Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef __KVM_HOST_H
2#define __KVM_HOST_H
3
4/*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9#include <linux/types.h>
10#include <linux/hardirq.h>
11#include <linux/list.h>
12#include <linux/mutex.h>
13#include <linux/spinlock.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/bug.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/preempt.h>
20#include <linux/msi.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/rcupdate.h>
24#include <linux/ratelimit.h>
25#include <linux/err.h>
26#include <linux/irqflags.h>
27#include <linux/context_tracking.h>
28#include <linux/irqbypass.h>
29#include <linux/swait.h>
30#include <linux/refcount.h>
31#include <linux/nospec.h>
32#include <asm/signal.h>
33
34#include <linux/kvm.h>
35#include <linux/kvm_para.h>
36
37#include <linux/kvm_types.h>
38
39#include <asm/kvm_host.h>
40
41#ifndef KVM_MAX_VCPU_ID
42#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
43#endif
44
45/*
46 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
47 * in kvm, other bits are visible for userspace which are defined in
48 * include/linux/kvm_h.
49 */
50#define KVM_MEMSLOT_INVALID (1UL << 16)
51
52/*
53 * Bit 63 of the memslot generation number is an "update in-progress flag",
54 * e.g. is temporarily set for the duration of install_new_memslots().
55 * This flag effectively creates a unique generation number that is used to
56 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
57 * i.e. may (or may not) have come from the previous memslots generation.
58 *
59 * This is necessary because the actual memslots update is not atomic with
60 * respect to the generation number update. Updating the generation number
61 * first would allow a vCPU to cache a spte from the old memslots using the
62 * new generation number, and updating the generation number after switching
63 * to the new memslots would allow cache hits using the old generation number
64 * to reference the defunct memslots.
65 *
66 * This mechanism is used to prevent getting hits in KVM's caches while a
67 * memslot update is in-progress, and to prevent cache hits *after* updating
68 * the actual generation number against accesses that were inserted into the
69 * cache *before* the memslots were updated.
70 */
71#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
72
73/* Two fragments for cross MMIO pages. */
74#define KVM_MAX_MMIO_FRAGMENTS 2
75
76#ifndef KVM_ADDRESS_SPACE_NUM
77#define KVM_ADDRESS_SPACE_NUM 1
78#endif
79
80/*
81 * For the normal pfn, the highest 12 bits should be zero,
82 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
83 * mask bit 63 to indicate the noslot pfn.
84 */
85#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
86#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
87#define KVM_PFN_NOSLOT (0x1ULL << 63)
88
89#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
90#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
91#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
92
93/*
94 * error pfns indicate that the gfn is in slot but faild to
95 * translate it to pfn on host.
96 */
97static inline bool is_error_pfn(kvm_pfn_t pfn)
98{
99 return !!(pfn & KVM_PFN_ERR_MASK);
100}
101
102/*
103 * error_noslot pfns indicate that the gfn can not be
104 * translated to pfn - it is not in slot or failed to
105 * translate it to pfn.
106 */
107static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
108{
109 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
110}
111
112/* noslot pfn indicates that the gfn is not in slot. */
113static inline bool is_noslot_pfn(kvm_pfn_t pfn)
114{
115 return pfn == KVM_PFN_NOSLOT;
116}
117
118/*
119 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
120 * provide own defines and kvm_is_error_hva
121 */
122#ifndef KVM_HVA_ERR_BAD
123
124#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
125#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
126
127static inline bool kvm_is_error_hva(unsigned long addr)
128{
129 return addr >= PAGE_OFFSET;
130}
131
132#endif
133
134#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
135
136static inline bool is_error_page(struct page *page)
137{
138 return IS_ERR(page);
139}
140
141#define KVM_REQUEST_MASK GENMASK(7,0)
142#define KVM_REQUEST_NO_WAKEUP BIT(8)
143#define KVM_REQUEST_WAIT BIT(9)
144/*
145 * Architecture-independent vcpu->requests bit members
146 * Bits 4-7 are reserved for more arch-independent bits.
