Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/highmem.h>
12#include <linux/time.h>
13#include <linux/init.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/writeback.h>
17#include <linux/slab.h>
18#include <linux/sched/mm.h>
19#include <linux/log2.h>
20#include "ctree.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "btrfs_inode.h"
24#include "volumes.h"
25#include "ordered-data.h"
26#include "compression.h"
27#include "extent_io.h"
28#include "extent_map.h"
29
30static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31
32const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33{
34 switch (type) {
35 case BTRFS_COMPRESS_ZLIB:
36 case BTRFS_COMPRESS_LZO:
37 case BTRFS_COMPRESS_ZSTD:
38 case BTRFS_COMPRESS_NONE:
39 return btrfs_compress_types[type];
40 }
41
42 return NULL;
43}
44
45static int btrfs_decompress_bio(struct compressed_bio *cb);
46
47static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 unsigned long disk_size)
49{
50 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51
52 return sizeof(struct compressed_bio) +
53 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54}
55
56static int check_compressed_csum(struct btrfs_inode *inode,
57 struct compressed_bio *cb,
58 u64 disk_start)
59{
60 int ret;
61 struct page *page;
62 unsigned long i;
63 char *kaddr;
64 u32 csum;
65 u32 *cb_sum = &cb->sums;
66
67 if (inode->flags & BTRFS_INODE_NODATASUM)
68 return 0;
69
70 for (i = 0; i < cb->nr_pages; i++) {
71 page = cb->compressed_pages[i];
72 csum = ~(u32)0;
73
74 kaddr = kmap_atomic(page);
75 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76 btrfs_csum_final(csum, (u8 *)&csum);
77 kunmap_atomic(kaddr);
78
79 if (csum != *cb_sum) {
80 btrfs_print_data_csum_error(inode, disk_start, csum,
81 *cb_sum, cb->mirror_num);
82 ret = -EIO;
83 goto fail;
84 }
85 cb_sum++;
86
87 }
88 ret = 0;
89fail:
90 return ret;
91}
92
93/* when we finish reading compressed pages from the disk, we
94 * decompress them and then run the bio end_io routines on the
95 * decompressed pages (in the inode address space).
96 *
97 * This allows the checksumming and other IO error handling routines
98 * to work normally
99 *
100 * The compressed pages are freed here, and it must be run
101 * in process context
102 */
103static void end_compressed_bio_read(struct bio *bio)
104{
105 struct compressed_bio *cb = bio->bi_private;
106 struct inode *inode;
107 struct page *page;
108 unsigned long index;
109 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110 int ret = 0;
111
112 if (bio->bi_status)
113 cb->errors = 1;
114
115 /* if there are more bios still pending for this compressed
116 * extent, just exit
117 */
118 if (!refcount_dec_and_test(&cb->pending_bios))
119 goto out;
120
121 /*
122 * Record the correct mirror_num in cb->orig_bio so that
123 * read-repair can work properly.
124 */
125 ASSERT(btrfs_io_bio(cb->orig_bio));
126 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
127 cb->mirror_num = mirror;
128
129 /*
130 * Some IO in this cb have failed, just skip checksum as there
131 * is no way it could be correct.
132 */
133 if (cb->errors == 1)
134 goto csum_failed;
135
136 inode = cb->inode;
137 ret = check_compressed_csum(BTRFS_I(inode), cb,
138 (u64)bio->bi_iter.bi_sector << 9);
139 if (ret)
140 goto csum_failed;
141
142 /* ok, we're the last bio for this extent, lets start
143 * the decompression.
144 */
145 ret = btrfs_decompress_bio(cb);
146
147csum_failed:
148 if (ret)
149 cb->errors = 1;
150
151 /* release the compressed pages */
152 index = 0;
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
156 put_page(page);
157 }
158
159 /* do io completion on the original bio */
160 if (cb->errors) {
161 bio_io_error(cb->orig_bio);
162 } else {
163 int i;
164 struct bio_vec *bvec;
165 struct bvec_iter_all iter_all;
166
167 /*
168 * we have verified the checksum already, set page
169 * checked so the end_io handlers know about it
170 */
171 ASSERT(!bio_flagged(bio, BIO_CLONED));
172 bio_for_each_segment_all(bvec, cb->orig_bio, i, iter_all)
173 SetPageChecked(bvec->bv_page);
174
175 bio_endio(cb->orig_bio);
176 }
177
178 /* finally free the cb struct */
179 kfree(cb->compressed_pages);
180 kfree(cb);
181out:
182 bio_put(bio);
183}
184
185/*
186 * Clear the writeback bits on all of the file
187 * pages for a compressed write
188 */
189static noinline void end_compressed_writeback(struct inode *inode,
190 const struct compressed_bio *cb)
191{
192 unsigned long index = cb->start >> PAGE_SHIFT;
193 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
194 struct page *pages[16];
195 unsigned long nr_pages = end_index - index + 1;
196 int i;
197 int ret;
198
199 if (cb->errors)
200 mapping_set_error(inode->i_mapping, -EIO);
201
202 while (nr_pages > 0) {
203 ret = find_get_pages_contig(inode->i_mapping, index,
204 min_t(unsigned long,
205 nr_pages, ARRAY_SIZE(pages)), pages);
206 if (ret == 0) {
207 nr_pages -= 1;
208 index += 1;
209 continue;
210 }
211 for (i = 0; i < ret; i++) {
212 if (cb->errors)
213 SetPageError(pages[i]);
214 end_page_writeback(pages[i]);
215 put_page(pages[i]);
216 }
217 nr_pages -= ret;
218 index += ret;
219 }
220 /* the inode may be gone now */
221}
222
223/*
224 * do the cleanup once all the compressed pages hit the disk.
225 * This will clear writeback on the file pages and free the compressed
226 * pages.
227 *
228 * This also calls the writeback end hooks for the file pages so that
229 * metadata and checksums can be updated in the file.
