at v5.1 39 kB view raw
1#ifndef __KVM_HOST_H 2#define __KVM_HOST_H 3 4/* 5 * This work is licensed under the terms of the GNU GPL, version 2. See 6 * the COPYING file in the top-level directory. 7 */ 8 9#include <linux/types.h> 10#include <linux/hardirq.h> 11#include <linux/list.h> 12#include <linux/mutex.h> 13#include <linux/spinlock.h> 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/bug.h> 17#include <linux/mm.h> 18#include <linux/mmu_notifier.h> 19#include <linux/preempt.h> 20#include <linux/msi.h> 21#include <linux/slab.h> 22#include <linux/vmalloc.h> 23#include <linux/rcupdate.h> 24#include <linux/ratelimit.h> 25#include <linux/err.h> 26#include <linux/irqflags.h> 27#include <linux/context_tracking.h> 28#include <linux/irqbypass.h> 29#include <linux/swait.h> 30#include <linux/refcount.h> 31#include <linux/nospec.h> 32#include <asm/signal.h> 33 34#include <linux/kvm.h> 35#include <linux/kvm_para.h> 36 37#include <linux/kvm_types.h> 38 39#include <asm/kvm_host.h> 40 41#ifndef KVM_MAX_VCPU_ID 42#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 43#endif 44 45/* 46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 47 * in kvm, other bits are visible for userspace which are defined in 48 * include/linux/kvm_h. 49 */ 50#define KVM_MEMSLOT_INVALID (1UL << 16) 51 52/* 53 * Bit 63 of the memslot generation number is an "update in-progress flag", 54 * e.g. is temporarily set for the duration of install_new_memslots(). 55 * This flag effectively creates a unique generation number that is used to 56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 57 * i.e. may (or may not) have come from the previous memslots generation. 58 * 59 * This is necessary because the actual memslots update is not atomic with 60 * respect to the generation number update. Updating the generation number 61 * first would allow a vCPU to cache a spte from the old memslots using the 62 * new generation number, and updating the generation number after switching 63 * to the new memslots would allow cache hits using the old generation number 64 * to reference the defunct memslots. 65 * 66 * This mechanism is used to prevent getting hits in KVM's caches while a 67 * memslot update is in-progress, and to prevent cache hits *after* updating 68 * the actual generation number against accesses that were inserted into the 69 * cache *before* the memslots were updated. 70 */ 71#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 72 73/* Two fragments for cross MMIO pages. */ 74#define KVM_MAX_MMIO_FRAGMENTS 2 75 76#ifndef KVM_ADDRESS_SPACE_NUM 77#define KVM_ADDRESS_SPACE_NUM 1 78#endif 79 80/* 81 * For the normal pfn, the highest 12 bits should be zero, 82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 83 * mask bit 63 to indicate the noslot pfn. 84 */ 85#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 86#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 87#define KVM_PFN_NOSLOT (0x1ULL << 63) 88 89#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 90#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 91#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 92 93/* 94 * error pfns indicate that the gfn is in slot but faild to 95 * translate it to pfn on host. 96 */ 97static inline bool is_error_pfn(kvm_pfn_t pfn) 98{ 99 return !!(pfn & KVM_PFN_ERR_MASK); 100} 101 102/* 103 * error_noslot pfns indicate that the gfn can not be 104 * translated to pfn - it is not in slot or failed to 105 * translate it to pfn. 106 */ 107static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 108{ 109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 110} 111 112/* noslot pfn indicates that the gfn is not in slot. */ 113static inline bool is_noslot_pfn(kvm_pfn_t pfn) 114{ 115 return pfn == KVM_PFN_NOSLOT; 116} 117 118/* 119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 120 * provide own defines and kvm_is_error_hva 121 */ 122#ifndef KVM_HVA_ERR_BAD 123 124#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 125#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 126 127static inline bool kvm_is_error_hva(unsigned long addr) 128{ 129 return addr >= PAGE_OFFSET; 130} 131 132#endif 133 134#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 135 136static inline bool is_error_page(struct page *page) 137{ 138 return IS_ERR(page); 139} 140 141#define KVM_REQUEST_MASK GENMASK(7,0) 142#define KVM_REQUEST_NO_WAKEUP BIT(8) 143#define KVM_REQUEST_WAIT BIT(9) 144/* 145 * Architecture-independent vcpu->requests bit members 146 * Bits 4-7 are reserved for more arch-independent bits. 147 */ 148#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 149#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150#define KVM_REQ_PENDING_TIMER 2 151#define KVM_REQ_UNHALT 3 152#define KVM_REQUEST_ARCH_BASE 8 153 154#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 157}) 158#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 159 160#define KVM_USERSPACE_IRQ_SOURCE_ID 0 161#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 162 163extern struct kmem_cache *kvm_vcpu_cache; 164 165extern spinlock_t kvm_lock; 166extern struct list_head vm_list; 167 