147 */
148#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
150#define KVM_REQ_PENDING_TIMER 2
151#define KVM_REQ_UNHALT 3
152#define KVM_REQUEST_ARCH_BASE 8
153
154#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
155 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
156 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
157})
158#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
159
160#define KVM_USERSPACE_IRQ_SOURCE_ID 0
161#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
162
163extern struct kmem_cache *kvm_vcpu_cache;
164
165extern spinlock_t kvm_lock;
166extern struct list_head vm_list;
167
168struct kvm_io_range {
169 gpa_t addr;
170 int len;
171 struct kvm_io_device *dev;
172};
173
174#define NR_IOBUS_DEVS 1000
175
176struct kvm_io_bus {
177 int dev_count;
178 int ioeventfd_count;
179 struct kvm_io_range range[];
180};
181
182enum kvm_bus {
183 KVM_MMIO_BUS,
184 KVM_PIO_BUS,
185 KVM_VIRTIO_CCW_NOTIFY_BUS,
186 KVM_FAST_MMIO_BUS,
187 KVM_NR_BUSES
188};
189
190int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
191 int len, const void *val);
192int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
193 gpa_t addr, int len, const void *val, long cookie);
194int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
195 int len, void *val);
196int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
197 int len, struct kvm_io_device *dev);
198void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
199 struct kvm_io_device *dev);
200struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
201 gpa_t addr);
202
203#ifdef CONFIG_KVM_ASYNC_PF
204struct kvm_async_pf {
205 struct work_struct work;
206 struct list_head link;
207 struct list_head queue;
208 struct kvm_vcpu *vcpu;
209 struct mm_struct *mm;
210 gva_t gva;
211 unsigned long addr;
212 struct kvm_arch_async_pf arch;
213 bool wakeup_all;
214};
215
216void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
217void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
218int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
219 struct kvm_arch_async_pf *arch);
220int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
221#endif
222
223enum {
224 OUTSIDE_GUEST_MODE,
225 IN_GUEST_MODE,
226 EXITING_GUEST_MODE,
227 READING_SHADOW_PAGE_TABLES,
228};
229
230/*
231 * Sometimes a large or cross-page mmio needs to be broken up into separate
232 * exits for userspace servicing.
233 */
234struct kvm_mmio_fragment {
235 gpa_t gpa;
236 void *data;
237 unsigned len;
238};
239
240struct kvm_vcpu {
241 struct kvm *kvm;
242#ifdef CONFIG_PREEMPT_NOTIFIERS
243 struct preempt_notifier preempt_notifier;
244#endif
245 int cpu;
246 int vcpu_id;
247 int srcu_idx;
248 int mode;
249 u64 requests;
250 unsigned long guest_debug;
251
252 int pre_pcpu;
253 struct list_head blocked_vcpu_list;
254
255 struct mutex mutex;
256 struct kvm_run *run;
257
258 int guest_xcr0_loaded;
259 struct swait_queue_head wq;
260 struct pid __rcu *pid;
261 int sigset_active;
262 sigset_t sigset;
263 struct kvm_vcpu_stat stat;
264 unsigned int halt_poll_ns;
265 bool valid_wakeup;
266
267#ifdef CONFIG_HAS_IOMEM
268 int mmio_needed;
269 int mmio_read_completed;
270 int mmio_is_write;
271 int mmio_cur_fragment;
272 int mmio_nr_fragments;
273 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
274#endif
275
276#ifdef CONFIG_KVM_ASYNC_PF
277 struct {
278 u32 queued;
279 struct list_head queue;
280 struct list_head done;
281 spinlock_t lock;
282 } async_pf;
283#endif
284
285#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
286 /*
287 * Cpu relax intercept or pause loop exit optimization
288 * in_spin_loop: set when a vcpu does a pause loop exit
289 * or cpu relax intercepted.
290 * dy_eligible: indicates whether vcpu is eligible for directed yield.
291 */
292 struct {
293 bool in_spin_loop;
294 bool dy_eligible;
295 } spin_loop;
296#endif
297 bool preempted;
298 struct kvm_vcpu_arch arch;
299 struct dentry *debugfs_dentry;
300};
301
302static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
303{
304 /*
305 * The memory barrier ensures a previous write to vcpu->requests cannot
306 * be reordered with the read of vcpu->mode. It pairs with the general
307 * memory barrier following the write of vcpu->mode in VCPU RUN.
308 */
309 smp_mb__before_atomic();
310 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
311}
312
313/*
314 * Some of the bitops functions do not support too long bitmaps.
315 * This number must be determined not to exceed such limits.
