Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * 6pack.c This module implements the 6pack protocol for kernel-based
3 * devices like TTY. It interfaces between a raw TTY and the
4 * kernel's AX.25 protocol layers.
5 *
6 * Authors: Andreas Könsgen <ajk@comnets.uni-bremen.de>
7 * Ralf Baechle DL5RB <ralf@linux-mips.org>
8 *
9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
10 *
11 * Laurence Culhane, <loz@holmes.demon.co.uk>
12 * Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
13 */
14
15#include <linux/module.h>
16#include <linux/uaccess.h>
17#include <linux/bitops.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/in.h>
22#include <linux/tty.h>
23#include <linux/errno.h>
24#include <linux/netdevice.h>
25#include <linux/timer.h>
26#include <linux/slab.h>
27#include <net/ax25.h>
28#include <linux/etherdevice.h>
29#include <linux/skbuff.h>
30#include <linux/rtnetlink.h>
31#include <linux/spinlock.h>
32#include <linux/if_arp.h>
33#include <linux/init.h>
34#include <linux/ip.h>
35#include <linux/tcp.h>
36#include <linux/semaphore.h>
37#include <linux/refcount.h>
38
39#define SIXPACK_VERSION "Revision: 0.3.0"
40
41/* sixpack priority commands */
42#define SIXP_SEOF 0x40 /* start and end of a 6pack frame */
43#define SIXP_TX_URUN 0x48 /* transmit overrun */
44#define SIXP_RX_ORUN 0x50 /* receive overrun */
45#define SIXP_RX_BUF_OVL 0x58 /* receive buffer overflow */
46
47#define SIXP_CHKSUM 0xFF /* valid checksum of a 6pack frame */
48
49/* masks to get certain bits out of the status bytes sent by the TNC */
50
51#define SIXP_CMD_MASK 0xC0
52#define SIXP_CHN_MASK 0x07
53#define SIXP_PRIO_CMD_MASK 0x80
54#define SIXP_STD_CMD_MASK 0x40
55#define SIXP_PRIO_DATA_MASK 0x38
56#define SIXP_TX_MASK 0x20
57#define SIXP_RX_MASK 0x10
58#define SIXP_RX_DCD_MASK 0x18
59#define SIXP_LEDS_ON 0x78
60#define SIXP_LEDS_OFF 0x60
61#define SIXP_CON 0x08
62#define SIXP_STA 0x10
63
64#define SIXP_FOUND_TNC 0xe9
65#define SIXP_CON_ON 0x68
66#define SIXP_DCD_MASK 0x08
67#define SIXP_DAMA_OFF 0
68
69/* default level 2 parameters */
70#define SIXP_TXDELAY (HZ/4) /* in 1 s */
71#define SIXP_PERSIST 50 /* in 256ths */
72#define SIXP_SLOTTIME (HZ/10) /* in 1 s */
73#define SIXP_INIT_RESYNC_TIMEOUT (3*HZ/2) /* in 1 s */
74#define SIXP_RESYNC_TIMEOUT 5*HZ /* in 1 s */
75
76/* 6pack configuration. */
77#define SIXP_NRUNIT 31 /* MAX number of 6pack channels */
78#define SIXP_MTU 256 /* Default MTU */
79
80enum sixpack_flags {
81 SIXPF_ERROR, /* Parity, etc. error */
82};
83
84struct sixpack {
85 /* Various fields. */
86 struct tty_struct *tty; /* ptr to TTY structure */
87 struct net_device *dev; /* easy for intr handling */
88
89 /* These are pointers to the malloc()ed frame buffers. */
90 unsigned char *rbuff; /* receiver buffer */
91 int rcount; /* received chars counter */
92 unsigned char *xbuff; /* transmitter buffer */
93 unsigned char *xhead; /* next byte to XMIT */
94 int xleft; /* bytes left in XMIT queue */
95
96 unsigned char raw_buf[4];
97 unsigned char cooked_buf[400];
98
99 unsigned int rx_count;
100 unsigned int rx_count_cooked;
101
102 int mtu; /* Our mtu (to spot changes!) */
103 int buffsize; /* Max buffers sizes */
104
105 unsigned long flags; /* Flag values/ mode etc */
106 unsigned char mode; /* 6pack mode */
107
108 /* 6pack stuff */
109 unsigned char tx_delay;
110 unsigned char persistence;
111 unsigned char slottime;
112 unsigned char duplex;
113 unsigned char led_state;
114 unsigned char status;
115 unsigned char status1;
116 unsigned char status2;
117 unsigned char tx_enable;
118 unsigned char tnc_state;
119
120 struct timer_list tx_t;
121 struct timer_list resync_t;
122 refcount_t refcnt;
123 struct completion dead;
124 spinlock_t lock;
125};
126
127#define AX25_6PACK_HEADER_LEN 0
128
129static void sixpack_decode(struct sixpack *, const unsigned char[], int);
130static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
131
132/*
133 * Perform the persistence/slottime algorithm for CSMA access. If the
134 * persistence check was successful, write the data to the serial driver.
