Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "ctree.h"
11#include "transaction.h"
12#include "btrfs_inode.h"
13#include "extent_io.h"
14#include "disk-io.h"
15#include "compression.h"
16
17static struct kmem_cache *btrfs_ordered_extent_cache;
18
19static u64 entry_end(struct btrfs_ordered_extent *entry)
20{
21 if (entry->file_offset + entry->len < entry->file_offset)
22 return (u64)-1;
23 return entry->file_offset + entry->len;
24}
25
26/* returns NULL if the insertion worked, or it returns the node it did find
27 * in the tree
28 */
29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 struct rb_node *node)
31{
32 struct rb_node **p = &root->rb_node;
33 struct rb_node *parent = NULL;
34 struct btrfs_ordered_extent *entry;
35
36 while (*p) {
37 parent = *p;
38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40 if (file_offset < entry->file_offset)
41 p = &(*p)->rb_left;
42 else if (file_offset >= entry_end(entry))
43 p = &(*p)->rb_right;
44 else
45 return parent;
46 }
47
48 rb_link_node(node, parent, p);
49 rb_insert_color(node, root);
50 return NULL;
51}
52
53static void ordered_data_tree_panic(struct inode *inode, int errno,
54 u64 offset)
55{
56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 btrfs_panic(fs_info, errno,
58 "Inconsistency in ordered tree at offset %llu", offset);
59}
60
61/*
62 * look for a given offset in the tree, and if it can't be found return the
63 * first lesser offset
64 */
65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 struct rb_node **prev_ret)
67{
68 struct rb_node *n = root->rb_node;
69 struct rb_node *prev = NULL;
70 struct rb_node *test;
71 struct btrfs_ordered_extent *entry;
72 struct btrfs_ordered_extent *prev_entry = NULL;
73
74 while (n) {
75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 prev = n;
77 prev_entry = entry;
78
79 if (file_offset < entry->file_offset)
80 n = n->rb_left;
81 else if (file_offset >= entry_end(entry))
82 n = n->rb_right;
83 else
84 return n;
85 }
86 if (!prev_ret)
87 return NULL;
88
89 while (prev && file_offset >= entry_end(prev_entry)) {
90 test = rb_next(prev);
91 if (!test)
92 break;
93 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 rb_node);
95 if (file_offset < entry_end(prev_entry))
96 break;
97
98 prev = test;
99 }
100 if (prev)
101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 rb_node);
103 while (prev && file_offset < entry_end(prev_entry)) {
104 test = rb_prev(prev);
105 if (!test)
106 break;
107 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 rb_node);
109 prev = test;
110 }
111 *prev_ret = prev;
112 return NULL;
113}
114
115/*
116 * helper to check if a given offset is inside a given entry
117 */
118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119{
120 if (file_offset < entry->file_offset ||
121 entry->file_offset + entry->len <= file_offset)
122 return 0;
123 return 1;
124}
125
126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 u64 len)
128{
129 if (file_offset + len <= entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135/*
136 * look find the first ordered struct that has this offset, otherwise
137 * the first one less than this offset
138 */
139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 u64 file_offset)
141{
142 struct rb_root *root = &tree->tree;
143 struct rb_node *prev = NULL;
144 struct rb_node *ret;
145 struct btrfs_ordered_extent *entry;
146
147 if (tree->last) {
148 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 rb_node);
150 if (offset_in_entry(entry, file_offset))
151 return tree->last;
152 }
153 ret = __tree_search(root, file_offset, &prev);
154 if (!ret)
155 ret = prev;
156 if (ret)
157 tree->last = ret;
158 return ret;
159}
160
161/* allocate and add a new ordered_extent into the per-inode tree.
162 * file_offset is the logical offset in the file
163 *
164 * start is the disk block number of an extent already reserved in the
165 * extent allocation tree
166 *
167 * len is the length of the extent
168 *
169 * The tree is given a single reference on the ordered extent that was
170 * inserted.