316 */
317#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
318
319struct kvm_memory_slot {
320 gfn_t base_gfn;
321 unsigned long npages;
322 unsigned long *dirty_bitmap;
323 struct kvm_arch_memory_slot arch;
324 unsigned long userspace_addr;
325 u32 flags;
326 short id;
327};
328
329static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
330{
331 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
332}
333
334static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
335{
336 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
337
338 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
339}
340
341struct kvm_s390_adapter_int {
342 u64 ind_addr;
343 u64 summary_addr;
344 u64 ind_offset;
345 u32 summary_offset;
346 u32 adapter_id;
347};
348
349struct kvm_hv_sint {
350 u32 vcpu;
351 u32 sint;
352};
353
354struct kvm_kernel_irq_routing_entry {
355 u32 gsi;
356 u32 type;
357 int (*set)(struct kvm_kernel_irq_routing_entry *e,
358 struct kvm *kvm, int irq_source_id, int level,
359 bool line_status);
360 union {
361 struct {
362 unsigned irqchip;
363 unsigned pin;
364 } irqchip;
365 struct {
366 u32 address_lo;
367 u32 address_hi;
368 u32 data;
369 u32 flags;
370 u32 devid;
371 } msi;
372 struct kvm_s390_adapter_int adapter;
373 struct kvm_hv_sint hv_sint;
374 };
375 struct hlist_node link;
376};
377
378#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
379struct kvm_irq_routing_table {
380 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
381 u32 nr_rt_entries;
382 /*
383 * Array indexed by gsi. Each entry contains list of irq chips
384 * the gsi is connected to.
385 */
386 struct hlist_head map[0];
387};
388#endif
389
390#ifndef KVM_PRIVATE_MEM_SLOTS
391#define KVM_PRIVATE_MEM_SLOTS 0
392#endif
393
394#ifndef KVM_MEM_SLOTS_NUM
395#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
396#endif
397
398#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
399static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
400{
401 return 0;
402}
403#endif
404
405/*
406 * Note:
407 * memslots are not sorted by id anymore, please use id_to_memslot()
408 * to get the memslot by its id.
409 */
410struct kvm_memslots {
411 u64 generation;
412 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
413 /* The mapping table from slot id to the index in memslots[]. */
414 short id_to_index[KVM_MEM_SLOTS_NUM];
415 atomic_t lru_slot;
416 int used_slots;
417};
418
419struct kvm {
420 spinlock_t mmu_lock;
421 struct mutex slots_lock;
422 struct mm_struct *mm; /* userspace tied to this vm */
423 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
424 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
425
426 /*
427 * created_vcpus is protected by kvm->lock, and is incremented
428 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
429 * incremented after storing the kvm_vcpu pointer in vcpus,
430 * and is accessed atomically.
431 */
432 atomic_t online_vcpus;
433 int created_vcpus;
434 int last_boosted_vcpu;
435 struct list_head vm_list;
436 struct mutex lock;
437 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
438#ifdef CONFIG_HAVE_KVM_EVENTFD
439 struct {
440 spinlock_t lock;
441 struct list_head items;
442 struct list_head resampler_list;
443 struct mutex resampler_lock;
444 } irqfds;
445 struct list_head ioeventfds;
446#endif
447 struct kvm_vm_stat stat;
448 struct kvm_arch arch;
449 refcount_t users_count;
450#ifdef CONFIG_KVM_MMIO
451 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
452 spinlock_t ring_lock;
453 struct list_head coalesced_zones;
454#endif
455
456 struct mutex irq_lock;
457#ifdef CONFIG_HAVE_KVM_IRQCHIP
458 /*
459 * Update side is protected by irq_lock.
