at v5.1 64 kB view raw
1/* 2 * Scatterlist Cryptographic API. 3 * 4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> 5 * Copyright (c) 2002 David S. Miller (davem@redhat.com) 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> 7 * 8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> 9 * and Nettle, by Niels Möller. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 * 16 */ 17#ifndef _LINUX_CRYPTO_H 18#define _LINUX_CRYPTO_H 19 20#include <linux/atomic.h> 21#include <linux/kernel.h> 22#include <linux/list.h> 23#include <linux/bug.h> 24#include <linux/slab.h> 25#include <linux/string.h> 26#include <linux/uaccess.h> 27#include <linux/completion.h> 28 29/* 30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing 31 * arbitrary modules to be loaded. Loading from userspace may still need the 32 * unprefixed names, so retains those aliases as well. 33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro 35 * expands twice on the same line. Instead, use a separate base name for the 36 * alias. 37 */ 38#define MODULE_ALIAS_CRYPTO(name) \ 39 __MODULE_INFO(alias, alias_userspace, name); \ 40 __MODULE_INFO(alias, alias_crypto, "crypto-" name) 41 42/* 43 * Algorithm masks and types. 44 */ 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001 47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 48#define CRYPTO_ALG_TYPE_AEAD 0x00000003 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 52#define CRYPTO_ALG_TYPE_KPP 0x00000008 53#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a 54#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b 55#define CRYPTO_ALG_TYPE_RNG 0x0000000c 56#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d 57#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e 58#define CRYPTO_ALG_TYPE_HASH 0x0000000e 59#define CRYPTO_ALG_TYPE_SHASH 0x0000000e 60#define CRYPTO_ALG_TYPE_AHASH 0x0000000f 61 62#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e 63#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e 64#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c 65#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e 66 67#define CRYPTO_ALG_LARVAL 0x00000010 68#define CRYPTO_ALG_DEAD 0x00000020 69#define CRYPTO_ALG_DYING 0x00000040 70#define CRYPTO_ALG_ASYNC 0x00000080 71 72/* 73 * Set this bit if and only if the algorithm requires another algorithm of 74 * the same type to handle corner cases. 75 */ 76#define CRYPTO_ALG_NEED_FALLBACK 0x00000100 77 78/* 79 * Set if the algorithm has passed automated run-time testing. Note that 80 * if there is no run-time testing for a given algorithm it is considered 81 * to have passed. 82 */ 83 84#define CRYPTO_ALG_TESTED 0x00000400 85 86/* 87 * Set if the algorithm is an instance that is built from templates. 88 */ 89#define CRYPTO_ALG_INSTANCE 0x00000800 90 91/* Set this bit if the algorithm provided is hardware accelerated but 92 * not available to userspace via instruction set or so. 93 */ 94#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 95 96/* 97 * Mark a cipher as a service implementation only usable by another 98 * cipher and never by a normal user of the kernel crypto API 99 */ 100#define CRYPTO_ALG_INTERNAL 0x00002000 101 102/* 103 * Set if the algorithm has a ->setkey() method but can be used without 104 * calling it first, i.e. there is a default key. 105 */ 106#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 107 108/* 109 * Don't trigger module loading 110 */ 111#define CRYPTO_NOLOAD 0x00008000 112 113/* 114 * Transform masks and values (for crt_flags). 115 */ 116#define CRYPTO_TFM_NEED_KEY 0x00000001 117 118#define CRYPTO_TFM_REQ_MASK 0x000fff00 119#define CRYPTO_TFM_RES_MASK 0xfff00000 120 121#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100 122#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 123#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 124#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 125#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 126#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 127#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 128#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 129 130/* 131 * Miscellaneous stuff. 132 */ 133#define CRYPTO_MAX_ALG_NAME 128 134 135/* 136 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual 137 * declaration) is used to ensure that the crypto_tfm context structure is 138 * aligned correctly for the given architecture so that there are no alignment 139 * faults for C data types. In particular, this is required on platforms such 140 * as arm where pointers are 32-bit aligned but there are data types such as 141 * u64 which require 64-bit alignment. 142 */ 143#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN 144 145#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) 146 147struct scatterlist; 148struct crypto_ablkcipher; 149struct crypto_async_request; 150struct crypto_blkcipher; 151struct crypto_tfm; 152struct crypto_type; 153 154typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); 155 156/** 157 * DOC: Block Cipher Context Data Structures 158 * 159 * These data structures define the operating context for each block cipher 160 * type. 161 */ 162 163struct crypto_async_request { 164 struct list_head list; 165 crypto_completion_t complete; 166 void *data; 167 struct crypto_tfm *tfm; 168 169 u32 flags; 170}; 171 172struct ablkcipher_request { 173 struct crypto_async_request base; 174 175 unsigned int nbytes; 176 177 void *info; 178 179 struct scatterlist *src; 180 struct scatterlist *dst; 181 182 void *__ctx[] CRYPTO_MINALIGN_ATTR; 183}; 184 185struct blkcipher_desc { 186 struct crypto_blkcipher *tfm; 187 void *info; 188 u32 flags; 189}; 190 191/** 192 * DOC: Block Cipher Algorithm Definitions 193 * 194 * These data structures define modular crypto algorithm implementations, 195 * managed via crypto_register_alg() and crypto_unregister_alg(). 196 */ 197 198/** 199 * struct ablkcipher_alg - asynchronous block cipher definition 200 * @min_keysize: Minimum key size supported by the transformation. This is the 201 * smallest key length supported by this transformation algorithm. 202 * This must be set to one of the pre-defined values as this is 203 * not hardware specific. Possible values for this field can be 204 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 205 * @max_keysize: Maximum key size supported by the transformation. This is the 206 * largest key length supported by this transformation algorithm. 207 * This must be set to one of the pre-defined values as this is 208 * not hardware specific. Possible values for this field can be 209 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 210 * @setkey: Set key for the transformation. This function is used to either 211 * program a supplied key into the hardware or store the key in the 212 * transformation context for programming it later. Note that this 213 * function does modify the transformation context. This function can 214 * be called multiple times during the existence of the transformation 215 * object, so one must make sure the key is properly reprogrammed into 216 * the hardware. This function is also responsible for checking the key 217 * length for validity. In case a software fallback was put in place in 218 * the @cra_init call, this function might need to use the fallback if 219 * the algorithm doesn't support all of the key sizes. 220 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 221 * the supplied scatterlist containing the blocks of data. The crypto 222 * API consumer is responsible for aligning the entries of the 223 * scatterlist properly and making sure the chunks are correctly 224 * sized. In case a software fallback was put in place in the 225 * @cra_init call, this function might need to use the fallback if 226 * the algorithm doesn't support all of the key sizes. In case the 227 * key was stored in transformation context, the key might need to be 228 * re-programmed into the hardware in this function. This function 229 * shall not modify the transformation context, as this function may 230 * be called in parallel with the same transformation object. 