168struct kvm_io_range { 169 gpa_t addr; 170 int len; 171 struct kvm_io_device *dev; 172}; 173 174#define NR_IOBUS_DEVS 1000 175 176struct kvm_io_bus { 177 int dev_count; 178 int ioeventfd_count; 179 struct kvm_io_range range[]; 180}; 181 182enum kvm_bus { 183 KVM_MMIO_BUS, 184 KVM_PIO_BUS, 185 KVM_VIRTIO_CCW_NOTIFY_BUS, 186 KVM_FAST_MMIO_BUS, 187 KVM_NR_BUSES 188}; 189 190int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 191 int len, const void *val); 192int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 193 gpa_t addr, int len, const void *val, long cookie); 194int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 195 int len, void *val); 196int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 197 int len, struct kvm_io_device *dev); 198void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 199 struct kvm_io_device *dev); 200struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 201 gpa_t addr); 202 203#ifdef CONFIG_KVM_ASYNC_PF 204struct kvm_async_pf { 205 struct work_struct work; 206 struct list_head link; 207 struct list_head queue; 208 struct kvm_vcpu *vcpu; 209 struct mm_struct *mm; 210 gva_t gva; 211 unsigned long addr; 212 struct kvm_arch_async_pf arch; 213 bool wakeup_all; 214}; 215 216void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 217void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 218int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva, 219 struct kvm_arch_async_pf *arch); 220int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 221#endif 222 223enum { 224 OUTSIDE_GUEST_MODE, 225 IN_GUEST_MODE, 226 EXITING_GUEST_MODE, 227 READING_SHADOW_PAGE_TABLES, 228}; 229 230/* 231 * Sometimes a large or cross-page mmio needs to be broken up into separate 232 * exits for userspace servicing. 233 */ 234struct kvm_mmio_fragment { 235 gpa_t gpa; 236 void *data; 237 unsigned len; 238}; 239 240struct kvm_vcpu { 241 struct kvm *kvm; 242#ifdef CONFIG_PREEMPT_NOTIFIERS 243 struct preempt_notifier preempt_notifier; 244#endif 245 int cpu; 246 int vcpu_id; 247 int srcu_idx; 248 int mode; 249 u64 requests; 250 unsigned long guest_debug; 251 252 int pre_pcpu; 253 struct list_head blocked_vcpu_list; 254 255 struct mutex mutex; 256 struct kvm_run *run; 257 258 int guest_xcr0_loaded; 259 struct swait_queue_head wq; 260 struct pid __rcu *pid; 261 int sigset_active; 262 sigset_t sigset; 263 struct kvm_vcpu_stat stat; 264 unsigned int halt_poll_ns; 265 bool valid_wakeup; 266 267#ifdef CONFIG_HAS_IOMEM 268 int mmio_needed; 269 int mmio_read_completed; 270 int mmio_is_write; 271 int mmio_cur_fragment; 272 int mmio_nr_fragments; 273 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 274#endif 275 276#ifdef CONFIG_KVM_ASYNC_PF 277 struct { 278 u32 queued; 279 struct list_head queue; 280 struct list_head done; 281 spinlock_t lock; 282 } async_pf; 283#endif 284 285#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 286 /* 287 * Cpu relax intercept or pause loop exit optimization 288 * in_spin_loop: set when a vcpu does a pause loop exit 289 * or cpu relax intercepted. 290 * dy_eligible: indicates whether vcpu is eligible for directed yield. 291 */ 292 struct { 293 bool in_spin_loop; 294 bool dy_eligible; 295 } spin_loop; 296#endif 297 bool preempted; 298 struct kvm_vcpu_arch arch; 299 struct dentry *debugfs_dentry; 300}; 301 302static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 303{ 304 /* 305 * The memory barrier ensures a previous write to vcpu->requests cannot 306 * be reordered with the read of vcpu->mode. It pairs with the general 307 * memory barrier following the write of vcpu->mode in VCPU RUN. 308 */ 309 smp_mb__before_atomic(); 310 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 311} 312 313/* 314 * Some of the bitops functions do not support too long bitmaps. 315 * This number must be determined not to exceed such limits. 316 */ 317#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 318 319struct kvm_memory_slot { 320 gfn_t base_gfn; 321 unsigned long npages; 322 unsigned long *dirty_bitmap; 323 struct kvm_arch_memory_slot arch; 324 unsigned long userspace_addr; 325 u32 flags; 326 short id; 327}; 328 329static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 330{ 331 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 332} 333 334static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 335{ 336 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 337 338 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 339} 340 341struct kvm_s390_adapter_int { 342 u64 ind_addr; 343 u64 summary_addr; 344 u64 ind_offset; 345 u32 summary_offset; 346 u32 adapter_id; 347}; 348 349struct kvm_hv_sint { 350 u32 vcpu; 351 u32 sint; 352}; 353 354struct kvm_kernel_irq_routing_entry { 355 u32 gsi; 356 u32 type; 357 int (*set)(struct kvm_kernel_irq_routing_entry *e, 358 struct kvm *kvm, int irq_source_id, int level, 359 bool line_status); 360 union { 361 struct { 362 unsigned irqchip; 363 unsigned pin; 364 } irqchip; 365 struct { 366 u32 address_lo; 367 u32 address_hi; 368 u32 data; 369 u32 flags; 370 u32 devid; 371 } msi; 372 struct kvm_s390_adapter_int adapter; 373 struct