460 */
461 struct kvm_irq_routing_table __rcu *irq_routing;
462#endif
463#ifdef CONFIG_HAVE_KVM_IRQFD
464 struct hlist_head irq_ack_notifier_list;
465#endif
466
467#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
468 struct mmu_notifier mmu_notifier;
469 unsigned long mmu_notifier_seq;
470 long mmu_notifier_count;
471#endif
472 long tlbs_dirty;
473 struct list_head devices;
474 bool manual_dirty_log_protect;
475 struct dentry *debugfs_dentry;
476 struct kvm_stat_data **debugfs_stat_data;
477 struct srcu_struct srcu;
478 struct srcu_struct irq_srcu;
479 pid_t userspace_pid;
480};
481
482#define kvm_err(fmt, ...) \
483 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
484#define kvm_info(fmt, ...) \
485 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
486#define kvm_debug(fmt, ...) \
487 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
488#define kvm_debug_ratelimited(fmt, ...) \
489 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
490 ## __VA_ARGS__)
491#define kvm_pr_unimpl(fmt, ...) \
492 pr_err_ratelimited("kvm [%i]: " fmt, \
493 task_tgid_nr(current), ## __VA_ARGS__)
494
495/* The guest did something we don't support. */
496#define vcpu_unimpl(vcpu, fmt, ...) \
497 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
498 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
499
500#define vcpu_debug(vcpu, fmt, ...) \
501 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
502#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
503 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
504 ## __VA_ARGS__)
505#define vcpu_err(vcpu, fmt, ...) \
506 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
507
508static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
509{
510 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
511 lockdep_is_held(&kvm->slots_lock) ||
512 !refcount_read(&kvm->users_count));
513}
514
515static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
516{
517 int num_vcpus = atomic_read(&kvm->online_vcpus);
518 i = array_index_nospec(i, num_vcpus);
519
520 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
521 smp_rmb();
522 return kvm->vcpus[i];
523}
524
525#define kvm_for_each_vcpu(idx, vcpup, kvm) \
526 for (idx = 0; \
527 idx < atomic_read(&kvm->online_vcpus) && \
528 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
529 idx++)
530
531static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
532{
533 struct kvm_vcpu *vcpu = NULL;
534 int i;
535
536 if (id < 0)
537 return NULL;
538 if (id < KVM_MAX_VCPUS)
539 vcpu = kvm_get_vcpu(kvm, id);
540 if (vcpu && vcpu->vcpu_id == id)
541 return vcpu;
542 kvm_for_each_vcpu(i, vcpu, kvm)
543 if (vcpu->vcpu_id == id)
544 return vcpu;
545 return NULL;
546}
547
548static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
549{
550 struct kvm_vcpu *tmp;
551 int idx;
552
553 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
554 if (tmp == vcpu)
555 return idx;
556 BUG();
557}
558
559#define kvm_for_each_memslot(memslot, slots) \
560 for (memslot = &slots->memslots[0]; \
561 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
562 memslot++)
563
564int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
565void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
566
567void vcpu_load(struct kvm_vcpu *vcpu);
568void vcpu_put(struct kvm_vcpu *vcpu);
569
570#ifdef __KVM_HAVE_IOAPIC
571void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
572void kvm_arch_post_irq_routing_update(struct kvm *kvm);
573#else
574static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
575{
576}
577static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
578{
579}
580#endif
581
582#ifdef CONFIG_HAVE_KVM_IRQFD
583int kvm_irqfd_init(void);
584void kvm_irqfd_exit(void);
585#else
586static inline int kvm_irqfd_init(void)
587{
588 return 0;
589}
590
591static inline void kvm_irqfd_exit(void)
592{
593}
594#endif
595int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
596 struct module *module);
597void kvm_exit(void);
598
599void kvm_get_kvm(struct kvm *kvm);
600void kvm_put_kvm(struct kvm *kvm);
601
602static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
603{
604 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
605 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
606 lockdep_is_held(&kvm->slots_lock) ||
607 !refcount_read(&kvm->users_count));
608}
609
610static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
611{
612 return __kvm_memslots(kvm, 0);
613}
614
615static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
616{
617 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
618
619 return __kvm_memslots(vcpu->kvm, as_id);
620}
621
622static inline struct kvm_memory_slot *
623id_to_memslot(struct kvm_memslots *slots, int id)
624{
625 int index = slots->id_to_index[id];
626 struct kvm_memory_slot *slot;
627
628 slot = &slots->memslots[index];
629
630 WARN_ON(slot->id != id);
631 return slot;
632}
633
634/*
635 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
636 * - create a new memory slot
637 * - delete an existing memory slot
638 * - modify an existing memory slot
639 * -- move it in the guest physical memory space
640 * -- just change its flags
641 *
642 * Since flags can be changed by some of these operations, the following
643 * differentiation is the best we can do for __kvm_set_memory_region():
644 */
645enum kvm_mr_change {
646 KVM_MR_CREATE,
647 KVM_MR_DELETE,
648 KVM_MR_MOVE,
649 KVM_MR_FLAGS_ONLY,
650};
651
652int kvm_set_memory_region(struct kvm *kvm,
653 const struct kvm_userspace_memory_region *mem);
654int __kvm_set_memory_region(struct kvm *kvm,
655 const struct kvm_userspace_memory_region *mem);
656void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
657 struct kvm_memory_slot *dont);
658int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
659 unsigned long npages);
660void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
661int kvm_arch_prepare_memory_region(struct kvm *kvm,
662 struct kvm_memory_slot *memslot,
663 const struct kvm_userspace_memory_region *mem,
664 enum kvm_mr_change change);
665void kvm_arch_commit_memory_region(struct kvm *kvm,
666 const struct kvm_userspace_memory_region *mem,
667 const struct kvm_memory_slot *old,
668 const struct kvm_memory_slot *new,
669 enum kvm_mr_change change);
670bool kvm_largepages_enabled(void);
671void kvm_disable_largepages(void);
672/* flush all memory translations */
673void kvm_arch_flush_shadow_all(struct kvm *kvm);
674/* flush memory translations pointing to 'slot' */
675void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
676 struct kvm_memory_slot *slot);
677
678int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
679 struct page **pages, int nr_pages);
680
681struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
682unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
683unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
684unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
685unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
686 bool *writable);
687void kvm_release_page_clean(struct page *page);