135 * Note that in case of DAMA operation, the data is not sent here.
136 */
137
138static void sp_xmit_on_air(struct timer_list *t)
139{
140 struct sixpack *sp = from_timer(sp, t, tx_t);
141 int actual, when = sp->slottime;
142 static unsigned char random;
143
144 random = random * 17 + 41;
145
146 if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
147 sp->led_state = 0x70;
148 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
149 sp->tx_enable = 1;
150 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
151 sp->xleft -= actual;
152 sp->xhead += actual;
153 sp->led_state = 0x60;
154 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
155 sp->status2 = 0;
156 } else
157 mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
158}
159
160/* ----> 6pack timer interrupt handler and friends. <---- */
161
162/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
163static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
164{
165 unsigned char *msg, *p = icp;
166 int actual, count;
167
168 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
169 msg = "oversized transmit packet!";
170 goto out_drop;
171 }
172
173 if (len > sp->mtu) { /* sp->mtu = AX25_MTU = max. PACLEN = 256 */
174 msg = "oversized transmit packet!";
175 goto out_drop;
176 }
177
178 if (p[0] > 5) {
179 msg = "invalid KISS command";
180 goto out_drop;
181 }
182
183 if ((p[0] != 0) && (len > 2)) {
184 msg = "KISS control packet too long";
185 goto out_drop;
186 }
187
188 if ((p[0] == 0) && (len < 15)) {
189 msg = "bad AX.25 packet to transmit";
190 goto out_drop;
191 }
192
193 count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
194 set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
195
196 switch (p[0]) {
197 case 1: sp->tx_delay = p[1];
198 return;
199 case 2: sp->persistence = p[1];
200 return;
201 case 3: sp->slottime = p[1];
202 return;
203 case 4: /* ignored */
204 return;
205 case 5: sp->duplex = p[1];
206 return;
207 }
208
209 if (p[0] != 0)
210 return;
211
212 /*
213 * In case of fullduplex or DAMA operation, we don't take care about the
214 * state of the DCD or of any timers, as the determination of the
215 * correct time to send is the job of the AX.25 layer. We send
216 * immediately after data has arrived.