kvm_hv_sint hv_sint; 374 }; 375 struct hlist_node link; 376}; 377 378#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 379struct kvm_irq_routing_table { 380 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 381 u32 nr_rt_entries; 382 /* 383 * Array indexed by gsi. Each entry contains list of irq chips 384 * the gsi is connected to. 385 */ 386 struct hlist_head map[0]; 387}; 388#endif 389 390#ifndef KVM_PRIVATE_MEM_SLOTS 391#define KVM_PRIVATE_MEM_SLOTS 0 392#endif 393 394#ifndef KVM_MEM_SLOTS_NUM 395#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 396#endif 397 398#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 399static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 400{ 401 return 0; 402} 403#endif 404 405/* 406 * Note: 407 * memslots are not sorted by id anymore, please use id_to_memslot() 408 * to get the memslot by its id. 409 */ 410struct kvm_memslots { 411 u64 generation; 412 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM]; 413 /* The mapping table from slot id to the index in memslots[]. */ 414 short id_to_index[KVM_MEM_SLOTS_NUM]; 415 atomic_t lru_slot; 416 int used_slots; 417}; 418 419struct kvm { 420 spinlock_t mmu_lock; 421 struct mutex slots_lock; 422 struct mm_struct *mm; /* userspace tied to this vm */ 423 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 424 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 425 426 /* 427 * created_vcpus is protected by kvm->lock, and is incremented 428 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 429 * incremented after storing the kvm_vcpu pointer in vcpus, 430 * and is accessed atomically. 431 */ 432 atomic_t online_vcpus; 433 int created_vcpus; 434 int last_boosted_vcpu; 435 struct list_head vm_list; 436 struct mutex lock; 437 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 438#ifdef CONFIG_HAVE_KVM_EVENTFD 439 struct { 440 spinlock_t lock; 441 struct list_head items; 442 struct list_head resampler_list; 443 struct mutex resampler_lock; 444 } irqfds; 445 struct list_head ioeventfds; 446#endif 447 struct kvm_vm_stat stat; 448 struct kvm_arch arch; 449 refcount_t users_count; 450#ifdef CONFIG_KVM_MMIO 451 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 452 spinlock_t ring_lock; 453 struct list_head coalesced_zones; 454#endif 455 456 struct mutex irq_lock; 457#ifdef CONFIG_HAVE_KVM_IRQCHIP 458 /* 459 * Update side is protected by irq_lock. 460 */ 461 struct kvm_irq_routing_table __rcu *irq_routing; 462#endif 463#ifdef CONFIG_HAVE_KVM_IRQFD 464 struct hlist_head irq_ack_notifier_list; 465#endif 466 467#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 468 struct mmu_notifier mmu_notifier; 469 unsigned long mmu_notifier_seq; 470 long mmu_notifier_count; 471#endif 472 long tlbs_dirty; 473 struct list_head devices; 474 bool manual_dirty_log_protect; 475 struct dentry *debugfs_dentry; 476 struct kvm_stat_data **debugfs_stat_data; 477 struct srcu_struct srcu; 478 struct srcu_struct irq_srcu; 479 pid_t userspace_pid; 480}; 481 482#define kvm_err(fmt, ...) \ 483 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 484#define kvm_info(fmt, ...) \ 485 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 486#define kvm_debug(fmt, ...) \ 487 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 488#define kvm_debug_ratelimited(fmt, ...) \ 489 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 490 ## __VA_ARGS__) 491#define kvm_pr_unimpl(fmt, ...) \ 492 pr_err_ratelimited("kvm [%i]: " fmt, \ 493 task_tgid_nr(current), ## __VA_ARGS__) 494 495/* The guest did something we don't support. */ 496#define vcpu_unimpl(vcpu, fmt, ...) \ 497 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 498 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 499 500#define vcpu_debug(vcpu, fmt, ...) \ 501 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 502#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 503 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 504 ## __VA_ARGS__) 505#define vcpu_err(vcpu, fmt, ...) \ 506 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 507 508static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 509{ 510 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 511 lockdep_is_held(&kvm->slots_lock) || 512 !refcount_read(&kvm->users_count)); 513} 514 515static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 516{ 517 int num_vcpus = atomic_read(&kvm->online_vcpus); 518 i = array_index_nospec(i, num_vcpus); 519 520 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 521 smp_rmb(); 522 return kvm->vcpus[i]; 523} 524 525#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 526 for (idx = 0; \ 527 idx < atomic_read(&kvm->online_vcpus) && \ 528 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 529 idx++) 530 531static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 532{ 533 struct kvm_vcpu *vcpu = NULL; 534 int i; 535 536 if (id < 0) 537 return NULL; 538 if (id < KVM_MAX_VCPUS) 539 vcpu = kvm_get_vcpu(kvm, id); 540 if (vcpu && vcpu->vcpu_id == id) 541 return vcpu; 542 kvm_for_each_vcpu(i, vcpu, kvm) 543 if (vcpu->vcpu_id == id) 544 return vcpu; 545 return NULL; 546} 547 