688void kvm_release_page_dirty(struct page *page);
689void kvm_set_page_accessed(struct page *page);
690
691kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
692kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
693kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
694 bool *writable);
695kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
696kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
697kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
698 bool atomic, bool *async, bool write_fault,
699 bool *writable);
700
701void kvm_release_pfn_clean(kvm_pfn_t pfn);
702void kvm_release_pfn_dirty(kvm_pfn_t pfn);
703void kvm_set_pfn_dirty(kvm_pfn_t pfn);
704void kvm_set_pfn_accessed(kvm_pfn_t pfn);
705void kvm_get_pfn(kvm_pfn_t pfn);
706
707int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
708 int len);
709int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
710 unsigned long len);
711int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
712int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
713 void *data, unsigned long len);
714int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
715 int offset, int len);
716int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
717 unsigned long len);
718int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
719 void *data, unsigned long len);
720int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
721 void *data, unsigned int offset,
722 unsigned long len);
723int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
724 gpa_t gpa, unsigned long len);
725int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
726int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
727struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
728bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
729unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
730void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
731
732struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
733struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
734kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
735kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
736struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
737unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
738unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
739int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
740 int len);
741int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
742 unsigned long len);
743int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
744 unsigned long len);
745int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
746 int offset, int len);
747int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
748 unsigned long len);
749void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
750
751void kvm_sigset_activate(struct kvm_vcpu *vcpu);
752void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
753
754void kvm_vcpu_block(struct kvm_vcpu *vcpu);
755void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
756void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
757bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
758void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
759int kvm_vcpu_yield_to(struct kvm_vcpu *target);
760void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
761
762void kvm_flush_remote_tlbs(struct kvm *kvm);
763void kvm_reload_remote_mmus(struct kvm *kvm);
764
765bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
766 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
767bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
768
769long kvm_arch_dev_ioctl(struct file *filp,
770 unsigned int ioctl, unsigned long arg);
771long kvm_arch_vcpu_ioctl(struct file *filp,
772 unsigned int ioctl, unsigned long arg);
773vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
774
775int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
776
777int kvm_get_dirty_log(struct kvm *kvm,
778 struct kvm_dirty_log *log, int *is_dirty);
779
780int kvm_get_dirty_log_protect(struct kvm *kvm,
781 struct kvm_dirty_log *log, bool *flush);
782int kvm_clear_dirty_log_protect(struct kvm *kvm,
783 struct kvm_clear_dirty_log *log, bool *flush);
784
785void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
786 struct kvm_memory_slot *slot,
787 gfn_t gfn_offset,
788 unsigned long mask);
789
790int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
791 struct kvm_dirty_log *log);
792int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
793 struct kvm_clear_dirty_log *log);
794
795int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
796 bool line_status);
797int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
798 struct kvm_enable_cap *cap);
799long kvm_arch_vm_ioctl(struct file *filp,
800 unsigned int ioctl, unsigned long arg);
801
802int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
803int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
804
805int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
806 struct kvm_translation *tr);
807
808int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
809int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
810int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
811 struct kvm_sregs *sregs);
812int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
813 struct kvm_sregs *sregs);
814int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
815 struct kvm_mp_state *mp_state);
816int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
817 struct kvm_mp_state *mp_state);
818int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
819 struct kvm_guest_debug *dbg);
820int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
821
822int kvm_arch_init(void *opaque);
823void kvm_arch_exit(void);
824
825int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
826void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
827
828void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
829
830void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
831void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
832void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
833struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
834int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
835void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
836void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
837
838bool kvm_arch_has_vcpu_debugfs(void);
839int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
840
841int kvm_arch_hardware_enable(void);
842void kvm_arch_hardware_disable(void);
843int kvm_arch_hardware_setup(void);
844void kvm_arch_hardware_unsetup(void);
845void kvm_arch_check_processor_compat(void *rtn);
846int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
847bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
848int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
849
850#ifndef __KVM_HAVE_ARCH_VM_ALLOC
851/*
852 * All architectures that want to use vzalloc currently also
853 * need their own kvm_arch_alloc_vm implementation.
