at v5.1 56 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/dax.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/uio.h> 29#include <linux/namei.h> 30#include <linux/log2.h> 31#include <linux/cleancache.h> 32#include <linux/dax.h> 33#include <linux/badblocks.h> 34#include <linux/task_io_accounting_ops.h> 35#include <linux/falloc.h> 36#include <linux/uaccess.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88EXPORT_SYMBOL(kill_bdev); 89 90/* Invalidate clean unused buffers and pagecache. */ 91void invalidate_bdev(struct block_device *bdev) 92{ 93 struct address_space *mapping = bdev->bd_inode->i_mapping; 94 95 if (mapping->nrpages) { 96 invalidate_bh_lrus(); 97 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 98 invalidate_mapping_pages(mapping, 0, -1); 99 } 100 /* 99% of the time, we don't need to flush the cleancache on the bdev. 101 * But, for the strange corners, lets be cautious 102 */ 103 cleancache_invalidate_inode(mapping); 104} 105EXPORT_SYMBOL(invalidate_bdev); 106 107static void set_init_blocksize(struct block_device *bdev) 108{ 109 unsigned bsize = bdev_logical_block_size(bdev); 110 loff_t size = i_size_read(bdev->bd_inode); 111 112 while (bsize < PAGE_SIZE) { 113 if (size & bsize) 114 break; 115 bsize <<= 1; 116 } 117 bdev->bd_block_size = bsize; 118 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 119} 120 121int set_blocksize(struct block_device *bdev, int size) 122{ 123 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 125 return -EINVAL; 126 127 /* Size cannot be smaller than the size supported by the device */ 128 if (size < bdev_logical_block_size(bdev)) 129 return -EINVAL; 130 131 /* Don't change the size if it is same as current */ 132 if (bdev->bd_block_size != size) { 133 sync_blockdev(bdev); 134 bdev->bd_block_size = size; 135 bdev->bd_inode->i_blkbits = blksize_bits(size); 136 kill_bdev(bdev); 137 } 138 return 0; 139} 140 141EXPORT_SYMBOL(set_blocksize); 142 143int sb_set_blocksize(struct super_block *sb, int size) 144{ 145 if (set_blocksize(sb->s_bdev, size)) 146 return 0; 147 /* If we get here, we know size is power of two 148 * and it's value is between 512 and PAGE_SIZE */ 149 sb->s_blocksize = size; 150 sb->s_blocksize_bits = blksize_bits(size); 151 return sb->s_blocksize; 152} 153 154EXPORT_SYMBOL(sb_set_blocksize); 155 156int sb_min_blocksize(struct super_block *sb, int size) 157{ 158 int minsize = bdev_logical_block_size(sb->s_bdev); 159 if (size < minsize) 160 size = minsize; 161 return sb_set_blocksize(sb, size); 162} 163 164EXPORT_SYMBOL(sb_min_blocksize); 165 166static int 167blkdev_get_block(struct inode *inode, sector_t iblock, 168 struct buffer_head *bh, int create) 169{ 170 bh->b_bdev = I_BDEV(inode); 171 bh->b_blocknr = iblock; 172 set_buffer_mapped(bh); 173 return 0; 174} 175 176static struct inode *bdev_file_inode(struct file *file) 177{ 178 return file->f_mapping->host; 179} 180 181static unsigned int dio_bio_write_op(struct kiocb *iocb) 182{ 183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 184 185 /* avoid the need for a I/O completion work item */ 186 if (iocb->ki_flags & IOCB_DSYNC) 187 op |= REQ_FUA; 188 return op; 189} 190 191#define DIO_INLINE_BIO_VECS 4 192 193static void blkdev_bio_end_io_simple(struct bio *bio) 194{ 195 struct task_struct *waiter = bio->bi_private; 196 197 WRITE_ONCE(bio->bi_private, NULL); 198 blk_wake_io_task(waiter); 199} 200 201static ssize_t 202__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 203 int nr_pages) 204{ 205 struct file *file = iocb->ki_filp; 206 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 208 loff_t pos = iocb->ki_pos; 209 bool should_dirty = false; 210 struct bio bio; 211 ssize_t ret; 212 blk_qc_t qc; 213 int i; 214 struct bvec_iter_all iter_all; 215 216 if ((pos | iov_iter_alignment(iter)) & 217 (bdev_logical_block_size(bdev) - 1)) 218 return -EINVAL; 219 220 if (nr_pages <= DIO_INLINE_BIO_VECS) 221 vecs = inline_vecs; 222 else { 223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 224 GFP_KERNEL); 225 if (!vecs) 226 return -ENOMEM; 227 } 228 229 bio_init(&bio, vecs, nr_pages); 230 bio_set_dev(&bio, bdev); 231 bio.bi_iter.bi_sector = pos >> 9; 232 bio.bi_write_hint = iocb->ki_hint; 233 bio.bi_private = current; 234 bio.bi_end_io = blkdev_bio_end_io_simple; 235 bio.bi_ioprio = iocb->ki_ioprio; 236 237 ret = bio_iov_iter_get_pages(&bio, iter); 238 if (unlikely(ret)) 239 goto out; 240 ret = bio.bi_iter.bi_size; 241 242 if (iov_iter_rw(iter) == READ) { 243 bio.bi_opf = REQ_OP_READ; 244 if (iter_is_iovec(iter)) 245 should_dirty = true; 246 } else { 247 bio.bi_opf = dio_bio_write_op(iocb); 248 task_io_account_write(ret); 249 } 250 if (iocb->ki_flags & IOCB_HIPRI) 251 bio_set_polled(&bio, iocb); 252 253 qc = submit_bio(&bio); 254 for (;;) { 255 set_current_state(TASK_UNINTERRUPTIBLE); 256 if (!READ_ONCE(bio.bi_private)) 257 break; 258 if (!(iocb->ki_flags & IOCB_HIPRI) || 259 !blk_poll(bdev_get_queue(bdev), qc, true)) 260 io_schedule(); 261 } 262 __set_current_state(TASK_RUNNING); 263 264 bio_for_each_segment_all(bvec, &bio, i, iter_all) { 265 if (should_dirty && !PageCompound(bvec->bv_page)) 266 set_page_dirty_lock(bvec->bv_page); 267 if (!bio_flagged(&bio, BIO_NO_PAGE_REF)) 268 put_page(bvec->bv_page); 269 } 270 271 if (unlikely(bio.bi_status)) 272 ret = blk_status_to_errno(bio.bi_status); 273 274out: 275 if (vecs != inline_vecs) 276 kfree(vecs); 277 278 bio_uninit(&bio); 279 280 return ret; 281} 282 283struct blkdev_dio { 284 union { 285 struct kiocb *iocb; 286 struct task_struct *waiter; 287 }; 288 size_t size; 289 atomic_t ref; 290 bool multi_bio : 1; 291 bool should_dirty : 1; 292 bool is_sync : 1; 293 struct bio bio; 294}; 295 296static struct bio_set blkdev_dio_pool; 297 298static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 299{ 300 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 301 struct request_queue *q = bdev_get_queue(bdev); 302 303 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 304} 305 306static void blkdev_bio_end_io(struct bio *bio) 307{ 308 struct blkdev_dio *dio = bio->bi_private; 309 bool should_dirty = dio->should_dirty; 310 311 if (bio->bi_status && !dio->bio.bi_status) 312 dio->bio.bi_status = bio->bi_status; 313 314 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 315 if (!dio->is_sync) { 316 struct kiocb *iocb = dio->iocb; 317 ssize_t ret; 318 319 if (likely(!dio->bio.bi_status)) { 320 ret = dio->size; 321 iocb->ki_pos += ret; 322 } else { 323 ret = blk_status_to_errno(dio->bio.bi_status); 324 } 325 326 dio->iocb->ki_complete(iocb, ret, 0); 327 if (dio->multi_bio) 328 bio_put(&dio->bio); 329 } else { 330 struct task_struct *waiter = dio->waiter; 331 332 WRITE_ONCE(dio->waiter, NULL); 333 blk_wake_io_task(waiter); 334 } 335 } 336 337 if (should_dirty) { 338 bio_check_pages_dirty(bio); 339 } else { 340 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) { 341 struct bvec_iter_all iter_all; 342 struct bio_vec *bvec; 343 int i; 344 345 bio_for_each_segment_all(bvec, bio, i, iter_all) 346 put_page(bvec->bv_page); 347 } 348 bio_put(bio); 349 } 350} 351 352static ssize_t 353__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 354{ 355 struct file *file = iocb->ki_filp; 356 struct inode *inode = bdev_file_inode(file); 357 struct block_device *bdev = I_BDEV(inode); 358 struct blk_plug plug; 359 struct blkdev_dio *dio; 360 struct bio *bio; 361 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 362 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 363 loff_t pos = iocb->ki_pos; 364 blk_qc_t qc = BLK_QC_T_NONE; 365 int ret = 0; 366 367 if ((pos | iov_iter_alignment(iter)) & 368 (bdev_logical_block_size(bdev) - 1)) 369 return -EINVAL; 370 371 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 372 373 dio = container_of(bio, struct blkdev_dio, bio); 374 dio->is_sync = is_sync = is_sync_kiocb(iocb); 375 if (dio->is_sync) { 376 dio->waiter = current; 377 bio_get(bio); 378 } else { 379 dio->iocb = iocb; 380 } 381 382 dio->size = 0; 383 dio->multi_bio = false; 384 dio->should_dirty = is_read && iter_is_iovec(iter); 385 386 /* 387 * Don't plug for HIPRI/polled IO, as those should go straight 388 * to issue 389 */ 390 if (!is_poll) 391 blk_start_plug(&plug); 392 393 for (;;) { 394 bio_set_dev(bio, bdev); 395 bio->bi_iter.bi_sector = pos >> 9; 396 bio->bi_write_hint = iocb->ki_hint; 397 bio->bi_private = dio; 398 bio->bi_end_io = blkdev_bio_end_io; 399 bio->bi_ioprio = iocb->ki_ioprio; 400 401 ret = bio_iov_iter_get_pages(bio, iter); 402 if (unlikely(ret)) { 403 bio->bi_status = BLK_STS_IOERR; 404 bio_endio(bio); 405 break; 406 } 407 408 if (is_read) { 409 bio->bi_opf = REQ_OP_READ; 410 if (dio->should_dirty) 411 bio_set_pages_dirty(bio); 412 } else { 413 bio->bi_opf = dio_bio_write_op(iocb); 414 task_io_account_write(bio->bi_iter.bi_size); 415 } 416 417 dio->size += bio->bi_iter.bi_size; 418 pos += bio->bi_iter.bi_size; 419 420 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 421 if (!nr_pages) { 422 bool polled = false; 423 424 if (iocb->ki_flags & IOCB_HIPRI) { 425 bio_set_polled(bio, iocb); 426 polled = true; 427 } 428 429 qc = submit_bio(bio); 430 431 if (polled) 432 WRITE_ONCE(iocb->ki_cookie, qc); 433 break; 434 } 435 436 if (!dio->multi_bio) { 437 /* 438 * AIO needs an extra reference to ensure the dio 439 * structure which is embedded into the first bio 440 * stays around. 441 */ 442 if (!is_sync) 443 bio_get(bio); 444 dio->multi_bio = true; 445 atomic_set(&dio->ref, 2); 446 } else { 447 atomic_inc(&dio->ref); 448 } 449 450 submit_bio(bio); 451 bio = bio_alloc(GFP_KERNEL, nr_pages); 452 } 453 454 if (!is_poll) 455 blk_finish_plug(&plug); 456 457 if (!is_sync) 458 return -EIOCBQUEUED; 459 460 for (;;) { 461 set_current_state(TASK_UNINTERRUPTIBLE); 462 if (!READ_ONCE(dio->waiter)) 463 break; 464 465 if (!(iocb->ki_flags & IOCB_HIPRI) || 466 !blk_poll(bdev_get_queue(bdev), qc, true)) 467 io_schedule(); 468 } 469 __set_current_state(TASK_RUNNING); 470 471 if (!ret) 472 ret = blk_status_to_errno(dio->bio.bi_status); 473 if (likely(!ret)) 474 ret = dio->size; 475 476 bio_put(&dio->bio); 477 return ret; 478} 479 480static ssize_t 481blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 482{ 483 int nr_pages; 484 485 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 486 if (!nr_pages) 487 return 0; 488 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 489 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 490 491 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 492} 493 494static __init int blkdev_init(void) 495{ 496 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 497} 498module_init(blkdev_init); 499 500int __sync_blockdev(struct block_device *bdev, int wait) 501{ 502 if (!bdev) 503 return 0; 504 if (!wait) 505 return filemap_flush(bdev->bd_inode->i_mapping); 506 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 507} 508 509/* 510 * Write out and wait upon all the dirty data associated with a block 511 * device via its mapping. Does not take the superblock lock. 512 */ 513int sync_blockdev(struct block_device *bdev) 514{ 515 return __sync_blockdev(bdev, 1); 516} 517EXPORT_SYMBOL(sync_blockdev); 518 519/* 520 * Write out and wait upon all dirty data associated with this 521 * device. Filesystem data as well as the underlying block 522 * device. Takes the superblock lock. 523 */ 524int fsync_bdev(struct block_device *bdev) 525{ 526 struct super_block *sb = get_super(bdev); 527 if (sb) { 528 int res = sync_filesystem(sb); 529 drop_super(sb); 530 return res; 531 } 532 return sync_blockdev(bdev); 533} 534EXPORT_SYMBOL(fsync_bdev); 535 536/** 537 * freeze_bdev -- lock a filesystem and force it into a consistent state 538 * @bdev: blockdevice to lock 539 * 540 * If a superblock is found on this device, we take the s_umount semaphore 541 * on it to make sure nobody unmounts until the snapshot creation is done. 542 * The reference counter (bd_fsfreeze_count) guarantees that only the last 543 * unfreeze process can unfreeze the frozen filesystem actually when multiple 544 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 545 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 546 * actually. 547 */ 548struct super_block *freeze_bdev(struct block_device *bdev) 549{ 550 struct super_block *sb; 551 int error = 0; 552 553 mutex_lock(&bdev->bd_fsfreeze_mutex); 554 if (++bdev->bd_fsfreeze_count > 1) { 555 /* 556 * We don't even need to grab a reference - the first call 557 * to freeze_bdev grab an active reference and only the last 558 * thaw_bdev drops it. 559 */ 560 sb = get_super(bdev); 561 if (sb) 562 drop_super(sb); 563 mutex_unlock(&bdev->bd_fsfreeze_mutex); 564 return sb; 565 } 566 567 sb = get_active_super(bdev); 568 if (!sb) 569 goto out; 570 if (sb->s_op->freeze_super) 571 error = sb->s_op->freeze_super(sb); 572 else 573 error = freeze_super(sb); 574 if (error) { 575 deactivate_super(sb); 576 bdev->bd_fsfreeze_count--; 577 mutex_unlock(&bdev->bd_fsfreeze_mutex); 578 return ERR_PTR(error); 579 } 580 deactivate_super(sb); 581 out: 582 sync_blockdev(bdev); 583 mutex_unlock(&bdev->bd_fsfreeze_mutex); 584 return sb; /* thaw_bdev releases s->s_umount */ 585} 586EXPORT_SYMBOL(freeze_bdev); 587 588/** 589 * thaw_bdev -- unlock filesystem 590 * @bdev: blockdevice to unlock 591 * @sb: associated superblock 592 * 593 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 594 */ 595int thaw_bdev(struct block_device *bdev, struct super_block *sb) 596{ 597 int error = -EINVAL; 598 599 mutex_lock(&bdev->bd_fsfreeze_mutex); 600 if (!bdev->bd_fsfreeze_count) 601 goto out; 602 603 error = 0; 604 if (--bdev->bd_fsfreeze_count > 0) 605 goto out; 606 607 if (!sb) 608 goto out; 609 610 if (sb->s_op->thaw_super) 611 error = sb->s_op->thaw_super(sb); 612 else 613 error = thaw_super(sb); 614 if (error) 615 bdev->bd_fsfreeze_count++; 616out: 617 mutex_unlock(&bdev->bd_fsfreeze_mutex); 618 return error; 619} 620EXPORT_SYMBOL(thaw_bdev); 621 622static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 623{ 624 return block_write_full_page(page, blkdev_get_block, wbc); 625} 626 627static int blkdev_readpage(struct file * file, struct page * page) 628{ 629 return block_read_full_page(page, blkdev_get_block); 630} 631 632static int blkdev_readpages(struct file *file, struct address_space *mapping, 633 struct list_head *pages, unsigned nr_pages) 634{ 635 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 636} 637 638static int blkdev_write_begin(struct file *file, struct address_space *mapping, 639 loff_t pos, unsigned len, unsigned flags, 640 struct page **pagep, void **fsdata) 641{ 642 return block_write_begin(mapping, pos, len, flags, pagep, 643 blkdev_get_block); 644} 645 646static int blkdev_write_end(struct file *file, struct address_space *mapping, 647 loff_t pos, unsigned len, unsigned copied, 648 struct page *page, void *fsdata) 649{ 650 int ret; 651 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 652 653 unlock_page(page); 654 put_page(page); 655 656 return ret; 657} 658 659/* 660 * private llseek: 661 * for a block special file file_inode(file)->i_size is zero 662 * so we compute the size by hand (just as in block_read/write above) 663 */ 664static loff_t block_llseek(struct file *file, loff_t offset, int whence) 665{ 666 struct inode *bd_inode = bdev_file_inode(file); 667 loff_t retval; 668 669 inode_lock(bd_inode); 670 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 671 inode_unlock(bd_inode); 672 return retval; 673} 674 675int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 676{ 677 struct inode *bd_inode = bdev_file_inode(filp); 678 struct block_device *bdev = I_BDEV(bd_inode); 679 int error; 680 681 error = file_write_and_wait_range(filp, start, end); 682 if (error) 683 return error; 684 685 /* 686 * There is no need to serialise calls to blkdev_issue_flush with 687 * i_mutex and doing so causes performance issues with concurrent 688 * O_SYNC writers to a block device. 