231 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 232 * and the conditions are exactly the same. 233 * @ivsize: IV size applicable for transformation. The consumer must provide an 234 * IV of exactly that size to perform the encrypt or decrypt operation. 235 * 236 * All fields except @ivsize are mandatory and must be filled. 237 */ 238struct ablkcipher_alg { 239 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 240 unsigned int keylen); 241 int (*encrypt)(struct ablkcipher_request *req); 242 int (*decrypt)(struct ablkcipher_request *req); 243 244 unsigned int min_keysize; 245 unsigned int max_keysize; 246 unsigned int ivsize; 247}; 248 249/** 250 * struct blkcipher_alg - synchronous block cipher definition 251 * @min_keysize: see struct ablkcipher_alg 252 * @max_keysize: see struct ablkcipher_alg 253 * @setkey: see struct ablkcipher_alg 254 * @encrypt: see struct ablkcipher_alg 255 * @decrypt: see struct ablkcipher_alg 256 * @ivsize: see struct ablkcipher_alg 257 * 258 * All fields except @ivsize are mandatory and must be filled. 259 */ 260struct blkcipher_alg { 261 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 262 unsigned int keylen); 263 int (*encrypt)(struct blkcipher_desc *desc, 264 struct scatterlist *dst, struct scatterlist *src, 265 unsigned int nbytes); 266 int (*decrypt)(struct blkcipher_desc *desc, 267 struct scatterlist *dst, struct scatterlist *src, 268 unsigned int nbytes); 269 270 unsigned int min_keysize; 271 unsigned int max_keysize; 272 unsigned int ivsize; 273}; 274 275/** 276 * struct cipher_alg - single-block symmetric ciphers definition 277 * @cia_min_keysize: Minimum key size supported by the transformation. This is 278 * the smallest key length supported by this transformation 279 * algorithm. This must be set to one of the pre-defined 280 * values as this is not hardware specific. Possible values 281 * for this field can be found via git grep "_MIN_KEY_SIZE" 282 * include/crypto/ 283 * @cia_max_keysize: Maximum key size supported by the transformation. This is 284 * the largest key length supported by this transformation 285 * algorithm. This must be set to one of the pre-defined values 286 * as this is not hardware specific. Possible values for this 287 * field can be found via git grep "_MAX_KEY_SIZE" 288 * include/crypto/ 289 * @cia_setkey: Set key for the transformation. This function is used to either 290 * program a supplied key into the hardware or store the key in the 291 * transformation context for programming it later. Note that this 292 * function does modify the transformation context. This function 293 * can be called multiple times during the existence of the 294 * transformation object, so one must make sure the key is properly 295 * reprogrammed into the hardware. This function is also 296 * responsible for checking the key length for validity. 297 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a 298 * single block of data, which must be @cra_blocksize big. This 299 * always operates on a full @cra_blocksize and it is not possible 300 * to encrypt a block of smaller size. The supplied buffers must 301 * therefore also be at least of @cra_blocksize size. Both the 302 * input and output buffers are always aligned to @cra_alignmask. 303 * In case either of the input or output buffer supplied by user 304 * of the crypto API is not aligned to @cra_alignmask, the crypto 305 * API will re-align the buffers. The re-alignment means that a 306 * new buffer will be allocated, the data will be copied into the 307 * new buffer, then the processing will happen on the new buffer, 308 * then the data will be copied back into the original buffer and 309 * finally the new buffer will be freed. In case a software 310 * fallback was put in place in the @cra_init call, this function 311 * might need to use the fallback if the algorithm doesn't support 312 * all of the key sizes. In case the key was stored in 313 * transformation context, the key might need to be re-programmed 314 * into the hardware in this function. This function shall not 315 * modify the transformation context, as this function may be 316 * called in parallel with the same transformation object. 317 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to 318 * @cia_encrypt, and the conditions are exactly the same. 319 * 320 * All fields are mandatory and must be filled. 321 */ 322struct cipher_alg { 323 unsigned int cia_min_keysize; 324 unsigned int cia_max_keysize; 325 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, 326 unsigned int keylen); 327 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 328 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 329}; 330 331struct compress_alg { 332 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, 333 unsigned int slen, u8 *dst, unsigned int *dlen); 334 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, 335 unsigned int slen, u8 *dst, unsigned int *dlen); 336}; 337 338#ifdef CONFIG_CRYPTO_STATS 339/* 340 * struct crypto_istat_aead - statistics for AEAD algorithm 341 * @encrypt_cnt: number of encrypt requests 342 * @encrypt_tlen: total data size handled by encrypt requests 343 * @decrypt_cnt: number of decrypt requests 344 * @decrypt_tlen: total data size handled by decrypt requests 345 * @err_cnt: number of error for AEAD requests 346 */ 347struct crypto_istat_aead { 348 atomic64_t encrypt_cnt; 349 atomic64_t encrypt_tlen; 350 atomic64_t decrypt_cnt; 351 atomic64_t decrypt_tlen; 352 atomic64_t err_cnt; 353}; 354 355/* 356 * struct crypto_istat_akcipher - statistics for akcipher algorithm 357 * @encrypt_cnt: number of encrypt requests 358 * @encrypt_tlen: total data size handled by encrypt requests 359 * @decrypt_cnt: number of decrypt requests 360 * @decrypt_tlen: total data size handled by decrypt requests 361 * @verify_cnt: number of verify operation 362 * @sign_cnt: number of sign requests 363 * @err_cnt: number of error for akcipher requests 364 */ 365struct crypto_istat_akcipher { 366 atomic64_t encrypt_cnt; 367 atomic64_t encrypt_tlen; 368 atomic64_t decrypt_cnt; 369 atomic64_t decrypt_tlen; 370 atomic64_t verify_cnt; 371 atomic64_t sign_cnt; 372 atomic64_t err_cnt; 373}; 374 375/* 376 * struct crypto_istat_cipher - statistics for cipher algorithm 377 * @encrypt_cnt: number of encrypt requests 378 * @encrypt_tlen: total data size handled by encrypt requests 379 * @decrypt_cnt: number of decrypt requests 380 * @decrypt_tlen: total data size handled by decrypt requests 381 * @err_cnt: number of error for cipher requests 382 */ 383struct crypto_istat_cipher { 384 atomic64_t encrypt_cnt; 385 atomic64_t encrypt_tlen; 386 atomic64_t decrypt_cnt; 387 atomic64_t decrypt_tlen; 388 atomic64_t err_cnt; 389}; 390 391/* 392 * struct crypto_istat_compress - statistics for compress algorithm 393 * @compress_cnt: number of compress requests 394 * @compress_tlen: total data size handled by compress requests 395 * @decompress_cnt: number of decompress requests 396 * @decompress_tlen: total data size handled by decompress requests 397 * @err_cnt: number of error for compress requests 398 */ 399struct crypto_istat_compress { 400 atomic64_t compress_cnt; 401 atomic64_t compress_tlen; 402 atomic64_t decompress_cnt; 403 atomic64_t decompress_tlen; 404 atomic64_t err_cnt; 405}; 406 407/* 408 * struct crypto_istat_hash - statistics for has algorithm 409 * @hash_cnt: number of hash requests 410 * @hash_tlen: total data size hashed 411 * @err_cnt: number of error for hash requests 412 */ 413struct crypto_istat_hash { 414 atomic64_t hash_cnt; 415 atomic64_t hash_tlen; 416 atomic64_t err_cnt; 417}; 418 419/* 420 * struct crypto_istat_kpp - statistics for KPP algorithm 421 * @setsecret_cnt: number of setsecrey operation 422 * @generate_public_key_cnt: number of generate_public_key operation 423 * @compute_shared_secret_cnt: number of compute_shared_secret operation 424 * @err_cnt: number of error for KPP requests 425 */ 426struct crypto_istat_kpp { 427 atomic64_t setsecret_cnt; 428 atomic64_t generate_public_key_cnt; 429 atomic64_t compute_shared_secret_cnt; 430 atomic64_t err_cnt; 431}; 432 433/* 434 * struct crypto_istat_rng: statistics for RNG algorithm 435 * @generate_cnt: number of RNG generate requests 436 * @generate_tlen: total data size of generated data by the RNG 437 * @seed_cnt: number of times the RNG was seeded 438 * @err_cnt: number of error for RNG requests 439 */ 440struct crypto_istat_rng { 441 atomic64_t generate_cnt; 442 atomic64_t generate_tlen; 443 atomic64_t seed_cnt; 444 atomic64_t err_cnt; 445}; 446#endif /* CONFIG_CRYPTO_STATS */ 447 448#define cra_ablkcipher cra_u.ablkcipher 449#define cra_blkcipher cra_u.blkcipher 450#define cra_cipher cra_u.cipher 451#define cra_compress cra_u.compress 452 453/** 454 * struct crypto_alg - definition of a cryptograpic cipher algorithm 455 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h 456 * CRYPTO_ALG_* flags for the flags which go in here. Those are 457 * used for fine-tuning the description of the transformation 458 * algorithm. 