854 */
855static inline struct kvm *kvm_arch_alloc_vm(void)
856{
857 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
858}
859
860static inline void kvm_arch_free_vm(struct kvm *kvm)
861{
862 kfree(kvm);
863}
864#endif
865
866#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
867static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
868{
869 return -ENOTSUPP;
870}
871#endif
872
873#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
874void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
875void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
876bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
877#else
878static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
879{
880}
881
882static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
883{
884}
885
886static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
887{
888 return false;
889}
890#endif
891#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
892void kvm_arch_start_assignment(struct kvm *kvm);
893void kvm_arch_end_assignment(struct kvm *kvm);
894bool kvm_arch_has_assigned_device(struct kvm *kvm);
895#else
896static inline void kvm_arch_start_assignment(struct kvm *kvm)
897{
898}
899
900static inline void kvm_arch_end_assignment(struct kvm *kvm)
901{
902}
903
904static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
905{
906 return false;
907}
908#endif
909
910static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
911{
912#ifdef __KVM_HAVE_ARCH_WQP
913 return vcpu->arch.wqp;
914#else
915 return &vcpu->wq;
916#endif
917}
918
919#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
920/*
921 * returns true if the virtual interrupt controller is initialized and
922 * ready to accept virtual IRQ. On some architectures the virtual interrupt
923 * controller is dynamically instantiated and this is not always true.
924 */
925bool kvm_arch_intc_initialized(struct kvm *kvm);
926#else
927static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
928{
929 return true;
930}
931#endif
932
933int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
934void kvm_arch_destroy_vm(struct kvm *kvm);
935void kvm_arch_sync_events(struct kvm *kvm);
936
937int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
938void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
939
940bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
941
942struct kvm_irq_ack_notifier {
943 struct hlist_node link;
944 unsigned gsi;
945 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
946};
947
948int kvm_irq_map_gsi(struct kvm *kvm,
949 struct kvm_kernel_irq_routing_entry *entries, int gsi);
950int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
951
952int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
953 bool line_status);
954int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
955 int irq_source_id, int level, bool line_status);
956int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
957 struct kvm *kvm, int irq_source_id,
958 int level, bool line_status);
959bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
960void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
961void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
962void kvm_register_irq_ack_notifier(struct kvm *kvm,
963 struct kvm_irq_ack_notifier *kian);
964void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
965 struct kvm_irq_ack_notifier *kian);
966int kvm_request_irq_source_id(struct kvm *kvm);
967void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
968
969/*
970 * search_memslots() and __gfn_to_memslot() are here because they are
971 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
972 * gfn_to_memslot() itself isn't here as an inline because that would
973 * bloat other code too much.
