at v5.1 12 kB view raw
1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * 3 * This program is free software; you can redistribute it and/or 4 * modify it under the terms of version 2 of the GNU General Public 5 * License as published by the Free Software Foundation. 6 */ 7#ifndef _LINUX_BPF_VERIFIER_H 8#define _LINUX_BPF_VERIFIER_H 1 9 10#include <linux/bpf.h> /* for enum bpf_reg_type */ 11#include <linux/filter.h> /* for MAX_BPF_STACK */ 12#include <linux/tnum.h> 13 14/* Maximum variable offset umax_value permitted when resolving memory accesses. 15 * In practice this is far bigger than any realistic pointer offset; this limit 16 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 17 */ 18#define BPF_MAX_VAR_OFF (1 << 29) 19/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 20 * that converting umax_value to int cannot overflow. 21 */ 22#define BPF_MAX_VAR_SIZ (1 << 29) 23 24/* Liveness marks, used for registers and spilled-regs (in stack slots). 25 * Read marks propagate upwards until they find a write mark; they record that 26 * "one of this state's descendants read this reg" (and therefore the reg is 27 * relevant for states_equal() checks). 28 * Write marks collect downwards and do not propagate; they record that "the 29 * straight-line code that reached this state (from its parent) wrote this reg" 30 * (and therefore that reads propagated from this state or its descendants 31 * should not propagate to its parent). 32 * A state with a write mark can receive read marks; it just won't propagate 33 * them to its parent, since the write mark is a property, not of the state, 34 * but of the link between it and its parent. See mark_reg_read() and 35 * mark_stack_slot_read() in kernel/bpf/verifier.c. 36 */ 37enum bpf_reg_liveness { 38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 39 REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */ 40 REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */ 41 REG_LIVE_DONE = 4, /* liveness won't be updating this register anymore */ 42}; 43 44struct bpf_reg_state { 45 /* Ordering of fields matters. See states_equal() */ 46 enum bpf_reg_type type; 47 union { 48 /* valid when type == PTR_TO_PACKET */ 49 u16 range; 50 51 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 52 * PTR_TO_MAP_VALUE_OR_NULL 53 */ 54 struct bpf_map *map_ptr; 55 56 /* Max size from any of the above. */ 57 unsigned long raw; 58 }; 59 /* Fixed part of pointer offset, pointer types only */ 60 s32 off; 61 /* For PTR_TO_PACKET, used to find other pointers with the same variable 62 * offset, so they can share range knowledge. 63 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 64 * came from, when one is tested for != NULL. 65 * For PTR_TO_SOCKET this is used to share which pointers retain the 66 * same reference to the socket, to determine proper reference freeing. 67 */ 68 u32 id; 69 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 70 * from a pointer-cast helper, bpf_sk_fullsock() and 71 * bpf_tcp_sock(). 72 * 73 * Consider the following where "sk" is a reference counted 74 * pointer returned from "sk = bpf_sk_lookup_tcp();": 75 * 76 * 1: sk = bpf_sk_lookup_tcp(); 77 * 2: if (!sk) { return 0; } 78 * 3: fullsock = bpf_sk_fullsock(sk); 79 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 80 * 5: tp = bpf_tcp_sock(fullsock); 81 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 82 * 7: bpf_sk_release(sk); 83 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 84 * 85 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 86 * "tp" ptr should be invalidated also. In order to do that, 87 * the reg holding "fullsock" and "sk" need to remember 88 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 89 * such that the verifier can reset all regs which have 90 * ref_obj_id matching the sk_reg->id. 91 * 92 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 93 * sk_reg->id will stay as NULL-marking purpose only. 94 * After NULL-marking is done, sk_reg->id can be reset to 0. 95 * 96 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 97 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 98 * 99 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 100 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 101 * which is the same as sk_reg->ref_obj_id. 102 * 103 * From the verifier perspective, if sk, fullsock and tp 104 * are not NULL, they are the same ptr with different 105 * reg->type. In particular, bpf_sk_release(tp) is also 106 * allowed and has the same effect as bpf_sk_release(sk). 107 */ 108 u32 ref_obj_id; 109 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 110 * the actual value. 111 * For pointer types, this represents the variable part of the offset 112 * from the pointed-to object, and is shared with all bpf_reg_states 113 * with the same id as us. 114 */ 115 struct tnum var_off; 116 /* Used to determine if any memory access using this register will 117 * result in a bad access. 118 * These refer to the same value as var_off, not necessarily the actual 119 * contents of the register. 120 */ 121 s64 smin_value; /* minimum possible (s64)value */ 122 s64 smax_value; /* maximum possible (s64)value */ 123 u64 umin_value; /* minimum possible (u64)value */ 124 u64 umax_value; /* maximum possible (u64)value */ 125 /* parentage chain for liveness checking */ 126 struct bpf_reg_state *parent; 127 /* Inside the callee two registers can be both PTR_TO_STACK like 128 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 129 * while another to the caller's stack. To differentiate them 'frameno' 130 * is used which is an index in bpf_verifier_state->frame[] array 131 * pointing to bpf_func_state. 