Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_cred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_cred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106
107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
108
109 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
110
111 ctx = alloc_nfs_open_dir_context(inode, current_cred());
112 if (IS_ERR(ctx)) {
113 res = PTR_ERR(ctx);
114 goto out;
115 }
116 filp->private_data = ctx;
117out:
118 return res;
119}
120
121static int
122nfs_closedir(struct inode *inode, struct file *filp)
123{
124 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
125 return 0;
126}
127
128struct nfs_cache_array_entry {
129 u64 cookie;
130 u64 ino;
131 struct qstr string;
132 unsigned char d_type;
133};
134
135struct nfs_cache_array {
136 int size;
137 int eof_index;
138 u64 last_cookie;
139 struct nfs_cache_array_entry array[0];
140};
141
142struct readdirvec {
143 unsigned long nr;
144 unsigned long index;
145 struct page *pages[NFS_MAX_READDIR_RAPAGES];
146};
147
148typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
149typedef struct {
150 struct file *file;
151 struct page *page;
152 struct dir_context *ctx;
153 unsigned long page_index;
154 struct readdirvec pvec;
155 u64 *dir_cookie;
156 u64 last_cookie;
157 loff_t current_index;
158 decode_dirent_t decode;
159
160 unsigned long timestamp;
161 unsigned long gencount;
162 unsigned int cache_entry_index;
163 bool plus;
164 bool eof;
165} nfs_readdir_descriptor_t;
166
167/*
168 * we are freeing strings created by nfs_add_to_readdir_array()
169 */
170static
171void nfs_readdir_clear_array(struct page *page)
172{
173 struct nfs_cache_array *array;
174 int i;
175
176 array = kmap_atomic(page);
177 for (i = 0; i < array->size; i++)
178 kfree(array->array[i].string.name);
179 kunmap_atomic(array);
180}
181
182/*
183 * the caller is responsible for freeing qstr.name
184 * when called by nfs_readdir_add_to_array, the strings will be freed in
185 * nfs_clear_readdir_array()
186 */
187static
188int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
189{
190 string->len = len;
191 string->name = kmemdup(name, len, GFP_KERNEL);
192 if (string->name == NULL)
193 return -ENOMEM;
194 /*
195 * Avoid a kmemleak false positive. The pointer to the name is stored
196 * in a page cache page which kmemleak does not scan.
197 */
198 kmemleak_not_leak(string->name);
199 string->hash = full_name_hash(NULL, name, len);
200 return 0;
201}
202
203static
204int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
205{
206 struct nfs_cache_array *array = kmap(page);
207 struct nfs_cache_array_entry *cache_entry;
208 int ret;
209
210 cache_entry = &array->array[array->size];
211
212 /* Check that this entry lies within the page bounds */
213 ret = -ENOSPC;
214 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
215 goto out;
216
217 cache_entry->cookie = entry->prev_cookie;
218 cache_entry->ino = entry->ino;
219 cache_entry->d_type = entry->d_type;
220 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
221 if (ret)
222 goto out;
223 array->last_cookie = entry->cookie;
224 array->size++;
225 if (entry->eof != 0)
226 array->eof_index = array->size;
227out:
228 kunmap(page);
229 return ret;
230}
231
232static
233int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
234{
235 loff_t diff = desc->ctx->pos - desc->current_index;
236 unsigned int index;
237
238 if (diff < 0)
239 goto out_eof;
240 if (diff >= array->size) {
241 if (array->eof_index >= 0)
242 goto out_eof;
243 return -EAGAIN;
244 }
245
246 index = (unsigned int)diff;
247 *desc->dir_cookie = array->array[index].cookie;
248 desc->cache_entry_index = index;
249 return 0;
250out_eof:
251 desc->eof = true;
252 return -EBADCOOKIE;
253}
254
255static bool
256nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
257{
258 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
259 return false;
260 smp_rmb();
261 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
262}
263
264static
265int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
266{
267 int i;
268 loff_t new_pos;
269 int status = -EAGAIN;
270
271 for (i = 0; i < array->size; i++) {
272 if (array->array[i].cookie == *desc->dir_cookie) {
273 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
274 struct nfs_open_dir_context *ctx = desc->file->private_data;
275
276 new_pos = desc->current_index + i;
277 if (ctx->attr_gencount != nfsi->attr_gencount ||
278 !nfs_readdir_inode_mapping_valid(nfsi)) {
279 ctx->duped = 0;
280 ctx->attr_gencount = nfsi->attr_gencount;
281 } else if (new_pos < desc->ctx->pos) {
282 if (ctx->duped > 0
283 && ctx->dup_cookie == *desc->dir_cookie) {
284 if (printk_ratelimit()) {
285 pr_notice("NFS: directory %pD2 contains a readdir loop."
286 "Please contact your server vendor. "
287 "The file: %.*s has duplicate cookie %llu\n",
288 desc->file, array->array[i].string.len,
289 array->array[i].string.name, *desc->dir_cookie);
290 }
291 status = -ELOOP;
292 goto out;
293 }
294 ctx->dup_cookie = *desc->dir_cookie;
295 ctx->duped = -1;
296 }
297 desc->ctx->pos = new_pos;
298 desc->cache_entry_index = i;
299 return 0;
300 }
301 }
302 if (array->eof_index >= 0) {
303 status = -EBADCOOKIE;
304 if (*desc->dir_cookie == array->last_cookie)
305 desc->eof = true;
306 }
307out:
308 return status;
309}
310
311static
312int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
313{
314 struct nfs_cache_array *array;
315 int status;
316
317 array = kmap(desc->page);
318
319 if (*desc->dir_cookie == 0)
320 status = nfs_readdir_search_for_pos(array, desc);
321 else
322 status = nfs_readdir_search_for_cookie(array, desc);
323
324 if (status == -EAGAIN) {
325 desc->last_cookie = array->last_cookie;
326 desc->current_index += array->size;
327 desc->page_index++;
328 }
329 kunmap(desc->page);
330 return status;
331}
332
333/* Fill a page with xdr information before transferring to the cache page */
334static
335int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
336 struct nfs_entry *entry, struct file *file, struct inode *inode)
337{
338 struct nfs_open_dir_context *ctx = file->private_data;
339 const struct cred *cred = ctx->cred;
340 unsigned long timestamp, gencount;
341 int error;
342
343 again:
344 timestamp = jiffies;
345 gencount = nfs_inc_attr_generation_counter();
346 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
347 NFS_SERVER(inode)->dtsize, desc->plus);
348 if (error < 0) {
349 /* We requested READDIRPLUS, but the server doesn't grok it */
350 if (error == -ENOTSUPP && desc->plus) {
351 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
352 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
353 desc->plus = false;
354 goto again;
355 }
356 goto error;
357 }
358 desc->timestamp = timestamp;
359 desc->gencount = gencount;
360error:
361 return error;
362}
363
364static int xdr_decode(nfs_readdir_descriptor_t *desc,
365 struct nfs_entry *entry, struct xdr_stream *xdr)
366{
367 int error;
368
369 error = desc->decode(xdr, entry, desc->plus);
370 if (error)
371 return error;
372 entry->fattr->time_start = desc->timestamp;
373 entry->fattr->gencount = desc->gencount;
374 return 0;
375}
376
377/* Match file and dirent using either filehandle or fileid
378 * Note: caller is responsible for checking the fsid
379 */
380static
381int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
382{
383 struct inode *inode;
384 struct nfs_inode *nfsi;
385
386 if (d_really_is_negative(dentry))
387 return 0;
388
389 inode = d_inode(dentry);
390 if (is_bad_inode(inode) || NFS_STALE(inode))
391 return 0;
392
393 nfsi = NFS_I(inode);
394 if (entry->fattr->fileid != nfsi->fileid)
395 return 0;
396 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
397 return 0;
398 return 1;
399}
400
401static
402bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
403{
404 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
405 return false;
406 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
407 return true;
408 if (ctx->pos == 0)
409 return true;
410 return false;
411}
412
413/*
414 * This function is called by the lookup and getattr code to request the
415 * use of readdirplus to accelerate any future lookups in the same
416 * directory.
417 */
418void nfs_advise_use_readdirplus(struct inode *dir)
419{
420 struct nfs_inode *nfsi = NFS_I(dir);
421
422 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
423 !list_empty(&nfsi->open_files))
424 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
425}
426
427/*
428 * This function is mainly for use by nfs_getattr().
429 *
430 * If this is an 'ls -l', we want to force use of readdirplus.
431 * Do this by checking if there is an active file descriptor
432 * and calling nfs_advise_use_readdirplus, then forcing a
433 * cache flush.