974 */
975static inline struct kvm_memory_slot *
976search_memslots(struct kvm_memslots *slots, gfn_t gfn)
977{
978 int start = 0, end = slots->used_slots;
979 int slot = atomic_read(&slots->lru_slot);
980 struct kvm_memory_slot *memslots = slots->memslots;
981
982 if (gfn >= memslots[slot].base_gfn &&
983 gfn < memslots[slot].base_gfn + memslots[slot].npages)
984 return &memslots[slot];
985
986 while (start < end) {
987 slot = start + (end - start) / 2;
988
989 if (gfn >= memslots[slot].base_gfn)
990 end = slot;
991 else
992 start = slot + 1;
993 }
994
995 if (gfn >= memslots[start].base_gfn &&
996 gfn < memslots[start].base_gfn + memslots[start].npages) {
997 atomic_set(&slots->lru_slot, start);
998 return &memslots[start];
999 }
1000
1001 return NULL;
1002}
1003
1004static inline struct kvm_memory_slot *
1005__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1006{
1007 return search_memslots(slots, gfn);
1008}
1009
1010static inline unsigned long
1011__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1012{
1013 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1014}
1015
1016static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1017{
1018 return gfn_to_memslot(kvm, gfn)->id;
1019}
1020
1021static inline gfn_t
1022hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1023{
1024 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1025
1026 return slot->base_gfn + gfn_offset;
1027}
1028
1029static inline gpa_t gfn_to_gpa(gfn_t gfn)
1030{
1031 return (gpa_t)gfn << PAGE_SHIFT;
1032}
1033
1034static inline gfn_t gpa_to_gfn(gpa_t gpa)
1035{
1036 return (gfn_t)(gpa >> PAGE_SHIFT);
1037}
1038
1039static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1040{
1041 return (hpa_t)pfn << PAGE_SHIFT;
1042}
1043
1044static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1045 gpa_t gpa)
1046{
1047 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1048}
1049
1050static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1051{
1052 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1053
1054 return kvm_is_error_hva(hva);
1055}
1056
1057enum kvm_stat_kind {
1058 KVM_STAT_VM,
1059 KVM_STAT_VCPU,
1060};
1061
1062struct kvm_stat_data {
1063 int offset;
1064 struct kvm *kvm;
1065};
1066
1067struct kvm_stats_debugfs_item {
1068 const char *name;
1069 int offset;
1070 enum kvm_stat_kind kind;
1071};
1072extern struct kvm_stats_debugfs_item debugfs_entries[];
1073extern struct dentry *kvm_debugfs_dir;
1074
1075#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1076static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1077{
1078 if (unlikely(kvm->mmu_notifier_count))
1079 return 1;
1080 /*
1081 * Ensure the read of mmu_notifier_count happens before the read
1082 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1083 * mmu_notifier_invalidate_range_end to make sure that the caller
1084 * either sees the old (non-zero) value of mmu_notifier_count or
1085 * the new (incremented) value of mmu_notifier_seq.
1086 * PowerPC Book3s HV KVM calls this under a per-page lock
1087 * rather than under kvm->mmu_lock, for scalability, so
1088 * can't rely on kvm->mmu_lock to keep things ordered.
1089 */
1090 smp_rmb();
1091 if (kvm->mmu_notifier_seq != mmu_seq)
1092 return 1;
1093 return 0;
1094}
1095#endif
1096
1097#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1098
1099#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1100
1101bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1102int kvm_set_irq_routing(struct kvm *kvm,
1103 const struct kvm_irq_routing_entry *entries,
1104 unsigned nr,
1105 unsigned flags);
1106int kvm_set_routing_entry(struct kvm *kvm,
1107 struct kvm_kernel_irq_routing_entry *e,
1108 const struct kvm_irq_routing_entry *ue);
1109void kvm_free_irq_routing(struct kvm *kvm);
1110
1111#else
1112
1113static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1114
1115#endif
1116
1117int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1118
1119#ifdef CONFIG_HAVE_KVM_EVENTFD
1120
1121void kvm_eventfd_init(struct kvm *kvm);
1122int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1123
1124#ifdef CONFIG_HAVE_KVM_IRQFD
1125int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1126void kvm_irqfd_release(struct kvm *kvm);
1127void kvm_irq_routing_update(struct kvm *);
1128#else
1129static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1130{
1131 return -EINVAL;
1132}
1133
1134static inline void kvm_irqfd_release(struct kvm *kvm) {}
1135#endif
1136
1137#else
1138
1139static inline void kvm_eventfd_init(struct kvm *kvm) {}
1140
1141static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1142{
1143 return -EINVAL;
1144}
1145
1146static inline void kvm_irqfd_release(struct kvm *kvm) {}
1147
1148#ifdef CONFIG_HAVE_KVM_IRQCHIP
1149static inline void kvm_irq_routing_update(struct kvm *kvm)
1150{
1151}
1152#endif
1153
1154static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1155{
1156 return -ENOSYS;
1157}
1158
1159#endif /* CONFIG_HAVE_KVM_EVENTFD */
1160
1161void kvm_arch_irq_routing_update(struct kvm *kvm);
1162
1163static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1164{
1165 /*
1166 * Ensure the rest of the request is published to kvm_check_request's
1167 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1168 */
1169 smp_wmb();
1170 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1171}
1172
1173static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1174{
1175 return READ_ONCE(vcpu->requests);
1176}
1177
1178static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1179{
1180 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1181}
1182
1183static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1184{
1185 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1186}
1187
1188static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1189{
1190 if (kvm_test_request(req, vcpu)) {
1191 kvm_clear_request(req, vcpu);
1192
1193 /*
1194 * Ensure the rest of the request is visible to kvm_check_request's
1195 * caller. Paired with the smp_wmb in kvm_make_request.