459 * @cra_blocksize: Minimum block size of this transformation. The size in bytes 460 * of the smallest possible unit which can be transformed with 461 * this algorithm. The users must respect this value. 462 * In case of HASH transformation, it is possible for a smaller 463 * block than @cra_blocksize to be passed to the crypto API for 464 * transformation, in case of any other transformation type, an 465 * error will be returned upon any attempt to transform smaller 466 * than @cra_blocksize chunks. 467 * @cra_ctxsize: Size of the operational context of the transformation. This 468 * value informs the kernel crypto API about the memory size 469 * needed to be allocated for the transformation context. 470 * @cra_alignmask: Alignment mask for the input and output data buffer. The data 471 * buffer containing the input data for the algorithm must be 472 * aligned to this alignment mask. The data buffer for the 473 * output data must be aligned to this alignment mask. Note that 474 * the Crypto API will do the re-alignment in software, but 475 * only under special conditions and there is a performance hit. 476 * The re-alignment happens at these occasions for different 477 * @cra_u types: cipher -- For both input data and output data 478 * buffer; ahash -- For output hash destination buf; shash -- 479 * For output hash destination buf. 480 * This is needed on hardware which is flawed by design and 481 * cannot pick data from arbitrary addresses. 482 * @cra_priority: Priority of this transformation implementation. In case 483 * multiple transformations with same @cra_name are available to 484 * the Crypto API, the kernel will use the one with highest 485 * @cra_priority. 486 * @cra_name: Generic name (usable by multiple implementations) of the 487 * transformation algorithm. This is the name of the transformation 488 * itself. This field is used by the kernel when looking up the 489 * providers of particular transformation. 490 * @cra_driver_name: Unique name of the transformation provider. This is the 491 * name of the provider of the transformation. This can be any 492 * arbitrary value, but in the usual case, this contains the 493 * name of the chip or provider and the name of the 494 * transformation algorithm. 495 * @cra_type: Type of the cryptographic transformation. This is a pointer to 496 * struct crypto_type, which implements callbacks common for all 497 * transformation types. There are multiple options: 498 * &crypto_blkcipher_type, &crypto_ablkcipher_type, 499 * &crypto_ahash_type, &crypto_rng_type. 500 * This field might be empty. In that case, there are no common 501 * callbacks. This is the case for: cipher, compress, shash. 502 * @cra_u: Callbacks implementing the transformation. This is a union of 503 * multiple structures. Depending on the type of transformation selected 504 * by @cra_type and @cra_flags above, the associated structure must be 505 * filled with callbacks. This field might be empty. This is the case 506 * for ahash, shash. 507 * @cra_init: Initialize the cryptographic transformation object. This function 508 * is used to initialize the cryptographic transformation object. 509 * This function is called only once at the instantiation time, right 510 * after the transformation context was allocated. In case the 511 * cryptographic hardware has some special requirements which need to 512 * be handled by software, this function shall check for the precise 513 * requirement of the transformation and put any software fallbacks 514 * in place. 515 * @cra_exit: Deinitialize the cryptographic transformation object. This is a 516 * counterpart to @cra_init, used to remove various changes set in 517 * @cra_init. 518 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher 519 * definition. See @struct @ablkcipher_alg. 520 * @cra_u.blkcipher: Union member which contains a synchronous block cipher 521 * definition See @struct @blkcipher_alg. 522 * @cra_u.cipher: Union member which contains a single-block symmetric cipher 523 * definition. See @struct @cipher_alg. 524 * @cra_u.compress: Union member which contains a (de)compression algorithm. 525 * See @struct @compress_alg. 526 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE 527 * @cra_list: internally used 528 * @cra_users: internally used 529 * @cra_refcnt: internally used 530 * @cra_destroy: internally used 531 * 532 * @stats: union of all possible crypto_istat_xxx structures 533 * @stats.aead: statistics for AEAD algorithm 534 * @stats.akcipher: statistics for akcipher algorithm 535 * @stats.cipher: statistics for cipher algorithm 536 * @stats.compress: statistics for compress algorithm 537 * @stats.hash: statistics for hash algorithm 538 * @stats.rng: statistics for rng algorithm 539 * @stats.kpp: statistics for KPP algorithm 540 * 541 * The struct crypto_alg describes a generic Crypto API algorithm and is common 542 * for all of the transformations. Any variable not documented here shall not 543 * be used by a cipher implementation as it is internal to the Crypto API. 544 */ 545struct crypto_alg { 546 struct list_head cra_list; 547 struct list_head cra_users; 548 549 u32 cra_flags; 550 unsigned int cra_blocksize; 551 unsigned int cra_ctxsize; 552 unsigned int cra_alignmask; 553 554 int cra_priority; 555 refcount_t cra_refcnt; 556 557 char cra_name[CRYPTO_MAX_ALG_NAME]; 558 char cra_driver_name[CRYPTO_MAX_ALG_NAME]; 559 560 const struct crypto_type *cra_type; 561 562 union { 563 struct ablkcipher_alg ablkcipher; 564 struct blkcipher_alg blkcipher; 565 struct cipher_alg cipher; 566 struct compress_alg compress; 567 } cra_u; 568 569 int (*cra_init)(struct crypto_tfm *tfm); 570 void (*cra_exit)(struct crypto_tfm *tfm); 571 void (*cra_destroy)(struct crypto_alg *alg); 572 573 struct module *cra_module; 574 575#ifdef CONFIG_CRYPTO_STATS 576 union { 577 struct crypto_istat_aead aead; 578 struct crypto_istat_akcipher akcipher; 579 struct crypto_istat_cipher cipher; 580 struct crypto_istat_compress compress; 581 struct crypto_istat_hash hash; 582 struct crypto_istat_rng rng; 583 struct crypto_istat_kpp kpp; 584 } stats; 585#endif /* CONFIG_CRYPTO_STATS */ 586 587} CRYPTO_MINALIGN_ATTR; 588 589#ifdef CONFIG_CRYPTO_STATS 590void crypto_stats_init(struct crypto_alg *alg); 591void crypto_stats_get(struct crypto_alg *alg); 592void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 593void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg); 594void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 595void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret); 596void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg); 597void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg); 598void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 599void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg); 600void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg); 601void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg); 602void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg); 603void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg); 604void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret); 605void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret); 606void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret); 607void crypto_stats_rng_seed(struct crypto_alg *alg, int ret); 608void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret); 609void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 610void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg); 