230 */
231static void end_compressed_bio_write(struct bio *bio)
232{
233 struct compressed_bio *cb = bio->bi_private;
234 struct inode *inode;
235 struct page *page;
236 unsigned long index;
237
238 if (bio->bi_status)
239 cb->errors = 1;
240
241 /* if there are more bios still pending for this compressed
242 * extent, just exit
243 */
244 if (!refcount_dec_and_test(&cb->pending_bios))
245 goto out;
246
247 /* ok, we're the last bio for this extent, step one is to
248 * call back into the FS and do all the end_io operations
249 */
250 inode = cb->inode;
251 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
252 btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
253 cb->start, cb->start + cb->len - 1,
254 bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
255 cb->compressed_pages[0]->mapping = NULL;
256
257 end_compressed_writeback(inode, cb);
258 /* note, our inode could be gone now */
259
260 /*
261 * release the compressed pages, these came from alloc_page and
262 * are not attached to the inode at all
263 */
264 index = 0;
265 for (index = 0; index < cb->nr_pages; index++) {
266 page = cb->compressed_pages[index];
267 page->mapping = NULL;
268 put_page(page);
269 }
270
271 /* finally free the cb struct */
272 kfree(cb->compressed_pages);
273 kfree(cb);
274out:
275 bio_put(bio);
276}
277
278/*
279 * worker function to build and submit bios for previously compressed pages.
280 * The corresponding pages in the inode should be marked for writeback
281 * and the compressed pages should have a reference on them for dropping
282 * when the IO is complete.
283 *
284 * This also checksums the file bytes and gets things ready for
285 * the end io hooks.
286 */
287blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
288 unsigned long len, u64 disk_start,
289 unsigned long compressed_len,
290 struct page **compressed_pages,
291 unsigned long nr_pages,
292 unsigned int write_flags)
293{
294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
295 struct bio *bio = NULL;
296 struct compressed_bio *cb;
297 unsigned long bytes_left;
298 int pg_index = 0;
299 struct page *page;
300 u64 first_byte = disk_start;
301 struct block_device *bdev;
302 blk_status_t ret;
303 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
304
305 WARN_ON(!PAGE_ALIGNED(start));
306 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
307 if (!cb)
308 return BLK_STS_RESOURCE;
309 refcount_set(&cb->pending_bios, 0);
310 cb->errors = 0;
311 cb->inode = inode;
312 cb->start = start;
313 cb->len = len;
314 cb->mirror_num = 0;
315 cb->compressed_pages = compressed_pages;
316 cb->compressed_len = compressed_len;
317 cb->orig_bio = NULL;
318 cb->nr_pages = nr_pages;
319
320 bdev = fs_info->fs_devices->latest_bdev;
321
322 bio = btrfs_bio_alloc(bdev, first_byte);
323 bio->bi_opf = REQ_OP_WRITE | write_flags;
324 bio->bi_private = cb;
325 bio->bi_end_io = end_compressed_bio_write;
326 refcount_set(&cb->pending_bios, 1);
327
328 /* create and submit bios for the compressed pages */
329 bytes_left = compressed_len;
330 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
331 int submit = 0;
332
333 page = compressed_pages[pg_index];
334 page->mapping = inode->i_mapping;
335 if (bio->bi_iter.bi_size)
336 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
337 0);
338
339 page->mapping = NULL;
340 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
341 PAGE_SIZE) {
342 /*
343 * inc the count before we submit the bio so
344 * we know the end IO handler won't happen before
345 * we inc the count. Otherwise, the cb might get
346 * freed before we're done setting it up
347 */
348 refcount_inc(&cb->pending_bios);
349 ret = btrfs_bio_wq_end_io(fs_info, bio,
350 BTRFS_WQ_ENDIO_DATA);
351 BUG_ON(ret); /* -ENOMEM */
352
353 if (!skip_sum) {
354 ret = btrfs_csum_one_bio(inode, bio, start, 1);
355 BUG_ON(ret); /* -ENOMEM */
356 }
357
358 ret = btrfs_map_bio(fs_info, bio, 0, 1);
359 if (ret) {
360 bio->bi_status = ret;
361 bio_endio(bio);
362 }
363
364 bio = btrfs_bio_alloc(bdev, first_byte);
365 bio->bi_opf = REQ_OP_WRITE | write_flags;
366 bio->bi_private = cb;
367 bio->bi_end_io = end_compressed_bio_write;
368 bio_add_page(bio, page, PAGE_SIZE, 0);
369 }
370 if (bytes_left < PAGE_SIZE) {
371 btrfs_info(fs_info,
372 "bytes left %lu compress len %lu nr %lu",
373 bytes_left, cb->compressed_len, cb->nr_pages);
374 }
375 bytes_left -= PAGE_SIZE;
376 first_byte += PAGE_SIZE;
377 cond_resched();
378 }
379
380 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
381 BUG_ON(ret); /* -ENOMEM */
382
383 if (!skip_sum) {
384 ret = btrfs_csum_one_bio(inode, bio, start, 1);
385 BUG_ON(ret); /* -ENOMEM */
386 }
387
388 ret = btrfs_map_bio(fs_info, bio, 0, 1);
389 if (ret) {
390 bio->bi_status = ret;
391 bio_endio(bio);
392 }
393
394 return 0;
395}
396
397static u64 bio_end_offset(struct bio *bio)
398{
399 struct bio_vec *last = bio_last_bvec_all(bio);
400
401 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
402}
403
404static noinline int add_ra_bio_pages(struct inode *inode,
405 u64 compressed_end,
406 struct compressed_bio *cb)
407{
408 unsigned long end_index;
409 unsigned long pg_index;
410 u64 last_offset;
411 u64 isize = i_size_read(inode);
412 int ret;
413 struct page *page;
414 unsigned long nr_pages = 0;
415 struct extent_map *em;
416 struct address_space *mapping = inode->i_mapping;
417 struct extent_map_tree *em_tree;
418 struct extent_io_tree *tree;
419 u64 end;
420 int misses = 0;
421
422 last_offset = bio_end_offset(cb->orig_bio);
423 em_tree = &BTRFS_I(inode)->extent_tree;
424 tree = &BTRFS_I(inode)->io_tree;
425
426 if (isize == 0)
427 return 0;
428
429 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
430
431 while (last_offset < compressed_end) {
432 pg_index = last_offset >> PAGE_SHIFT;
433
434 if (pg_index > end_index)
435 break;
436
437 page = xa_load(&mapping->i_pages, pg_index);
438 if (page && !xa_is_value(page)) {
439 misses++;
440 if (misses > 4)
441 break;
442 goto next;
443 }
444
445 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
446 ~__GFP_FS));
447 if (!page)
448 break;
449
450 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
451 put_page(page);
452 goto next;
453 }
454
455 end = last_offset + PAGE_SIZE - 1;
456 /*
457 * at this point, we have a locked page in the page cache
458 * for these bytes in the file. But, we have to make
459 * sure they map to this compressed extent on disk.
