958static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
959{
960 return true;
961}
962
963static inline unsigned long
964mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
965{
966 return 0;
967}
968static inline
969unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
970 enum lru_list lru, int zone_idx)
971{
972 return 0;
973}
974
975static inline unsigned long
976mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
977 int nid, unsigned int lru_mask)
978{
979 return 0;
980}
981
982static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
983{
984 return 0;
985}
986
987static inline void
988mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
989{
990}
991
992static inline void
993mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
994{
995}
996
997static inline struct mem_cgroup *lock_page_memcg(struct page *page)
998{
999 return NULL;
1000}
1001
1002static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1003{
1004}
1005
1006static inline void unlock_page_memcg(struct page *page)
1007{
1008}
1009
1010static inline void mem_cgroup_handle_over_high(void)
1011{
1012}
1013
1014static inline void mem_cgroup_enter_user_fault(void)
1015{
1016}
1017
1018static inline void mem_cgroup_exit_user_fault(void)
1019{
1020}
1021
1022static inline bool task_in_memcg_oom(struct task_struct *p)
1023{
1024 return false;
1025}
1026
1027static inline bool mem_cgroup_oom_synchronize(bool wait)
1028{
1029 return false;
1030}
1031
1032static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1033 struct task_struct *victim, struct mem_cgroup *oom_domain)
1034{
1035 return NULL;
1036}
1037
1038static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1039{
1040}
1041
1042static inline unsigned long memcg_page_state(struct mem_cgroup *memcg,
1043 int idx)
1044{
1045 return 0;
1046}
1047
1048static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1049 int idx,
1050 int nr)
1051{
1052}
1053
1054static inline void mod_memcg_state(struct mem_cgroup *memcg,
1055 int idx,
1056 int nr)
1057{
1058}
1059
1060static inline void __mod_memcg_page_state(struct page *page,
1061 int idx,
1062 int nr)
1063{
1064}
1065
1066static inline void mod_memcg_page_state(struct page *page,
1067 int idx,
1068 int nr)
1069{
1070}
1071
1072static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1073 enum node_stat_item idx)
1074{
1075 return node_page_state(lruvec_pgdat(lruvec), idx);
1076}
1077
1078static inline void __mod_lruvec_state(struct lruvec *lruvec,
1079 enum node_stat_item idx, int val)
1080{
1081 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1082}
1083
1084static inline void mod_lruvec_state(struct lruvec *lruvec,
1085 enum node_stat_item idx, int val)
1086{
1087 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1088}
1089
1090static inline void __mod_lruvec_page_state(struct page *page,
1091 enum node_stat_item idx, int val)
1092{
1093 __mod_node_page_state(page_pgdat(page), idx, val);
1094}
1095
1096static inline void mod_lruvec_page_state(struct page *page,
1097 enum node_stat_item idx, int val)
1098{
1099 mod_node_page_state(page_pgdat(page), idx, val);
1100}
1101
1102static inline
1103unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1104 gfp_t gfp_mask,
1105 unsigned long *total_scanned)
1106{
1107 return 0;
1108}
1109
1110static inline void mem_cgroup_split_huge_fixup(struct page *head)
1111{
1112}
1113
1114static inline void count_memcg_events(struct mem_cgroup *memcg,
1115 enum vm_event_item idx,
1116 unsigned long count)
1117{
1118}
1119
1120static inline void count_memcg_page_event(struct page *page,
1121 int idx)
1122{
1123}
1124
1125static inline
1126void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1127{
1128}
1129#endif /* CONFIG_MEMCG */
1130
1131/* idx can be of type enum memcg_stat_item or node_stat_item */
1132static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1133 int idx)
1134{
1135 __mod_memcg_state(memcg, idx, 1);
1136}
1137
1138/* idx can be of type enum memcg_stat_item or node_stat_item */
1139static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1140 int idx)
1141{
1142 __mod_memcg_state(memcg, idx, -1);
1143}
1144
1145/* idx can be of type enum memcg_stat_item or node_stat_item */
1146static inline void __inc_memcg_page_state(struct page *page,
1147 int idx)
1148{
1149 __mod_memcg_page_state(page, idx, 1);
1150}
1151
1152/* idx can be of type enum memcg_stat_item or node_stat_item */
1153static inline void __dec_memcg_page_state(struct page *page,
1154 int idx)
1155{
1156 __mod_memcg_page_state(page, idx, -1);
1157}
1158
1159static inline void __inc_lruvec_state(struct lruvec *lruvec,
1160 enum node_stat_item idx)
1161{
1162 __mod_lruvec_state(lruvec, idx, 1);
1163}
1164
1165static inline void __dec_lruvec_state(struct lruvec *lruvec,
1166 enum node_stat_item idx)
1167{
1168 __mod_lruvec_state(lruvec, idx, -1);
1169}
1170
1171static inline void __inc_lruvec_page_state(struct page *page,
1172 enum node_stat_item idx)
1173{
1174 __mod_lruvec_page_state(page, idx, 1);
1175}
1176
1177static inline void __dec_lruvec_page_state(struct page *page,
1178 enum node_stat_item idx)
1179{
1180 __mod_lruvec_page_state(page, idx, -1);
1181}
1182
1183/* idx can be of type enum memcg_stat_item or node_stat_item */
1184static inline void inc_memcg_state(struct mem_cgroup *memcg,
1185 int idx)
1186{
1187 mod_memcg_state(memcg, idx, 1);
1188}
1189
1190/* idx can be of type enum memcg_stat_item or node_stat_item */
1191static inline void dec_memcg_state(struct mem_cgroup *memcg,
1192 int idx)
1193{
1194 mod_memcg_state(memcg, idx, -1);
1195}
1196
1197/* idx can be of type enum memcg_stat_item or node_stat_item */