611#else 612static inline void crypto_stats_init(struct crypto_alg *alg) 613{} 614static inline void crypto_stats_get(struct crypto_alg *alg) 615{} 616static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 617{} 618static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg) 619{} 620static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 621{} 622static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret) 623{} 624static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg) 625{} 626static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg) 627{} 628static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 629{} 630static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg) 631{} 632static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg) 633{} 634static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg) 635{} 636static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg) 637{} 638static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg) 639{} 640static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret) 641{} 642static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret) 643{} 644static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret) 645{} 646static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret) 647{} 648static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret) 649{} 650static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 651{} 652static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg) 653{} 654#endif 655/* 656 * A helper struct for waiting for completion of async crypto ops 657 */ 658struct crypto_wait { 659 struct completion completion; 660 int err; 661}; 662 663/* 664 * Macro for declaring a crypto op async wait object on stack 665 */ 666#define DECLARE_CRYPTO_WAIT(_wait) \ 667 struct crypto_wait _wait = { \ 668 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } 669 670/* 671 * Async ops completion helper functioons 672 */ 673void crypto_req_done(struct crypto_async_request *req, int err); 674 675static inline int crypto_wait_req(int err, struct crypto_wait *wait) 676{ 677 switch (err) { 678 case -EINPROGRESS: 679 case -EBUSY: 680 wait_for_completion(&wait->completion); 681 reinit_completion(&wait->completion); 682 err = wait->err; 683 break; 684 }; 685 686 return err; 687} 688 689static inline void crypto_init_wait(struct crypto_wait *wait) 690{ 691 init_completion(&wait->completion); 692} 693 694/* 695 * Algorithm registration interface. 696 */ 697int crypto_register_alg(struct crypto_alg *alg); 698int crypto_unregister_alg(struct crypto_alg *alg); 699int crypto_register_algs(struct crypto_alg *algs, int count); 700int crypto_unregister_algs(struct crypto_alg *algs, int count); 701 702/* 703 * Algorithm query interface. 704 */ 705int crypto_has_alg(const char *name, u32 type, u32 mask); 706 707/* 708 * Transforms: user-instantiated objects which encapsulate algorithms 709 * and core processing logic. Managed via crypto_alloc_*() and 710 * crypto_free_*(), as well as the various helpers below. 711 */ 712 713struct ablkcipher_tfm { 714 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, 715 unsigned int keylen); 716 int (*encrypt)(struct ablkcipher_request *req); 717 int (*decrypt)(struct ablkcipher_request *req); 718 719 struct crypto_ablkcipher *base; 720 721 unsigned int ivsize; 722 unsigned int reqsize; 723}; 724 725struct blkcipher_tfm { 726 void *iv; 727 int (*setkey)(struct crypto_tfm *tfm, const u8 *key, 728 unsigned int keylen); 729 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 730 struct scatterlist *src, unsigned int nbytes); 731 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, 732 struct scatterlist *src, unsigned int nbytes); 733}; 734 735struct cipher_tfm { 736 int (*cit_setkey)(struct crypto_tfm *tfm, 737 const u8 *key, unsigned int keylen); 738 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 739 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); 740}; 741 742struct compress_tfm { 743 int (*cot_compress)(struct crypto_tfm *tfm, 744 const u8 *src, unsigned int slen, 745 u8 *dst, unsigned int *dlen); 746 int (*cot_decompress)(struct crypto_tfm *tfm, 747 const u8 *src, unsigned int slen, 748 u8 *dst, unsigned int *dlen); 749}; 750 751#define crt_ablkcipher crt_u.ablkcipher 752#define crt_blkcipher crt_u.blkcipher 753#define crt_cipher crt_u.cipher 754#define crt_compress crt_u.compress 755 756struct crypto_tfm { 757 758 u32 crt_flags; 759 760 union { 761 struct ablkcipher_tfm ablkcipher; 762 struct blkcipher_tfm blkcipher; 763 struct cipher_tfm cipher; 764 struct compress_tfm compress; 765 } crt_u; 766 767 void (*exit)(struct crypto_tfm *tfm); 768 769 struct crypto_alg *__crt_alg; 770 771 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; 772}; 773 774struct crypto_ablkcipher { 775 struct crypto_tfm base; 776}; 777 778struct crypto_blkcipher { 779 struct crypto_tfm base; 780}; 781 782struct crypto_cipher { 783 struct crypto_tfm base; 784}; 785 786struct crypto_comp { 787 struct crypto_tfm base; 788}; 789 790enum { 791 CRYPTOA_UNSPEC, 792 CRYPTOA_ALG, 793 CRYPTOA_TYPE, 794 CRYPTOA_U32, 795 __CRYPTOA_MAX, 796}; 797 798#define CRYPTOA_MAX (__CRYPTOA_MAX - 1) 799 800/* Maximum number of (rtattr) parameters for each template. */ 801#define CRYPTO_MAX_ATTRS 32 802 803struct crypto_attr_alg { 804 char name[CRYPTO_MAX_ALG_NAME]; 805}; 806 807struct crypto_attr_type { 808 u32 type; 809 u32 mask; 810}; 811 812struct crypto_attr_u32 { 813 u32 num; 814}; 815 816/* 817 * Transform user interface. 818 */ 819 820struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); 821void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); 822 823static inline void crypto_free_tfm(struct crypto_tfm *tfm) 824{ 825 return crypto_destroy_tfm(tfm, tfm); 826} 827 828int alg_test(const char *driver, const char *alg, u32 type, u32 mask); 829 830/* 831 * Transform helpers which query the underlying algorithm. 832 */ 833static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) 834{ 835 return tfm->__crt_alg->cra_name; 836} 837 838static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) 839{ 840 return tfm->__crt_alg->cra_driver_name; 841} 842 843static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) 844{ 845 return tfm->__crt_alg->cra_priority; 846} 847 848static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) 849{ 850 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; 851} 852 853static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) 854{ 855 return tfm->__crt_alg->cra_blocksize; 856} 857 858static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) 859{ 860 return tfm->__crt_alg->cra_alignmask; 861} 862 863static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) 864{ 865 return tfm->crt_flags; 866} 867 868static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) 869{ 870 tfm->crt_flags |= flags; 871} 872 873static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) 874{ 875 tfm->crt_flags &= ~flags; 876} 877 878static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) 879{ 880 return tfm->__crt_ctx; 881} 882 883static inline unsigned int crypto_tfm_ctx_alignment(void) 884{ 885 struct crypto_tfm *tfm; 886 return __alignof__(tfm->__crt_ctx); 887} 888 889/* 890 * API wrappers. 891 */ 892static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( 893 struct crypto_tfm *tfm) 894{ 895 return (struct crypto_ablkcipher *)tfm; 896} 897 898static inline u32 crypto_skcipher_type(u32 type) 899{ 900 type &= ~CRYPTO_ALG_TYPE_MASK; 901 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 902 return type; 903} 904 905static inline u32 crypto_skcipher_mask(u32 mask) 906{ 907 mask &= ~CRYPTO_ALG_TYPE_MASK; 908 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; 909 return mask; 910} 911 912/** 913 * DOC: Asynchronous Block Cipher API 914 * 915 * Asynchronous block cipher API is used with the ciphers of type 916 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). 917 * 918 * Asynchronous cipher operations imply that the function invocation for a 919 * cipher request returns immediately before the completion of the operation. 