460 */
461 set_page_extent_mapped(page);
462 lock_extent(tree, last_offset, end);
463 read_lock(&em_tree->lock);
464 em = lookup_extent_mapping(em_tree, last_offset,
465 PAGE_SIZE);
466 read_unlock(&em_tree->lock);
467
468 if (!em || last_offset < em->start ||
469 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
470 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
471 free_extent_map(em);
472 unlock_extent(tree, last_offset, end);
473 unlock_page(page);
474 put_page(page);
475 break;
476 }
477 free_extent_map(em);
478
479 if (page->index == end_index) {
480 char *userpage;
481 size_t zero_offset = offset_in_page(isize);
482
483 if (zero_offset) {
484 int zeros;
485 zeros = PAGE_SIZE - zero_offset;
486 userpage = kmap_atomic(page);
487 memset(userpage + zero_offset, 0, zeros);
488 flush_dcache_page(page);
489 kunmap_atomic(userpage);
490 }
491 }
492
493 ret = bio_add_page(cb->orig_bio, page,
494 PAGE_SIZE, 0);
495
496 if (ret == PAGE_SIZE) {
497 nr_pages++;
498 put_page(page);
499 } else {
500 unlock_extent(tree, last_offset, end);
501 unlock_page(page);
502 put_page(page);
503 break;
504 }
505next:
506 last_offset += PAGE_SIZE;
507 }
508 return 0;
509}
510
511/*
512 * for a compressed read, the bio we get passed has all the inode pages
513 * in it. We don't actually do IO on those pages but allocate new ones
514 * to hold the compressed pages on disk.
515 *
516 * bio->bi_iter.bi_sector points to the compressed extent on disk
517 * bio->bi_io_vec points to all of the inode pages
518 *
519 * After the compressed pages are read, we copy the bytes into the
520 * bio we were passed and then call the bio end_io calls
521 */
522blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
523 int mirror_num, unsigned long bio_flags)
524{
525 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
526 struct extent_map_tree *em_tree;
527 struct compressed_bio *cb;
528 unsigned long compressed_len;
529 unsigned long nr_pages;
530 unsigned long pg_index;
531 struct page *page;
532 struct block_device *bdev;
533 struct bio *comp_bio;
534 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
535 u64 em_len;
536 u64 em_start;
537 struct extent_map *em;
538 blk_status_t ret = BLK_STS_RESOURCE;
539 int faili = 0;
540 u32 *sums;
541
542 em_tree = &BTRFS_I(inode)->extent_tree;
543
544 /* we need the actual starting offset of this extent in the file */
545 read_lock(&em_tree->lock);
546 em = lookup_extent_mapping(em_tree,
547 page_offset(bio_first_page_all(bio)),
548 PAGE_SIZE);
549 read_unlock(&em_tree->lock);
550 if (!em)
551 return BLK_STS_IOERR;
552
553 compressed_len = em->block_len;
554 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
555 if (!cb)
556 goto out;
557
558 refcount_set(&cb->pending_bios, 0);
559 cb->errors = 0;
560 cb->inode = inode;
561 cb->mirror_num = mirror_num;
562 sums = &cb->sums;
563
564 cb->start = em->orig_start;
565 em_len = em->len;
566 em_start = em->start;
567
568 free_extent_map(em);
569 em = NULL;
570
571 cb->len = bio->bi_iter.bi_size;
572 cb->compressed_len = compressed_len;
573 cb->compress_type = extent_compress_type(bio_flags);
574 cb->orig_bio = bio;
575
576 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
577 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
578 GFP_NOFS);
579 if (!cb->compressed_pages)
580 goto fail1;
581
582 bdev = fs_info->fs_devices->latest_bdev;
583
584 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
585 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
586 __GFP_HIGHMEM);
587 if (!cb->compressed_pages[pg_index]) {
588 faili = pg_index - 1;
589 ret = BLK_STS_RESOURCE;
590 goto fail2;
591 }
592 }
593 faili = nr_pages - 1;
594 cb->nr_pages = nr_pages;
595
596 add_ra_bio_pages(inode, em_start + em_len, cb);
597
598 /* include any pages we added in add_ra-bio_pages */
599 cb->len = bio->bi_iter.bi_size;
600
601 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
602 comp_bio->bi_opf = REQ_OP_READ;
603 comp_bio->bi_private = cb;
604 comp_bio->bi_end_io = end_compressed_bio_read;
605 refcount_set(&cb->pending_bios, 1);
606
607 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
608 int submit = 0;
609
610 page = cb->compressed_pages[pg_index];
611 page->mapping = inode->i_mapping;
612 page->index = em_start >> PAGE_SHIFT;
613
614 if (comp_bio->bi_iter.bi_size)
615 submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
616 comp_bio, 0);
617
618 page->mapping = NULL;
619 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
620 PAGE_SIZE) {
621 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
622 BTRFS_WQ_ENDIO_DATA);
623 BUG_ON(ret); /* -ENOMEM */
624
625 /*
626 * inc the count before we submit the bio so
627 * we know the end IO handler won't happen before
628 * we inc the count. Otherwise, the cb might get
629 * freed before we're done setting it up
630 */
631 refcount_inc(&cb->pending_bios);
632
633 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
634 ret = btrfs_lookup_bio_sums(inode, comp_bio,
635 sums);
636 BUG_ON(ret); /* -ENOMEM */
637 }
638 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
639 fs_info->sectorsize);
640
641 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
642 if (ret) {
643 comp_bio->bi_status = ret;
644 bio_endio(comp_bio);
645 }
646
647 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
648 comp_bio->bi_opf = REQ_OP_READ;
649 comp_bio->bi_private = cb;
650 comp_bio->bi_end_io = end_compressed_bio_read;
651
652 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