132 */ 133 u32 frameno; 134 enum bpf_reg_liveness live; 135}; 136 137enum bpf_stack_slot_type { 138 STACK_INVALID, /* nothing was stored in this stack slot */ 139 STACK_SPILL, /* register spilled into stack */ 140 STACK_MISC, /* BPF program wrote some data into this slot */ 141 STACK_ZERO, /* BPF program wrote constant zero */ 142}; 143 144#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 145 146struct bpf_stack_state { 147 struct bpf_reg_state spilled_ptr; 148 u8 slot_type[BPF_REG_SIZE]; 149}; 150 151struct bpf_reference_state { 152 /* Track each reference created with a unique id, even if the same 153 * instruction creates the reference multiple times (eg, via CALL). 154 */ 155 int id; 156 /* Instruction where the allocation of this reference occurred. This 157 * is used purely to inform the user of a reference leak. 158 */ 159 int insn_idx; 160}; 161 162/* state of the program: 163 * type of all registers and stack info 164 */ 165struct bpf_func_state { 166 struct bpf_reg_state regs[MAX_BPF_REG]; 167 /* index of call instruction that called into this func */ 168 int callsite; 169 /* stack frame number of this function state from pov of 170 * enclosing bpf_verifier_state. 171 * 0 = main function, 1 = first callee. 172 */ 173 u32 frameno; 174 /* subprog number == index within subprog_stack_depth 175 * zero == main subprog 176 */ 177 u32 subprogno; 178 179 /* The following fields should be last. See copy_func_state() */ 180 int acquired_refs; 181 struct bpf_reference_state *refs; 182 int allocated_stack; 183 struct bpf_stack_state *stack; 184}; 185 186#define MAX_CALL_FRAMES 8 187struct bpf_verifier_state { 188 /* call stack tracking */ 189 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 190 u32 curframe; 191 u32 active_spin_lock; 192 bool speculative; 193}; 194 195#define bpf_get_spilled_reg(slot, frame) \ 196 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 197 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 198 ? &frame->stack[slot].spilled_ptr : NULL) 199 200/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 201#define bpf_for_each_spilled_reg(iter, frame, reg) \ 202 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 203 iter < frame->allocated_stack / BPF_REG_SIZE; \ 204 iter++, reg = bpf_get_spilled_reg(iter, frame)) 205 206/* linked list of verifier states used to prune search */ 207struct bpf_verifier_state_list { 208 struct bpf_verifier_state state; 209 struct bpf_verifier_state_list *next; 210}; 211 212/* Possible states for alu_state member. */ 213#define BPF_ALU_SANITIZE_SRC 1U 214#define BPF_ALU_SANITIZE_DST 2U 215#define BPF_ALU_NEG_VALUE (1U << 2) 216#define BPF_ALU_NON_POINTER (1U << 3) 217#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 218 BPF_ALU_SANITIZE_DST) 219 220struct bpf_insn_aux_data { 221 union { 222 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 223 unsigned long map_state; /* pointer/poison value for maps */ 224 s32 call_imm; /* saved imm field of call insn */ 225 u32 alu_limit; /* limit for add/sub register with pointer */ 226 }; 227 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 228 int sanitize_stack_off; /* stack slot to be cleared */ 229 bool seen; /* this insn was processed by the verifier */ 230 u8 alu_state; /* used in combination with alu_limit */ 231 unsigned int orig_idx; /* original instruction index */ 232}; 233 234#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 235 236#define BPF_VERIFIER_TMP_LOG_SIZE 1024 237 238struct bpf_verifier_log { 239 u32 level; 240 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 241 char __user *ubuf; 242 u32 len_used; 243 u32 len_total; 244}; 245 246static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 247{ 248 return log->len_used >= log->len_total - 1; 249} 250 251static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 252{ 253 return log->level && log->ubuf && !bpf_verifier_log_full(log); 254} 255 256#define BPF_MAX_SUBPROGS 256 257 258struct bpf_subprog_info { 259 u32 start; /* insn idx of function entry point */ 260 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 261 u16 stack_depth; /* max. stack depth used by this function */ 262}; 263 264/* single container for all structs 265 * one verifier_env per bpf_check() call 266 */ 267struct bpf_verifier_env { 268 u32 insn_idx; 269 u32 prev_insn_idx; 270 struct bpf_prog *prog; /* eBPF program being verified */ 271 const struct bpf_verifier_ops *ops; 272 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 273 int stack_size; /* number of states to be processed */ 274 bool strict_alignment; /* perform strict pointer alignment checks */ 275 struct bpf_verifier_state *cur_state; /* current verifier state */ 276 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 277 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 278 u32 used_map_cnt; /* number of used maps */ 279 u32 id_gen; /* used to generate unique reg IDs */ 280 bool allow_ptr_leaks; 281 bool seen_direct_write; 282 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 283 const struct bpf_line_info *prev_linfo; 284 struct bpf_verifier_log log; 285 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 286 u32 subprog_cnt; 287}; 288 289__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 290 const char *fmt, va_list args); 291__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 292 const char *fmt, ...); 293 294static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 295{ 296 struct bpf_verifier_state *cur = env->cur_state; 297 298 return cur->frame[cur->curframe]; 299} 300 301static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 302{ 303 return cur_func(env)->regs; 304} 305 306int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 307int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 308 int insn_idx, int prev_insn_idx); 309int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 310void 311bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 312 struct bpf_insn *insn); 313void 314bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 315 316#endif /* _LINUX_BPF_VERIFIER_H */