920 * The cipher request is scheduled as a separate kernel thread and therefore 921 * load-balanced on the different CPUs via the process scheduler. To allow 922 * the kernel crypto API to inform the caller about the completion of a cipher 923 * request, the caller must provide a callback function. That function is 924 * invoked with the cipher handle when the request completes. 925 * 926 * To support the asynchronous operation, additional information than just the 927 * cipher handle must be supplied to the kernel crypto API. That additional 928 * information is given by filling in the ablkcipher_request data structure. 929 * 930 * For the asynchronous block cipher API, the state is maintained with the tfm 931 * cipher handle. A single tfm can be used across multiple calls and in 932 * parallel. For asynchronous block cipher calls, context data supplied and 933 * only used by the caller can be referenced the request data structure in 934 * addition to the IV used for the cipher request. The maintenance of such 935 * state information would be important for a crypto driver implementer to 936 * have, because when calling the callback function upon completion of the 937 * cipher operation, that callback function may need some information about 938 * which operation just finished if it invoked multiple in parallel. This 939 * state information is unused by the kernel crypto API. 940 */ 941 942static inline struct crypto_tfm *crypto_ablkcipher_tfm( 943 struct crypto_ablkcipher *tfm) 944{ 945 return &tfm->base; 946} 947 948/** 949 * crypto_free_ablkcipher() - zeroize and free cipher handle 950 * @tfm: cipher handle to be freed 951 */ 952static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) 953{ 954 crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); 955} 956 957/** 958 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. 959 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 960 * ablkcipher 961 * @type: specifies the type of the cipher 962 * @mask: specifies the mask for the cipher 963 * 964 * Return: true when the ablkcipher is known to the kernel crypto API; false 965 * otherwise 966 */ 967static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, 968 u32 mask) 969{ 970 return crypto_has_alg(alg_name, crypto_skcipher_type(type), 971 crypto_skcipher_mask(mask)); 972} 973 974static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( 975 struct crypto_ablkcipher *tfm) 976{ 977 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; 978} 979 980/** 981 * crypto_ablkcipher_ivsize() - obtain IV size 982 * @tfm: cipher handle 983 * 984 * The size of the IV for the ablkcipher referenced by the cipher handle is 985 * returned. This IV size may be zero if the cipher does not need an IV. 986 * 987 * Return: IV size in bytes 988 */ 989static inline unsigned int crypto_ablkcipher_ivsize( 990 struct crypto_ablkcipher *tfm) 991{ 992 return crypto_ablkcipher_crt(tfm)->ivsize; 993} 994 995/** 996 * crypto_ablkcipher_blocksize() - obtain block size of cipher 997 * @tfm: cipher handle 998 * 999 * The block size for the ablkcipher referenced with the cipher handle is 1000 * returned. The caller may use that information to allocate appropriate 1001 * memory for the data returned by the encryption or decryption operation 1002 * 1003 * Return: block size of cipher 1004 */ 1005static inline unsigned int crypto_ablkcipher_blocksize( 1006 struct crypto_ablkcipher *tfm) 1007{ 1008 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); 1009} 1010 1011static inline unsigned int crypto_ablkcipher_alignmask( 1012 struct crypto_ablkcipher *tfm) 1013{ 1014 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); 1015} 1016 1017static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) 1018{ 1019 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); 1020} 1021 1022static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, 1023 u32 flags) 1024{ 1025 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); 1026} 1027 1028static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, 1029 u32 flags) 1030{ 1031 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); 1032} 1033 1034/** 1035 * crypto_ablkcipher_setkey() - set key for cipher 1036 * @tfm: cipher handle 1037 * @key: buffer holding the key 1038 * @keylen: length of the key in bytes 1039 * 1040 * The caller provided key is set for the ablkcipher referenced by the cipher 1041 * handle. 1042 * 1043 * Note, the key length determines the cipher type. Many block ciphers implement 1044 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1045 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1046 * is performed. 1047 * 1048 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1049 */ 1050static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, 1051 const u8 *key, unsigned int keylen) 1052{ 1053 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); 1054 1055 return crt->setkey(crt->base, key, keylen); 1056} 1057 1058/** 1059 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request 1060 * @req: ablkcipher_request out of which the cipher handle is to be obtained 1061 * 1062 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request 1063 * data structure. 1064 * 1065 * Return: crypto_ablkcipher handle 1066 */ 1067static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( 1068 struct ablkcipher_request *req) 1069{ 1070 return __crypto_ablkcipher_cast(req->base.tfm); 1071} 1072 1073/** 1074 * crypto_ablkcipher_encrypt() - encrypt plaintext 1075 * @req: reference to the ablkcipher_request handle that holds all information 1076 * needed to perform the cipher operation 1077 * 1078 * Encrypt plaintext data using the ablkcipher_request handle. That data 1079 * structure and how it is filled with data is discussed with the 1080 * ablkcipher_request_* functions. 1081 * 1082 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1083 */ 1084static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) 1085{ 1086 struct ablkcipher_tfm *crt = 1087 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1088 struct crypto_alg *alg = crt->base->base.__crt_alg; 1089 unsigned int nbytes = req->nbytes; 1090 int ret; 1091 1092 crypto_stats_get(alg); 1093 ret = crt->encrypt(req); 1094 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg); 1095 return ret; 1096} 1097 1098/** 1099 * crypto_ablkcipher_decrypt() - decrypt ciphertext 1100 * @req: reference to the ablkcipher_request handle that holds all information 1101 * needed to perform the cipher operation 1102 * 1103 * Decrypt ciphertext data using the ablkcipher_request handle. That data 1104 * structure and how it is filled with data is discussed with the 1105 * ablkcipher_request_* functions. 1106 * 1107 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1108 */ 1109static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) 1110{ 1111 struct ablkcipher_tfm *crt = 1112 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); 1113 struct crypto_alg *alg = crt->base->base.__crt_alg; 1114 unsigned int nbytes = req->nbytes; 1115 int ret; 1116 1117 crypto_stats_get(alg); 1118 ret = crt->decrypt(req); 1119 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg); 1120 return ret; 1121} 1122 1123/** 1124 * DOC: Asynchronous Cipher Request Handle 1125 * 1126 * The ablkcipher_request data structure contains all pointers to data 1127 * required for the asynchronous cipher operation. This includes the cipher 1128 * handle (which can be used by multiple ablkcipher_request instances), pointer 1129 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 1130 * as a handle to the ablkcipher_request_* API calls in a similar way as 1131 * ablkcipher handle to the crypto_ablkcipher_* API calls. 