653 }
654 cur_disk_byte += PAGE_SIZE;
655 }
656
657 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
658 BUG_ON(ret); /* -ENOMEM */
659
660 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
661 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
662 BUG_ON(ret); /* -ENOMEM */
663 }
664
665 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
666 if (ret) {
667 comp_bio->bi_status = ret;
668 bio_endio(comp_bio);
669 }
670
671 return 0;
672
673fail2:
674 while (faili >= 0) {
675 __free_page(cb->compressed_pages[faili]);
676 faili--;
677 }
678
679 kfree(cb->compressed_pages);
680fail1:
681 kfree(cb);
682out:
683 free_extent_map(em);
684 return ret;
685}
686
687/*
688 * Heuristic uses systematic sampling to collect data from the input data
689 * range, the logic can be tuned by the following constants:
690 *
691 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
692 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
693 */
694#define SAMPLING_READ_SIZE (16)
695#define SAMPLING_INTERVAL (256)
696
697/*
698 * For statistical analysis of the input data we consider bytes that form a
699 * Galois Field of 256 objects. Each object has an attribute count, ie. how
700 * many times the object appeared in the sample.
701 */
702#define BUCKET_SIZE (256)
703
704/*
705 * The size of the sample is based on a statistical sampling rule of thumb.
706 * The common way is to perform sampling tests as long as the number of
707 * elements in each cell is at least 5.
708 *
709 * Instead of 5, we choose 32 to obtain more accurate results.
710 * If the data contain the maximum number of symbols, which is 256, we obtain a
711 * sample size bound by 8192.
712 *
713 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
714 * from up to 512 locations.
715 */
716#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
717 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
718
719struct bucket_item {
720 u32 count;
721};
722
723struct heuristic_ws {
724 /* Partial copy of input data */
725 u8 *sample;
726 u32 sample_size;
727 /* Buckets store counters for each byte value */
728 struct bucket_item *bucket;
729 /* Sorting buffer */
730 struct bucket_item *bucket_b;
731 struct list_head list;
732};
733
734static struct workspace_manager heuristic_wsm;
735
736static void heuristic_init_workspace_manager(void)
737{
738 btrfs_init_workspace_manager(&heuristic_wsm, &btrfs_heuristic_compress);
739}
740
741static void heuristic_cleanup_workspace_manager(void)
742{
743 btrfs_cleanup_workspace_manager(&heuristic_wsm);
744}
745
746static struct list_head *heuristic_get_workspace(unsigned int level)
747{
748 return btrfs_get_workspace(&heuristic_wsm, level);
749}
750
751static void heuristic_put_workspace(struct list_head *ws)
752{
753 btrfs_put_workspace(&heuristic_wsm, ws);
754}
755
756static void free_heuristic_ws(struct list_head *ws)
757{
758 struct heuristic_ws *workspace;
759
760 workspace = list_entry(ws, struct heuristic_ws, list);
761
762 kvfree(workspace->sample);
763 kfree(workspace->bucket);
764 kfree(workspace->bucket_b);
765 kfree(workspace);
766}
767
768static struct list_head *alloc_heuristic_ws(unsigned int level)
769{
770 struct heuristic_ws *ws;
771
772 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
773 if (!ws)
774 return ERR_PTR(-ENOMEM);
775
776 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
777 if (!ws->sample)
778 goto fail;
779
780 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
781 if (!ws->bucket)
782 goto fail;
783
784 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
785 if (!ws->bucket_b)
786 goto fail;
787
788 INIT_LIST_HEAD(&ws->list);
789 return &ws->list;
790fail:
791 free_heuristic_ws(&ws->list);
792 return ERR_PTR(-ENOMEM);
793}
794
795const struct btrfs_compress_op btrfs_heuristic_compress = {
796 .init_workspace_manager = heuristic_init_workspace_manager,
797 .cleanup_workspace_manager = heuristic_cleanup_workspace_manager,
798 .get_workspace = heuristic_get_workspace,
799 .put_workspace = heuristic_put_workspace,
800 .alloc_workspace = alloc_heuristic_ws,
801 .free_workspace = free_heuristic_ws,
802};
803
804static const struct btrfs_compress_op * const btrfs_compress_op[] = {
805 /* The heuristic is represented as compression type 0 */
806 &btrfs_heuristic_compress,
807 &btrfs_zlib_compress,
808 &btrfs_lzo_compress,
809 &btrfs_zstd_compress,
810};
811
812void btrfs_init_workspace_manager(struct workspace_manager *wsm,
813 const struct btrfs_compress_op *ops)
814{
815 struct list_head *workspace;
816
817 wsm->ops = ops;
818
819 INIT_LIST_HEAD(&wsm->idle_ws);
820 spin_lock_init(&wsm->ws_lock);
821 atomic_set(&wsm->total_ws, 0);
822 init_waitqueue_head(&wsm->ws_wait);
823
824 /*
825 * Preallocate one workspace for each compression type so we can
826 * guarantee forward progress in the worst case
827 */
828 workspace = wsm->ops->alloc_workspace(0);
829 if (IS_ERR(workspace)) {
830 pr_warn(
831 "BTRFS: cannot preallocate compression workspace, will try later\n");
832 } else {
833 atomic_set(&wsm->total_ws, 1);
834 wsm->free_ws = 1;
835 list_add(workspace, &wsm->idle_ws);
836 }
837}
838
839void btrfs_cleanup_workspace_manager(struct workspace_manager *wsman)
840{
841 struct list_head *ws;
842
843 while (!list_empty(&wsman->idle_ws)) {
844 ws = wsman->idle_ws.next;
845 list_del(ws);
846 wsman->ops->free_workspace(ws);
847 atomic_dec(&wsman->total_ws);
848 }
849}
850
851/*
852 * This finds an available workspace or allocates a new one.