434 */
435void nfs_force_use_readdirplus(struct inode *dir)
436{
437 struct nfs_inode *nfsi = NFS_I(dir);
438
439 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
440 !list_empty(&nfsi->open_files)) {
441 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
442 invalidate_mapping_pages(dir->i_mapping, 0, -1);
443 }
444}
445
446static
447void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
448{
449 struct qstr filename = QSTR_INIT(entry->name, entry->len);
450 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
451 struct dentry *dentry;
452 struct dentry *alias;
453 struct inode *dir = d_inode(parent);
454 struct inode *inode;
455 int status;
456
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
458 return;
459 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
460 return;
461 if (filename.len == 0)
462 return;
463 /* Validate that the name doesn't contain any illegal '\0' */
464 if (strnlen(filename.name, filename.len) != filename.len)
465 return;
466 /* ...or '/' */
467 if (strnchr(filename.name, filename.len, '/'))
468 return;
469 if (filename.name[0] == '.') {
470 if (filename.len == 1)
471 return;
472 if (filename.len == 2 && filename.name[1] == '.')
473 return;
474 }
475 filename.hash = full_name_hash(parent, filename.name, filename.len);
476
477 dentry = d_lookup(parent, &filename);
478again:
479 if (!dentry) {
480 dentry = d_alloc_parallel(parent, &filename, &wq);
481 if (IS_ERR(dentry))
482 return;
483 }
484 if (!d_in_lookup(dentry)) {
485 /* Is there a mountpoint here? If so, just exit */
486 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
487 &entry->fattr->fsid))
488 goto out;
489 if (nfs_same_file(dentry, entry)) {
490 if (!entry->fh->size)
491 goto out;
492 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
493 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
494 if (!status)
495 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
496 goto out;
497 } else {
498 d_invalidate(dentry);
499 dput(dentry);
500 dentry = NULL;
501 goto again;
502 }
503 }
504 if (!entry->fh->size) {
505 d_lookup_done(dentry);
506 goto out;
507 }
508
509 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
510 alias = d_splice_alias(inode, dentry);
511 d_lookup_done(dentry);
512 if (alias) {
513 if (IS_ERR(alias))
514 goto out;
515 dput(dentry);
516 dentry = alias;
517 }
518 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
519out:
520 dput(dentry);
521}
522
523/* Perform conversion from xdr to cache array */
524static
525int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
526 struct page **xdr_pages, struct page *page, unsigned int buflen)
527{
528 struct xdr_stream stream;
529 struct xdr_buf buf;
530 struct page *scratch;
531 struct nfs_cache_array *array;
532 unsigned int count = 0;
533 int status;
534 int max_rapages = NFS_MAX_READDIR_RAPAGES;
535
536 desc->pvec.index = desc->page_index;
537 desc->pvec.nr = 0;
538
539 scratch = alloc_page(GFP_KERNEL);
540 if (scratch == NULL)
541 return -ENOMEM;
542
543 if (buflen == 0)
544 goto out_nopages;
545
546 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548
549 do {
550 status = xdr_decode(desc, entry, &stream);
551 if (status != 0) {
552 if (status == -EAGAIN)
553 status = 0;
554 break;
555 }
556
557 count++;
558
559 if (desc->plus)
560 nfs_prime_dcache(file_dentry(desc->file), entry);
561
562 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
563 if (status == -ENOSPC) {
564 desc->pvec.nr++;
565 if (desc->pvec.nr == max_rapages)
566 break;
567 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
568 }
569 if (status != 0)
570 break;
571 } while (!entry->eof);
572
573 /*
574 * page and desc->pvec.pages[0] are valid, don't need to check
575 * whether or not to be NULL.
576 */
577 copy_highpage(page, desc->pvec.pages[0]);
578
579out_nopages:
580 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
581 array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]);
582 array->eof_index = array->size;
583 status = 0;
584 kunmap_atomic(array);
585 }
586
587 put_page(scratch);
588
589 /*
590 * desc->pvec.nr > 0 means at least one page was completely filled,
591 * we should return -ENOSPC. Otherwise function
592 * nfs_readdir_xdr_to_array will enter infinite loop.
593 */
594 if (desc->pvec.nr > 0)
595 return -ENOSPC;
596 return status;
597}
598
599static
600void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
601{
602 unsigned int i;
603 for (i = 0; i < npages; i++)
604 put_page(pages[i]);
605}
606
607/*
608 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
609 * to nfs_readdir_free_pages()
610 */
611static
612int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
613{
614 unsigned int i;
615
616 for (i = 0; i < npages; i++) {
617 struct page *page = alloc_page(GFP_KERNEL);
618 if (page == NULL)
619 goto out_freepages;
620 pages[i] = page;
621 }
622 return 0;
623
624out_freepages:
625 nfs_readdir_free_pages(pages, i);
626 return -ENOMEM;
627}
628
629/*
630 * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure.
631 */
632static
633void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc)
634{
635 struct nfs_cache_array *array;
636 int max_rapages = NFS_MAX_READDIR_RAPAGES;
637 int index;
638
639 for (index = 0; index < max_rapages; index++) {
640 array = kmap_atomic(desc->pvec.pages[index]);
641 memset(array, 0, sizeof(struct nfs_cache_array));
642 array->eof_index = -1;
643 kunmap_atomic(array);
644 }
645}
646
647static
648int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
649{
650 struct page *pages[NFS_MAX_READDIR_PAGES];
651 struct nfs_entry entry;
652 struct file *file = desc->file;
653 struct nfs_cache_array *array;
654 int status = -ENOMEM;
655 unsigned int array_size = ARRAY_SIZE(pages);
656
657 /*
658 * This means we hit readdir rdpages miss, the preallocated rdpages
659 * are useless, the preallocate rdpages should be reinitialized.
660 */
661 nfs_readdir_rapages_init(desc);
662
663 entry.prev_cookie = 0;
664 entry.cookie = desc->last_cookie;
665 entry.eof = 0;
666 entry.fh = nfs_alloc_fhandle();
667 entry.fattr = nfs_alloc_fattr();
668 entry.server = NFS_SERVER(inode);
669 if (entry.fh == NULL || entry.fattr == NULL)
670 goto out;
671
672 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
673 if (IS_ERR(entry.label)) {
674 status = PTR_ERR(entry.label);
675 goto out;
676 }
677
678 array = kmap(page);
679 memset(array, 0, sizeof(struct nfs_cache_array));
680 array->eof_index = -1;
681
682 status = nfs_readdir_alloc_pages(pages, array_size);
683 if (status < 0)
684 goto out_release_array;
685 do {
686 unsigned int pglen;
687 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
688
689 if (status < 0)
690 break;
691 pglen = status;
692 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
693 if (status < 0) {
694 if (status == -ENOSPC)
695 status = 0;
696 break;
697 }
698 } while (array->eof_index < 0);
699
700 nfs_readdir_free_pages(pages, array_size);
701out_release_array:
702 kunmap(page);
703 nfs4_label_free(entry.label);
704out:
705 nfs_free_fattr(entry.fattr);
706 nfs_free_fhandle(entry.fh);
707 return status;
708}
709
710/*
711 * Now we cache directories properly, by converting xdr information
712 * to an array that can be used for lookups later. This results in
713 * fewer cache pages, since we can store more information on each page.
714 * We only need to convert from xdr once so future lookups are much simpler
715 */
716static
717int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
718{
719 struct inode *inode = file_inode(desc->file);
720 int ret;
721
722 /*
723 * If desc->page_index in range desc->pvec.index and
724 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit.
725 */
726 if (desc->page_index >= desc->pvec.index &&
727 desc->page_index < (desc->pvec.index + desc->pvec.nr)) {
728 /*
729 * page and desc->pvec.pages[x] are valid, don't need to check
730 * whether or not to be NULL.
731 */
732 copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]);
733 ret = 0;
734 } else {
735 ret = nfs_readdir_xdr_to_array(desc, page, inode);
736 if (ret < 0)
737 goto error;
738 }
739
740 SetPageUptodate(page);
741
742 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
743 /* Should never happen */
744 nfs_zap_mapping(inode, inode->i_mapping);
745 }
746 unlock_page(page);
747 return 0;
748 error:
749 unlock_page(page);
750 return ret;
751}
752
753static
754void cache_page_release(nfs_readdir_descriptor_t *desc)
755{
756 if (!desc->page->mapping)
757 nfs_readdir_clear_array(desc->page);
758 put_page(desc->page);
759 desc->page = NULL;
760}
761
762static
763struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
764{
765 return read_cache_page(desc->file->f_mapping,
766 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
767}
768
769/*
770 * Returns 0 if desc->dir_cookie was found on page desc->page_index
771 */
772static
773int find_cache_page(nfs_readdir_descriptor_t *desc)
774{
775 int res;
776
777 desc->page = get_cache_page(desc);
778 if (IS_ERR(desc->page))
779 return PTR_ERR(desc->page);
780
781 res = nfs_readdir_search_array(desc);
782 if (res != 0)
783 cache_page_release(desc);
784 return res;
785}
786
787/* Search for desc->dir_cookie from the beginning of the page cache */
788static inline
789int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
790{
791 int res;
792
793 if (desc->page_index == 0) {
794 desc->current_index = 0;
795 desc->last_cookie = 0;
796 }
797 do {
798 res = find_cache_page(desc);
799 } while (res == -EAGAIN);
800 return res;
801}
802
803/*
804 * Once we've found the start of the dirent within a page: fill 'er up...