1132 */ 1133 1134/** 1135 * crypto_ablkcipher_reqsize() - obtain size of the request data structure 1136 * @tfm: cipher handle 1137 * 1138 * Return: number of bytes 1139 */ 1140static inline unsigned int crypto_ablkcipher_reqsize( 1141 struct crypto_ablkcipher *tfm) 1142{ 1143 return crypto_ablkcipher_crt(tfm)->reqsize; 1144} 1145 1146/** 1147 * ablkcipher_request_set_tfm() - update cipher handle reference in request 1148 * @req: request handle to be modified 1149 * @tfm: cipher handle that shall be added to the request handle 1150 * 1151 * Allow the caller to replace the existing ablkcipher handle in the request 1152 * data structure with a different one. 1153 */ 1154static inline void ablkcipher_request_set_tfm( 1155 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) 1156{ 1157 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); 1158} 1159 1160static inline struct ablkcipher_request *ablkcipher_request_cast( 1161 struct crypto_async_request *req) 1162{ 1163 return container_of(req, struct ablkcipher_request, base); 1164} 1165 1166/** 1167 * ablkcipher_request_alloc() - allocate request data structure 1168 * @tfm: cipher handle to be registered with the request 1169 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 1170 * 1171 * Allocate the request data structure that must be used with the ablkcipher 1172 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher 1173 * handle is registered in the request data structure. 1174 * 1175 * Return: allocated request handle in case of success, or NULL if out of memory 1176 */ 1177static inline struct ablkcipher_request *ablkcipher_request_alloc( 1178 struct crypto_ablkcipher *tfm, gfp_t gfp) 1179{ 1180 struct ablkcipher_request *req; 1181 1182 req = kmalloc(sizeof(struct ablkcipher_request) + 1183 crypto_ablkcipher_reqsize(tfm), gfp); 1184 1185 if (likely(req)) 1186 ablkcipher_request_set_tfm(req, tfm); 1187 1188 return req; 1189} 1190 1191/** 1192 * ablkcipher_request_free() - zeroize and free request data structure 1193 * @req: request data structure cipher handle to be freed 1194 */ 1195static inline void ablkcipher_request_free(struct ablkcipher_request *req) 1196{ 1197 kzfree(req); 1198} 1199 1200/** 1201 * ablkcipher_request_set_callback() - set asynchronous callback function 1202 * @req: request handle 1203 * @flags: specify zero or an ORing of the flags 1204 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 1205 * increase the wait queue beyond the initial maximum size; 1206 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 1207 * @compl: callback function pointer to be registered with the request handle 1208 * @data: The data pointer refers to memory that is not used by the kernel 1209 * crypto API, but provided to the callback function for it to use. Here, 1210 * the caller can provide a reference to memory the callback function can 1211 * operate on. As the callback function is invoked asynchronously to the 1212 * related functionality, it may need to access data structures of the 1213 * related functionality which can be referenced using this pointer. The 1214 * callback function can access the memory via the "data" field in the 1215 * crypto_async_request data structure provided to the callback function. 1216 * 1217 * This function allows setting the callback function that is triggered once the 1218 * cipher operation completes. 1219 * 1220 * The callback function is registered with the ablkcipher_request handle and 1221 * must comply with the following template:: 1222 * 1223 * void callback_function(struct crypto_async_request *req, int error) 1224 */ 1225static inline void ablkcipher_request_set_callback( 1226 struct ablkcipher_request *req, 1227 u32 flags, crypto_completion_t compl, void *data) 1228{ 1229 req->base.complete = compl; 1230 req->base.data = data; 1231 req->base.flags = flags; 1232} 1233 1234/** 1235 * ablkcipher_request_set_crypt() - set data buffers 1236 * @req: request handle 1237 * @src: source scatter / gather list 1238 * @dst: destination scatter / gather list 1239 * @nbytes: number of bytes to process from @src 1240 * @iv: IV for the cipher operation which must comply with the IV size defined 1241 * by crypto_ablkcipher_ivsize 1242 * 1243 * This function allows setting of the source data and destination data 1244 * scatter / gather lists. 1245 * 1246 * For encryption, the source is treated as the plaintext and the 1247 * destination is the ciphertext. For a decryption operation, the use is 1248 * reversed - the source is the ciphertext and the destination is the plaintext. 1249 */ 1250static inline void ablkcipher_request_set_crypt( 1251 struct ablkcipher_request *req, 1252 struct scatterlist *src, struct scatterlist *dst, 1253 unsigned int nbytes, void *iv) 1254{ 1255 req->src = src; 1256 req->dst = dst; 1257 req->nbytes = nbytes; 1258 req->info = iv; 1259} 1260 1261/** 1262 * DOC: Synchronous Block Cipher API 1263 * 1264 * The synchronous block cipher API is used with the ciphers of type 1265 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) 1266 * 1267 * Synchronous calls, have a context in the tfm. But since a single tfm can be 1268 * used in multiple calls and in parallel, this info should not be changeable 1269 * (unless a lock is used). This applies, for example, to the symmetric key. 1270 * However, the IV is changeable, so there is an iv field in blkcipher_tfm 1271 * structure for synchronous blkcipher api. So, its the only state info that can 1272 * be kept for synchronous calls without using a big lock across a tfm. 1273 * 1274 * The block cipher API allows the use of a complete cipher, i.e. a cipher 1275 * consisting of a template (a block chaining mode) and a single block cipher 1276 * primitive (e.g. AES). 1277 * 1278 * The plaintext data buffer and the ciphertext data buffer are pointed to 1279 * by using scatter/gather lists. The cipher operation is performed 1280 * on all segments of the provided scatter/gather lists. 1281 * 1282 * The kernel crypto API supports a cipher operation "in-place" which means that 1283 * the caller may provide the same scatter/gather list for the plaintext and 1284 * cipher text. After the completion of the cipher operation, the plaintext 1285 * data is replaced with the ciphertext data in case of an encryption and vice 1286 * versa for a decryption. The caller must ensure that the scatter/gather lists 1287 * for the output data point to sufficiently large buffers, i.e. multiples of 1288 * the block size of the cipher. 1289 */ 1290 1291static inline struct crypto_blkcipher *__crypto_blkcipher_cast( 1292 struct crypto_tfm *tfm) 1293{ 1294 return (struct crypto_blkcipher *)tfm; 1295} 1296 1297static inline struct crypto_blkcipher *crypto_blkcipher_cast( 1298 struct crypto_tfm *tfm) 1299{ 1300 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); 1301 return __crypto_blkcipher_cast(tfm); 1302} 1303 1304/** 1305 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle 1306 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1307 * blkcipher cipher 1308 * @type: specifies the type of the cipher 1309 * @mask: specifies the mask for the cipher 1310 * 1311 * Allocate a cipher handle for a block cipher. The returned struct 1312 * crypto_blkcipher is the cipher handle that is required for any subsequent 1313 * API invocation for that block cipher. 1314 * 1315 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1316 * of an error, PTR_ERR() returns the error code. 1317 */ 1318static inline struct crypto_blkcipher *crypto_alloc_blkcipher( 1319 const char *alg_name, u32 type, u32 mask) 1320{ 1321 type &= ~CRYPTO_ALG_TYPE_MASK; 1322 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1323 mask |= CRYPTO_ALG_TYPE_MASK; 1324 1325 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); 1326} 1327 1328static inline struct crypto_tfm *crypto_blkcipher_tfm( 1329 struct crypto_blkcipher *tfm) 1330{ 1331 return &tfm->base; 1332} 1333 1334/** 1335 * crypto_free_blkcipher() - zeroize and free the block cipher handle 1336 * @tfm: cipher handle to be freed 1337 */ 1338static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) 1339{ 1340 crypto_free_tfm(crypto_blkcipher_tfm(tfm)); 1341} 1342 1343/** 1344 * crypto_has_blkcipher() - Search for the availability of a block cipher 1345 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1346 * block cipher 1347 * @type: specifies the type of the cipher 1348 * @mask: specifies the mask for the cipher 1349 * 1350 * Return: true when the block cipher is known to the kernel crypto API; false 1351 * otherwise 1352 */ 1353static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) 1354{ 1355 type &= ~CRYPTO_ALG_TYPE_MASK; 1356 type |= CRYPTO_ALG_TYPE_BLKCIPHER; 1357 mask |= CRYPTO_ALG_TYPE_MASK; 1358 1359 return crypto_has_alg(alg_name, type, mask); 1360} 1361 