548static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 549{ 550 struct kvm_vcpu *tmp; 551 int idx; 552 553 kvm_for_each_vcpu(idx, tmp, vcpu->kvm) 554 if (tmp == vcpu) 555 return idx; 556 BUG(); 557} 558 559#define kvm_for_each_memslot(memslot, slots) \ 560 for (memslot = &slots->memslots[0]; \ 561 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\ 562 memslot++) 563 564int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id); 565void kvm_vcpu_uninit(struct kvm_vcpu *vcpu); 566 567void vcpu_load(struct kvm_vcpu *vcpu); 568void vcpu_put(struct kvm_vcpu *vcpu); 569 570#ifdef __KVM_HAVE_IOAPIC 571void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 572void kvm_arch_post_irq_routing_update(struct kvm *kvm); 573#else 574static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 575{ 576} 577static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 578{ 579} 580#endif 581 582#ifdef CONFIG_HAVE_KVM_IRQFD 583int kvm_irqfd_init(void); 584void kvm_irqfd_exit(void); 585#else 586static inline int kvm_irqfd_init(void) 587{ 588 return 0; 589} 590 591static inline void kvm_irqfd_exit(void) 592{ 593} 594#endif 595int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 596 struct module *module); 597void kvm_exit(void); 598 599void kvm_get_kvm(struct kvm *kvm); 600void kvm_put_kvm(struct kvm *kvm); 601 602static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 603{ 604 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 605 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 606 lockdep_is_held(&kvm->slots_lock) || 607 !refcount_read(&kvm->users_count)); 608} 609 610static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 611{ 612 return __kvm_memslots(kvm, 0); 613} 614 615static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 616{ 617 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 618 619 return __kvm_memslots(vcpu->kvm, as_id); 620} 621 622static inline struct kvm_memory_slot * 623id_to_memslot(struct kvm_memslots *slots, int id) 624{ 625 int index = slots->id_to_index[id]; 626 struct kvm_memory_slot *slot; 627 628 slot = &slots->memslots[index]; 629 630 WARN_ON(slot->id != id); 631 return slot; 632} 633 634/* 635 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 636 * - create a new memory slot 637 * - delete an existing memory slot 638 * - modify an existing memory slot 639 * -- move it in the guest physical memory space 640 * -- just change its flags 641 * 642 * Since flags can be changed by some of these operations, the following 643 * differentiation is the best we can do for __kvm_set_memory_region(): 644 */ 645enum kvm_mr_change { 646 KVM_MR_CREATE, 647 KVM_MR_DELETE, 648 KVM_MR_MOVE, 649 KVM_MR_FLAGS_ONLY, 650}; 651 652int kvm_set_memory_region(struct kvm *kvm, 653 const struct kvm_userspace_memory_region *mem); 654int __kvm_set_memory_region(struct kvm *kvm, 655 const struct kvm_userspace_memory_region *mem); 656void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 657 struct kvm_memory_slot *dont); 658int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 659 unsigned long npages); 660void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 661int kvm_arch_prepare_memory_region(struct kvm *kvm, 662 struct kvm_memory_slot *memslot, 663 const struct kvm_userspace_memory_region *mem, 664 enum kvm_mr_change change); 665void kvm_arch_commit_memory_region(struct kvm *kvm, 666 const struct kvm_userspace_memory_region *mem, 667 const struct kvm_memory_slot *old, 668 const struct kvm_memory_slot *new, 669 enum kvm_mr_change change); 670bool kvm_largepages_enabled(void); 671void kvm_disable_largepages(void); 672/* flush all memory translations */ 673void kvm_arch_flush_shadow_all(struct kvm *kvm); 674/* flush memory translations pointing to 'slot' */ 675void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 676 struct kvm_memory_slot *slot); 677 678int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 679 struct page **pages, int nr_pages); 680 681struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 682unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 683unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 684unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 685unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 686 bool *writable); 687void kvm_release_page_clean(struct page *page); 688void kvm_release_page_dirty(struct page *page); 689void kvm_set_page_accessed(struct page *page); 690 691kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn); 692kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 693kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 694 bool *writable); 695kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 696kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 697kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 698 bool atomic, bool *async, bool write_fault, 699 bool *writable); 700 701void kvm_release_pfn_clean(kvm_pfn_t pfn); 702void kvm_release_pfn_dirty(kvm_pfn_t pfn); 703void kvm_set_pfn_dirty(kvm_pfn_t pfn); 704void kvm_set_pfn_accessed(kvm_pfn_t pfn); 705void kvm_get_pfn(kvm_pfn_t pfn); 706 