689 */ 690 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 691 if (error == -EOPNOTSUPP) 692 error = 0; 693 694 return error; 695} 696EXPORT_SYMBOL(blkdev_fsync); 697 698/** 699 * bdev_read_page() - Start reading a page from a block device 700 * @bdev: The device to read the page from 701 * @sector: The offset on the device to read the page to (need not be aligned) 702 * @page: The page to read 703 * 704 * On entry, the page should be locked. It will be unlocked when the page 705 * has been read. If the block driver implements rw_page synchronously, 706 * that will be true on exit from this function, but it need not be. 707 * 708 * Errors returned by this function are usually "soft", eg out of memory, or 709 * queue full; callers should try a different route to read this page rather 710 * than propagate an error back up the stack. 711 * 712 * Return: negative errno if an error occurs, 0 if submission was successful. 713 */ 714int bdev_read_page(struct block_device *bdev, sector_t sector, 715 struct page *page) 716{ 717 const struct block_device_operations *ops = bdev->bd_disk->fops; 718 int result = -EOPNOTSUPP; 719 720 if (!ops->rw_page || bdev_get_integrity(bdev)) 721 return result; 722 723 result = blk_queue_enter(bdev->bd_queue, 0); 724 if (result) 725 return result; 726 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 727 REQ_OP_READ); 728 blk_queue_exit(bdev->bd_queue); 729 return result; 730} 731EXPORT_SYMBOL_GPL(bdev_read_page); 732 733/** 734 * bdev_write_page() - Start writing a page to a block device 735 * @bdev: The device to write the page to 736 * @sector: The offset on the device to write the page to (need not be aligned) 737 * @page: The page to write 738 * @wbc: The writeback_control for the write 739 * 740 * On entry, the page should be locked and not currently under writeback. 741 * On exit, if the write started successfully, the page will be unlocked and 742 * under writeback. If the write failed already (eg the driver failed to 743 * queue the page to the device), the page will still be locked. If the 744 * caller is a ->writepage implementation, it will need to unlock the page. 745 * 746 * Errors returned by this function are usually "soft", eg out of memory, or 747 * queue full; callers should try a different route to write this page rather 748 * than propagate an error back up the stack. 749 * 750 * Return: negative errno if an error occurs, 0 if submission was successful. 751 */ 752int bdev_write_page(struct block_device *bdev, sector_t sector, 753 struct page *page, struct writeback_control *wbc) 754{ 755 int result; 756 const struct block_device_operations *ops = bdev->bd_disk->fops; 757 758 if (!ops->rw_page || bdev_get_integrity(bdev)) 759 return -EOPNOTSUPP; 760 result = blk_queue_enter(bdev->bd_queue, 0); 761 if (result) 762 return result; 763 764 set_page_writeback(page); 765 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 766 REQ_OP_WRITE); 767 if (result) { 768 end_page_writeback(page); 769 } else { 770 clean_page_buffers(page); 771 unlock_page(page); 772 } 773 blk_queue_exit(bdev->bd_queue); 774 return result; 775} 776EXPORT_SYMBOL_GPL(bdev_write_page); 777 778/* 779 * pseudo-fs 780 */ 781 782static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 783static struct kmem_cache * bdev_cachep __read_mostly; 784 785static struct inode *bdev_alloc_inode(struct super_block *sb) 786{ 787 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 788 if (!ei) 789 return NULL; 790 return &ei->vfs_inode; 791} 792 793static void bdev_i_callback(struct rcu_head *head) 794{ 795 struct inode *inode = container_of(head, struct inode, i_rcu); 796 struct bdev_inode *bdi = BDEV_I(inode); 797 798 kmem_cache_free(bdev_cachep, bdi); 799} 800 801static void bdev_destroy_inode(struct inode *inode) 802{ 803 call_rcu(&inode->i_rcu, bdev_i_callback); 804} 805 806static void init_once(void *foo) 807{ 808 struct bdev_inode *ei = (struct bdev_inode *) foo; 809 struct block_device *bdev = &ei->bdev; 810 811 memset(bdev, 0, sizeof(*bdev)); 812 mutex_init(&bdev->bd_mutex); 813 INIT_LIST_HEAD(&bdev->bd_list); 814#ifdef CONFIG_SYSFS 815 INIT_LIST_HEAD(&bdev->bd_holder_disks); 816#endif 817 bdev->bd_bdi = &noop_backing_dev_info; 818 inode_init_once(&ei->vfs_inode); 819 /* Initialize mutex for freeze. */ 820 mutex_init(&bdev->bd_fsfreeze_mutex); 821} 822 823static void bdev_evict_inode(struct inode *inode) 824{ 825 struct block_device *bdev = &BDEV_I(inode)->bdev; 826 truncate_inode_pages_final(&inode->i_data); 827 invalidate_inode_buffers(inode); /* is it needed here? */ 828 clear_inode(inode); 829 spin_lock(&bdev_lock); 830 list_del_init(&bdev->bd_list); 831 spin_unlock(&bdev_lock); 832 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 833 inode_detach_wb(inode); 834 if (bdev->bd_bdi != &noop_backing_dev_info) { 835 bdi_put(bdev->bd_bdi); 836 bdev->bd_bdi = &noop_backing_dev_info; 837 } 838} 839 840static const struct super_operations bdev_sops = { 841 .statfs = simple_statfs, 842 .alloc_inode = bdev_alloc_inode, 843 .destroy_inode = bdev_destroy_inode, 844 .drop_inode = generic_delete_inode, 845 .evict_inode = bdev_evict_inode, 846}; 847 848static struct dentry *bd_mount(struct file_system_type *fs_type, 849 int flags, const char *dev_name, void *data) 850{ 851 struct dentry *dent; 852 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 853 if (!IS_ERR(dent)) 854 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 855 return dent; 856} 857 858static struct file_system_type bd_type = { 859 .name = "bdev", 860 .mount = bd_mount, 861 .kill_sb = kill_anon_super, 862}; 863 864struct super_block *blockdev_superblock __read_mostly; 865EXPORT_SYMBOL_GPL(blockdev_superblock); 866 867void __init bdev_cache_init(void) 868{ 869 int err; 870 static struct vfsmount *bd_mnt; 871 872 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 873 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 874 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 875 init_once); 876 err = register_filesystem(&bd_type); 877 if (err) 878 panic("Cannot register bdev pseudo-fs"); 879 bd_mnt = kern_mount(&bd_type); 880 if (IS_ERR(bd_mnt)) 881 panic("Cannot create bdev pseudo-fs"); 882 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 883} 884 885/* 886 * Most likely _very_ bad one - but then it's hardly critical for small 887 * /dev and can be fixed when somebody will need really large one. 888 * Keep in mind that it will be fed through icache hash function too. 889 */ 890static inline unsigned long hash(dev_t dev) 891{ 892 return MAJOR(dev)+MINOR(dev); 893} 894 895static int bdev_test(struct inode *inode, void *data) 896{ 897 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 898} 899 900static int bdev_set(struct inode *inode, void *data) 901{ 902 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 903 return 0; 904} 905 906static LIST_HEAD(all_bdevs); 907 908/* 909 * If there is a bdev inode for this device, unhash it so that it gets evicted 910 * as soon as last inode reference is dropped. 