171 */
172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 u64 start, u64 len, u64 disk_len,
174 int type, int dio, int compress_type)
175{
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_root *root = BTRFS_I(inode)->root;
178 struct btrfs_ordered_inode_tree *tree;
179 struct rb_node *node;
180 struct btrfs_ordered_extent *entry;
181
182 tree = &BTRFS_I(inode)->ordered_tree;
183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 if (!entry)
185 return -ENOMEM;
186
187 entry->file_offset = file_offset;
188 entry->start = start;
189 entry->len = len;
190 entry->disk_len = disk_len;
191 entry->bytes_left = len;
192 entry->inode = igrab(inode);
193 entry->compress_type = compress_type;
194 entry->truncated_len = (u64)-1;
195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 set_bit(type, &entry->flags);
197
198 if (dio)
199 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200
201 /* one ref for the tree */
202 refcount_set(&entry->refs, 1);
203 init_waitqueue_head(&entry->wait);
204 INIT_LIST_HEAD(&entry->list);
205 INIT_LIST_HEAD(&entry->root_extent_list);
206 INIT_LIST_HEAD(&entry->work_list);
207 init_completion(&entry->completion);
208 INIT_LIST_HEAD(&entry->log_list);
209 INIT_LIST_HEAD(&entry->trans_list);
210
211 trace_btrfs_ordered_extent_add(inode, entry);
212
213 spin_lock_irq(&tree->lock);
214 node = tree_insert(&tree->tree, file_offset,
215 &entry->rb_node);
216 if (node)
217 ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 spin_unlock_irq(&tree->lock);
219
220 spin_lock(&root->ordered_extent_lock);
221 list_add_tail(&entry->root_extent_list,
222 &root->ordered_extents);
223 root->nr_ordered_extents++;
224 if (root->nr_ordered_extents == 1) {
225 spin_lock(&fs_info->ordered_root_lock);
226 BUG_ON(!list_empty(&root->ordered_root));
227 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 spin_unlock(&fs_info->ordered_root_lock);
229 }
230 spin_unlock(&root->ordered_extent_lock);
231
232 /*
233 * We don't need the count_max_extents here, we can assume that all of
234 * that work has been done at higher layers, so this is truly the
235 * smallest the extent is going to get.
236 */
237 spin_lock(&BTRFS_I(inode)->lock);
238 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 spin_unlock(&BTRFS_I(inode)->lock);
240
241 return 0;
242}
243
244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 u64 start, u64 len, u64 disk_len, int type)
246{
247 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 disk_len, type, 0,
249 BTRFS_COMPRESS_NONE);
250}
251
252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 u64 start, u64 len, u64 disk_len, int type)
254{
255 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 disk_len, type, 1,
257 BTRFS_COMPRESS_NONE);
258}
259
260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 u64 start, u64 len, u64 disk_len,
262 int type, int compress_type)
263{
264 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 disk_len, type, 0,
266 compress_type);
267}
268
269/*
270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271 * when an ordered extent is finished. If the list covers more than one
272 * ordered extent, it is split across multiples.
273 */
274void btrfs_add_ordered_sum(struct inode *inode,
275 struct btrfs_ordered_extent *entry,
276 struct btrfs_ordered_sum *sum)
277{
278 struct btrfs_ordered_inode_tree *tree;
279
280 tree = &BTRFS_I(inode)->ordered_tree;
281 spin_lock_irq(&tree->lock);
282 list_add_tail(&sum->list, &entry->list);
283 spin_unlock_irq(&tree->lock);
284}
285
286/*
287 * this is used to account for finished IO across a given range
288 * of the file. The IO may span ordered extents. If
289 * a given ordered_extent is completely done, 1 is returned, otherwise
290 * 0.
291 *
292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293 * to make sure this function only returns 1 once for a given ordered extent.
294 *
295 * file_offset is updated to one byte past the range that is recorded as
296 * complete. This allows you to walk forward in the file.