707int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 708 int len); 709int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 710 unsigned long len); 711int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 712int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 713 void *data, unsigned long len); 714int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 715 int offset, int len); 716int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 717 unsigned long len); 718int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 719 void *data, unsigned long len); 720int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 721 void *data, unsigned int offset, 722 unsigned long len); 723int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 724 gpa_t gpa, unsigned long len); 725int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 726int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 727struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 728bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 729unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn); 730void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 731 732struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 733struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 734kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 735kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 736struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 737unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 738unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 739int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 740 int len); 741int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 742 unsigned long len); 743int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 744 unsigned long len); 745int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 746 int offset, int len); 747int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 748 unsigned long len); 749void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 750 751void kvm_sigset_activate(struct kvm_vcpu *vcpu); 752void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 753 754void kvm_vcpu_block(struct kvm_vcpu *vcpu); 755void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 756void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 757bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 758void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 759int kvm_vcpu_yield_to(struct kvm_vcpu *target); 760void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 761 762void kvm_flush_remote_tlbs(struct kvm *kvm); 763void kvm_reload_remote_mmus(struct kvm *kvm); 764 765bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 766 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 767bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 768 769long kvm_arch_dev_ioctl(struct file *filp, 770 unsigned int ioctl, unsigned long arg); 771long kvm_arch_vcpu_ioctl(struct file *filp, 772 unsigned int ioctl, unsigned long arg); 773vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 774 775int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 776 777int kvm_get_dirty_log(struct kvm *kvm, 778 struct kvm_dirty_log *log, int *is_dirty); 779 780int kvm_get_dirty_log_protect(struct kvm *kvm, 781 struct kvm_dirty_log *log, bool *flush); 782int kvm_clear_dirty_log_protect(struct kvm *kvm, 783 struct kvm_clear_dirty_log *log, bool *flush); 784 785void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 786 struct kvm_memory_slot *slot, 787 gfn_t gfn_offset, 788 unsigned long mask); 789 790int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 791 struct kvm_dirty_log *log); 792int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 793 struct kvm_clear_dirty_log *log); 794 795int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 796 bool line_status); 797int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 798 struct kvm_enable_cap *cap); 799long kvm_arch_vm_ioctl(struct file *filp, 800 unsigned int ioctl, unsigned long arg); 801 802int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 803int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 804 805int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 806 struct kvm_translation *tr); 807 808int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 809int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 810int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 811 struct kvm_sregs *sregs); 812int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 813 struct kvm_sregs *sregs); 814int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 815 struct kvm_mp_state *mp_state); 816int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 817 struct kvm_mp_state *mp_state); 818int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 819 struct kvm_guest_debug *dbg); 820int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 821 822int kvm_arch_init(void *opaque); 823void kvm_arch_exit(void); 824 825int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu); 826void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu); 827 