911 */ 912void bdev_unhash_inode(dev_t dev) 913{ 914 struct inode *inode; 915 916 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 917 if (inode) { 918 remove_inode_hash(inode); 919 iput(inode); 920 } 921} 922 923struct block_device *bdget(dev_t dev) 924{ 925 struct block_device *bdev; 926 struct inode *inode; 927 928 inode = iget5_locked(blockdev_superblock, hash(dev), 929 bdev_test, bdev_set, &dev); 930 931 if (!inode) 932 return NULL; 933 934 bdev = &BDEV_I(inode)->bdev; 935 936 if (inode->i_state & I_NEW) { 937 bdev->bd_contains = NULL; 938 bdev->bd_super = NULL; 939 bdev->bd_inode = inode; 940 bdev->bd_block_size = i_blocksize(inode); 941 bdev->bd_part_count = 0; 942 bdev->bd_invalidated = 0; 943 inode->i_mode = S_IFBLK; 944 inode->i_rdev = dev; 945 inode->i_bdev = bdev; 946 inode->i_data.a_ops = &def_blk_aops; 947 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 948 spin_lock(&bdev_lock); 949 list_add(&bdev->bd_list, &all_bdevs); 950 spin_unlock(&bdev_lock); 951 unlock_new_inode(inode); 952 } 953 return bdev; 954} 955 956EXPORT_SYMBOL(bdget); 957 958/** 959 * bdgrab -- Grab a reference to an already referenced block device 960 * @bdev: Block device to grab a reference to. 961 */ 962struct block_device *bdgrab(struct block_device *bdev) 963{ 964 ihold(bdev->bd_inode); 965 return bdev; 966} 967EXPORT_SYMBOL(bdgrab); 968 969long nr_blockdev_pages(void) 970{ 971 struct block_device *bdev; 972 long ret = 0; 973 spin_lock(&bdev_lock); 974 list_for_each_entry(bdev, &all_bdevs, bd_list) { 975 ret += bdev->bd_inode->i_mapping->nrpages; 976 } 977 spin_unlock(&bdev_lock); 978 return ret; 979} 980 981void bdput(struct block_device *bdev) 982{ 983 iput(bdev->bd_inode); 984} 985 986EXPORT_SYMBOL(bdput); 987 988static struct block_device *bd_acquire(struct inode *inode) 989{ 990 struct block_device *bdev; 991 992 spin_lock(&bdev_lock); 993 bdev = inode->i_bdev; 994 if (bdev && !inode_unhashed(bdev->bd_inode)) { 995 bdgrab(bdev); 996 spin_unlock(&bdev_lock); 997 return bdev; 998 } 999 spin_unlock(&bdev_lock); 1000 1001 /* 1002 * i_bdev references block device inode that was already shut down 1003 * (corresponding device got removed). Remove the reference and look 1004 * up block device inode again just in case new device got 1005 * reestablished under the same device number. 1006 */ 1007 if (bdev) 1008 bd_forget(inode); 1009 1010 bdev = bdget(inode->i_rdev); 1011 if (bdev) { 1012 spin_lock(&bdev_lock); 1013 if (!inode->i_bdev) { 1014 /* 1015 * We take an additional reference to bd_inode, 1016 * and it's released in clear_inode() of inode. 1017 * So, we can access it via ->i_mapping always 1018 * without igrab(). 1019 */ 1020 bdgrab(bdev); 1021 inode->i_bdev = bdev; 1022 inode->i_mapping = bdev->bd_inode->i_mapping; 1023 } 1024 spin_unlock(&bdev_lock); 1025 } 1026 return bdev; 1027} 1028 1029/* Call when you free inode */ 1030 1031void bd_forget(struct inode *inode) 1032{ 1033 struct block_device *bdev = NULL; 1034 1035 spin_lock(&bdev_lock); 1036 if (!sb_is_blkdev_sb(inode->i_sb)) 1037 bdev = inode->i_bdev; 1038 inode->i_bdev = NULL; 1039 inode->i_mapping = &inode->i_data; 1040 spin_unlock(&bdev_lock); 1041 1042 if (bdev) 1043 bdput(bdev); 1044} 1045 1046/** 1047 * bd_may_claim - test whether a block device can be claimed 1048 * @bdev: block device of interest 1049 * @whole: whole block device containing @bdev, may equal @bdev 1050 * @holder: holder trying to claim @bdev 1051 * 1052 * Test whether @bdev can be claimed by @holder. 1053 * 1054 * CONTEXT: 1055 * spin_lock(&bdev_lock). 1056 * 1057 * RETURNS: 1058 * %true if @bdev can be claimed, %false otherwise. 1059 */ 1060static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1061 void *holder) 1062{ 1063 if (bdev->bd_holder == holder) 1064 return true; /* already a holder */ 1065 else if (bdev->bd_holder != NULL) 1066 return false; /* held by someone else */ 1067 else if (whole == bdev) 1068 return true; /* is a whole device which isn't held */ 1069 1070 else if (whole->bd_holder == bd_may_claim) 1071 return true; /* is a partition of a device that is being partitioned */ 1072 else if (whole->bd_holder != NULL) 1073 return false; /* is a partition of a held device */ 1074 else 1075 return true; /* is a partition of an un-held device */ 1076} 1077 1078/** 1079 * bd_prepare_to_claim - prepare to claim a block device 1080 * @bdev: block device of interest 1081 * @whole: the whole device containing @bdev, may equal @bdev 1082 * @holder: holder trying to claim @bdev 1083 * 1084 * Prepare to claim @bdev. This function fails if @bdev is already 1085 * claimed by another holder and waits if another claiming is in 1086 * progress. This function doesn't actually claim. On successful 1087 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1088 * 1089 * CONTEXT: 1090 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1091 * it multiple times. 1092 * 1093 * RETURNS: 1094 * 0 if @bdev can be claimed, -EBUSY otherwise. 1095 */ 1096static int bd_prepare_to_claim(struct block_device *bdev, 1097 struct block_device *whole, void *holder) 1098{ 1099retry: 1100 /* if someone else claimed, fail */ 1101 if (!bd_may_claim(bdev, whole, holder)) 1102 return -EBUSY; 1103 1104 /* if claiming is already in progress, wait for it to finish */ 1105 if (whole->bd_claiming) { 1106 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1107 DEFINE_WAIT(wait); 1108 1109 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1110 spin_unlock(&bdev_lock); 1111 schedule(); 1112 finish_wait(wq, &wait); 1113 spin_lock(&bdev_lock); 1114 goto retry; 1115 } 1116 1117 /* yay, all mine */ 1118 return 0; 1119} 1120 1121static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1122{ 1123 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1124 1125 if (!disk) 1126 return NULL; 1127 /* 1128 * Now that we hold gendisk reference we make sure bdev we looked up is 1129 * not stale. If it is, it means device got removed and created before 1130 * we looked up gendisk and we fail open in such case. Associating 1131 * unhashed bdev with newly created gendisk could lead to two bdevs 1132 * (and thus two independent caches) being associated with one device 1133 * which is bad. 1134 */ 1135 if (inode_unhashed(bdev->bd_inode)) { 1136 put_disk_and_module(disk); 1137 return NULL; 1138 } 1139 return disk; 1140} 1141 1142/** 1143 * bd_start_claiming - start claiming a block device 1144 * @bdev: block device of interest 1145 * @holder: holder trying to claim @bdev 1146 * 1147 * @bdev is about to be opened exclusively. Check @bdev can be opened 1148 * exclusively and mark that an exclusive open is in progress. Each 1149 * successful call to this function must be matched with a call to 1150 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1151 * fail). 1152 * 1153 * This function is used to gain exclusive access to the block device 1154 * without actually causing other exclusive open attempts to fail. It 1155 * should be used when the open sequence itself requires exclusive 1156 * access but may subsequently fail. 1157 * 1158 * CONTEXT: 1159 * Might sleep. 