1362/** 1363 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle 1364 * @tfm: cipher handle 1365 * 1366 * Return: The character string holding the name of the cipher 1367 */ 1368static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) 1369{ 1370 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); 1371} 1372 1373static inline struct blkcipher_tfm *crypto_blkcipher_crt( 1374 struct crypto_blkcipher *tfm) 1375{ 1376 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; 1377} 1378 1379static inline struct blkcipher_alg *crypto_blkcipher_alg( 1380 struct crypto_blkcipher *tfm) 1381{ 1382 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; 1383} 1384 1385/** 1386 * crypto_blkcipher_ivsize() - obtain IV size 1387 * @tfm: cipher handle 1388 * 1389 * The size of the IV for the block cipher referenced by the cipher handle is 1390 * returned. This IV size may be zero if the cipher does not need an IV. 1391 * 1392 * Return: IV size in bytes 1393 */ 1394static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) 1395{ 1396 return crypto_blkcipher_alg(tfm)->ivsize; 1397} 1398 1399/** 1400 * crypto_blkcipher_blocksize() - obtain block size of cipher 1401 * @tfm: cipher handle 1402 * 1403 * The block size for the block cipher referenced with the cipher handle is 1404 * returned. The caller may use that information to allocate appropriate 1405 * memory for the data returned by the encryption or decryption operation. 1406 * 1407 * Return: block size of cipher 1408 */ 1409static inline unsigned int crypto_blkcipher_blocksize( 1410 struct crypto_blkcipher *tfm) 1411{ 1412 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); 1413} 1414 1415static inline unsigned int crypto_blkcipher_alignmask( 1416 struct crypto_blkcipher *tfm) 1417{ 1418 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); 1419} 1420 1421static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) 1422{ 1423 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); 1424} 1425 1426static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, 1427 u32 flags) 1428{ 1429 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); 1430} 1431 1432static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, 1433 u32 flags) 1434{ 1435 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); 1436} 1437 1438/** 1439 * crypto_blkcipher_setkey() - set key for cipher 1440 * @tfm: cipher handle 1441 * @key: buffer holding the key 1442 * @keylen: length of the key in bytes 1443 * 1444 * The caller provided key is set for the block cipher referenced by the cipher 1445 * handle. 1446 * 1447 * Note, the key length determines the cipher type. Many block ciphers implement 1448 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1449 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1450 * is performed. 1451 * 1452 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1453 */ 1454static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, 1455 const u8 *key, unsigned int keylen) 1456{ 1457 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), 1458 key, keylen); 1459} 1460 1461/** 1462 * crypto_blkcipher_encrypt() - encrypt plaintext 1463 * @desc: reference to the block cipher handle with meta data 1464 * @dst: scatter/gather list that is filled by the cipher operation with the 1465 * ciphertext 1466 * @src: scatter/gather list that holds the plaintext 1467 * @nbytes: number of bytes of the plaintext to encrypt. 1468 * 1469 * Encrypt plaintext data using the IV set by the caller with a preceding 1470 * call of crypto_blkcipher_set_iv. 1471 * 1472 * The blkcipher_desc data structure must be filled by the caller and can 1473 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1474 * with the block cipher handle; desc.flags is filled with either 1475 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1476 * 1477 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1478 */ 1479static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, 1480 struct scatterlist *dst, 1481 struct scatterlist *src, 1482 unsigned int nbytes) 1483{ 1484 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1485 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1486} 1487 1488/** 1489 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV 1490 * @desc: reference to the block cipher handle with meta data 1491 * @dst: scatter/gather list that is filled by the cipher operation with the 1492 * ciphertext 1493 * @src: scatter/gather list that holds the plaintext 1494 * @nbytes: number of bytes of the plaintext to encrypt. 1495 * 1496 * Encrypt plaintext data with the use of an IV that is solely used for this 1497 * cipher operation. Any previously set IV is not used. 1498 * 1499 * The blkcipher_desc data structure must be filled by the caller and can 1500 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled 1501 * with the block cipher handle; desc.info is filled with the IV to be used for 1502 * the current operation; desc.flags is filled with either 1503 * CRYPTO_TFM_REQ_MAY_SLEEP or 0. 1504 * 1505 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1506 */ 1507static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, 1508 struct scatterlist *dst, 1509 struct scatterlist *src, 1510 unsigned int nbytes) 1511{ 1512 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); 1513} 1514 1515/** 1516 * crypto_blkcipher_decrypt() - decrypt ciphertext 1517 * @desc: reference to the block cipher handle with meta data 1518 * @dst: scatter/gather list that is filled by the cipher operation with the 1519 * plaintext 1520 * @src: scatter/gather list that holds the ciphertext 1521 * @nbytes: number of bytes of the ciphertext to decrypt. 1522 * 1523 * Decrypt ciphertext data using the IV set by the caller with a preceding 1524 * call of crypto_blkcipher_set_iv. 1525 * 1526 * The blkcipher_desc data structure must be filled by the caller as documented 1527 * for the crypto_blkcipher_encrypt call above. 1528 * 1529 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1530 * 1531 */ 1532static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, 1533 struct scatterlist *dst, 1534 struct scatterlist *src, 1535 unsigned int nbytes) 1536{ 1537 desc->info = crypto_blkcipher_crt(desc->tfm)->iv; 1538 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1539} 1540 1541/** 1542 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV 1543 * @desc: reference to the block cipher handle with meta data 1544 * @dst: scatter/gather list that is filled by the cipher operation with the 1545 * plaintext 1546 * @src: scatter/gather list that holds the ciphertext 1547 * @nbytes: number of bytes of the ciphertext to decrypt. 1548 * 1549 * Decrypt ciphertext data with the use of an IV that is solely used for this 1550 * cipher operation. Any previously set IV is not used. 1551 * 1552 * The blkcipher_desc data structure must be filled by the caller as documented 1553 * for the crypto_blkcipher_encrypt_iv call above. 1554 * 1555 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 1556 */ 1557static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, 1558 struct scatterlist *dst, 1559 struct scatterlist *src, 1560 unsigned int nbytes) 1561{ 1562 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); 1563} 1564 1565/** 1566 * crypto_blkcipher_set_iv() - set IV for cipher 1567 * @tfm: cipher handle 1568 * @src: buffer holding the IV 1569 * @len: length of the IV in bytes 1570 * 1571 * The caller provided IV is set for the block cipher referenced by the cipher 1572 * handle. 1573 */ 1574static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, 1575 const u8 *src, unsigned int len) 1576{ 1577 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); 1578} 1579 1580/** 1581 * crypto_blkcipher_get_iv() - obtain IV from cipher 1582 * @tfm: cipher handle 1583 * @dst: buffer filled with the IV 1584 * @len: length of the buffer dst 1585 * 1586 * The caller can obtain the IV set for the block cipher referenced by the 1587 * cipher handle and store it into the user-provided buffer. If the buffer 1588 * has an insufficient space, the IV is truncated to fit the buffer. 