297 */
298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 struct btrfs_ordered_extent **cached,
300 u64 *file_offset, u64 io_size, int uptodate)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct btrfs_ordered_inode_tree *tree;
304 struct rb_node *node;
305 struct btrfs_ordered_extent *entry = NULL;
306 int ret;
307 unsigned long flags;
308 u64 dec_end;
309 u64 dec_start;
310 u64 to_dec;
311
312 tree = &BTRFS_I(inode)->ordered_tree;
313 spin_lock_irqsave(&tree->lock, flags);
314 node = tree_search(tree, *file_offset);
315 if (!node) {
316 ret = 1;
317 goto out;
318 }
319
320 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 if (!offset_in_entry(entry, *file_offset)) {
322 ret = 1;
323 goto out;
324 }
325
326 dec_start = max(*file_offset, entry->file_offset);
327 dec_end = min(*file_offset + io_size, entry->file_offset +
328 entry->len);
329 *file_offset = dec_end;
330 if (dec_start > dec_end) {
331 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 dec_start, dec_end);
333 }
334 to_dec = dec_end - dec_start;
335 if (to_dec > entry->bytes_left) {
336 btrfs_crit(fs_info,
337 "bad ordered accounting left %llu size %llu",
338 entry->bytes_left, to_dec);
339 }
340 entry->bytes_left -= to_dec;
341 if (!uptodate)
342 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343
344 if (entry->bytes_left == 0) {
345 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 /* test_and_set_bit implies a barrier */
347 cond_wake_up_nomb(&entry->wait);
348 } else {
349 ret = 1;
350 }
351out:
352 if (!ret && cached && entry) {
353 *cached = entry;
354 refcount_inc(&entry->refs);
355 }
356 spin_unlock_irqrestore(&tree->lock, flags);
357 return ret == 0;
358}
359
360/*
361 * this is used to account for finished IO across a given range
362 * of the file. The IO should not span ordered extents. If
363 * a given ordered_extent is completely done, 1 is returned, otherwise
364 * 0.
365 *
366 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
367 * to make sure this function only returns 1 once for a given ordered extent.
368 */
369int btrfs_dec_test_ordered_pending(struct inode *inode,
370 struct btrfs_ordered_extent **cached,
371 u64 file_offset, u64 io_size, int uptodate)
372{
373 struct btrfs_ordered_inode_tree *tree;
374 struct rb_node *node;
375 struct btrfs_ordered_extent *entry = NULL;
376 unsigned long flags;
377 int ret;
378
379 tree = &BTRFS_I(inode)->ordered_tree;
380 spin_lock_irqsave(&tree->lock, flags);
381 if (cached && *cached) {
382 entry = *cached;
383 goto have_entry;
384 }
385
386 node = tree_search(tree, file_offset);
387 if (!node) {
388 ret = 1;
389 goto out;
390 }
391
392 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
393have_entry:
394 if (!offset_in_entry(entry, file_offset)) {
395 ret = 1;
396 goto out;
397 }
398
399 if (io_size > entry->bytes_left) {
400 btrfs_crit(BTRFS_I(inode)->root->fs_info,
401 "bad ordered accounting left %llu size %llu",
402 entry->bytes_left, io_size);
403 }
404 entry->bytes_left -= io_size;
405 if (!uptodate)
406 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
407
408 if (entry->bytes_left == 0) {
409 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
410 /* test_and_set_bit implies a barrier */
411 cond_wake_up_nomb(&entry->wait);
412 } else {
413 ret = 1;
414 }
415out:
416 if (!ret && cached && entry) {
417 *cached = entry;
418 refcount_inc(&entry->refs);
419 }
420 spin_unlock_irqrestore(&tree->lock, flags);
421 return ret == 0;
422}
423
424/*
425 * used to drop a reference on an ordered extent. This will free
426 * the extent if the last reference is dropped
427 */
428void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
429{
430 struct list_head *cur;
431 struct btrfs_ordered_sum *sum;
432
433 trace_btrfs_ordered_extent_put(entry->inode, entry);
434
435 if (refcount_dec_and_test(&entry->refs)) {
436 ASSERT(list_empty(&entry->log_list));
437 ASSERT(list_empty(&entry->trans_list));
438 ASSERT(list_empty(&entry->root_extent_list));
439 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
440 if (entry->inode)
441 btrfs_add_delayed_iput(entry->inode);
442 while (!list_empty(&entry->list)) {
443 cur = entry->list.next;
444 sum = list_entry(cur, struct btrfs_ordered_sum, list);
445 list_del(&sum->list);
446 kvfree(sum);
447 }
448 kmem_cache_free(btrfs_ordered_extent_cache, entry);
449 }
450}
451
452/*
453 * remove an ordered extent from the tree. No references are dropped
454 * and waiters are woken up.