805 */
806static
807int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
808{
809 struct file *file = desc->file;
810 int i = 0;
811 int res = 0;
812 struct nfs_cache_array *array = NULL;
813 struct nfs_open_dir_context *ctx = file->private_data;
814
815 array = kmap(desc->page);
816 for (i = desc->cache_entry_index; i < array->size; i++) {
817 struct nfs_cache_array_entry *ent;
818
819 ent = &array->array[i];
820 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
821 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
822 desc->eof = true;
823 break;
824 }
825 desc->ctx->pos++;
826 if (i < (array->size-1))
827 *desc->dir_cookie = array->array[i+1].cookie;
828 else
829 *desc->dir_cookie = array->last_cookie;
830 if (ctx->duped != 0)
831 ctx->duped = 1;
832 }
833 if (array->eof_index >= 0)
834 desc->eof = true;
835
836 kunmap(desc->page);
837 cache_page_release(desc);
838 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
839 (unsigned long long)*desc->dir_cookie, res);
840 return res;
841}
842
843/*
844 * If we cannot find a cookie in our cache, we suspect that this is
845 * because it points to a deleted file, so we ask the server to return
846 * whatever it thinks is the next entry. We then feed this to filldir.
847 * If all goes well, we should then be able to find our way round the
848 * cache on the next call to readdir_search_pagecache();
849 *
850 * NOTE: we cannot add the anonymous page to the pagecache because
851 * the data it contains might not be page aligned. Besides,
852 * we should already have a complete representation of the
853 * directory in the page cache by the time we get here.
854 */
855static inline
856int uncached_readdir(nfs_readdir_descriptor_t *desc)
857{
858 struct page *page = NULL;
859 int status;
860 struct inode *inode = file_inode(desc->file);
861 struct nfs_open_dir_context *ctx = desc->file->private_data;
862
863 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
864 (unsigned long long)*desc->dir_cookie);
865
866 page = alloc_page(GFP_HIGHUSER);
867 if (!page) {
868 status = -ENOMEM;
869 goto out;
870 }
871
872 desc->page_index = 0;
873 desc->last_cookie = *desc->dir_cookie;
874 desc->page = page;
875 ctx->duped = 0;
876
877 status = nfs_readdir_xdr_to_array(desc, page, inode);
878 if (status < 0)
879 goto out_release;
880
881 status = nfs_do_filldir(desc);
882
883 out:
884 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
885 __func__, status);
886 return status;
887 out_release:
888 cache_page_release(desc);
889 goto out;
890}
891
892/* The file offset position represents the dirent entry number. A
893 last cookie cache takes care of the common case of reading the
894 whole directory.
895 */
896static int nfs_readdir(struct file *file, struct dir_context *ctx)
897{
898 struct dentry *dentry = file_dentry(file);
899 struct inode *inode = d_inode(dentry);
900 nfs_readdir_descriptor_t my_desc,
901 *desc = &my_desc;
902 struct nfs_open_dir_context *dir_ctx = file->private_data;
903 int res = 0;
904 int max_rapages = NFS_MAX_READDIR_RAPAGES;
905
906 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
907 file, (long long)ctx->pos);
908 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
909
910 /*
911 * ctx->pos points to the dirent entry number.
912 * *desc->dir_cookie has the cookie for the next entry. We have
913 * to either find the entry with the appropriate number or
914 * revalidate the cookie.
915 */
916 memset(desc, 0, sizeof(*desc));
917
918 desc->file = file;
919 desc->ctx = ctx;
920 desc->dir_cookie = &dir_ctx->dir_cookie;
921 desc->decode = NFS_PROTO(inode)->decode_dirent;
922 desc->plus = nfs_use_readdirplus(inode, ctx);
923
924 res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages);
925 if (res < 0)
926 return -ENOMEM;
927
928 nfs_readdir_rapages_init(desc);
929
930 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
931 res = nfs_revalidate_mapping(inode, file->f_mapping);
932 if (res < 0)
933 goto out;
934
935 do {
936 res = readdir_search_pagecache(desc);
937
938 if (res == -EBADCOOKIE) {
939 res = 0;
940 /* This means either end of directory */
941 if (*desc->dir_cookie && !desc->eof) {
942 /* Or that the server has 'lost' a cookie */
943 res = uncached_readdir(desc);
944 if (res == 0)
945 continue;
946 }
947 break;
948 }
949 if (res == -ETOOSMALL && desc->plus) {
950 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
951 nfs_zap_caches(inode);
952 desc->page_index = 0;
953 desc->plus = false;
954 desc->eof = false;
955 continue;
956 }
957 if (res < 0)
958 break;
959
960 res = nfs_do_filldir(desc);
961 if (res < 0)
962 break;
963 } while (!desc->eof);
964out:
965 nfs_readdir_free_pages(desc->pvec.pages, max_rapages);
966 if (res > 0)
967 res = 0;
968 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
969 return res;
970}
971
972static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
973{
974 struct inode *inode = file_inode(filp);
975 struct nfs_open_dir_context *dir_ctx = filp->private_data;
976
977 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
978 filp, offset, whence);
979
980 switch (whence) {
981 default:
982 return -EINVAL;
983 case SEEK_SET:
984 if (offset < 0)
985 return -EINVAL;
986 inode_lock(inode);
987 break;
988 case SEEK_CUR:
989 if (offset == 0)
990 return filp->f_pos;
991 inode_lock(inode);
992 offset += filp->f_pos;
993 if (offset < 0) {
994 inode_unlock(inode);
995 return -EINVAL;
996 }
997 }
998 if (offset != filp->f_pos) {
999 filp->f_pos = offset;
1000 dir_ctx->dir_cookie = 0;
1001 dir_ctx->duped = 0;
1002 }
1003 inode_unlock(inode);
1004 return offset;
1005}
1006
1007/*
1008 * All directory operations under NFS are synchronous, so fsync()
1009 * is a dummy operation.
1010 */
1011static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1012 int datasync)
1013{
1014 struct inode *inode = file_inode(filp);
1015
1016 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1017
1018 inode_lock(inode);
1019 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1020 inode_unlock(inode);
1021 return 0;
1022}
1023
1024/**
1025 * nfs_force_lookup_revalidate - Mark the directory as having changed
1026 * @dir: pointer to directory inode
1027 *
1028 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1029 * full lookup on all child dentries of 'dir' whenever a change occurs
1030 * on the server that might have invalidated our dcache.
1031 *
1032 * The caller should be holding dir->i_lock
1033 */
1034void nfs_force_lookup_revalidate(struct inode *dir)
1035{
1036 NFS_I(dir)->cache_change_attribute++;
1037}
1038EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1039
1040/*
1041 * A check for whether or not the parent directory has changed.
1042 * In the case it has, we assume that the dentries are untrustworthy
1043 * and may need to be looked up again.
1044 * If rcu_walk prevents us from performing a full check, return 0.
1045 */
1046static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1047 int rcu_walk)
1048{
1049 if (IS_ROOT(dentry))
1050 return 1;
1051 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1052 return 0;
1053 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1054 return 0;
1055 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1056 if (nfs_mapping_need_revalidate_inode(dir)) {
1057 if (rcu_walk)
1058 return 0;
1059 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1060 return 0;
1061 }
1062 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1063 return 0;
1064 return 1;
1065}
1066
1067/*
1068 * Use intent information to check whether or not we're going to do
1069 * an O_EXCL create using this path component.
1070 */
1071static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1072{
1073 if (NFS_PROTO(dir)->version == 2)
1074 return 0;
1075 return flags & LOOKUP_EXCL;
1076}
1077
1078/*
1079 * Inode and filehandle revalidation for lookups.
1080 *
1081 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1082 * or if the intent information indicates that we're about to open this
1083 * particular file and the "nocto" mount flag is not set.
1084 *
1085 */
1086static
1087int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1088{
1089 struct nfs_server *server = NFS_SERVER(inode);
1090 int ret;
1091
1092 if (IS_AUTOMOUNT(inode))
1093 return 0;
1094
1095 if (flags & LOOKUP_OPEN) {
1096 switch (inode->i_mode & S_IFMT) {
1097 case S_IFREG:
1098 /* A NFSv4 OPEN will revalidate later */
1099 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1100 goto out;
1101 /* Fallthrough */
1102 case S_IFDIR:
1103 if (server->flags & NFS_MOUNT_NOCTO)
1104 break;
1105 /* NFS close-to-open cache consistency validation */
1106 goto out_force;
1107 }
1108 }
1109
1110 /* VFS wants an on-the-wire revalidation */
1111 if (flags & LOOKUP_REVAL)
1112 goto out_force;
1113out:
1114 return (inode->i_nlink == 0) ? -ESTALE : 0;
1115out_force:
1116 if (flags & LOOKUP_RCU)
1117 return -ECHILD;
1118 ret = __nfs_revalidate_inode(server, inode);
1119 if (ret != 0)
1120 return ret;
1121 goto out;
1122}
1123
1124/*
1125 * We judge how long we want to trust negative
1126 * dentries by looking at the parent inode mtime.