1160 * 1161 * RETURNS: 1162 * Pointer to the block device containing @bdev on success, ERR_PTR() 1163 * value on failure. 1164 */ 1165static struct block_device *bd_start_claiming(struct block_device *bdev, 1166 void *holder) 1167{ 1168 struct gendisk *disk; 1169 struct block_device *whole; 1170 int partno, err; 1171 1172 might_sleep(); 1173 1174 /* 1175 * @bdev might not have been initialized properly yet, look up 1176 * and grab the outer block device the hard way. 1177 */ 1178 disk = bdev_get_gendisk(bdev, &partno); 1179 if (!disk) 1180 return ERR_PTR(-ENXIO); 1181 1182 /* 1183 * Normally, @bdev should equal what's returned from bdget_disk() 1184 * if partno is 0; however, some drivers (floppy) use multiple 1185 * bdev's for the same physical device and @bdev may be one of the 1186 * aliases. Keep @bdev if partno is 0. This means claimer 1187 * tracking is broken for those devices but it has always been that 1188 * way. 1189 */ 1190 if (partno) 1191 whole = bdget_disk(disk, 0); 1192 else 1193 whole = bdgrab(bdev); 1194 1195 put_disk_and_module(disk); 1196 if (!whole) 1197 return ERR_PTR(-ENOMEM); 1198 1199 /* prepare to claim, if successful, mark claiming in progress */ 1200 spin_lock(&bdev_lock); 1201 1202 err = bd_prepare_to_claim(bdev, whole, holder); 1203 if (err == 0) { 1204 whole->bd_claiming = holder; 1205 spin_unlock(&bdev_lock); 1206 return whole; 1207 } else { 1208 spin_unlock(&bdev_lock); 1209 bdput(whole); 1210 return ERR_PTR(err); 1211 } 1212} 1213 1214#ifdef CONFIG_SYSFS 1215struct bd_holder_disk { 1216 struct list_head list; 1217 struct gendisk *disk; 1218 int refcnt; 1219}; 1220 1221static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1222 struct gendisk *disk) 1223{ 1224 struct bd_holder_disk *holder; 1225 1226 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1227 if (holder->disk == disk) 1228 return holder; 1229 return NULL; 1230} 1231 1232static int add_symlink(struct kobject *from, struct kobject *to) 1233{ 1234 return sysfs_create_link(from, to, kobject_name(to)); 1235} 1236 1237static void del_symlink(struct kobject *from, struct kobject *to) 1238{ 1239 sysfs_remove_link(from, kobject_name(to)); 1240} 1241 1242/** 1243 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1244 * @bdev: the claimed slave bdev 1245 * @disk: the holding disk 1246 * 1247 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1248 * 1249 * This functions creates the following sysfs symlinks. 1250 * 1251 * - from "slaves" directory of the holder @disk to the claimed @bdev 1252 * - from "holders" directory of the @bdev to the holder @disk 1253 * 1254 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1255 * passed to bd_link_disk_holder(), then: 1256 * 1257 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1258 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1259 * 1260 * The caller must have claimed @bdev before calling this function and 1261 * ensure that both @bdev and @disk are valid during the creation and 1262 * lifetime of these symlinks. 1263 * 1264 * CONTEXT: 1265 * Might sleep. 1266 * 1267 * RETURNS: 1268 * 0 on success, -errno on failure. 1269 */ 1270int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1271{ 1272 struct bd_holder_disk *holder; 1273 int ret = 0; 1274 1275 mutex_lock(&bdev->bd_mutex); 1276 1277 WARN_ON_ONCE(!bdev->bd_holder); 1278 1279 /* FIXME: remove the following once add_disk() handles errors */ 1280 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1281 goto out_unlock; 1282 1283 holder = bd_find_holder_disk(bdev, disk); 1284 if (holder) { 1285 holder->refcnt++; 1286 goto out_unlock; 1287 } 1288 1289 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1290 if (!holder) { 1291 ret = -ENOMEM; 1292 goto out_unlock; 1293 } 1294 1295 INIT_LIST_HEAD(&holder->list); 1296 holder->disk = disk; 1297 holder->refcnt = 1; 1298 1299 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1300 if (ret) 1301 goto out_free; 1302 1303 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1304 if (ret) 1305 goto out_del; 1306 /* 1307 * bdev could be deleted beneath us which would implicitly destroy 1308 * the holder directory. Hold on to it. 1309 */ 1310 kobject_get(bdev->bd_part->holder_dir); 1311 1312 list_add(&holder->list, &bdev->bd_holder_disks); 1313 goto out_unlock; 1314 1315out_del: 1316 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1317out_free: 1318 kfree(holder); 1319out_unlock: 1320 mutex_unlock(&bdev->bd_mutex); 1321 return ret; 1322} 1323EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1324 1325/** 1326 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1327 * @bdev: the calimed slave bdev 1328 * @disk: the holding disk 1329 * 1330 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1331 * 1332 * CONTEXT: 1333 * Might sleep. 1334 */ 1335void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1336{ 1337 struct bd_holder_disk *holder; 1338 1339 mutex_lock(&bdev->bd_mutex); 1340 1341 holder = bd_find_holder_disk(bdev, disk); 1342 1343 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1344 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1345 del_symlink(bdev->bd_part->holder_dir, 1346 &disk_to_dev(disk)->kobj); 1347 kobject_put(bdev->bd_part->holder_dir); 1348 list_del_init(&holder->list); 1349 kfree(holder); 1350 } 1351 1352 mutex_unlock(&bdev->bd_mutex); 1353} 1354EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1355#endif 1356 1357/** 1358 * flush_disk - invalidates all buffer-cache entries on a disk 1359 * 1360 * @bdev: struct block device to be flushed 1361 * @kill_dirty: flag to guide handling of dirty inodes 1362 * 1363 * Invalidates all buffer-cache entries on a disk. It should be called 1364 * when a disk has been changed -- either by a media change or online 1365 * resize. 1366 */ 1367static void flush_disk(struct block_device *bdev, bool kill_dirty) 1368{ 1369 if (__invalidate_device(bdev, kill_dirty)) { 1370 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1371 "resized disk %s\n", 1372 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1373 } 1374 1375 if (!bdev->bd_disk) 1376 return; 1377 if (disk_part_scan_enabled(bdev->bd_disk)) 1378 bdev->bd_invalidated = 1; 1379} 1380 1381/** 1382 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1383 * @disk: struct gendisk to check 1384 * @bdev: struct bdev to adjust. 1385 * @verbose: if %true log a message about a size change if there is any 1386 * 1387 * This routine checks to see if the bdev size does not match the disk size 1388 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1389 * are freed. 1390 */ 1391void check_disk_size_change(struct gendisk *disk, struct block_device *bdev, 1392 bool verbose) 1393{ 1394 loff_t disk_size, bdev_size; 1395 1396 disk_size = (loff_t)get_capacity(disk) << 9; 1397 bdev_size = i_size_read(bdev->bd_inode); 1398 if (disk_size != bdev_size) { 1399 if (verbose) { 1400 printk(KERN_INFO 1401 "%s: detected capacity change from %lld to %lld\n", 1402 disk->disk_name, bdev_size, disk_size); 1403 } 1404 i_size_write(bdev->bd_inode, disk_size); 1405 if (bdev_size > disk_size) 1406 flush_disk(bdev, false); 1407 } 1408} 1409 1410/** 1411 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1412 * @disk: struct gendisk to be revalidated 1413 * 1414 * This routine is a wrapper for lower-level driver's revalidate_disk 1415 * call-backs. It is used to do common pre and post operations needed 1416 * for all revalidate_disk operations. 