at v5.1 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_COMPILER_H 3#define __LINUX_COMPILER_H 4 5#include <linux/compiler_types.h> 6 7#ifndef __ASSEMBLY__ 8 9#ifdef __KERNEL__ 10 11/* 12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 13 * to disable branch tracing on a per file basis. 14 */ 15#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 16 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 17void ftrace_likely_update(struct ftrace_likely_data *f, int val, 18 int expect, int is_constant); 19 20#define likely_notrace(x) __builtin_expect(!!(x), 1) 21#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 22 23#define __branch_check__(x, expect, is_constant) ({ \ 24 long ______r; \ 25 static struct ftrace_likely_data \ 26 __aligned(4) \ 27 __section("_ftrace_annotated_branch") \ 28 ______f = { \ 29 .data.func = __func__, \ 30 .data.file = __FILE__, \ 31 .data.line = __LINE__, \ 32 }; \ 33 ______r = __builtin_expect(!!(x), expect); \ 34 ftrace_likely_update(&______f, ______r, \ 35 expect, is_constant); \ 36 ______r; \ 37 }) 38 39/* 40 * Using __builtin_constant_p(x) to ignore cases where the return 41 * value is always the same. This idea is taken from a similar patch 42 * written by Daniel Walker. 43 */ 44# ifndef likely 45# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) 46# endif 47# ifndef unlikely 48# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) 49# endif 50 51#ifdef CONFIG_PROFILE_ALL_BRANCHES 52/* 53 * "Define 'is'", Bill Clinton 54 * "Define 'if'", Steven Rostedt 55 */ 56#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) 57#define __trace_if(cond) \ 58 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ 59 ({ \ 60 int ______r; \ 61 static struct ftrace_branch_data \ 62 __aligned(4) \ 63 __section("_ftrace_branch") \ 64 ______f = { \ 65 .func = __func__, \ 66 .file = __FILE__, \ 67 .line = __LINE__, \ 68 }; \ 69 ______r = !!(cond); \ 70 ______f.miss_hit[______r]++; \ 71 ______r; \ 72 })) 73#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 74 75#else 76# define likely(x) __builtin_expect(!!(x), 1) 77# define unlikely(x) __builtin_expect(!!(x), 0) 78#endif 79 80/* Optimization barrier */ 81#ifndef barrier 82# define barrier() __memory_barrier() 83#endif 84 85#ifndef barrier_data 86# define barrier_data(ptr) barrier() 87#endif 88 89/* workaround for GCC PR82365 if needed */ 90#ifndef barrier_before_unreachable 91# define barrier_before_unreachable() do { } while (0) 92#endif 93 94/* Unreachable code */ 95#ifdef CONFIG_STACK_VALIDATION 96/* 97 * These macros help objtool understand GCC code flow for unreachable code. 98 * The __COUNTER__ based labels are a hack to make each instance of the macros 99 * unique, to convince GCC not to merge duplicate inline asm statements. 100 */ 101#define annotate_reachable() ({ \ 102 asm volatile("%c0:\n\t" \ 103 ".pushsection .discard.reachable\n\t" \ 104 ".long %c0b - .\n\t" \ 105 ".popsection\n\t" : : "i" (__COUNTER__)); \ 106}) 107#define annotate_unreachable() ({ \ 108 asm volatile("%c0:\n\t" \ 109 ".pushsection .discard.unreachable\n\t" \ 110 ".long %c0b - .\n\t" \ 111 ".popsection\n\t" : : "i" (__COUNTER__)); \ 112}) 113#define ASM_UNREACHABLE \ 114 "999:\n\t" \ 115 ".pushsection .discard.unreachable\n\t" \ 116 ".long 999b - .\n\t" \ 117 ".popsection\n\t" 118#else 119#define annotate_reachable() 120#define annotate_unreachable() 121#endif 122 123#ifndef ASM_UNREACHABLE 124# define ASM_UNREACHABLE 125#endif 126#ifndef unreachable 127# define unreachable() do { \ 128 annotate_unreachable(); \ 129 __builtin_unreachable(); \ 130} while (0) 131#endif 132 133/* 134 * KENTRY - kernel entry point 135 * This can be used to annotate symbols (functions or data) that are used 136 * without their linker symbol being referenced explicitly. For example, 137 * interrupt vector handlers, or functions in the kernel image that are found 138 * programatically. 139 * 140 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those 141 * are handled in their own way (with KEEP() in linker scripts). 142 * 143 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the 144 * linker script. For example an architecture could KEEP() its entire 145 * boot/exception vector code rather than annotate each function and data. 146 */ 147#ifndef KENTRY 148# define KENTRY(sym) \ 149 extern typeof(sym) sym; \ 150 static const unsigned long __kentry_##sym \ 151 __used \ 152 __section("___kentry" "+" #sym ) \ 153 = (unsigned long)&sym; 154#endif 155 156#ifndef RELOC_HIDE 157# define RELOC_HIDE(ptr, off) \ 158 ({ unsigned long __ptr; \ 159 __ptr = (unsigned long) (ptr); \ 160 (typeof(ptr)) (__ptr + (off)); }) 161#endif 162 163#ifndef OPTIMIZER_HIDE_VAR 164/* Make the optimizer believe the variable can be manipulated arbitrarily. */ 165#define OPTIMIZER_HIDE_VAR(var) \ 166 __asm__ ("" : "=r" (var) : "0" (var)) 167#endif 168 169/* Not-quite-unique ID. */ 170#ifndef __UNIQUE_ID 171# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 172#endif 173 174#include <uapi/linux/types.h> 175 176#define __READ_ONCE_SIZE \ 177({ \ 178 switch (size) { \ 179 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ 180 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ 181 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ 182 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ 183 default: \ 184 barrier(); \ 185 __builtin_memcpy((void *)res, (const void *)p, size); \ 186 barrier(); \ 187 } \ 188}) 189 190static __always_inline 191void __read_once_size(const volatile void *p, void *res, int size) 192{ 193 __READ_ONCE_SIZE; 194} 195 196#ifdef CONFIG_KASAN 197/* 198 * We can't declare function 'inline' because __no_sanitize_address confilcts 199 * with inlining. Attempt to inline it may cause a build failure. 