1589 */ 1590static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, 1591 u8 *dst, unsigned int len) 1592{ 1593 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); 1594} 1595 1596/** 1597 * DOC: Single Block Cipher API 1598 * 1599 * The single block cipher API is used with the ciphers of type 1600 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). 1601 * 1602 * Using the single block cipher API calls, operations with the basic cipher 1603 * primitive can be implemented. These cipher primitives exclude any block 1604 * chaining operations including IV handling. 1605 * 1606 * The purpose of this single block cipher API is to support the implementation 1607 * of templates or other concepts that only need to perform the cipher operation 1608 * on one block at a time. Templates invoke the underlying cipher primitive 1609 * block-wise and process either the input or the output data of these cipher 1610 * operations. 1611 */ 1612 1613static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) 1614{ 1615 return (struct crypto_cipher *)tfm; 1616} 1617 1618static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) 1619{ 1620 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); 1621 return __crypto_cipher_cast(tfm); 1622} 1623 1624/** 1625 * crypto_alloc_cipher() - allocate single block cipher handle 1626 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1627 * single block cipher 1628 * @type: specifies the type of the cipher 1629 * @mask: specifies the mask for the cipher 1630 * 1631 * Allocate a cipher handle for a single block cipher. The returned struct 1632 * crypto_cipher is the cipher handle that is required for any subsequent API 1633 * invocation for that single block cipher. 1634 * 1635 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 1636 * of an error, PTR_ERR() returns the error code. 1637 */ 1638static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, 1639 u32 type, u32 mask) 1640{ 1641 type &= ~CRYPTO_ALG_TYPE_MASK; 1642 type |= CRYPTO_ALG_TYPE_CIPHER; 1643 mask |= CRYPTO_ALG_TYPE_MASK; 1644 1645 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); 1646} 1647 1648static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) 1649{ 1650 return &tfm->base; 1651} 1652 1653/** 1654 * crypto_free_cipher() - zeroize and free the single block cipher handle 1655 * @tfm: cipher handle to be freed 1656 */ 1657static inline void crypto_free_cipher(struct crypto_cipher *tfm) 1658{ 1659 crypto_free_tfm(crypto_cipher_tfm(tfm)); 1660} 1661 1662/** 1663 * crypto_has_cipher() - Search for the availability of a single block cipher 1664 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 1665 * single block cipher 1666 * @type: specifies the type of the cipher 1667 * @mask: specifies the mask for the cipher 1668 * 1669 * Return: true when the single block cipher is known to the kernel crypto API; 1670 * false otherwise 1671 */ 1672static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) 1673{ 1674 type &= ~CRYPTO_ALG_TYPE_MASK; 1675 type |= CRYPTO_ALG_TYPE_CIPHER; 1676 mask |= CRYPTO_ALG_TYPE_MASK; 1677 1678 return crypto_has_alg(alg_name, type, mask); 1679} 1680 1681static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) 1682{ 1683 return &crypto_cipher_tfm(tfm)->crt_cipher; 1684} 1685 1686/** 1687 * crypto_cipher_blocksize() - obtain block size for cipher 1688 * @tfm: cipher handle 1689 * 1690 * The block size for the single block cipher referenced with the cipher handle 1691 * tfm is returned. The caller may use that information to allocate appropriate 1692 * memory for the data returned by the encryption or decryption operation 1693 * 1694 * Return: block size of cipher 1695 */ 1696static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) 1697{ 1698 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); 1699} 1700 1701static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) 1702{ 1703 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); 1704} 1705 1706static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) 1707{ 1708 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); 1709} 1710 1711static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, 1712 u32 flags) 1713{ 1714 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); 1715} 1716 1717static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, 1718 u32 flags) 1719{ 1720 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); 1721} 1722 1723/** 1724 * crypto_cipher_setkey() - set key for cipher 1725 * @tfm: cipher handle 1726 * @key: buffer holding the key 1727 * @keylen: length of the key in bytes 1728 * 1729 * The caller provided key is set for the single block cipher referenced by the 1730 * cipher handle. 1731 * 1732 * Note, the key length determines the cipher type. Many block ciphers implement 1733 * different cipher modes depending on the key size, such as AES-128 vs AES-192 1734 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 1735 * is performed. 1736 * 1737 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 1738 */ 1739static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, 1740 const u8 *key, unsigned int keylen) 1741{ 1742 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), 1743 key, keylen); 1744} 1745 1746/** 1747 * crypto_cipher_encrypt_one() - encrypt one block of plaintext 1748 * @tfm: cipher handle 1749 * @dst: points to the buffer that will be filled with the ciphertext 1750 * @src: buffer holding the plaintext to be encrypted 1751 * 1752 * Invoke the encryption operation of one block. The caller must ensure that 1753 * the plaintext and ciphertext buffers are at least one block in size. 1754 */ 1755static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, 1756 u8 *dst, const u8 *src) 1757{ 1758 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), 1759 dst, src); 1760} 1761 1762/** 1763 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext 1764 * @tfm: cipher handle 1765 * @dst: points to the buffer that will be filled with the plaintext 1766 * @src: buffer holding the ciphertext to be decrypted 1767 * 1768 * Invoke the decryption operation of one block. The caller must ensure that 1769 * the plaintext and ciphertext buffers are at least one block in size. 1770 */ 1771static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, 1772 u8 *dst, const u8 *src) 1773{ 1774 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), 1775 dst, src); 1776} 1777 1778static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) 1779{ 1780 return (struct crypto_comp *)tfm; 1781} 1782 1783static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) 1784{ 1785 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & 1786 CRYPTO_ALG_TYPE_MASK); 1787 return __crypto_comp_cast(tfm); 1788} 1789 1790static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, 1791 u32 type, u32 mask) 1792{ 1793 type &= ~CRYPTO_ALG_TYPE_MASK; 1794 type |= CRYPTO_ALG_TYPE_COMPRESS; 1795 mask |= CRYPTO_ALG_TYPE_MASK; 1796 1797 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); 1798} 1799 1800static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) 1801{ 1802 return &tfm->base; 1803} 1804 1805static inline void crypto_free_comp(struct crypto_comp *tfm) 1806{ 1807 crypto_free_tfm(crypto_comp_tfm(tfm)); 1808} 1809 1810static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) 1811{ 1812 type &= ~CRYPTO_ALG_TYPE_MASK; 1813 type |= CRYPTO_ALG_TYPE_COMPRESS; 1814 mask |= CRYPTO_ALG_TYPE_MASK; 1815 1816 return crypto_has_alg(alg_name, type, mask); 1817} 1818 1819static inline const char *crypto_comp_name(struct crypto_comp *tfm) 1820{ 1821 return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); 1822} 1823 1824static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) 1825{ 1826 return &crypto_comp_tfm(tfm)->crt_compress; 1827} 1828 1829static inline int crypto_comp_compress(struct crypto_comp *tfm, 1830 const u8 *src, unsigned int slen, 1831 u8 *dst, unsigned int *dlen) 1832{ 1833 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), 1834 src, slen, dst, dlen); 1835} 1836 1837static inline int crypto_comp_decompress(struct crypto_comp *tfm, 1838 const u8 *src, unsigned int slen, 1839 u8 *dst, unsigned int *dlen) 1840{ 1841 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), 1842 src, slen, dst, dlen); 1843} 1844 1845#endif /* _LINUX_CRYPTO_H */ 1846