1127 *
1128 * If parent mtime has changed, we revalidate, else we wait for a
1129 * period corresponding to the parent's attribute cache timeout value.
1130 *
1131 * If LOOKUP_RCU prevents us from performing a full check, return 1
1132 * suggesting a reval is needed.
1133 *
1134 * Note that when creating a new file, or looking up a rename target,
1135 * then it shouldn't be necessary to revalidate a negative dentry.
1136 */
1137static inline
1138int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1139 unsigned int flags)
1140{
1141 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1142 return 0;
1143 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1144 return 1;
1145 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1146}
1147
1148static int
1149nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1150 struct inode *inode, int error)
1151{
1152 switch (error) {
1153 case 1:
1154 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1155 __func__, dentry);
1156 return 1;
1157 case 0:
1158 nfs_mark_for_revalidate(dir);
1159 if (inode && S_ISDIR(inode->i_mode)) {
1160 /* Purge readdir caches. */
1161 nfs_zap_caches(inode);
1162 /*
1163 * We can't d_drop the root of a disconnected tree:
1164 * its d_hash is on the s_anon list and d_drop() would hide
1165 * it from shrink_dcache_for_unmount(), leading to busy
1166 * inodes on unmount and further oopses.
1167 */
1168 if (IS_ROOT(dentry))
1169 return 1;
1170 }
1171 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1172 __func__, dentry);
1173 return 0;
1174 }
1175 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1176 __func__, dentry, error);
1177 return error;
1178}
1179
1180static int
1181nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1182 unsigned int flags)
1183{
1184 int ret = 1;
1185 if (nfs_neg_need_reval(dir, dentry, flags)) {
1186 if (flags & LOOKUP_RCU)
1187 return -ECHILD;
1188 ret = 0;
1189 }
1190 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1191}
1192
1193static int
1194nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1195 struct inode *inode)
1196{
1197 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1198 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1199}
1200
1201static int
1202nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1203 struct inode *inode)
1204{
1205 struct nfs_fh *fhandle;
1206 struct nfs_fattr *fattr;
1207 struct nfs4_label *label;
1208 int ret;
1209
1210 ret = -ENOMEM;
1211 fhandle = nfs_alloc_fhandle();
1212 fattr = nfs_alloc_fattr();
1213 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1214 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1215 goto out;
1216
1217 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1218 if (ret < 0) {
1219 if (ret == -ESTALE || ret == -ENOENT)
1220 ret = 0;
1221 goto out;
1222 }
1223 ret = 0;
1224 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1225 goto out;
1226 if (nfs_refresh_inode(inode, fattr) < 0)
1227 goto out;
1228
1229 nfs_setsecurity(inode, fattr, label);
1230 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1231
1232 /* set a readdirplus hint that we had a cache miss */
1233 nfs_force_use_readdirplus(dir);
1234 ret = 1;
1235out:
1236 nfs_free_fattr(fattr);
1237 nfs_free_fhandle(fhandle);
1238 nfs4_label_free(label);
1239 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1240}
1241
1242/*
1243 * This is called every time the dcache has a lookup hit,
1244 * and we should check whether we can really trust that
1245 * lookup.
1246 *
1247 * NOTE! The hit can be a negative hit too, don't assume
1248 * we have an inode!
1249 *
1250 * If the parent directory is seen to have changed, we throw out the
1251 * cached dentry and do a new lookup.
1252 */
1253static int
1254nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1255 unsigned int flags)
1256{
1257 struct inode *inode;
1258 int error;
1259
1260 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1261 inode = d_inode(dentry);
1262
1263 if (!inode)
1264 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1265
1266 if (is_bad_inode(inode)) {
1267 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1268 __func__, dentry);
1269 goto out_bad;
1270 }
1271
1272 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1273 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1274
1275 /* Force a full look up iff the parent directory has changed */
1276 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1277 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1278 error = nfs_lookup_verify_inode(inode, flags);
1279 if (error) {
1280 if (error == -ESTALE)
1281 nfs_zap_caches(dir);
1282 goto out_bad;
1283 }
1284 nfs_advise_use_readdirplus(dir);
1285 goto out_valid;
1286 }
1287
1288 if (flags & LOOKUP_RCU)
1289 return -ECHILD;
1290
1291 if (NFS_STALE(inode))
1292 goto out_bad;
1293
1294 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1295 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1296 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1297 return error;
1298out_valid:
1299 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1300out_bad:
1301 if (flags & LOOKUP_RCU)
1302 return -ECHILD;
1303 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1304}
1305
1306static int
1307__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1308 int (*reval)(struct inode *, struct dentry *, unsigned int))
1309{
1310 struct dentry *parent;
1311 struct inode *dir;
1312 int ret;
1313
1314 if (flags & LOOKUP_RCU) {
1315 parent = READ_ONCE(dentry->d_parent);
1316 dir = d_inode_rcu(parent);
1317 if (!dir)
1318 return -ECHILD;
1319 ret = reval(dir, dentry, flags);
1320 if (parent != READ_ONCE(dentry->d_parent))
1321 return -ECHILD;
1322 } else {
1323 parent = dget_parent(dentry);
1324 ret = reval(d_inode(parent), dentry, flags);
1325 dput(parent);
1326 }
1327 return ret;
1328}
1329
1330static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1331{
1332 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1333}
1334
1335/*
1336 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1337 * when we don't really care about the dentry name. This is called when a
1338 * pathwalk ends on a dentry that was not found via a normal lookup in the
1339 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1340 *
1341 * In this situation, we just want to verify that the inode itself is OK
1342 * since the dentry might have changed on the server.
1343 */
1344static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1345{
1346 struct inode *inode = d_inode(dentry);
1347 int error = 0;
1348
1349 /*
1350 * I believe we can only get a negative dentry here in the case of a
1351 * procfs-style symlink. Just assume it's correct for now, but we may
1352 * eventually need to do something more here.
1353 */
1354 if (!inode) {
1355 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1356 __func__, dentry);
1357 return 1;
1358 }
1359
1360 if (is_bad_inode(inode)) {
1361 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1362 __func__, dentry);
1363 return 0;
1364 }
1365
1366 error = nfs_lookup_verify_inode(inode, flags);
1367 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1368 __func__, inode->i_ino, error ? "invalid" : "valid");
1369 return !error;
1370}
1371
1372/*
1373 * This is called from dput() when d_count is going to 0.
1374 */
1375static int nfs_dentry_delete(const struct dentry *dentry)
1376{
1377 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1378 dentry, dentry->d_flags);
1379
1380 /* Unhash any dentry with a stale inode */
1381 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1382 return 1;
1383
1384 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1385 /* Unhash it, so that ->d_iput() would be called */
1386 return 1;
1387 }
1388 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1389 /* Unhash it, so that ancestors of killed async unlink
1390 * files will be cleaned up during umount */
1391 return 1;
1392 }
1393 return 0;
1394
1395}
1396
1397/* Ensure that we revalidate inode->i_nlink */
1398static void nfs_drop_nlink(struct inode *inode)
1399{
1400 spin_lock(&inode->i_lock);
1401 /* drop the inode if we're reasonably sure this is the last link */
1402 if (inode->i_nlink > 0)
1403 drop_nlink(inode);
1404 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1405 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1406 | NFS_INO_INVALID_CTIME
1407 | NFS_INO_INVALID_OTHER
1408 | NFS_INO_REVAL_FORCED;
1409 spin_unlock(&inode->i_lock);
1410}
1411
1412/*
1413 * Called when the dentry loses inode.
1414 * We use it to clean up silly-renamed files.
1415 */
1416static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1417{
1418 if (S_ISDIR(inode->i_mode))
1419 /* drop any readdir cache as it could easily be old */
1420 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1421
1422 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1423 nfs_complete_unlink(dentry, inode);
1424 nfs_drop_nlink(inode);
1425 }
1426 iput(inode);
1427}
1428
1429static void nfs_d_release(struct dentry *dentry)
1430{
1431 /* free cached devname value, if it survived that far */
1432 if (unlikely(dentry->d_fsdata)) {
1433 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1434 WARN_ON(1);
1435 else
1436 kfree(dentry->d_fsdata);
1437 }
1438}
1439
1440const struct dentry_operations nfs_dentry_operations = {
1441 .d_revalidate = nfs_lookup_revalidate,
1442 .d_weak_revalidate = nfs_weak_revalidate,
1443 .d_delete = nfs_dentry_delete,
1444 .d_iput = nfs_dentry_iput,
1445 .d_automount = nfs_d_automount,
1446 .d_release = nfs_d_release,
1447};
1448EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1449
1450struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1451{
1452 struct dentry *res;
1453 struct inode *inode = NULL;
1454 struct nfs_fh *fhandle = NULL;
1455 struct nfs_fattr *fattr = NULL;
1456 struct nfs4_label *label = NULL;
1457 int error;
1458
1459 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1460 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1461
1462 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1463 return ERR_PTR(-ENAMETOOLONG);
1464
1465 /*
1466 * If we're doing an exclusive create, optimize away the lookup
1467 * but don't hash the dentry.