853 * If it's not possible to allocate a new one, waits until there's one.
854 * Preallocation makes a forward progress guarantees and we do not return
855 * errors.
856 */
857struct list_head *btrfs_get_workspace(struct workspace_manager *wsm,
858 unsigned int level)
859{
860 struct list_head *workspace;
861 int cpus = num_online_cpus();
862 unsigned nofs_flag;
863 struct list_head *idle_ws;
864 spinlock_t *ws_lock;
865 atomic_t *total_ws;
866 wait_queue_head_t *ws_wait;
867 int *free_ws;
868
869 idle_ws = &wsm->idle_ws;
870 ws_lock = &wsm->ws_lock;
871 total_ws = &wsm->total_ws;
872 ws_wait = &wsm->ws_wait;
873 free_ws = &wsm->free_ws;
874
875again:
876 spin_lock(ws_lock);
877 if (!list_empty(idle_ws)) {
878 workspace = idle_ws->next;
879 list_del(workspace);
880 (*free_ws)--;
881 spin_unlock(ws_lock);
882 return workspace;
883
884 }
885 if (atomic_read(total_ws) > cpus) {
886 DEFINE_WAIT(wait);
887
888 spin_unlock(ws_lock);
889 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
890 if (atomic_read(total_ws) > cpus && !*free_ws)
891 schedule();
892 finish_wait(ws_wait, &wait);
893 goto again;
894 }
895 atomic_inc(total_ws);
896 spin_unlock(ws_lock);
897
898 /*
899 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
900 * to turn it off here because we might get called from the restricted
901 * context of btrfs_compress_bio/btrfs_compress_pages
902 */
903 nofs_flag = memalloc_nofs_save();
904 workspace = wsm->ops->alloc_workspace(level);
905 memalloc_nofs_restore(nofs_flag);
906
907 if (IS_ERR(workspace)) {
908 atomic_dec(total_ws);
909 wake_up(ws_wait);
910
911 /*
912 * Do not return the error but go back to waiting. There's a
913 * workspace preallocated for each type and the compression
914 * time is bounded so we get to a workspace eventually. This
915 * makes our caller's life easier.
916 *
917 * To prevent silent and low-probability deadlocks (when the
918 * initial preallocation fails), check if there are any
919 * workspaces at all.
920 */
921 if (atomic_read(total_ws) == 0) {
922 static DEFINE_RATELIMIT_STATE(_rs,
923 /* once per minute */ 60 * HZ,
924 /* no burst */ 1);
925
926 if (__ratelimit(&_rs)) {
927 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
928 }
929 }
930 goto again;
931 }
932 return workspace;
933}
934
935static struct list_head *get_workspace(int type, int level)
936{
937 return btrfs_compress_op[type]->get_workspace(level);
938}
939
940/*
941 * put a workspace struct back on the list or free it if we have enough
942 * idle ones sitting around
943 */
944void btrfs_put_workspace(struct workspace_manager *wsm, struct list_head *ws)
945{
946 struct list_head *idle_ws;
947 spinlock_t *ws_lock;
948 atomic_t *total_ws;
949 wait_queue_head_t *ws_wait;
950 int *free_ws;
951
952 idle_ws = &wsm->idle_ws;
953 ws_lock = &wsm->ws_lock;
954 total_ws = &wsm->total_ws;
955 ws_wait = &wsm->ws_wait;
956 free_ws = &wsm->free_ws;
957
958 spin_lock(ws_lock);
959 if (*free_ws <= num_online_cpus()) {
960 list_add(ws, idle_ws);
961 (*free_ws)++;
962 spin_unlock(ws_lock);
963 goto wake;
964 }
965 spin_unlock(ws_lock);
966
967 wsm->ops->free_workspace(ws);
968 atomic_dec(total_ws);
969wake:
970 cond_wake_up(ws_wait);
971}
972
973static void put_workspace(int type, struct list_head *ws)
974{
975 return btrfs_compress_op[type]->put_workspace(ws);
976}
977
978/*
979 * Given an address space and start and length, compress the bytes into @pages
980 * that are allocated on demand.
981 *
982 * @type_level is encoded algorithm and level, where level 0 means whatever
983 * default the algorithm chooses and is opaque here;
984 * - compression algo are 0-3
985 * - the level are bits 4-7
986 *
987 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
988 * and returns number of actually allocated pages
989 *
990 * @total_in is used to return the number of bytes actually read. It
991 * may be smaller than the input length if we had to exit early because we
992 * ran out of room in the pages array or because we cross the
993 * max_out threshold.