455 */
456void btrfs_remove_ordered_extent(struct inode *inode,
457 struct btrfs_ordered_extent *entry)
458{
459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
460 struct btrfs_ordered_inode_tree *tree;
461 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
462 struct btrfs_root *root = btrfs_inode->root;
463 struct rb_node *node;
464
465 /* This is paired with btrfs_add_ordered_extent. */
466 spin_lock(&btrfs_inode->lock);
467 btrfs_mod_outstanding_extents(btrfs_inode, -1);
468 spin_unlock(&btrfs_inode->lock);
469 if (root != fs_info->tree_root)
470 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
471
472 tree = &btrfs_inode->ordered_tree;
473 spin_lock_irq(&tree->lock);
474 node = &entry->rb_node;
475 rb_erase(node, &tree->tree);
476 RB_CLEAR_NODE(node);
477 if (tree->last == node)
478 tree->last = NULL;
479 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
480 spin_unlock_irq(&tree->lock);
481
482 spin_lock(&root->ordered_extent_lock);
483 list_del_init(&entry->root_extent_list);
484 root->nr_ordered_extents--;
485
486 trace_btrfs_ordered_extent_remove(inode, entry);
487
488 if (!root->nr_ordered_extents) {
489 spin_lock(&fs_info->ordered_root_lock);
490 BUG_ON(list_empty(&root->ordered_root));
491 list_del_init(&root->ordered_root);
492 spin_unlock(&fs_info->ordered_root_lock);
493 }
494 spin_unlock(&root->ordered_extent_lock);
495 wake_up(&entry->wait);
496}
497
498static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
499{
500 struct btrfs_ordered_extent *ordered;
501
502 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
503 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
504 complete(&ordered->completion);
505}
506
507/*
508 * wait for all the ordered extents in a root. This is done when balancing
509 * space between drives.
510 */
511u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
512 const u64 range_start, const u64 range_len)
513{
514 struct btrfs_fs_info *fs_info = root->fs_info;
515 LIST_HEAD(splice);
516 LIST_HEAD(skipped);
517 LIST_HEAD(works);
518 struct btrfs_ordered_extent *ordered, *next;
519 u64 count = 0;
520 const u64 range_end = range_start + range_len;
521
522 mutex_lock(&root->ordered_extent_mutex);
523 spin_lock(&root->ordered_extent_lock);
524 list_splice_init(&root->ordered_extents, &splice);
525 while (!list_empty(&splice) && nr) {
526 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
527 root_extent_list);
528
529 if (range_end <= ordered->start ||
530 ordered->start + ordered->disk_len <= range_start) {
531 list_move_tail(&ordered->root_extent_list, &skipped);
532 cond_resched_lock(&root->ordered_extent_lock);
533 continue;
534 }
535
536 list_move_tail(&ordered->root_extent_list,
537 &root->ordered_extents);
538 refcount_inc(&ordered->refs);
539 spin_unlock(&root->ordered_extent_lock);
540
541 btrfs_init_work(&ordered->flush_work,
542 btrfs_flush_delalloc_helper,
543 btrfs_run_ordered_extent_work, NULL, NULL);
544 list_add_tail(&ordered->work_list, &works);
545 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
546
547 cond_resched();
548 spin_lock(&root->ordered_extent_lock);
549 if (nr != U64_MAX)
550 nr--;
551 count++;
552 }
553 list_splice_tail(&skipped, &root->ordered_extents);
554 list_splice_tail(&splice, &root->ordered_extents);
555 spin_unlock(&root->ordered_extent_lock);
556
557 list_for_each_entry_safe(ordered, next, &works, work_list) {
558 list_del_init(&ordered->work_list);
559 wait_for_completion(&ordered->completion);
560 btrfs_put_ordered_extent(ordered);
561 cond_resched();
562 }
563 mutex_unlock(&root->ordered_extent_mutex);
564
565 return count;
566}
567
568u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
569 const u64 range_start, const u64 range_len)
570{
571 struct btrfs_root *root;
572 struct list_head splice;
573 u64 total_done = 0;
574 u64 done;
575
576 INIT_LIST_HEAD(&splice);
577
578 mutex_lock(&fs_info->ordered_operations_mutex);
579 spin_lock(&fs_info->ordered_root_lock);
580 list_splice_init(&fs_info->ordered_roots, &splice);
581 while (!list_empty(&splice) && nr) {
582 root = list_first_entry(&splice, struct btrfs_root,
583 ordered_root);
584 root = btrfs_grab_fs_root(root);