1468 */
1469 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1470 return NULL;
1471
1472 res = ERR_PTR(-ENOMEM);
1473 fhandle = nfs_alloc_fhandle();
1474 fattr = nfs_alloc_fattr();
1475 if (fhandle == NULL || fattr == NULL)
1476 goto out;
1477
1478 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1479 if (IS_ERR(label))
1480 goto out;
1481
1482 trace_nfs_lookup_enter(dir, dentry, flags);
1483 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1484 if (error == -ENOENT)
1485 goto no_entry;
1486 if (error < 0) {
1487 res = ERR_PTR(error);
1488 goto out_label;
1489 }
1490 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1491 res = ERR_CAST(inode);
1492 if (IS_ERR(res))
1493 goto out_label;
1494
1495 /* Notify readdir to use READDIRPLUS */
1496 nfs_force_use_readdirplus(dir);
1497
1498no_entry:
1499 res = d_splice_alias(inode, dentry);
1500 if (res != NULL) {
1501 if (IS_ERR(res))
1502 goto out_label;
1503 dentry = res;
1504 }
1505 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1506out_label:
1507 trace_nfs_lookup_exit(dir, dentry, flags, error);
1508 nfs4_label_free(label);
1509out:
1510 nfs_free_fattr(fattr);
1511 nfs_free_fhandle(fhandle);
1512 return res;
1513}
1514EXPORT_SYMBOL_GPL(nfs_lookup);
1515
1516#if IS_ENABLED(CONFIG_NFS_V4)
1517static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1518
1519const struct dentry_operations nfs4_dentry_operations = {
1520 .d_revalidate = nfs4_lookup_revalidate,
1521 .d_weak_revalidate = nfs_weak_revalidate,
1522 .d_delete = nfs_dentry_delete,
1523 .d_iput = nfs_dentry_iput,
1524 .d_automount = nfs_d_automount,
1525 .d_release = nfs_d_release,
1526};
1527EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1528
1529static fmode_t flags_to_mode(int flags)
1530{
1531 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1532 if ((flags & O_ACCMODE) != O_WRONLY)
1533 res |= FMODE_READ;
1534 if ((flags & O_ACCMODE) != O_RDONLY)
1535 res |= FMODE_WRITE;
1536 return res;
1537}
1538
1539static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1540{
1541 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1542}
1543
1544static int do_open(struct inode *inode, struct file *filp)
1545{
1546 nfs_fscache_open_file(inode, filp);
1547 return 0;
1548}
1549
1550static int nfs_finish_open(struct nfs_open_context *ctx,
1551 struct dentry *dentry,
1552 struct file *file, unsigned open_flags)
1553{
1554 int err;
1555
1556 err = finish_open(file, dentry, do_open);
1557 if (err)
1558 goto out;
1559 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1560 nfs_file_set_open_context(file, ctx);
1561 else
1562 err = -ESTALE;
1563out:
1564 return err;
1565}
1566
1567int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1568 struct file *file, unsigned open_flags,
1569 umode_t mode)
1570{
1571 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1572 struct nfs_open_context *ctx;
1573 struct dentry *res;
1574 struct iattr attr = { .ia_valid = ATTR_OPEN };
1575 struct inode *inode;
1576 unsigned int lookup_flags = 0;
1577 bool switched = false;
1578 int created = 0;
1579 int err;
1580
1581 /* Expect a negative dentry */
1582 BUG_ON(d_inode(dentry));
1583
1584 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1585 dir->i_sb->s_id, dir->i_ino, dentry);
1586
1587 err = nfs_check_flags(open_flags);
1588 if (err)
1589 return err;
1590
1591 /* NFS only supports OPEN on regular files */
1592 if ((open_flags & O_DIRECTORY)) {
1593 if (!d_in_lookup(dentry)) {
1594 /*
1595 * Hashed negative dentry with O_DIRECTORY: dentry was
1596 * revalidated and is fine, no need to perform lookup
1597 * again
1598 */
1599 return -ENOENT;
1600 }
1601 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1602 goto no_open;
1603 }
1604
1605 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1606 return -ENAMETOOLONG;
1607
1608 if (open_flags & O_CREAT) {
1609 struct nfs_server *server = NFS_SERVER(dir);
1610
1611 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1612 mode &= ~current_umask();
1613
1614 attr.ia_valid |= ATTR_MODE;
1615 attr.ia_mode = mode;
1616 }
1617 if (open_flags & O_TRUNC) {
1618 attr.ia_valid |= ATTR_SIZE;
1619 attr.ia_size = 0;
1620 }
1621
1622 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1623 d_drop(dentry);
1624 switched = true;
1625 dentry = d_alloc_parallel(dentry->d_parent,
1626 &dentry->d_name, &wq);
1627 if (IS_ERR(dentry))
1628 return PTR_ERR(dentry);
1629 if (unlikely(!d_in_lookup(dentry)))
1630 return finish_no_open(file, dentry);
1631 }
1632
1633 ctx = create_nfs_open_context(dentry, open_flags, file);
1634 err = PTR_ERR(ctx);
1635 if (IS_ERR(ctx))
1636 goto out;
1637
1638 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1639 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1640 if (created)
1641 file->f_mode |= FMODE_CREATED;
1642 if (IS_ERR(inode)) {
1643 err = PTR_ERR(inode);
1644 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1645 put_nfs_open_context(ctx);
1646 d_drop(dentry);
1647 switch (err) {
1648 case -ENOENT:
1649 d_splice_alias(NULL, dentry);
1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1651 break;
1652 case -EISDIR:
1653 case -ENOTDIR:
1654 goto no_open;
1655 case -ELOOP:
1656 if (!(open_flags & O_NOFOLLOW))
1657 goto no_open;
1658 break;
1659 /* case -EINVAL: */
1660 default:
1661 break;
1662 }
1663 goto out;
1664 }
1665
1666 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1667 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1668 put_nfs_open_context(ctx);
1669out:
1670 if (unlikely(switched)) {
1671 d_lookup_done(dentry);
1672 dput(dentry);
1673 }
1674 return err;
1675
1676no_open:
1677 res = nfs_lookup(dir, dentry, lookup_flags);
1678 if (switched) {
1679 d_lookup_done(dentry);
1680 if (!res)
1681 res = dentry;
1682 else
1683 dput(dentry);
1684 }
1685 if (IS_ERR(res))
1686 return PTR_ERR(res);
1687 return finish_no_open(file, res);
1688}
1689EXPORT_SYMBOL_GPL(nfs_atomic_open);
1690
1691static int
1692nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1693 unsigned int flags)
1694{
1695 struct inode *inode;
1696
1697 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1698 goto full_reval;
1699 if (d_mountpoint(dentry))
1700 goto full_reval;
1701
1702 inode = d_inode(dentry);
1703
1704 /* We can't create new files in nfs_open_revalidate(), so we
1705 * optimize away revalidation of negative dentries.
1706 */
1707 if (inode == NULL)
1708 goto full_reval;
1709
1710 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1711 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1712
1713 /* NFS only supports OPEN on regular files */
1714 if (!S_ISREG(inode->i_mode))
1715 goto full_reval;
1716
1717 /* We cannot do exclusive creation on a positive dentry */
1718 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1719 goto reval_dentry;
1720
1721 /* Check if the directory changed */
1722 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1723 goto reval_dentry;
1724
1725 /* Let f_op->open() actually open (and revalidate) the file */
1726 return 1;
1727reval_dentry:
1728 if (flags & LOOKUP_RCU)
1729 return -ECHILD;
1730 return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1731
1732full_reval:
1733 return nfs_do_lookup_revalidate(dir, dentry, flags);
1734}
1735
1736static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1737{
1738 return __nfs_lookup_revalidate(dentry, flags,
1739 nfs4_do_lookup_revalidate);
1740}
1741
1742#endif /* CONFIG_NFSV4 */
1743
1744/*
1745 * Code common to create, mkdir, and mknod.
1746 */
1747int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1748 struct nfs_fattr *fattr,
1749 struct nfs4_label *label)
1750{
1751 struct dentry *parent = dget_parent(dentry);
1752 struct inode *dir = d_inode(parent);
1753 struct inode *inode;
1754 struct dentry *d;
1755 int error = -EACCES;
1756
1757 d_drop(dentry);
1758
1759 /* We may have been initialized further down */
1760 if (d_really_is_positive(dentry))
1761 goto out;
1762 if (fhandle->size == 0) {
1763 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1764 if (error)
1765 goto out_error;
1766 }
1767 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1768 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1769 struct nfs_server *server = NFS_SB(dentry->d_sb);
1770 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1771 fattr, NULL, NULL);
1772 if (error < 0)
1773 goto out_error;
1774 }
1775 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1776 d = d_splice_alias(inode, dentry);
1777 if (IS_ERR(d)) {
1778 error = PTR_ERR(d);
1779 goto out_error;
1780 }
1781 dput(d);
1782out:
1783 dput(parent);
1784 return 0;
1785out_error:
1786 nfs_mark_for_revalidate(dir);
1787 dput(parent);
1788 return error;
1789}
1790EXPORT_SYMBOL_GPL(nfs_instantiate);
1791
1792/*
1793 * Following a failed create operation, we drop the dentry rather
1794 * than retain a negative dentry. This avoids a problem in the event
1795 * that the operation succeeded on the server, but an error in the
1796 * reply path made it appear to have failed.