828void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 829 830void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu); 831void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 832void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 833struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id); 834int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu); 835void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 836void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 837 838bool kvm_arch_has_vcpu_debugfs(void); 839int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 840 841int kvm_arch_hardware_enable(void); 842void kvm_arch_hardware_disable(void); 843int kvm_arch_hardware_setup(void); 844void kvm_arch_hardware_unsetup(void); 845void kvm_arch_check_processor_compat(void *rtn); 846int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 847bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 848int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 849 850#ifndef __KVM_HAVE_ARCH_VM_ALLOC 851/* 852 * All architectures that want to use vzalloc currently also 853 * need their own kvm_arch_alloc_vm implementation. 854 */ 855static inline struct kvm *kvm_arch_alloc_vm(void) 856{ 857 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 858} 859 860static inline void kvm_arch_free_vm(struct kvm *kvm) 861{ 862 kfree(kvm); 863} 864#endif 865 866#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 867static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 868{ 869 return -ENOTSUPP; 870} 871#endif 872 873#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 874void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 875void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 876bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 877#else 878static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 879{ 880} 881 882static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 883{ 884} 885 886static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 887{ 888 return false; 889} 890#endif 891#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 892void kvm_arch_start_assignment(struct kvm *kvm); 893void kvm_arch_end_assignment(struct kvm *kvm); 894bool kvm_arch_has_assigned_device(struct kvm *kvm); 895#else 896static inline void kvm_arch_start_assignment(struct kvm *kvm) 897{ 898} 899 900static inline void kvm_arch_end_assignment(struct kvm *kvm) 901{ 902} 903 904static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 905{ 906 return false; 907} 908#endif 909 910static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 911{ 912#ifdef __KVM_HAVE_ARCH_WQP 913 return vcpu->arch.wqp; 914#else 915 return &vcpu->wq; 916#endif 917} 918 919#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 920/* 921 * returns true if the virtual interrupt controller is initialized and 922 * ready to accept virtual IRQ. On some architectures the virtual interrupt 923 * controller is dynamically instantiated and this is not always true. 924 */ 925bool kvm_arch_intc_initialized(struct kvm *kvm); 926#else 927static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 928{ 929 return true; 930} 931#endif 932 933int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 934void kvm_arch_destroy_vm(struct kvm *kvm); 935void kvm_arch_sync_events(struct kvm *kvm); 936 937int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 938void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 939 940bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 941 942struct kvm_irq_ack_notifier { 943 struct hlist_node link; 944 unsigned gsi; 945 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 946}; 947 948int kvm_irq_map_gsi(struct kvm *kvm, 949 struct kvm_kernel_irq_routing_entry *entries, int gsi); 950int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 951 952int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 953 bool line_status); 954int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 955 int irq_source_id, int level, bool line_status); 956int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 957 struct kvm *kvm, int irq_source_id, 958 int level, bool line_status); 959bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 960void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 961void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 962void kvm_register_irq_ack_notifier(struct kvm *kvm, 963 struct kvm_irq_ack_notifier *kian); 964void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 965 struct kvm_irq_ack_notifier *kian); 966int kvm_request_irq_source_id(struct kvm *kvm); 967void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 968 969/* 970 * search_memslots() and __gfn_to_memslot() are here because they are 971 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 972 * gfn_to_memslot() itself isn't here as an inline because that would 973 * bloat other code too much. 974 */ 975static inline struct kvm_memory_slot * 976search_memslots(struct kvm_memslots *slots, gfn_t gfn) 977{ 978 int start = 0, end = slots->used_slots; 979 int slot = atomic_read(&slots->lru_slot); 980 struct