994 *
995 * @total_out is an in/out parameter, must be set to the input length and will
996 * be also used to return the total number of compressed bytes
997 *
998 * @max_out tells us the max number of bytes that we're allowed to
999 * stuff into pages
1000 */
1001int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1002 u64 start, struct page **pages,
1003 unsigned long *out_pages,
1004 unsigned long *total_in,
1005 unsigned long *total_out)
1006{
1007 int type = btrfs_compress_type(type_level);
1008 int level = btrfs_compress_level(type_level);
1009 struct list_head *workspace;
1010 int ret;
1011
1012 workspace = get_workspace(type, level);
1013 ret = btrfs_compress_op[type]->compress_pages(workspace, mapping,
1014 start, pages,
1015 out_pages,
1016 total_in, total_out);
1017 put_workspace(type, workspace);
1018 return ret;
1019}
1020
1021/*
1022 * pages_in is an array of pages with compressed data.
1023 *
1024 * disk_start is the starting logical offset of this array in the file
1025 *
1026 * orig_bio contains the pages from the file that we want to decompress into
1027 *
1028 * srclen is the number of bytes in pages_in
1029 *
1030 * The basic idea is that we have a bio that was created by readpages.
1031 * The pages in the bio are for the uncompressed data, and they may not
1032 * be contiguous. They all correspond to the range of bytes covered by
1033 * the compressed extent.
1034 */
1035static int btrfs_decompress_bio(struct compressed_bio *cb)
1036{
1037 struct list_head *workspace;
1038 int ret;
1039 int type = cb->compress_type;
1040
1041 workspace = get_workspace(type, 0);
1042 ret = btrfs_compress_op[type]->decompress_bio(workspace, cb);
1043 put_workspace(type, workspace);
1044
1045 return ret;
1046}
1047
1048/*
1049 * a less complex decompression routine. Our compressed data fits in a
1050 * single page, and we want to read a single page out of it.
1051 * start_byte tells us the offset into the compressed data we're interested in
1052 */
1053int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1054 unsigned long start_byte, size_t srclen, size_t destlen)
1055{
1056 struct list_head *workspace;
1057 int ret;
1058
1059 workspace = get_workspace(type, 0);
1060 ret = btrfs_compress_op[type]->decompress(workspace, data_in,
1061 dest_page, start_byte,
1062 srclen, destlen);
1063 put_workspace(type, workspace);
1064
1065 return ret;
1066}
1067
1068void __init btrfs_init_compress(void)
1069{
1070 int i;
1071
1072 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1073 btrfs_compress_op[i]->init_workspace_manager();
1074}
1075
1076void __cold btrfs_exit_compress(void)
1077{
1078 int i;
1079
1080 for (i = 0; i < BTRFS_NR_WORKSPACE_MANAGERS; i++)
1081 btrfs_compress_op[i]->cleanup_workspace_manager();
1082}
1083
1084/*
1085 * Copy uncompressed data from working buffer to pages.
1086 *
1087 * buf_start is the byte offset we're of the start of our workspace buffer.
1088 *
1089 * total_out is the last byte of the buffer
1090 */
1091int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1092 unsigned long total_out, u64 disk_start,
1093 struct bio *bio)
1094{
1095 unsigned long buf_offset;
1096 unsigned long current_buf_start;
1097 unsigned long start_byte;
1098 unsigned long prev_start_byte;
1099 unsigned long working_bytes = total_out - buf_start;
1100 unsigned long bytes;
1101 char *kaddr;
1102 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1103
1104 /*
1105 * start byte is the first byte of the page we're currently
1106 * copying into relative to the start of the compressed data.
1107 */
1108 start_byte = page_offset(bvec.bv_page) - disk_start;
1109
1110 /* we haven't yet hit data corresponding to this page */
1111 if (total_out <= start_byte)
1112 return 1;
1113
1114 /*
1115 * the start of the data we care about is offset into
1116 * the middle of our working buffer
1117 */
1118 if (total_out > start_byte && buf_start < start_byte) {
1119 buf_offset = start_byte - buf_start;
1120 working_bytes -= buf_offset;
1121 } else {
1122 buf_offset = 0;
1123 }
1124 current_buf_start = buf_start;
1125
1126 /* copy bytes from the working buffer into the pages */
1127 while (working_bytes > 0) {
1128 bytes = min_t(unsigned long, bvec.bv_len,
1129 PAGE_SIZE - buf_offset);
1130 bytes = min(bytes, working_bytes);
1131
1132 kaddr = kmap_atomic(bvec.bv_page);
1133 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1134 kunmap_atomic(kaddr);
1135 flush_dcache_page(bvec.bv_page);
1136
1137 buf_offset += bytes;
1138 working_bytes -= bytes;
1139 current_buf_start += bytes;
1140
1141 /* check if we need to pick another page */
1142 bio_advance(bio, bytes);
1143 if (!bio->bi_iter.bi_size)
1144 return 0;
1145 bvec = bio_iter_iovec(bio, bio->bi_iter);
1146 prev_start_byte = start_byte;
1147 start_byte = page_offset(bvec.bv_page) - disk_start;
1148
1149 /*
1150 * We need to make sure we're only adjusting
1151 * our offset into compression working buffer when
1152 * we're switching pages. Otherwise we can incorrectly
1153 * keep copying when we were actually done.
1154 */
1155 if (start_byte != prev_start_byte) {
1156 /*
1157 * make sure our new page is covered by this
1158 * working buffer
1159 */
1160 if (total_out <= start_byte)
1161 return 1;
1162
1163 /*
1164 * the next page in the biovec might not be adjacent
1165 * to the last page, but it might still be found
1166 * inside this working buffer. bump our offset pointer
1167 */
1168 if (total_out > start_byte &&
1169 current_buf_start < start_byte) {
1170 buf_offset = start_byte - buf_start;
1171 working_bytes = total_out - start_byte;
1172 current_buf_start = buf_start + buf_offset;
1173 }
1174 }
1175 }
1176
1177 return 1;
1178}
1179
1180/*
1181 * Shannon Entropy calculation
1182 *
1183 * Pure byte distribution analysis fails to determine compressibility of data.
1184 * Try calculating entropy to estimate the average minimum number of bits
1185 * needed to encode the sampled data.