1797 */
1798int nfs_create(struct inode *dir, struct dentry *dentry,
1799 umode_t mode, bool excl)
1800{
1801 struct iattr attr;
1802 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1803 int error;
1804
1805 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1806 dir->i_sb->s_id, dir->i_ino, dentry);
1807
1808 attr.ia_mode = mode;
1809 attr.ia_valid = ATTR_MODE;
1810
1811 trace_nfs_create_enter(dir, dentry, open_flags);
1812 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1813 trace_nfs_create_exit(dir, dentry, open_flags, error);
1814 if (error != 0)
1815 goto out_err;
1816 return 0;
1817out_err:
1818 d_drop(dentry);
1819 return error;
1820}
1821EXPORT_SYMBOL_GPL(nfs_create);
1822
1823/*
1824 * See comments for nfs_proc_create regarding failed operations.
1825 */
1826int
1827nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1828{
1829 struct iattr attr;
1830 int status;
1831
1832 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1833 dir->i_sb->s_id, dir->i_ino, dentry);
1834
1835 attr.ia_mode = mode;
1836 attr.ia_valid = ATTR_MODE;
1837
1838 trace_nfs_mknod_enter(dir, dentry);
1839 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1840 trace_nfs_mknod_exit(dir, dentry, status);
1841 if (status != 0)
1842 goto out_err;
1843 return 0;
1844out_err:
1845 d_drop(dentry);
1846 return status;
1847}
1848EXPORT_SYMBOL_GPL(nfs_mknod);
1849
1850/*
1851 * See comments for nfs_proc_create regarding failed operations.
1852 */
1853int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1854{
1855 struct iattr attr;
1856 int error;
1857
1858 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1859 dir->i_sb->s_id, dir->i_ino, dentry);
1860
1861 attr.ia_valid = ATTR_MODE;
1862 attr.ia_mode = mode | S_IFDIR;
1863
1864 trace_nfs_mkdir_enter(dir, dentry);
1865 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1866 trace_nfs_mkdir_exit(dir, dentry, error);
1867 if (error != 0)
1868 goto out_err;
1869 return 0;
1870out_err:
1871 d_drop(dentry);
1872 return error;
1873}
1874EXPORT_SYMBOL_GPL(nfs_mkdir);
1875
1876static void nfs_dentry_handle_enoent(struct dentry *dentry)
1877{
1878 if (simple_positive(dentry))
1879 d_delete(dentry);
1880}
1881
1882int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1883{
1884 int error;
1885
1886 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1887 dir->i_sb->s_id, dir->i_ino, dentry);
1888
1889 trace_nfs_rmdir_enter(dir, dentry);
1890 if (d_really_is_positive(dentry)) {
1891 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1892 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1893 /* Ensure the VFS deletes this inode */
1894 switch (error) {
1895 case 0:
1896 clear_nlink(d_inode(dentry));
1897 break;
1898 case -ENOENT:
1899 nfs_dentry_handle_enoent(dentry);
1900 }
1901 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1902 } else
1903 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1904 trace_nfs_rmdir_exit(dir, dentry, error);
1905
1906 return error;
1907}
1908EXPORT_SYMBOL_GPL(nfs_rmdir);
1909
1910/*
1911 * Remove a file after making sure there are no pending writes,
1912 * and after checking that the file has only one user.
1913 *
1914 * We invalidate the attribute cache and free the inode prior to the operation
1915 * to avoid possible races if the server reuses the inode.
1916 */
1917static int nfs_safe_remove(struct dentry *dentry)
1918{
1919 struct inode *dir = d_inode(dentry->d_parent);
1920 struct inode *inode = d_inode(dentry);
1921 int error = -EBUSY;
1922
1923 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1924
1925 /* If the dentry was sillyrenamed, we simply call d_delete() */
1926 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1927 error = 0;
1928 goto out;
1929 }
1930
1931 trace_nfs_remove_enter(dir, dentry);
1932 if (inode != NULL) {
1933 error = NFS_PROTO(dir)->remove(dir, dentry);
1934 if (error == 0)
1935 nfs_drop_nlink(inode);
1936 } else
1937 error = NFS_PROTO(dir)->remove(dir, dentry);
1938 if (error == -ENOENT)
1939 nfs_dentry_handle_enoent(dentry);
1940 trace_nfs_remove_exit(dir, dentry, error);
1941out:
1942 return error;
1943}
1944
1945/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1946 * belongs to an active ".nfs..." file and we return -EBUSY.
1947 *
1948 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1949 */
1950int nfs_unlink(struct inode *dir, struct dentry *dentry)
1951{
1952 int error;
1953 int need_rehash = 0;
1954
1955 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1956 dir->i_ino, dentry);
1957
1958 trace_nfs_unlink_enter(dir, dentry);
1959 spin_lock(&dentry->d_lock);
1960 if (d_count(dentry) > 1) {
1961 spin_unlock(&dentry->d_lock);
1962 /* Start asynchronous writeout of the inode */
1963 write_inode_now(d_inode(dentry), 0);
1964 error = nfs_sillyrename(dir, dentry);
1965 goto out;
1966 }
1967 if (!d_unhashed(dentry)) {
1968 __d_drop(dentry);
1969 need_rehash = 1;
1970 }
1971 spin_unlock(&dentry->d_lock);
1972 error = nfs_safe_remove(dentry);
1973 if (!error || error == -ENOENT) {
1974 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1975 } else if (need_rehash)
1976 d_rehash(dentry);
1977out:
1978 trace_nfs_unlink_exit(dir, dentry, error);
1979 return error;
1980}
1981EXPORT_SYMBOL_GPL(nfs_unlink);
1982
1983/*
1984 * To create a symbolic link, most file systems instantiate a new inode,
1985 * add a page to it containing the path, then write it out to the disk
1986 * using prepare_write/commit_write.
1987 *
1988 * Unfortunately the NFS client can't create the in-core inode first
1989 * because it needs a file handle to create an in-core inode (see
1990 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1991 * symlink request has completed on the server.
1992 *
1993 * So instead we allocate a raw page, copy the symname into it, then do
1994 * the SYMLINK request with the page as the buffer. If it succeeds, we
1995 * now have a new file handle and can instantiate an in-core NFS inode
1996 * and move the raw page into its mapping.
1997 */
1998int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1999{
2000 struct page *page;
2001 char *kaddr;
2002 struct iattr attr;
2003 unsigned int pathlen = strlen(symname);
2004 int error;
2005
2006 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2007 dir->i_ino, dentry, symname);
2008
2009 if (pathlen > PAGE_SIZE)
2010 return -ENAMETOOLONG;
2011
2012 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2013 attr.ia_valid = ATTR_MODE;
2014
2015 page = alloc_page(GFP_USER);
2016 if (!page)
2017 return -ENOMEM;
2018
2019 kaddr = page_address(page);
2020 memcpy(kaddr, symname, pathlen);
2021 if (pathlen < PAGE_SIZE)
2022 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2023
2024 trace_nfs_symlink_enter(dir, dentry);
2025 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2026 trace_nfs_symlink_exit(dir, dentry, error);
2027 if (error != 0) {
2028 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2029 dir->i_sb->s_id, dir->i_ino,
2030 dentry, symname, error);
2031 d_drop(dentry);
2032 __free_page(page);
2033 return error;
2034 }
2035
2036 /*
2037 * No big deal if we can't add this page to the page cache here.
2038 * READLINK will get the missing page from the server if needed.
2039 */
2040 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2041 GFP_KERNEL)) {
2042 SetPageUptodate(page);
2043 unlock_page(page);
2044 /*
2045 * add_to_page_cache_lru() grabs an extra page refcount.
2046 * Drop it here to avoid leaking this page later.
2047 */
2048 put_page(page);
2049 } else
2050 __free_page(page);
2051
2052 return 0;
2053}
2054EXPORT_SYMBOL_GPL(nfs_symlink);
2055
2056int
2057nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2058{
2059 struct inode *inode = d_inode(old_dentry);
2060 int error;
2061
2062 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2063 old_dentry, dentry);
2064
2065 trace_nfs_link_enter(inode, dir, dentry);
2066 d_drop(dentry);
2067 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2068 if (error == 0) {
2069 ihold(inode);
2070 d_add(dentry, inode);
2071 }
2072 trace_nfs_link_exit(inode, dir, dentry, error);
2073 return error;
2074}
2075EXPORT_SYMBOL_GPL(nfs_link);
2076
2077/*
2078 * RENAME
2079 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2080 * different file handle for the same inode after a rename (e.g. when
2081 * moving to a different directory). A fail-safe method to do so would
2082 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2083 * rename the old file using the sillyrename stuff. This way, the original
2084 * file in old_dir will go away when the last process iput()s the inode.