kvm_memory_slot *memslots = slots->memslots; 981 982 if (gfn >= memslots[slot].base_gfn && 983 gfn < memslots[slot].base_gfn + memslots[slot].npages) 984 return &memslots[slot]; 985 986 while (start < end) { 987 slot = start + (end - start) / 2; 988 989 if (gfn >= memslots[slot].base_gfn) 990 end = slot; 991 else 992 start = slot + 1; 993 } 994 995 if (gfn >= memslots[start].base_gfn && 996 gfn < memslots[start].base_gfn + memslots[start].npages) { 997 atomic_set(&slots->lru_slot, start); 998 return &memslots[start]; 999 } 1000 1001 return NULL; 1002} 1003 1004static inline struct kvm_memory_slot * 1005__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1006{ 1007 return search_memslots(slots, gfn); 1008} 1009 1010static inline unsigned long 1011__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1012{ 1013 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1014} 1015 1016static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1017{ 1018 return gfn_to_memslot(kvm, gfn)->id; 1019} 1020 1021static inline gfn_t 1022hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1023{ 1024 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1025 1026 return slot->base_gfn + gfn_offset; 1027} 1028 1029static inline gpa_t gfn_to_gpa(gfn_t gfn) 1030{ 1031 return (gpa_t)gfn << PAGE_SHIFT; 1032} 1033 1034static inline gfn_t gpa_to_gfn(gpa_t gpa) 1035{ 1036 return (gfn_t)(gpa >> PAGE_SHIFT); 1037} 1038 1039static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1040{ 1041 return (hpa_t)pfn << PAGE_SHIFT; 1042} 1043 1044static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1045 gpa_t gpa) 1046{ 1047 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1048} 1049 1050static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1051{ 1052 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1053 1054 return kvm_is_error_hva(hva); 1055} 1056 1057enum kvm_stat_kind { 1058 KVM_STAT_VM, 1059 KVM_STAT_VCPU, 1060}; 1061 1062struct kvm_stat_data { 1063 int offset; 1064 struct kvm *kvm; 1065}; 1066 1067struct kvm_stats_debugfs_item { 1068 const char *name; 1069 int offset; 1070 enum kvm_stat_kind kind; 1071}; 1072extern struct kvm_stats_debugfs_item debugfs_entries[]; 1073extern struct dentry *kvm_debugfs_dir; 1074 1075#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1076static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1077{ 1078 if (unlikely(kvm->mmu_notifier_count)) 1079 return 1; 1080 /* 1081 * Ensure the read of mmu_notifier_count happens before the read 1082 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1083 * mmu_notifier_invalidate_range_end to make sure that the caller 1084 * either sees the old (non-zero) value of mmu_notifier_count or 1085 * the new (incremented) value of mmu_notifier_seq. 1086 * PowerPC Book3s HV KVM calls this under a per-page lock 1087 * rather than under kvm->mmu_lock, for scalability, so 1088 * can't rely on kvm->mmu_lock to keep things ordered. 1089 */ 1090 smp_rmb(); 1091 if (kvm->mmu_notifier_seq != mmu_seq) 1092 return 1; 1093 return 0; 1094} 1095#endif 1096 1097#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1098 1099#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1100 1101bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1102int kvm_set_irq_routing(struct kvm *kvm, 1103 const struct kvm_irq_routing_entry *entries, 1104 unsigned nr, 1105 unsigned flags); 1106int kvm_set_routing_entry(struct kvm *kvm, 1107 struct kvm_kernel_irq_routing_entry *e, 1108 const struct kvm_irq_routing_entry *ue); 1109void kvm_free_irq_routing(struct kvm *kvm); 1110 1111#else 1112 1113static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1114 1115#endif 1116 1117int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1118 1119#ifdef CONFIG_HAVE_KVM_EVENTFD 1120 1121void kvm_eventfd_init(struct kvm *kvm); 1122int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1123 1124#ifdef CONFIG_HAVE_KVM_IRQFD 1125int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1126void kvm_irqfd_release(struct kvm *kvm); 1127void kvm_irq_routing_update(struct kvm *); 1128#else 1129static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1130{ 1131 return -EINVAL; 1132} 1133 1134static inline void kvm_irqfd_release(struct kvm *kvm) {} 1135#endif 1136 1137#else 1138 1139static inline void kvm_eventfd_init(struct kvm *kvm) {} 1140 1141static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1142{ 1143 return -EINVAL; 1144} 1145 1146static inline void kvm_irqfd_release(struct kvm *kvm) {} 1147 1148#ifdef CONFIG_HAVE_KVM_IRQCHIP 1149static inline void kvm_irq_routing_update(struct kvm *kvm) 1150{ 1151} 1152#endif 1153 1154static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1155{ 1156 return -ENOSYS; 1157} 1158 1159#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1160 1161void kvm_arch_irq_routing_update(struct kvm *kvm); 1162 1163static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1164{ 1165 /* 1166 * Ensure the rest of the request is published to kvm_check_request's 1167 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1168 */ 1169 smp_wmb(); 1170 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1171} 1172 1173static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1174{ 1175 return READ_ONCE(vcpu->requests); 1176} 1177 1178static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1179{ 1180 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1181} 1182 1183static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1184{ 1185 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1186} 1187 1188static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1189{ 1190 if (kvm_test_request(req, vcpu)) { 1191 kvm_clear_request(req, vcpu); 1192 1193 /* 1194 * Ensure the rest of the request is visible to kvm_check_request's 1195 * caller. Paired with the smp_wmb in kvm_make_request. 