585 BUG_ON(!root);
586 list_move_tail(&root->ordered_root,
587 &fs_info->ordered_roots);
588 spin_unlock(&fs_info->ordered_root_lock);
589
590 done = btrfs_wait_ordered_extents(root, nr,
591 range_start, range_len);
592 btrfs_put_fs_root(root);
593 total_done += done;
594
595 spin_lock(&fs_info->ordered_root_lock);
596 if (nr != U64_MAX) {
597 nr -= done;
598 }
599 }
600 list_splice_tail(&splice, &fs_info->ordered_roots);
601 spin_unlock(&fs_info->ordered_root_lock);
602 mutex_unlock(&fs_info->ordered_operations_mutex);
603
604 return total_done;
605}
606
607/*
608 * Used to start IO or wait for a given ordered extent to finish.
609 *
610 * If wait is one, this effectively waits on page writeback for all the pages
611 * in the extent, and it waits on the io completion code to insert
612 * metadata into the btree corresponding to the extent
613 */
614void btrfs_start_ordered_extent(struct inode *inode,
615 struct btrfs_ordered_extent *entry,
616 int wait)
617{
618 u64 start = entry->file_offset;
619 u64 end = start + entry->len - 1;
620
621 trace_btrfs_ordered_extent_start(inode, entry);
622
623 /*
624 * pages in the range can be dirty, clean or writeback. We
625 * start IO on any dirty ones so the wait doesn't stall waiting
626 * for the flusher thread to find them
627 */
628 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
629 filemap_fdatawrite_range(inode->i_mapping, start, end);
630 if (wait) {
631 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
632 &entry->flags));
633 }
634}
635
636/*
637 * Used to wait on ordered extents across a large range of bytes.
638 */
639int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
640{
641 int ret = 0;
642 int ret_wb = 0;
643 u64 end;
644 u64 orig_end;
645 struct btrfs_ordered_extent *ordered;
646
647 if (start + len < start) {
648 orig_end = INT_LIMIT(loff_t);
649 } else {
650 orig_end = start + len - 1;
651 if (orig_end > INT_LIMIT(loff_t))
652 orig_end = INT_LIMIT(loff_t);
653 }
654
655 /* start IO across the range first to instantiate any delalloc
656 * extents
657 */
658 ret = btrfs_fdatawrite_range(inode, start, orig_end);
659 if (ret)
660 return ret;
661
662 /*
663 * If we have a writeback error don't return immediately. Wait first
664 * for any ordered extents that haven't completed yet. This is to make
665 * sure no one can dirty the same page ranges and call writepages()
666 * before the ordered extents complete - to avoid failures (-EEXIST)
667 * when adding the new ordered extents to the ordered tree.
668 */
669 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
670
671 end = orig_end;
672 while (1) {
673 ordered = btrfs_lookup_first_ordered_extent(inode, end);
674 if (!ordered)
675 break;
676 if (ordered->file_offset > orig_end) {
677 btrfs_put_ordered_extent(ordered);
678 break;
679 }
680 if (ordered->file_offset + ordered->len <= start) {
681 btrfs_put_ordered_extent(ordered);
682 break;
683 }
684 btrfs_start_ordered_extent(inode, ordered, 1);
685 end = ordered->file_offset;
686 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
687 ret = -EIO;
688 btrfs_put_ordered_extent(ordered);
689 if (ret || end == 0 || end == start)
690 break;
691 end--;
692 }
693 return ret_wb ? ret_wb : ret;
694}
695
696/*
697 * find an ordered extent corresponding to file_offset. return NULL if
698 * nothing is found, otherwise take a reference on the extent and return it
699 */
700struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
701 u64 file_offset)
702{
703 struct btrfs_ordered_inode_tree *tree;
704 struct rb_node *node;
705 struct btrfs_ordered_extent *entry = NULL;
706
707 tree = &BTRFS_I(inode)->ordered_tree;
708 spin_lock_irq(&tree->lock);
709 node = tree_search(tree, file_offset);
710 if (!node)
711 goto out;
712
713 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
714 if (!offset_in_entry(entry, file_offset))
715 entry = NULL;
716 if (entry)
717 refcount_inc(&entry->refs);
718out:
719 spin_unlock_irq(&tree->lock);
720 return entry;
721}
722
723/* Since the DIO code tries to lock a wide area we need to look for any ordered
724 * extents that exist in the range, rather than just the start of the range.