2085 *
2086 * FIXED.
2087 *
2088 * It actually works quite well. One needs to have the possibility for
2089 * at least one ".nfs..." file in each directory the file ever gets
2090 * moved or linked to which happens automagically with the new
2091 * implementation that only depends on the dcache stuff instead of
2092 * using the inode layer
2093 *
2094 * Unfortunately, things are a little more complicated than indicated
2095 * above. For a cross-directory move, we want to make sure we can get
2096 * rid of the old inode after the operation. This means there must be
2097 * no pending writes (if it's a file), and the use count must be 1.
2098 * If these conditions are met, we can drop the dentries before doing
2099 * the rename.
2100 */
2101int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2102 struct inode *new_dir, struct dentry *new_dentry,
2103 unsigned int flags)
2104{
2105 struct inode *old_inode = d_inode(old_dentry);
2106 struct inode *new_inode = d_inode(new_dentry);
2107 struct dentry *dentry = NULL, *rehash = NULL;
2108 struct rpc_task *task;
2109 int error = -EBUSY;
2110
2111 if (flags)
2112 return -EINVAL;
2113
2114 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2115 old_dentry, new_dentry,
2116 d_count(new_dentry));
2117
2118 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2119 /*
2120 * For non-directories, check whether the target is busy and if so,
2121 * make a copy of the dentry and then do a silly-rename. If the
2122 * silly-rename succeeds, the copied dentry is hashed and becomes
2123 * the new target.
2124 */
2125 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2126 /*
2127 * To prevent any new references to the target during the
2128 * rename, we unhash the dentry in advance.
2129 */
2130 if (!d_unhashed(new_dentry)) {
2131 d_drop(new_dentry);
2132 rehash = new_dentry;
2133 }
2134
2135 if (d_count(new_dentry) > 2) {
2136 int err;
2137
2138 /* copy the target dentry's name */
2139 dentry = d_alloc(new_dentry->d_parent,
2140 &new_dentry->d_name);
2141 if (!dentry)
2142 goto out;
2143
2144 /* silly-rename the existing target ... */
2145 err = nfs_sillyrename(new_dir, new_dentry);
2146 if (err)
2147 goto out;
2148
2149 new_dentry = dentry;
2150 rehash = NULL;
2151 new_inode = NULL;
2152 }
2153 }
2154
2155 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2156 if (IS_ERR(task)) {
2157 error = PTR_ERR(task);
2158 goto out;
2159 }
2160
2161 error = rpc_wait_for_completion_task(task);
2162 if (error != 0) {
2163 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2164 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2165 smp_wmb();
2166 } else
2167 error = task->tk_status;
2168 rpc_put_task(task);
2169 /* Ensure the inode attributes are revalidated */
2170 if (error == 0) {
2171 spin_lock(&old_inode->i_lock);
2172 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2173 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2174 | NFS_INO_INVALID_CTIME
2175 | NFS_INO_REVAL_FORCED;
2176 spin_unlock(&old_inode->i_lock);
2177 }
2178out:
2179 if (rehash)
2180 d_rehash(rehash);
2181 trace_nfs_rename_exit(old_dir, old_dentry,
2182 new_dir, new_dentry, error);
2183 if (!error) {
2184 if (new_inode != NULL)
2185 nfs_drop_nlink(new_inode);
2186 /*
2187 * The d_move() should be here instead of in an async RPC completion
2188 * handler because we need the proper locks to move the dentry. If
2189 * we're interrupted by a signal, the async RPC completion handler
2190 * should mark the directories for revalidation.
2191 */
2192 d_move(old_dentry, new_dentry);
2193 nfs_set_verifier(old_dentry,
2194 nfs_save_change_attribute(new_dir));
2195 } else if (error == -ENOENT)
2196 nfs_dentry_handle_enoent(old_dentry);
2197
2198 /* new dentry created? */
2199 if (dentry)
2200 dput(dentry);
2201 return error;
2202}
2203EXPORT_SYMBOL_GPL(nfs_rename);
2204
2205static DEFINE_SPINLOCK(nfs_access_lru_lock);
2206static LIST_HEAD(nfs_access_lru_list);
2207static atomic_long_t nfs_access_nr_entries;
2208
2209static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2210module_param(nfs_access_max_cachesize, ulong, 0644);
2211MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2212
2213static void nfs_access_free_entry(struct nfs_access_entry *entry)
2214{
2215 put_cred(entry->cred);
2216 kfree_rcu(entry, rcu_head);
2217 smp_mb__before_atomic();
2218 atomic_long_dec(&nfs_access_nr_entries);
2219 smp_mb__after_atomic();
2220}
2221
2222static void nfs_access_free_list(struct list_head *head)
2223{
2224 struct nfs_access_entry *cache;
2225
2226 while (!list_empty(head)) {
2227 cache = list_entry(head->next, struct nfs_access_entry, lru);
2228 list_del(&cache->lru);
2229 nfs_access_free_entry(cache);
2230 }
2231}
2232
2233static unsigned long
2234nfs_do_access_cache_scan(unsigned int nr_to_scan)
2235{
2236 LIST_HEAD(head);
2237 struct nfs_inode *nfsi, *next;
2238 struct nfs_access_entry *cache;
2239 long freed = 0;
2240
2241 spin_lock(&nfs_access_lru_lock);
2242 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2243 struct inode *inode;
2244
2245 if (nr_to_scan-- == 0)
2246 break;
2247 inode = &nfsi->vfs_inode;
2248 spin_lock(&inode->i_lock);
2249 if (list_empty(&nfsi->access_cache_entry_lru))
2250 goto remove_lru_entry;
2251 cache = list_entry(nfsi->access_cache_entry_lru.next,
2252 struct nfs_access_entry, lru);
2253 list_move(&cache->lru, &head);
2254 rb_erase(&cache->rb_node, &nfsi->access_cache);
2255 freed++;
2256 if (!list_empty(&nfsi->access_cache_entry_lru))
2257 list_move_tail(&nfsi->access_cache_inode_lru,
2258 &nfs_access_lru_list);
2259 else {
2260remove_lru_entry:
2261 list_del_init(&nfsi->access_cache_inode_lru);
2262 smp_mb__before_atomic();
2263 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2264 smp_mb__after_atomic();
2265 }
2266 spin_unlock(&inode->i_lock);
2267 }
2268 spin_unlock(&nfs_access_lru_lock);
2269 nfs_access_free_list(&head);
2270 return freed;
2271}
2272
2273unsigned long
2274nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2275{
2276 int nr_to_scan = sc->nr_to_scan;
2277 gfp_t gfp_mask = sc->gfp_mask;
2278
2279 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2280 return SHRINK_STOP;
2281 return nfs_do_access_cache_scan(nr_to_scan);
2282}
2283
2284
2285unsigned long
2286nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2287{
2288 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2289}
2290
2291static void
2292nfs_access_cache_enforce_limit(void)
2293{
2294 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2295 unsigned long diff;
2296 unsigned int nr_to_scan;
2297
2298 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2299 return;
2300 nr_to_scan = 100;
2301 diff = nr_entries - nfs_access_max_cachesize;
2302 if (diff < nr_to_scan)
2303 nr_to_scan = diff;
2304 nfs_do_access_cache_scan(nr_to_scan);
2305}
2306
2307static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2308{
2309 struct rb_root *root_node = &nfsi->access_cache;
2310 struct rb_node *n;
2311 struct nfs_access_entry *entry;
2312
2313 /* Unhook entries from the cache */
2314 while ((n = rb_first(root_node)) != NULL) {
2315 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2316 rb_erase(n, root_node);
2317 list_move(&entry->lru, head);
2318 }
2319 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2320}
2321
2322void nfs_access_zap_cache(struct inode *inode)
2323{
2324 LIST_HEAD(head);
2325
2326 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2327 return;
2328 /* Remove from global LRU init */
2329 spin_lock(&nfs_access_lru_lock);
2330 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2331 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2332
2333 spin_lock(&inode->i_lock);
2334 __nfs_access_zap_cache(NFS_I(inode), &head);
2335 spin_unlock(&inode->i_lock);
2336 spin_unlock(&nfs_access_lru_lock);
2337 nfs_access_free_list(&head);
2338}
2339EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2340
2341static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2342{
2343 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2344
2345 while (n != NULL) {
2346 struct nfs_access_entry *entry =
2347 rb_entry(n, struct nfs_access_entry, rb_node);
2348 int cmp = cred_fscmp(cred, entry->cred);
2349
2350 if (cmp < 0)
2351 n = n->rb_left;
2352 else if (cmp > 0)
2353 n = n->rb_right;
2354 else
2355 return entry;
2356 }
2357 return NULL;
2358}
2359
2360static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2361{
2362 struct nfs_inode *nfsi = NFS_I(inode);
2363 struct nfs_access_entry *cache;
2364 bool retry = true;
2365 int err;
2366
2367 spin_lock(&inode->i_lock);
2368 for(;;) {
2369 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2370 goto out_zap;
2371 cache = nfs_access_search_rbtree(inode, cred);
2372 err = -ENOENT;
2373 if (cache == NULL)
2374 goto out;
2375 /* Found an entry, is our attribute cache valid? */
2376 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2377 break;
2378 err = -ECHILD;
2379 if (!may_block)
2380 goto out;
2381 if (!retry)
2382 goto out_zap;
2383 spin_unlock(&inode->i_lock);
2384 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2385 if (err)
2386 return err;
2387 spin_lock(&inode->i_lock);
2388 retry = false;
2389 }
2390 res->cred = cache->cred;
2391 res->mask = cache->mask;
2392 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2393 err = 0;
2394out:
2395 spin_unlock(&inode->i_lock);
2396 return err;
2397out_zap:
2398 spin_unlock(&inode->i_lock);
2399 nfs_access_zap_cache(inode);
2400 return -ENOENT;
2401}
2402
2403static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2404{
2405 /* Only check the most recently returned cache entry,
2406 * but do it without locking.