1196 */ 1197 smp_mb__after_atomic(); 1198 return true; 1199 } else { 1200 return false; 1201 } 1202} 1203 1204extern bool kvm_rebooting; 1205 1206extern unsigned int halt_poll_ns; 1207extern unsigned int halt_poll_ns_grow; 1208extern unsigned int halt_poll_ns_grow_start; 1209extern unsigned int halt_poll_ns_shrink; 1210 1211struct kvm_device { 1212 struct kvm_device_ops *ops; 1213 struct kvm *kvm; 1214 void *private; 1215 struct list_head vm_node; 1216}; 1217 1218/* create, destroy, and name are mandatory */ 1219struct kvm_device_ops { 1220 const char *name; 1221 1222 /* 1223 * create is called holding kvm->lock and any operations not suitable 1224 * to do while holding the lock should be deferred to init (see 1225 * below). 1226 */ 1227 int (*create)(struct kvm_device *dev, u32 type); 1228 1229 /* 1230 * init is called after create if create is successful and is called 1231 * outside of holding kvm->lock. 1232 */ 1233 void (*init)(struct kvm_device *dev); 1234 1235 /* 1236 * Destroy is responsible for freeing dev. 1237 * 1238 * Destroy may be called before or after destructors are called 1239 * on emulated I/O regions, depending on whether a reference is 1240 * held by a vcpu or other kvm component that gets destroyed 1241 * after the emulated I/O. 1242 */ 1243 void (*destroy)(struct kvm_device *dev); 1244 1245 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1246 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1247 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1248 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1249 unsigned long arg); 1250}; 1251 1252void kvm_device_get(struct kvm_device *dev); 1253void kvm_device_put(struct kvm_device *dev); 1254struct kvm_device *kvm_device_from_filp(struct file *filp); 1255int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type); 1256void kvm_unregister_device_ops(u32 type); 1257 1258extern struct kvm_device_ops kvm_mpic_ops; 1259extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1260extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1261 1262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1263 1264static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1265{ 1266 vcpu->spin_loop.in_spin_loop = val; 1267} 1268static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1269{ 1270 vcpu->spin_loop.dy_eligible = val; 1271} 1272 1273#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1274 1275static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1276{ 1277} 1278 1279static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1280{ 1281} 1282#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1283 1284#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1285bool kvm_arch_has_irq_bypass(void); 1286int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1287 struct irq_bypass_producer *); 1288void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1289 struct irq_bypass_producer *); 1290void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1291void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1292int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1293 uint32_t guest_irq, bool set); 1294#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1295 1296#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1297/* If we wakeup during the poll time, was it a sucessful poll? */ 1298static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1299{ 1300 return vcpu->valid_wakeup; 1301} 1302 1303#else 1304static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1305{ 1306 return true; 1307} 1308#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1309 1310#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1311long kvm_arch_vcpu_async_ioctl(struct file *filp, 1312 unsigned int ioctl, unsigned long arg); 1313#else 1314static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1315 unsigned int ioctl, 1316 unsigned long arg) 1317{ 1318 return -ENOIOCTLCMD; 1319} 1320#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1321 1322int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1323 unsigned long start, unsigned long end, bool blockable); 1324 1325#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1326int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1327#else 1328static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1329{ 1330 return 0; 1331} 1332#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1333 1334#endif