1196 */
1197 smp_mb__after_atomic();
1198 return true;
1199 } else {
1200 return false;
1201 }
1202}
1203
1204extern bool kvm_rebooting;
1205
1206extern unsigned int halt_poll_ns;
1207extern unsigned int halt_poll_ns_grow;
1208extern unsigned int halt_poll_ns_grow_start;
1209extern unsigned int halt_poll_ns_shrink;
1210
1211struct kvm_device {
1212 struct kvm_device_ops *ops;
1213 struct kvm *kvm;
1214 void *private;
1215 struct list_head vm_node;
1216};
1217
1218/* create, destroy, and name are mandatory */
1219struct kvm_device_ops {
1220 const char *name;
1221
1222 /*
1223 * create is called holding kvm->lock and any operations not suitable
1224 * to do while holding the lock should be deferred to init (see
1225 * below).
1226 */
1227 int (*create)(struct kvm_device *dev, u32 type);
1228
1229 /*
1230 * init is called after create if create is successful and is called
1231 * outside of holding kvm->lock.
1232 */
1233 void (*init)(struct kvm_device *dev);
1234
1235 /*
1236 * Destroy is responsible for freeing dev.
1237 *
1238 * Destroy may be called before or after destructors are called
1239 * on emulated I/O regions, depending on whether a reference is
1240 * held by a vcpu or other kvm component that gets destroyed
1241 * after the emulated I/O.
1242 */
1243 void (*destroy)(struct kvm_device *dev);
1244
1245 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1246 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1247 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1248 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1249 unsigned long arg);
1250};
1251
1252void kvm_device_get(struct kvm_device *dev);
1253void kvm_device_put(struct kvm_device *dev);
1254struct kvm_device *kvm_device_from_filp(struct file *filp);
1255int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1256void kvm_unregister_device_ops(u32 type);
1257
1258extern struct kvm_device_ops kvm_mpic_ops;
1259extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1260extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1261
1262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1263
1264static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1265{
1266 vcpu->spin_loop.in_spin_loop = val;
1267}
1268static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1269{
1270 vcpu->spin_loop.dy_eligible = val;
1271}
1272
1273#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1274
1275static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1276{
1277}
1278
1279static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1280{
1281}
1282#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1283
1284#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1285bool kvm_arch_has_irq_bypass(void);
1286int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1287 struct irq_bypass_producer *);
1288void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1289 struct irq_bypass_producer *);
1290void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1291void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1292int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1293 uint32_t guest_irq, bool set);
1294#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1295
1296#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1297/* If we wakeup during the poll time, was it a sucessful poll? */
1298static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1299{
1300 return vcpu->valid_wakeup;
1301}
1302
1303#else
1304static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1305{
1306 return true;
1307}
1308#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1309
1310#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1311long kvm_arch_vcpu_async_ioctl(struct file *filp,
1312 unsigned int ioctl, unsigned long arg);
1313#else
1314static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1315 unsigned int ioctl,
1316 unsigned long arg)
1317{
1318 return -ENOIOCTLCMD;
1319}
1320#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1321
1322int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1323 unsigned long start, unsigned long end, bool blockable);
1324
1325#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1326int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1327#else
1328static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1329{
1330 return 0;
1331}
1332#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1333
1334#endif