1417 */ 1418int revalidate_disk(struct gendisk *disk) 1419{ 1420 struct block_device *bdev; 1421 int ret = 0; 1422 1423 if (disk->fops->revalidate_disk) 1424 ret = disk->fops->revalidate_disk(disk); 1425 bdev = bdget_disk(disk, 0); 1426 if (!bdev) 1427 return ret; 1428 1429 mutex_lock(&bdev->bd_mutex); 1430 check_disk_size_change(disk, bdev, ret == 0); 1431 bdev->bd_invalidated = 0; 1432 mutex_unlock(&bdev->bd_mutex); 1433 bdput(bdev); 1434 return ret; 1435} 1436EXPORT_SYMBOL(revalidate_disk); 1437 1438/* 1439 * This routine checks whether a removable media has been changed, 1440 * and invalidates all buffer-cache-entries in that case. This 1441 * is a relatively slow routine, so we have to try to minimize using 1442 * it. Thus it is called only upon a 'mount' or 'open'. This 1443 * is the best way of combining speed and utility, I think. 1444 * People changing diskettes in the middle of an operation deserve 1445 * to lose :-) 1446 */ 1447int check_disk_change(struct block_device *bdev) 1448{ 1449 struct gendisk *disk = bdev->bd_disk; 1450 const struct block_device_operations *bdops = disk->fops; 1451 unsigned int events; 1452 1453 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1454 DISK_EVENT_EJECT_REQUEST); 1455 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1456 return 0; 1457 1458 flush_disk(bdev, true); 1459 if (bdops->revalidate_disk) 1460 bdops->revalidate_disk(bdev->bd_disk); 1461 return 1; 1462} 1463 1464EXPORT_SYMBOL(check_disk_change); 1465 1466void bd_set_size(struct block_device *bdev, loff_t size) 1467{ 1468 inode_lock(bdev->bd_inode); 1469 i_size_write(bdev->bd_inode, size); 1470 inode_unlock(bdev->bd_inode); 1471} 1472EXPORT_SYMBOL(bd_set_size); 1473 1474static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1475 1476/* 1477 * bd_mutex locking: 1478 * 1479 * mutex_lock(part->bd_mutex) 1480 * mutex_lock_nested(whole->bd_mutex, 1) 1481 */ 1482 1483static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1484{ 1485 struct gendisk *disk; 1486 int ret; 1487 int partno; 1488 int perm = 0; 1489 bool first_open = false; 1490 1491 if (mode & FMODE_READ) 1492 perm |= MAY_READ; 1493 if (mode & FMODE_WRITE) 1494 perm |= MAY_WRITE; 1495 /* 1496 * hooks: /n/, see "layering violations". 1497 */ 1498 if (!for_part) { 1499 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1500 if (ret != 0) { 1501 bdput(bdev); 1502 return ret; 1503 } 1504 } 1505 1506 restart: 1507 1508 ret = -ENXIO; 1509 disk = bdev_get_gendisk(bdev, &partno); 1510 if (!disk) 1511 goto out; 1512 1513 disk_block_events(disk); 1514 mutex_lock_nested(&bdev->bd_mutex, for_part); 1515 if (!bdev->bd_openers) { 1516 first_open = true; 1517 bdev->bd_disk = disk; 1518 bdev->bd_queue = disk->queue; 1519 bdev->bd_contains = bdev; 1520 bdev->bd_partno = partno; 1521 1522 if (!partno) { 1523 ret = -ENXIO; 1524 bdev->bd_part = disk_get_part(disk, partno); 1525 if (!bdev->bd_part) 1526 goto out_clear; 1527 1528 ret = 0; 1529 if (disk->fops->open) { 1530 ret = disk->fops->open(bdev, mode); 1531 if (ret == -ERESTARTSYS) { 1532 /* Lost a race with 'disk' being 1533 * deleted, try again. 1534 * See md.c 1535 */ 1536 disk_put_part(bdev->bd_part); 1537 bdev->bd_part = NULL; 1538 bdev->bd_disk = NULL; 1539 bdev->bd_queue = NULL; 1540 mutex_unlock(&bdev->bd_mutex); 1541 disk_unblock_events(disk); 1542 put_disk_and_module(disk); 1543 goto restart; 1544 } 1545 } 1546 1547 if (!ret) { 1548 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1549 set_init_blocksize(bdev); 1550 } 1551 1552 /* 1553 * If the device is invalidated, rescan partition 1554 * if open succeeded or failed with -ENOMEDIUM. 1555 * The latter is necessary to prevent ghost 1556 * partitions on a removed medium. 1557 */ 1558 if (bdev->bd_invalidated) { 1559 if (!ret) 1560 rescan_partitions(disk, bdev); 1561 else if (ret == -ENOMEDIUM) 1562 invalidate_partitions(disk, bdev); 1563 } 1564 1565 if (ret) 1566 goto out_clear; 1567 } else { 1568 struct block_device *whole; 1569 whole = bdget_disk(disk, 0); 1570 ret = -ENOMEM; 1571 if (!whole) 1572 goto out_clear; 1573 BUG_ON(for_part); 1574 ret = __blkdev_get(whole, mode, 1); 1575 if (ret) 1576 goto out_clear; 1577 bdev->bd_contains = whole; 1578 bdev->bd_part = disk_get_part(disk, partno); 1579 if (!(disk->flags & GENHD_FL_UP) || 1580 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1581 ret = -ENXIO; 1582 goto out_clear; 1583 } 1584 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1585 set_init_blocksize(bdev); 1586 } 1587 1588 if (bdev->bd_bdi == &noop_backing_dev_info) 1589 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1590 } else { 1591 if (bdev->bd_contains == bdev) { 1592 ret = 0; 1593 if (bdev->bd_disk->fops->open) 1594 ret = bdev->bd_disk->fops->open(bdev, mode); 1595 /* the same as first opener case, read comment there */ 1596 if (bdev->bd_invalidated) { 1597 if (!ret) 1598 rescan_partitions(bdev->bd_disk, bdev); 1599 else if (ret == -ENOMEDIUM) 1600 invalidate_partitions(bdev->bd_disk, bdev); 1601 } 1602 if (ret) 1603 goto out_unlock_bdev; 1604 } 1605 } 1606 bdev->bd_openers++; 1607 if (for_part) 1608 bdev->bd_part_count++; 1609 mutex_unlock(&bdev->bd_mutex); 1610 disk_unblock_events(disk); 1611 /* only one opener holds refs to the module and disk */ 1612 if (!first_open) 1613 put_disk_and_module(disk); 1614 return 0; 1615 1616 out_clear: 1617 disk_put_part(bdev->bd_part); 1618 bdev->bd_disk = NULL; 1619 bdev->bd_part = NULL; 1620 bdev->bd_queue = NULL; 1621 if (bdev != bdev->bd_contains) 1622 __blkdev_put(bdev->bd_contains, mode, 1); 1623 bdev->bd_contains = NULL; 1624 out_unlock_bdev: 1625 mutex_unlock(&bdev->bd_mutex); 1626 disk_unblock_events(disk); 1627 put_disk_and_module(disk); 1628 out: 1629 bdput(bdev); 1630 1631 return ret; 1632} 1633 1634/** 1635 * blkdev_get - open a block device 1636 * @bdev: block_device to open 1637 * @mode: FMODE_* mask 1638 * @holder: exclusive holder identifier 1639 * 1640 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1641 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1642 * @holder is invalid. Exclusive opens may nest for the same @holder. 1643 * 1644 * On success, the reference count of @bdev is unchanged. On failure, 1645 * @bdev is put. 1646 * 1647 * CONTEXT: 1648 * Might sleep. 1649 * 1650 * RETURNS: 1651 * 0 on success, -errno on failure. 1652 */ 1653int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1654{ 1655 struct block_device *whole = NULL; 1656 int res; 1657 1658 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1659 1660 if ((mode & FMODE_EXCL) && holder) { 1661 whole = bd_start_claiming(bdev, holder); 1662 if (IS_ERR(whole)) { 1663 bdput(bdev); 1664 return PTR_ERR(whole); 1665 } 1666 } 1667 1668 res = __blkdev_get(bdev, mode, 0); 1669 1670 if (whole) { 1671 struct gendisk *disk = whole->bd_disk; 1672 1673 /* finish claiming */ 1674 mutex_lock(&bdev->bd_mutex); 1675 spin_lock(&bdev_lock); 1676 1677 if (!res) { 1678 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1679 /* 1680 * Note that for a whole device bd_holders 1681 * will be incremented twice, and bd_holder 1682 * will be set to bd_may_claim before being 1683 * set to holder 1684 */ 1685 whole->bd_holders++; 1686 whole->bd_holder = bd_may_claim; 1687 bdev->bd_holders++; 1688 bdev->bd_holder = holder; 1689 } 1690 1691 /* tell others that we're done */ 1692 BUG_ON(whole->bd_claiming != holder); 1693 whole->bd_claiming = NULL; 1694 wake_up_bit(&whole->bd_claiming, 0); 1695 1696 spin_unlock(&bdev_lock); 1697 1698 /* 1699 * Block event polling for write claims if requested. Any 1700 * write holder makes the write_holder state stick until 1701 * all are released. This is good enough and tracking 1702 * individual writeable reference is too fragile given the 1703 * way @mode is used in blkdev_get/put(). 