200 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 201 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. 202 */ 203# define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused 204#else 205# define __no_kasan_or_inline __always_inline 206#endif 207 208static __no_kasan_or_inline 209void __read_once_size_nocheck(const volatile void *p, void *res, int size) 210{ 211 __READ_ONCE_SIZE; 212} 213 214static __always_inline void __write_once_size(volatile void *p, void *res, int size) 215{ 216 switch (size) { 217 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 218 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 219 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 220 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 221 default: 222 barrier(); 223 __builtin_memcpy((void *)p, (const void *)res, size); 224 barrier(); 225 } 226} 227 228/* 229 * Prevent the compiler from merging or refetching reads or writes. The 230 * compiler is also forbidden from reordering successive instances of 231 * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some 232 * particular ordering. One way to make the compiler aware of ordering is to 233 * put the two invocations of READ_ONCE or WRITE_ONCE in different C 234 * statements. 235 * 236 * These two macros will also work on aggregate data types like structs or 237 * unions. If the size of the accessed data type exceeds the word size of 238 * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will 239 * fall back to memcpy(). There's at least two memcpy()s: one for the 240 * __builtin_memcpy() and then one for the macro doing the copy of variable 241 * - '__u' allocated on the stack. 242 * 243 * Their two major use cases are: (1) Mediating communication between 244 * process-level code and irq/NMI handlers, all running on the same CPU, 245 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 246 * mutilate accesses that either do not require ordering or that interact 247 * with an explicit memory barrier or atomic instruction that provides the 248 * required ordering. 249 */ 250#include <asm/barrier.h> 251#include <linux/kasan-checks.h> 252 253#define __READ_ONCE(x, check) \ 254({ \ 255 union { typeof(x) __val; char __c[1]; } __u; \ 256 if (check) \ 257 __read_once_size(&(x), __u.__c, sizeof(x)); \ 258 else \ 259 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ 260 smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \ 261 __u.__val; \ 262}) 263#define READ_ONCE(x) __READ_ONCE(x, 1) 264 265/* 266 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need 267 * to hide memory access from KASAN. 268 */ 269#define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) 270 271static __no_kasan_or_inline 272unsigned long read_word_at_a_time(const void *addr) 273{ 274 kasan_check_read(addr, 1); 275 return *(unsigned long *)addr; 276} 277 278#define WRITE_ONCE(x, val) \ 279({ \ 280 union { typeof(x) __val; char __c[1]; } __u = \ 281 { .__val = (__force typeof(x)) (val) }; \ 282 __write_once_size(&(x), __u.__c, sizeof(x)); \ 283 __u.__val; \ 284}) 285 286#endif /* __KERNEL__ */ 287 288/* 289 * Force the compiler to emit 'sym' as a symbol, so that we can reference 290 * it from inline assembler. Necessary in case 'sym' could be inlined 291 * otherwise, or eliminated entirely due to lack of references that are 292 * visible to the compiler. 293 */ 294#define __ADDRESSABLE(sym) \ 295 static void * __section(".discard.addressable") __used \ 296 __PASTE(__addressable_##sym, __LINE__) = (void *)&sym; 297 298/** 299 * offset_to_ptr - convert a relative memory offset to an absolute pointer 300 * @off: the address of the 32-bit offset value 301 */ 302static inline void *offset_to_ptr(const int *off) 303{ 304 return (void *)((unsigned long)off + *off); 305} 306 307#endif /* __ASSEMBLY__ */ 308 309/* Compile time object size, -1 for unknown */ 310#ifndef __compiletime_object_size 311# define __compiletime_object_size(obj) -1 312#endif 313#ifndef __compiletime_warning 314# define __compiletime_warning(message) 315#endif 316#ifndef __compiletime_error 317# define __compiletime_error(message) 318#endif 319 320#ifdef __OPTIMIZE__ 321# define __compiletime_assert(condition, msg, prefix, suffix) \ 322 do { \ 323 extern void prefix ## suffix(void) __compiletime_error(msg); \ 324 if (!(condition)) \ 325 prefix ## suffix(); \ 326 } while (0) 327#else 328# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) 329#endif 330 331#define _compiletime_assert(condition, msg, prefix, suffix) \ 332 __compiletime_assert(condition, msg, prefix, suffix) 333 334/** 335 * compiletime_assert - break build and emit msg if condition is false 336 * @condition: a compile-time constant condition to check 337 * @msg: a message to emit if condition is false 338 * 339 * In tradition of POSIX assert, this macro will break the build if the 340 * supplied condition is *false*, emitting the supplied error message if the 341 * compiler has support to do so. 342 */ 343#define compiletime_assert(condition, msg) \ 344 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) 345 346#define compiletime_assert_atomic_type(t) \ 347 compiletime_assert(__native_word(t), \ 348 "Need native word sized stores/loads for atomicity.") 349 350/* &a[0] degrades to a pointer: a different type from an array */ 351#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) 352 353#endif /* __LINUX_COMPILER_H */