725 */
726struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
727 struct btrfs_inode *inode, u64 file_offset, u64 len)
728{
729 struct btrfs_ordered_inode_tree *tree;
730 struct rb_node *node;
731 struct btrfs_ordered_extent *entry = NULL;
732
733 tree = &inode->ordered_tree;
734 spin_lock_irq(&tree->lock);
735 node = tree_search(tree, file_offset);
736 if (!node) {
737 node = tree_search(tree, file_offset + len);
738 if (!node)
739 goto out;
740 }
741
742 while (1) {
743 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
744 if (range_overlaps(entry, file_offset, len))
745 break;
746
747 if (entry->file_offset >= file_offset + len) {
748 entry = NULL;
749 break;
750 }
751 entry = NULL;
752 node = rb_next(node);
753 if (!node)
754 break;
755 }
756out:
757 if (entry)
758 refcount_inc(&entry->refs);
759 spin_unlock_irq(&tree->lock);
760 return entry;
761}
762
763/*
764 * lookup and return any extent before 'file_offset'. NULL is returned
765 * if none is found
766 */
767struct btrfs_ordered_extent *
768btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
769{
770 struct btrfs_ordered_inode_tree *tree;
771 struct rb_node *node;
772 struct btrfs_ordered_extent *entry = NULL;
773
774 tree = &BTRFS_I(inode)->ordered_tree;
775 spin_lock_irq(&tree->lock);
776 node = tree_search(tree, file_offset);
777 if (!node)
778 goto out;
779
780 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
781 refcount_inc(&entry->refs);
782out:
783 spin_unlock_irq(&tree->lock);
784 return entry;
785}
786
787/*
788 * After an extent is done, call this to conditionally update the on disk
789 * i_size. i_size is updated to cover any fully written part of the file.
790 */
791int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
792 struct btrfs_ordered_extent *ordered)
793{
794 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
795 u64 disk_i_size;
796 u64 new_i_size;
797 u64 i_size = i_size_read(inode);
798 struct rb_node *node;
799 struct rb_node *prev = NULL;
800 struct btrfs_ordered_extent *test;
801 int ret = 1;
802 u64 orig_offset = offset;
803
804 spin_lock_irq(&tree->lock);
805 if (ordered) {
806 offset = entry_end(ordered);
807 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
808 offset = min(offset,
809 ordered->file_offset +
810 ordered->truncated_len);
811 } else {
812 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
813 }
814 disk_i_size = BTRFS_I(inode)->disk_i_size;
815
816 /*
817 * truncate file.
818 * If ordered is not NULL, then this is called from endio and
819 * disk_i_size will be updated by either truncate itself or any
820 * in-flight IOs which are inside the disk_i_size.
821 *
822 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
823 * fails somehow, we need to make sure we have a precise disk_i_size by
824 * updating it as usual.
825 *
826 */
827 if (!ordered && disk_i_size > i_size) {
828 BTRFS_I(inode)->disk_i_size = orig_offset;
829 ret = 0;
830 goto out;
831 }
832
833 /*
834 * if the disk i_size is already at the inode->i_size, or
835 * this ordered extent is inside the disk i_size, we're done
836 */
837 if (disk_i_size == i_size)
838 goto out;
839
840 /*
841 * We still need to update disk_i_size if outstanding_isize is greater
842 * than disk_i_size.