1198static inline void inc_memcg_page_state(struct page *page,
1199 int idx)
1200{
1201 mod_memcg_page_state(page, idx, 1);
1202}
1203
1204/* idx can be of type enum memcg_stat_item or node_stat_item */
1205static inline void dec_memcg_page_state(struct page *page,
1206 int idx)
1207{
1208 mod_memcg_page_state(page, idx, -1);
1209}
1210
1211static inline void inc_lruvec_state(struct lruvec *lruvec,
1212 enum node_stat_item idx)
1213{
1214 mod_lruvec_state(lruvec, idx, 1);
1215}
1216
1217static inline void dec_lruvec_state(struct lruvec *lruvec,
1218 enum node_stat_item idx)
1219{
1220 mod_lruvec_state(lruvec, idx, -1);
1221}
1222
1223static inline void inc_lruvec_page_state(struct page *page,
1224 enum node_stat_item idx)
1225{
1226 mod_lruvec_page_state(page, idx, 1);
1227}
1228
1229static inline void dec_lruvec_page_state(struct page *page,
1230 enum node_stat_item idx)
1231{
1232 mod_lruvec_page_state(page, idx, -1);
1233}
1234
1235#ifdef CONFIG_CGROUP_WRITEBACK
1236
1237struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1238void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1239 unsigned long *pheadroom, unsigned long *pdirty,
1240 unsigned long *pwriteback);
1241
1242#else /* CONFIG_CGROUP_WRITEBACK */
1243
1244static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1245{
1246 return NULL;
1247}
1248
1249static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1250 unsigned long *pfilepages,
1251 unsigned long *pheadroom,
1252 unsigned long *pdirty,
1253 unsigned long *pwriteback)
1254{
1255}
1256
1257#endif /* CONFIG_CGROUP_WRITEBACK */
1258
1259struct sock;
1260bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1261void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1262#ifdef CONFIG_MEMCG
1263extern struct static_key_false memcg_sockets_enabled_key;
1264#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1265void mem_cgroup_sk_alloc(struct sock *sk);
1266void mem_cgroup_sk_free(struct sock *sk);
1267static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1268{
1269 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1270 return true;
1271 do {
1272 if (time_before(jiffies, memcg->socket_pressure))
1273 return true;
1274 } while ((memcg = parent_mem_cgroup(memcg)));
1275 return false;
1276}
1277#else
1278#define mem_cgroup_sockets_enabled 0
1279static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1280static inline void mem_cgroup_sk_free(struct sock *sk) { };
1281static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1282{
1283 return false;
1284}
1285#endif
1286
1287struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1288void memcg_kmem_put_cache(struct kmem_cache *cachep);
1289
1290#ifdef CONFIG_MEMCG_KMEM
1291int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order);
1292void __memcg_kmem_uncharge(struct page *page, int order);
1293int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
1294 struct mem_cgroup *memcg);
1295
1296extern struct static_key_false memcg_kmem_enabled_key;
1297extern struct workqueue_struct *memcg_kmem_cache_wq;
1298
1299extern int memcg_nr_cache_ids;
1300void memcg_get_cache_ids(void);
1301void memcg_put_cache_ids(void);
1302
1303/*
1304 * Helper macro to loop through all memcg-specific caches. Callers must still
1305 * check if the cache is valid (it is either valid or NULL).
1306 * the slab_mutex must be held when looping through those caches
1307 */
1308#define for_each_memcg_cache_index(_idx) \
1309 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1310
1311static inline bool memcg_kmem_enabled(void)
1312{
1313 return static_branch_unlikely(&memcg_kmem_enabled_key);
1314}
1315
1316static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1317{
1318 if (memcg_kmem_enabled())
1319 return __memcg_kmem_charge(page, gfp, order);
1320 return 0;
1321}
1322
1323static inline void memcg_kmem_uncharge(struct page *page, int order)
1324{
1325 if (memcg_kmem_enabled())
1326 __memcg_kmem_uncharge(page, order);
1327}
1328
1329static inline int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp,
1330 int order, struct mem_cgroup *memcg)
1331{
1332 if (memcg_kmem_enabled())
1333 return __memcg_kmem_charge_memcg(page, gfp, order, memcg);
1334 return 0;
1335}
1336/*
1337 * helper for accessing a memcg's index. It will be used as an index in the
1338 * child cache array in kmem_cache, and also to derive its name. This function
1339 * will return -1 when this is not a kmem-limited memcg.
1340 */
1341static inline int memcg_cache_id(struct mem_cgroup *memcg)
1342{
1343 return memcg ? memcg->kmemcg_id : -1;
1344}
1345
1346extern int memcg_expand_shrinker_maps(int new_id);
1347
1348extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1349 int nid, int shrinker_id);
1350#else
1351
1352static inline int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1353{
1354 return 0;
1355}
1356
1357static inline void memcg_kmem_uncharge(struct page *page, int order)
1358{
1359}
1360
1361static inline int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
1362{
1363 return 0;
1364}
1365
1366static inline void __memcg_kmem_uncharge(struct page *page, int order)
1367{
1368}
1369
1370#define for_each_memcg_cache_index(_idx) \
1371 for (; NULL; )
1372
1373static inline bool memcg_kmem_enabled(void)
1374{
1375 return false;
1376}
1377
1378static inline int memcg_cache_id(struct mem_cgroup *memcg)
1379{
1380 return -1;
1381}
1382
1383static inline void memcg_get_cache_ids(void)
1384{
1385}
1386
1387static inline void memcg_put_cache_ids(void)
1388{
1389}
1390
1391static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1392 int nid, int shrinker_id) { }
1393#endif /* CONFIG_MEMCG_KMEM */
1394
1395#endif /* _LINUX_MEMCONTROL_H */