1186 *
1187 * For convenience, return the percentage of needed bits, instead of amount of
1188 * bits directly.
1189 *
1190 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1191 * and can be compressible with high probability
1192 *
1193 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1194 *
1195 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1196 */
1197#define ENTROPY_LVL_ACEPTABLE (65)
1198#define ENTROPY_LVL_HIGH (80)
1199
1200/*
1201 * For increasead precision in shannon_entropy calculation,
1202 * let's do pow(n, M) to save more digits after comma:
1203 *
1204 * - maximum int bit length is 64
1205 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1206 * - 13 * 4 = 52 < 64 -> M = 4
1207 *
1208 * So use pow(n, 4).
1209 */
1210static inline u32 ilog2_w(u64 n)
1211{
1212 return ilog2(n * n * n * n);
1213}
1214
1215static u32 shannon_entropy(struct heuristic_ws *ws)
1216{
1217 const u32 entropy_max = 8 * ilog2_w(2);
1218 u32 entropy_sum = 0;
1219 u32 p, p_base, sz_base;
1220 u32 i;
1221
1222 sz_base = ilog2_w(ws->sample_size);
1223 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1224 p = ws->bucket[i].count;
1225 p_base = ilog2_w(p);
1226 entropy_sum += p * (sz_base - p_base);
1227 }
1228
1229 entropy_sum /= ws->sample_size;
1230 return entropy_sum * 100 / entropy_max;
1231}
1232
1233#define RADIX_BASE 4U
1234#define COUNTERS_SIZE (1U << RADIX_BASE)
1235
1236static u8 get4bits(u64 num, int shift) {
1237 u8 low4bits;
1238
1239 num >>= shift;
1240 /* Reverse order */
1241 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1242 return low4bits;
1243}
1244
1245/*
1246 * Use 4 bits as radix base
1247 * Use 16 u32 counters for calculating new position in buf array
1248 *
1249 * @array - array that will be sorted
1250 * @array_buf - buffer array to store sorting results
1251 * must be equal in size to @array
1252 * @num - array size
1253 */
1254static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1255 int num)
1256{
1257 u64 max_num;
1258 u64 buf_num;
1259 u32 counters[COUNTERS_SIZE];
1260 u32 new_addr;
1261 u32 addr;
1262 int bitlen;
1263 int shift;
1264 int i;
1265
1266 /*
1267 * Try avoid useless loop iterations for small numbers stored in big
1268 * counters. Example: 48 33 4 ... in 64bit array
1269 */
1270 max_num = array[0].count;
1271 for (i = 1; i < num; i++) {
1272 buf_num = array[i].count;
1273 if (buf_num > max_num)
1274 max_num = buf_num;
1275 }
1276
1277 buf_num = ilog2(max_num);
1278 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1279
1280 shift = 0;
1281 while (shift < bitlen) {
1282 memset(counters, 0, sizeof(counters));
1283
1284 for (i = 0; i < num; i++) {
1285 buf_num = array[i].count;
1286 addr = get4bits(buf_num, shift);
1287 counters[addr]++;
1288 }
1289
1290 for (i = 1; i < COUNTERS_SIZE; i++)
1291 counters[i] += counters[i - 1];
1292
1293 for (i = num - 1; i >= 0; i--) {
1294 buf_num = array[i].count;
1295 addr = get4bits(buf_num, shift);
1296 counters[addr]--;
1297 new_addr = counters[addr];
1298 array_buf[new_addr] = array[i];
1299 }
1300
1301 shift += RADIX_BASE;
1302
1303 /*
1304 * Normal radix expects to move data from a temporary array, to
1305 * the main one. But that requires some CPU time. Avoid that
1306 * by doing another sort iteration to original array instead of
1307 * memcpy()
1308 */
1309 memset(counters, 0, sizeof(counters));
1310
1311 for (i = 0; i < num; i ++) {
1312 buf_num = array_buf[i].count;
1313 addr = get4bits(buf_num, shift);
1314 counters[addr]++;
1315 }
1316
1317 for (i = 1; i < COUNTERS_SIZE; i++)
1318 counters[i] += counters[i - 1];
1319
1320 for (i = num - 1; i >= 0; i--) {
1321 buf_num = array_buf[i].count;
1322 addr = get4bits(buf_num, shift);
1323 counters[addr]--;
1324 new_addr = counters[addr];
1325 array[new_addr] = array_buf[i];
1326 }
1327
1328 shift += RADIX_BASE;
1329 }
1330}
1331
1332/*
1333 * Size of the core byte set - how many bytes cover 90% of the sample
1334 *
1335 * There are several types of structured binary data that use nearly all byte
1336 * values. The distribution can be uniform and counts in all buckets will be
1337 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1338 *
1339 * Other possibility is normal (Gaussian) distribution, where the data could
1340 * be potentially compressible, but we have to take a few more steps to decide
1341 * how much.
1342 *
1343 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1344 * compression algo can easy fix that
1345 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1346 * probability is not compressible
1347 */
1348#define BYTE_CORE_SET_LOW (64)
1349#define BYTE_CORE_SET_HIGH (200)
1350
1351static int byte_core_set_size(struct heuristic_ws *ws)
1352{
1353 u32 i;
1354 u32 coreset_sum = 0;
1355 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1356 struct bucket_item *bucket = ws->bucket;
1357
1358 /* Sort in reverse order */
1359 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1360
1361 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1362 coreset_sum += bucket[i].count;
1363
1364 if (coreset_sum > core_set_threshold)
1365 return i;
1366
1367 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1368 coreset_sum += bucket[i].count;
1369 if (coreset_sum > core_set_threshold)
1370 break;
1371 }
1372
1373 return i;
1374}
1375
1376/*
1377 * Count byte values in buckets.
1378 * This heuristic can detect textual data (configs, xml, json, html, etc).
1379 * Because in most text-like data byte set is restricted to limited number of
1380 * possible characters, and that restriction in most cases makes data easy to
1381 * compress.