1704 */ 1705 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1706 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1707 bdev->bd_write_holder = true; 1708 disk_block_events(disk); 1709 } 1710 1711 mutex_unlock(&bdev->bd_mutex); 1712 bdput(whole); 1713 } 1714 1715 return res; 1716} 1717EXPORT_SYMBOL(blkdev_get); 1718 1719/** 1720 * blkdev_get_by_path - open a block device by name 1721 * @path: path to the block device to open 1722 * @mode: FMODE_* mask 1723 * @holder: exclusive holder identifier 1724 * 1725 * Open the blockdevice described by the device file at @path. @mode 1726 * and @holder are identical to blkdev_get(). 1727 * 1728 * On success, the returned block_device has reference count of one. 1729 * 1730 * CONTEXT: 1731 * Might sleep. 1732 * 1733 * RETURNS: 1734 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1735 */ 1736struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1737 void *holder) 1738{ 1739 struct block_device *bdev; 1740 int err; 1741 1742 bdev = lookup_bdev(path); 1743 if (IS_ERR(bdev)) 1744 return bdev; 1745 1746 err = blkdev_get(bdev, mode, holder); 1747 if (err) 1748 return ERR_PTR(err); 1749 1750 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1751 blkdev_put(bdev, mode); 1752 return ERR_PTR(-EACCES); 1753 } 1754 1755 return bdev; 1756} 1757EXPORT_SYMBOL(blkdev_get_by_path); 1758 1759/** 1760 * blkdev_get_by_dev - open a block device by device number 1761 * @dev: device number of block device to open 1762 * @mode: FMODE_* mask 1763 * @holder: exclusive holder identifier 1764 * 1765 * Open the blockdevice described by device number @dev. @mode and 1766 * @holder are identical to blkdev_get(). 1767 * 1768 * Use it ONLY if you really do not have anything better - i.e. when 1769 * you are behind a truly sucky interface and all you are given is a 1770 * device number. _Never_ to be used for internal purposes. If you 1771 * ever need it - reconsider your API. 1772 * 1773 * On success, the returned block_device has reference count of one. 1774 * 1775 * CONTEXT: 1776 * Might sleep. 1777 * 1778 * RETURNS: 1779 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1780 */ 1781struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1782{ 1783 struct block_device *bdev; 1784 int err; 1785 1786 bdev = bdget(dev); 1787 if (!bdev) 1788 return ERR_PTR(-ENOMEM); 1789 1790 err = blkdev_get(bdev, mode, holder); 1791 if (err) 1792 return ERR_PTR(err); 1793 1794 return bdev; 1795} 1796EXPORT_SYMBOL(blkdev_get_by_dev); 1797 1798static int blkdev_open(struct inode * inode, struct file * filp) 1799{ 1800 struct block_device *bdev; 1801 1802 /* 1803 * Preserve backwards compatibility and allow large file access 1804 * even if userspace doesn't ask for it explicitly. Some mkfs 1805 * binary needs it. We might want to drop this workaround 1806 * during an unstable branch. 1807 */ 1808 filp->f_flags |= O_LARGEFILE; 1809 1810 filp->f_mode |= FMODE_NOWAIT; 1811 1812 if (filp->f_flags & O_NDELAY) 1813 filp->f_mode |= FMODE_NDELAY; 1814 if (filp->f_flags & O_EXCL) 1815 filp->f_mode |= FMODE_EXCL; 1816 if ((filp->f_flags & O_ACCMODE) == 3) 1817 filp->f_mode |= FMODE_WRITE_IOCTL; 1818 1819 bdev = bd_acquire(inode); 1820 if (bdev == NULL) 1821 return -ENOMEM; 1822 1823 filp->f_mapping = bdev->bd_inode->i_mapping; 1824 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1825 1826 return blkdev_get(bdev, filp->f_mode, filp); 1827} 1828 1829static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1830{ 1831 struct gendisk *disk = bdev->bd_disk; 1832 struct block_device *victim = NULL; 1833 1834 mutex_lock_nested(&bdev->bd_mutex, for_part); 1835 if (for_part) 1836 bdev->bd_part_count--; 1837 1838 if (!--bdev->bd_openers) { 1839 WARN_ON_ONCE(bdev->bd_holders); 1840 sync_blockdev(bdev); 1841 kill_bdev(bdev); 1842 1843 bdev_write_inode(bdev); 1844 } 1845 if (bdev->bd_contains == bdev) { 1846 if (disk->fops->release) 1847 disk->fops->release(disk, mode); 1848 } 1849 if (!bdev->bd_openers) { 1850 disk_put_part(bdev->bd_part); 1851 bdev->bd_part = NULL; 1852 bdev->bd_disk = NULL; 1853 if (bdev != bdev->bd_contains) 1854 victim = bdev->bd_contains; 1855 bdev->bd_contains = NULL; 1856 1857 put_disk_and_module(disk); 1858 } 1859 mutex_unlock(&bdev->bd_mutex); 1860 bdput(bdev); 1861 if (victim) 1862 __blkdev_put(victim, mode, 1); 1863} 1864 1865void blkdev_put(struct block_device *bdev, fmode_t mode) 1866{ 1867 mutex_lock(&bdev->bd_mutex); 1868 1869 if (mode & FMODE_EXCL) { 1870 bool bdev_free; 1871 1872 /* 1873 * Release a claim on the device. The holder fields 1874 * are protected with bdev_lock. bd_mutex is to 1875 * synchronize disk_holder unlinking. 1876 */ 1877 spin_lock(&bdev_lock); 1878 1879 WARN_ON_ONCE(--bdev->bd_holders < 0); 1880 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1881 1882 /* bd_contains might point to self, check in a separate step */ 1883 if ((bdev_free = !bdev->bd_holders)) 1884 bdev->bd_holder = NULL; 1885 if (!bdev->bd_contains->bd_holders) 1886 bdev->bd_contains->bd_holder = NULL; 1887 1888 spin_unlock(&bdev_lock); 1889 1890 /* 1891 * If this was the last claim, remove holder link and 1892 * unblock evpoll if it was a write holder. 1893 */ 1894 if (bdev_free && bdev->bd_write_holder) { 1895 disk_unblock_events(bdev->bd_disk); 1896 bdev->bd_write_holder = false; 1897 } 1898 } 1899 1900 /* 1901 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1902 * event. This is to ensure detection of media removal commanded 1903 * from userland - e.g. eject(1). 1904 */ 1905 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1906 1907 mutex_unlock(&bdev->bd_mutex); 1908 1909 __blkdev_put(bdev, mode, 0); 1910} 1911EXPORT_SYMBOL(blkdev_put); 1912 1913static int blkdev_close(struct inode * inode, struct file * filp) 1914{ 1915 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1916 blkdev_put(bdev, filp->f_mode); 1917 return 0; 1918} 1919 1920static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1921{ 1922 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1923 fmode_t mode = file->f_mode; 1924 1925 /* 1926 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1927 * to updated it before every ioctl. 1928 */ 1929 if (file->f_flags & O_NDELAY) 1930 mode |= FMODE_NDELAY; 1931 else 1932 mode &= ~FMODE_NDELAY; 1933 1934 return blkdev_ioctl(bdev, mode, cmd, arg); 1935} 1936 1937/* 1938 * Write data to the block device. Only intended for the block device itself 1939 * and the raw driver which basically is a fake block device. 1940 * 1941 * Does not take i_mutex for the write and thus is not for general purpose 1942 * use. 1943 */ 1944ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1945{ 1946 struct file *file = iocb->ki_filp; 1947 struct inode *bd_inode = bdev_file_inode(file); 1948 loff_t size = i_size_read(bd_inode); 1949 struct blk_plug plug; 1950 ssize_t ret; 1951 1952 if (bdev_read_only(I_BDEV(bd_inode))) 1953 return -EPERM; 1954 1955 if (!iov_iter_count(from)) 1956 return 0; 1957 1958 if (iocb->ki_pos >= size) 1959 return -ENOSPC; 1960 1961 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 1962 return -EOPNOTSUPP; 1963 1964 iov_iter_truncate(from, size - iocb->ki_pos); 1965 1966 blk_start_plug(&plug); 1967 ret = __generic_file_write_iter(iocb, from); 1968 if (ret > 0) 1969 ret = generic_write_sync(iocb, ret); 1970 blk_finish_plug(&plug); 1971 return ret; 1972} 1973EXPORT_SYMBOL_GPL(blkdev_write_iter); 1974 1975ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1976{ 1977 struct file *file = iocb->ki_filp; 1978 struct inode *bd_inode = bdev_file_inode(file); 1979 loff_t size = i_size_read(bd_inode); 1980 loff_t pos = iocb->ki_pos; 1981 1982 if (pos >= size) 1983 return 0; 1984 1985 size -= pos; 1986 iov_iter_truncate(to, size); 1987 return generic_file_read_iter(iocb, to); 1988} 1989EXPORT_SYMBOL_GPL(blkdev_read_iter); 1990 1991/* 1992 * Try to release a page associated with block device when the system 1993 * is under memory pressure. 