2407 */
2408 struct nfs_inode *nfsi = NFS_I(inode);
2409 struct nfs_access_entry *cache;
2410 int err = -ECHILD;
2411 struct list_head *lh;
2412
2413 rcu_read_lock();
2414 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2415 goto out;
2416 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2417 cache = list_entry(lh, struct nfs_access_entry, lru);
2418 if (lh == &nfsi->access_cache_entry_lru ||
2419 cred != cache->cred)
2420 cache = NULL;
2421 if (cache == NULL)
2422 goto out;
2423 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2424 goto out;
2425 res->cred = cache->cred;
2426 res->mask = cache->mask;
2427 err = 0;
2428out:
2429 rcu_read_unlock();
2430 return err;
2431}
2432
2433static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2434{
2435 struct nfs_inode *nfsi = NFS_I(inode);
2436 struct rb_root *root_node = &nfsi->access_cache;
2437 struct rb_node **p = &root_node->rb_node;
2438 struct rb_node *parent = NULL;
2439 struct nfs_access_entry *entry;
2440 int cmp;
2441
2442 spin_lock(&inode->i_lock);
2443 while (*p != NULL) {
2444 parent = *p;
2445 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2446 cmp = cred_fscmp(set->cred, entry->cred);
2447
2448 if (cmp < 0)
2449 p = &parent->rb_left;
2450 else if (cmp > 0)
2451 p = &parent->rb_right;
2452 else
2453 goto found;
2454 }
2455 rb_link_node(&set->rb_node, parent, p);
2456 rb_insert_color(&set->rb_node, root_node);
2457 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2458 spin_unlock(&inode->i_lock);
2459 return;
2460found:
2461 rb_replace_node(parent, &set->rb_node, root_node);
2462 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2463 list_del(&entry->lru);
2464 spin_unlock(&inode->i_lock);
2465 nfs_access_free_entry(entry);
2466}
2467
2468void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2469{
2470 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2471 if (cache == NULL)
2472 return;
2473 RB_CLEAR_NODE(&cache->rb_node);
2474 cache->cred = get_cred(set->cred);
2475 cache->mask = set->mask;
2476
2477 /* The above field assignments must be visible
2478 * before this item appears on the lru. We cannot easily
2479 * use rcu_assign_pointer, so just force the memory barrier.
2480 */
2481 smp_wmb();
2482 nfs_access_add_rbtree(inode, cache);
2483
2484 /* Update accounting */
2485 smp_mb__before_atomic();
2486 atomic_long_inc(&nfs_access_nr_entries);
2487 smp_mb__after_atomic();
2488
2489 /* Add inode to global LRU list */
2490 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2491 spin_lock(&nfs_access_lru_lock);
2492 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2493 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2494 &nfs_access_lru_list);
2495 spin_unlock(&nfs_access_lru_lock);
2496 }
2497 nfs_access_cache_enforce_limit();
2498}
2499EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2500
2501#define NFS_MAY_READ (NFS_ACCESS_READ)
2502#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2503 NFS_ACCESS_EXTEND | \
2504 NFS_ACCESS_DELETE)
2505#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2506 NFS_ACCESS_EXTEND)
2507#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2508#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2509#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2510static int
2511nfs_access_calc_mask(u32 access_result, umode_t umode)
2512{
2513 int mask = 0;
2514
2515 if (access_result & NFS_MAY_READ)
2516 mask |= MAY_READ;
2517 if (S_ISDIR(umode)) {
2518 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2519 mask |= MAY_WRITE;
2520 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2521 mask |= MAY_EXEC;
2522 } else if (S_ISREG(umode)) {
2523 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2524 mask |= MAY_WRITE;
2525 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2526 mask |= MAY_EXEC;
2527 } else if (access_result & NFS_MAY_WRITE)
2528 mask |= MAY_WRITE;
2529 return mask;
2530}
2531
2532void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2533{
2534 entry->mask = access_result;
2535}
2536EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2537
2538static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2539{
2540 struct nfs_access_entry cache;
2541 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2542 int cache_mask;
2543 int status;
2544
2545 trace_nfs_access_enter(inode);
2546
2547 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2548 if (status != 0)
2549 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2550 if (status == 0)
2551 goto out_cached;
2552
2553 status = -ECHILD;
2554 if (!may_block)
2555 goto out;
2556
2557 /*
2558 * Determine which access bits we want to ask for...
2559 */
2560 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2561 if (S_ISDIR(inode->i_mode))
2562 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2563 else
2564 cache.mask |= NFS_ACCESS_EXECUTE;
2565 cache.cred = cred;
2566 status = NFS_PROTO(inode)->access(inode, &cache);
2567 if (status != 0) {
2568 if (status == -ESTALE) {
2569 nfs_zap_caches(inode);
2570 if (!S_ISDIR(inode->i_mode))
2571 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2572 }
2573 goto out;
2574 }
2575 nfs_access_add_cache(inode, &cache);
2576out_cached:
2577 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2578 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2579 status = -EACCES;
2580out:
2581 trace_nfs_access_exit(inode, status);
2582 return status;
2583}
2584
2585static int nfs_open_permission_mask(int openflags)
2586{
2587 int mask = 0;
2588
2589 if (openflags & __FMODE_EXEC) {
2590 /* ONLY check exec rights */
2591 mask = MAY_EXEC;
2592 } else {
2593 if ((openflags & O_ACCMODE) != O_WRONLY)
2594 mask |= MAY_READ;
2595 if ((openflags & O_ACCMODE) != O_RDONLY)
2596 mask |= MAY_WRITE;
2597 }
2598
2599 return mask;
2600}
2601
2602int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2603{
2604 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2605}
2606EXPORT_SYMBOL_GPL(nfs_may_open);
2607
2608static int nfs_execute_ok(struct inode *inode, int mask)
2609{
2610 struct nfs_server *server = NFS_SERVER(inode);
2611 int ret = 0;
2612
2613 if (S_ISDIR(inode->i_mode))
2614 return 0;
2615 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2616 if (mask & MAY_NOT_BLOCK)
2617 return -ECHILD;
2618 ret = __nfs_revalidate_inode(server, inode);
2619 }
2620 if (ret == 0 && !execute_ok(inode))
2621 ret = -EACCES;
2622 return ret;
2623}
2624
2625int nfs_permission(struct inode *inode, int mask)
2626{
2627 const struct cred *cred = current_cred();
2628 int res = 0;
2629
2630 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2631
2632 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2633 goto out;
2634 /* Is this sys_access() ? */
2635 if (mask & (MAY_ACCESS | MAY_CHDIR))
2636 goto force_lookup;
2637
2638 switch (inode->i_mode & S_IFMT) {
2639 case S_IFLNK:
2640 goto out;
2641 case S_IFREG:
2642 if ((mask & MAY_OPEN) &&
2643 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2644 return 0;
2645 break;
2646 case S_IFDIR:
2647 /*
2648 * Optimize away all write operations, since the server
2649 * will check permissions when we perform the op.
2650 */
2651 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2652 goto out;
2653 }
2654
2655force_lookup:
2656 if (!NFS_PROTO(inode)->access)
2657 goto out_notsup;
2658
2659 /* Always try fast lookups first */
2660 rcu_read_lock();
2661 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2662 rcu_read_unlock();
2663 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2664 /* Fast lookup failed, try the slow way */
2665 res = nfs_do_access(inode, cred, mask);
2666 }
2667out:
2668 if (!res && (mask & MAY_EXEC))
2669 res = nfs_execute_ok(inode, mask);
2670
2671 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2672 inode->i_sb->s_id, inode->i_ino, mask, res);
2673 return res;
2674out_notsup:
2675 if (mask & MAY_NOT_BLOCK)
2676 return -ECHILD;
2677
2678 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2679 if (res == 0)
2680 res = generic_permission(inode, mask);
2681 goto out;
2682}
2683EXPORT_SYMBOL_GPL(nfs_permission);
2684
2685/*
2686 * Local variables:
2687 * version-control: t
2688 * kept-new-versions: 5
2689 * End:
2690 */