1382 *
1383 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1384 * less - compressible
1385 * more - need additional analysis
1386 */
1387#define BYTE_SET_THRESHOLD (64)
1388
1389static u32 byte_set_size(const struct heuristic_ws *ws)
1390{
1391 u32 i;
1392 u32 byte_set_size = 0;
1393
1394 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1395 if (ws->bucket[i].count > 0)
1396 byte_set_size++;
1397 }
1398
1399 /*
1400 * Continue collecting count of byte values in buckets. If the byte
1401 * set size is bigger then the threshold, it's pointless to continue,
1402 * the detection technique would fail for this type of data.
1403 */
1404 for (; i < BUCKET_SIZE; i++) {
1405 if (ws->bucket[i].count > 0) {
1406 byte_set_size++;
1407 if (byte_set_size > BYTE_SET_THRESHOLD)
1408 return byte_set_size;
1409 }
1410 }
1411
1412 return byte_set_size;
1413}
1414
1415static bool sample_repeated_patterns(struct heuristic_ws *ws)
1416{
1417 const u32 half_of_sample = ws->sample_size / 2;
1418 const u8 *data = ws->sample;
1419
1420 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1421}
1422
1423static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1424 struct heuristic_ws *ws)
1425{
1426 struct page *page;
1427 u64 index, index_end;
1428 u32 i, curr_sample_pos;
1429 u8 *in_data;
1430
1431 /*
1432 * Compression handles the input data by chunks of 128KiB
1433 * (defined by BTRFS_MAX_UNCOMPRESSED)
1434 *
1435 * We do the same for the heuristic and loop over the whole range.
1436 *
1437 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1438 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1439 */
1440 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1441 end = start + BTRFS_MAX_UNCOMPRESSED;
1442
1443 index = start >> PAGE_SHIFT;
1444 index_end = end >> PAGE_SHIFT;
1445
1446 /* Don't miss unaligned end */
1447 if (!IS_ALIGNED(end, PAGE_SIZE))
1448 index_end++;
1449
1450 curr_sample_pos = 0;
1451 while (index < index_end) {
1452 page = find_get_page(inode->i_mapping, index);
1453 in_data = kmap(page);
1454 /* Handle case where the start is not aligned to PAGE_SIZE */
1455 i = start % PAGE_SIZE;
1456 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1457 /* Don't sample any garbage from the last page */
1458 if (start > end - SAMPLING_READ_SIZE)
1459 break;
1460 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1461 SAMPLING_READ_SIZE);
1462 i += SAMPLING_INTERVAL;
1463 start += SAMPLING_INTERVAL;
1464 curr_sample_pos += SAMPLING_READ_SIZE;
1465 }
1466 kunmap(page);
1467 put_page(page);
1468
1469 index++;
1470 }
1471
1472 ws->sample_size = curr_sample_pos;
1473}
1474
1475/*
1476 * Compression heuristic.
1477 *
1478 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1479 * quickly (compared to direct compression) detect data characteristics
1480 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1481 * data.
1482 *
1483 * The following types of analysis can be performed:
1484 * - detect mostly zero data
1485 * - detect data with low "byte set" size (text, etc)
1486 * - detect data with low/high "core byte" set
1487 *
1488 * Return non-zero if the compression should be done, 0 otherwise.
1489 */
1490int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1491{
1492 struct list_head *ws_list = get_workspace(0, 0);
1493 struct heuristic_ws *ws;
1494 u32 i;
1495 u8 byte;
1496 int ret = 0;
1497
1498 ws = list_entry(ws_list, struct heuristic_ws, list);
1499
1500 heuristic_collect_sample(inode, start, end, ws);
1501
1502 if (sample_repeated_patterns(ws)) {
1503 ret = 1;
1504 goto out;
1505 }
1506
1507 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1508
1509 for (i = 0; i < ws->sample_size; i++) {
1510 byte = ws->sample[i];
1511 ws->bucket[byte].count++;
1512 }
1513
1514 i = byte_set_size(ws);
1515 if (i < BYTE_SET_THRESHOLD) {
1516 ret = 2;
1517 goto out;
1518 }
1519
1520 i = byte_core_set_size(ws);
1521 if (i <= BYTE_CORE_SET_LOW) {
1522 ret = 3;
1523 goto out;
1524 }
1525
1526 if (i >= BYTE_CORE_SET_HIGH) {
1527 ret = 0;
1528 goto out;
1529 }
1530
1531 i = shannon_entropy(ws);
1532 if (i <= ENTROPY_LVL_ACEPTABLE) {
1533 ret = 4;
1534 goto out;
1535 }
1536
1537 /*
1538 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1539 * needed to give green light to compression.
1540 *
1541 * For now just assume that compression at that level is not worth the
1542 * resources because:
1543 *
1544 * 1. it is possible to defrag the data later
1545 *
1546 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1547 * values, every bucket has counter at level ~54. The heuristic would
1548 * be confused. This can happen when data have some internal repeated
1549 * patterns like "abbacbbc...". This can be detected by analyzing
1550 * pairs of bytes, which is too costly.
1551 */
1552 if (i < ENTROPY_LVL_HIGH) {
1553 ret = 5;
1554 goto out;
1555 } else {
1556 ret = 0;
1557 goto out;
1558 }
1559
1560out:
1561 put_workspace(0, ws_list);
1562 return ret;
1563}
1564
1565/*
1566 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1567 * level, unrecognized string will set the default level
1568 */
1569unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1570{
1571 unsigned int level = 0;
1572 int ret;
1573
1574 if (!type)
1575 return 0;
1576
1577 if (str[0] == ':') {
1578 ret = kstrtouint(str + 1, 10, &level);
1579 if (ret)
1580 level = 0;
1581 }
1582
1583 level = btrfs_compress_op[type]->set_level(level);
1584
1585 return level;
1586}