843 */
844 if (offset <= disk_i_size &&
845 (!ordered || ordered->outstanding_isize <= disk_i_size))
846 goto out;
847
848 /*
849 * walk backward from this ordered extent to disk_i_size.
850 * if we find an ordered extent then we can't update disk i_size
851 * yet
852 */
853 if (ordered) {
854 node = rb_prev(&ordered->rb_node);
855 } else {
856 prev = tree_search(tree, offset);
857 /*
858 * we insert file extents without involving ordered struct,
859 * so there should be no ordered struct cover this offset
860 */
861 if (prev) {
862 test = rb_entry(prev, struct btrfs_ordered_extent,
863 rb_node);
864 BUG_ON(offset_in_entry(test, offset));
865 }
866 node = prev;
867 }
868 for (; node; node = rb_prev(node)) {
869 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
870
871 /* We treat this entry as if it doesn't exist */
872 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
873 continue;
874
875 if (entry_end(test) <= disk_i_size)
876 break;
877 if (test->file_offset >= i_size)
878 break;
879
880 /*
881 * We don't update disk_i_size now, so record this undealt
882 * i_size. Or we will not know the real i_size.
883 */
884 if (test->outstanding_isize < offset)
885 test->outstanding_isize = offset;
886 if (ordered &&
887 ordered->outstanding_isize > test->outstanding_isize)
888 test->outstanding_isize = ordered->outstanding_isize;
889 goto out;
890 }
891 new_i_size = min_t(u64, offset, i_size);
892
893 /*
894 * Some ordered extents may completed before the current one, and
895 * we hold the real i_size in ->outstanding_isize.
896 */
897 if (ordered && ordered->outstanding_isize > new_i_size)
898 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
899 BTRFS_I(inode)->disk_i_size = new_i_size;
900 ret = 0;
901out:
902 /*
903 * We need to do this because we can't remove ordered extents until
904 * after the i_disk_size has been updated and then the inode has been
905 * updated to reflect the change, so we need to tell anybody who finds
906 * this ordered extent that we've already done all the real work, we
907 * just haven't completed all the other work.
908 */
909 if (ordered)
910 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
911 spin_unlock_irq(&tree->lock);
912 return ret;
913}
914
915/*
916 * search the ordered extents for one corresponding to 'offset' and
917 * try to find a checksum. This is used because we allow pages to
918 * be reclaimed before their checksum is actually put into the btree
919 */
920int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
921 u32 *sum, int len)
922{
923 struct btrfs_ordered_sum *ordered_sum;
924 struct btrfs_ordered_extent *ordered;
925 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
926 unsigned long num_sectors;
927 unsigned long i;
928 u32 sectorsize = btrfs_inode_sectorsize(inode);
929 int index = 0;
930
931 ordered = btrfs_lookup_ordered_extent(inode, offset);
932 if (!ordered)
933 return 0;
934
935 spin_lock_irq(&tree->lock);
936 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
937 if (disk_bytenr >= ordered_sum->bytenr &&
938 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
939 i = (disk_bytenr - ordered_sum->bytenr) >>
940 inode->i_sb->s_blocksize_bits;
941 num_sectors = ordered_sum->len >>
942 inode->i_sb->s_blocksize_bits;
943 num_sectors = min_t(int, len - index, num_sectors - i);
944 memcpy(sum + index, ordered_sum->sums + i,
945 num_sectors);
946
947 index += (int)num_sectors;
948 if (index == len)
949 goto out;
950 disk_bytenr += num_sectors * sectorsize;
951 }
952 }
953out:
954 spin_unlock_irq(&tree->lock);
955 btrfs_put_ordered_extent(ordered);
956 return index;
957}
958
959int __init ordered_data_init(void)
960{
961 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
962 sizeof(struct btrfs_ordered_extent), 0,
963 SLAB_MEM_SPREAD,
964 NULL);
965 if (!btrfs_ordered_extent_cache)
966 return -ENOMEM;
967
968 return 0;
969}
970
971void __cold ordered_data_exit(void)
972{
973 kmem_cache_destroy(btrfs_ordered_extent_cache);
974}