1994 */ 1995static int blkdev_releasepage(struct page *page, gfp_t wait) 1996{ 1997 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1998 1999 if (super && super->s_op->bdev_try_to_free_page) 2000 return super->s_op->bdev_try_to_free_page(super, page, wait); 2001 2002 return try_to_free_buffers(page); 2003} 2004 2005static int blkdev_writepages(struct address_space *mapping, 2006 struct writeback_control *wbc) 2007{ 2008 return generic_writepages(mapping, wbc); 2009} 2010 2011static const struct address_space_operations def_blk_aops = { 2012 .readpage = blkdev_readpage, 2013 .readpages = blkdev_readpages, 2014 .writepage = blkdev_writepage, 2015 .write_begin = blkdev_write_begin, 2016 .write_end = blkdev_write_end, 2017 .writepages = blkdev_writepages, 2018 .releasepage = blkdev_releasepage, 2019 .direct_IO = blkdev_direct_IO, 2020 .migratepage = buffer_migrate_page_norefs, 2021 .is_dirty_writeback = buffer_check_dirty_writeback, 2022}; 2023 2024#define BLKDEV_FALLOC_FL_SUPPORTED \ 2025 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2026 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2027 2028static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2029 loff_t len) 2030{ 2031 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2032 struct address_space *mapping; 2033 loff_t end = start + len - 1; 2034 loff_t isize; 2035 int error; 2036 2037 /* Fail if we don't recognize the flags. */ 2038 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2039 return -EOPNOTSUPP; 2040 2041 /* Don't go off the end of the device. */ 2042 isize = i_size_read(bdev->bd_inode); 2043 if (start >= isize) 2044 return -EINVAL; 2045 if (end >= isize) { 2046 if (mode & FALLOC_FL_KEEP_SIZE) { 2047 len = isize - start; 2048 end = start + len - 1; 2049 } else 2050 return -EINVAL; 2051 } 2052 2053 /* 2054 * Don't allow IO that isn't aligned to logical block size. 2055 */ 2056 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2057 return -EINVAL; 2058 2059 /* Invalidate the page cache, including dirty pages. */ 2060 mapping = bdev->bd_inode->i_mapping; 2061 truncate_inode_pages_range(mapping, start, end); 2062 2063 switch (mode) { 2064 case FALLOC_FL_ZERO_RANGE: 2065 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2066 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2067 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2068 break; 2069 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2070 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2071 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2072 break; 2073 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2074 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2075 GFP_KERNEL, 0); 2076 break; 2077 default: 2078 return -EOPNOTSUPP; 2079 } 2080 if (error) 2081 return error; 2082 2083 /* 2084 * Invalidate again; if someone wandered in and dirtied a page, 2085 * the caller will be given -EBUSY. The third argument is 2086 * inclusive, so the rounding here is safe. 2087 */ 2088 return invalidate_inode_pages2_range(mapping, 2089 start >> PAGE_SHIFT, 2090 end >> PAGE_SHIFT); 2091} 2092 2093const struct file_operations def_blk_fops = { 2094 .open = blkdev_open, 2095 .release = blkdev_close, 2096 .llseek = block_llseek, 2097 .read_iter = blkdev_read_iter, 2098 .write_iter = blkdev_write_iter, 2099 .iopoll = blkdev_iopoll, 2100 .mmap = generic_file_mmap, 2101 .fsync = blkdev_fsync, 2102 .unlocked_ioctl = block_ioctl, 2103#ifdef CONFIG_COMPAT 2104 .compat_ioctl = compat_blkdev_ioctl, 2105#endif 2106 .splice_read = generic_file_splice_read, 2107 .splice_write = iter_file_splice_write, 2108 .fallocate = blkdev_fallocate, 2109}; 2110 2111int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2112{ 2113 int res; 2114 mm_segment_t old_fs = get_fs(); 2115 set_fs(KERNEL_DS); 2116 res = blkdev_ioctl(bdev, 0, cmd, arg); 2117 set_fs(old_fs); 2118 return res; 2119} 2120 2121EXPORT_SYMBOL(ioctl_by_bdev); 2122 2123/** 2124 * lookup_bdev - lookup a struct block_device by name 2125 * @pathname: special file representing the block device 2126 * 2127 * Get a reference to the blockdevice at @pathname in the current 2128 * namespace if possible and return it. Return ERR_PTR(error) 2129 * otherwise. 2130 */ 2131struct block_device *lookup_bdev(const char *pathname) 2132{ 2133 struct block_device *bdev; 2134 struct inode *inode; 2135 struct path path; 2136 int error; 2137 2138 if (!pathname || !*pathname) 2139 return ERR_PTR(-EINVAL); 2140 2141 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2142 if (error) 2143 return ERR_PTR(error); 2144 2145 inode = d_backing_inode(path.dentry); 2146 error = -ENOTBLK; 2147 if (!S_ISBLK(inode->i_mode)) 2148 goto fail; 2149 error = -EACCES; 2150 if (!may_open_dev(&path)) 2151 goto fail; 2152 error = -ENOMEM; 2153 bdev = bd_acquire(inode); 2154 if (!bdev) 2155 goto fail; 2156out: 2157 path_put(&path); 2158 return bdev; 2159fail: 2160 bdev = ERR_PTR(error); 2161 goto out; 2162} 2163EXPORT_SYMBOL(lookup_bdev); 2164 2165int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2166{ 2167 struct super_block *sb = get_super(bdev); 2168 int res = 0; 2169 2170 if (sb) { 2171 /* 2172 * no need to lock the super, get_super holds the 2173 * read mutex so the filesystem cannot go away 2174 * under us (->put_super runs with the write lock 2175 * hold). 2176 */ 2177 shrink_dcache_sb(sb); 2178 res = invalidate_inodes(sb, kill_dirty); 2179 drop_super(sb); 2180 } 2181 invalidate_bdev(bdev); 2182 return res; 2183} 2184EXPORT_SYMBOL(__invalidate_device); 2185 2186void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2187{ 2188 struct inode *inode, *old_inode = NULL; 2189 2190 spin_lock(&blockdev_superblock->s_inode_list_lock); 2191 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2192 struct address_space *mapping = inode->i_mapping; 2193 struct block_device *bdev; 2194 2195 spin_lock(&inode->i_lock); 2196 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2197 mapping->nrpages == 0) { 2198 spin_unlock(&inode->i_lock); 2199 continue; 2200 } 2201 __iget(inode); 2202 spin_unlock(&inode->i_lock); 2203 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2204 /* 2205 * We hold a reference to 'inode' so it couldn't have been 2206 * removed from s_inodes list while we dropped the 2207 * s_inode_list_lock We cannot iput the inode now as we can 2208 * be holding the last reference and we cannot iput it under 2209 * s_inode_list_lock. So we keep the reference and iput it 2210 * later. 2211 */ 2212 iput(old_inode); 2213 old_inode = inode; 2214 bdev = I_BDEV(inode); 2215 2216 mutex_lock(&bdev->bd_mutex); 2217 if (bdev->bd_openers) 2218 func(bdev, arg); 2219 mutex_unlock(&bdev->bd_mutex); 2220 2221 spin_lock(&blockdev_superblock->s_inode_list_lock); 2222 } 2223 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2224 iput(old_inode); 2225}