217 */
218 if (sp->duplex == 1) {
219 sp->led_state = 0x70;
220 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
221 sp->tx_enable = 1;
222 actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
223 sp->xleft = count - actual;
224 sp->xhead = sp->xbuff + actual;
225 sp->led_state = 0x60;
226 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
227 } else {
228 sp->xleft = count;
229 sp->xhead = sp->xbuff;
230 sp->status2 = count;
231 sp_xmit_on_air(&sp->tx_t);
232 }
233
234 return;
235
236out_drop:
237 sp->dev->stats.tx_dropped++;
238 netif_start_queue(sp->dev);
239 if (net_ratelimit())
240 printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
241}
242
243/* Encapsulate an IP datagram and kick it into a TTY queue. */
244
245static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
246{
247 struct sixpack *sp = netdev_priv(dev);
248
249 if (skb->protocol == htons(ETH_P_IP))
250 return ax25_ip_xmit(skb);
251
252 spin_lock_bh(&sp->lock);
253 /* We were not busy, so we are now... :-) */
254 netif_stop_queue(dev);
255 dev->stats.tx_bytes += skb->len;
256 sp_encaps(sp, skb->data, skb->len);
257 spin_unlock_bh(&sp->lock);
258
259 dev_kfree_skb(skb);
260
261 return NETDEV_TX_OK;
262}
263
264static int sp_open_dev(struct net_device *dev)
265{
266 struct sixpack *sp = netdev_priv(dev);
267
268 if (sp->tty == NULL)
269 return -ENODEV;
270 return 0;
271}
272
273/* Close the low-level part of the 6pack channel. */
274static int sp_close(struct net_device *dev)
275{
276 struct sixpack *sp = netdev_priv(dev);
277
278 spin_lock_bh(&sp->lock);
279 if (sp->tty) {
280 /* TTY discipline is running. */
281 clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
282 }
283 netif_stop_queue(dev);
284 spin_unlock_bh(&sp->lock);
285
286 return 0;
287}
288
289static int sp_set_mac_address(struct net_device *dev, void *addr)
290{
291 struct sockaddr_ax25 *sa = addr;
292
293 netif_tx_lock_bh(dev);
294 netif_addr_lock(dev);
295 memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
296 netif_addr_unlock(dev);
297 netif_tx_unlock_bh(dev);
298
299 return 0;
300}
301
302static const struct net_device_ops sp_netdev_ops = {
303 .ndo_open = sp_open_dev,
304 .ndo_stop = sp_close,
305 .ndo_start_xmit = sp_xmit,
306 .ndo_set_mac_address = sp_set_mac_address,
307};
308
309static void sp_setup(struct net_device *dev)
310{
311 /* Finish setting up the DEVICE info. */
312 dev->netdev_ops = &sp_netdev_ops;
313 dev->needs_free_netdev = true;
314 dev->mtu = SIXP_MTU;
315 dev->hard_header_len = AX25_MAX_HEADER_LEN;
316 dev->header_ops = &ax25_header_ops;
317
318 dev->addr_len = AX25_ADDR_LEN;
319 dev->type = ARPHRD_AX25;
320 dev->tx_queue_len = 10;
321
322 /* Only activated in AX.25 mode */
323 memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
324 memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
325
326 dev->flags = 0;
327}
328
329/* Send one completely decapsulated IP datagram to the IP layer. */
330
331/*
332 * This is the routine that sends the received data to the kernel AX.25.
333 * 'cmd' is the KISS command. For AX.25 data, it is zero.
334 */
335
336static void sp_bump(struct sixpack *sp, char cmd)
337{
338 struct sk_buff *skb;
339 int count;
340 unsigned char *ptr;
341
342 count = sp->rcount + 1;
343
344 sp->dev->stats.rx_bytes += count;
345
346 if ((skb = dev_alloc_skb(count)) == NULL)
347 goto out_mem;
348
349 ptr = skb_put(skb, count);
350 *ptr++ = cmd; /* KISS command */
351
352 memcpy(ptr, sp->cooked_buf + 1, count);
353 skb->protocol = ax25_type_trans(skb, sp->dev);
354 netif_rx(skb);
355 sp->dev->stats.rx_packets++;
356
357 return;
358
359out_mem:
360 sp->dev->stats.rx_dropped++;
361}
362
363
364/* ----------------------------------------------------------------------- */
365
366/*
367 * We have a potential race on dereferencing tty->disc_data, because the tty
368 * layer provides no locking at all - thus one cpu could be running
369 * sixpack_receive_buf while another calls sixpack_close, which zeroes
370 * tty->disc_data and frees the memory that sixpack_receive_buf is using. The
371 * best way to fix this is to use a rwlock in the tty struct, but for now we
372 * use a single global rwlock for all ttys in ppp line discipline.
373 */
374static DEFINE_RWLOCK(disc_data_lock);
375
376static struct sixpack *sp_get(struct tty_struct *tty)
377{
378 struct sixpack *sp;
379
380 read_lock(&disc_data_lock);
381 sp = tty->disc_data;
382 if (sp)
383 refcount_inc(&sp->refcnt);
384 read_unlock(&disc_data_lock);
385
386 return sp;
387}
388
389static void sp_put(struct sixpack *sp)
390{
391 if (refcount_dec_and_test(&sp->refcnt))
392 complete(&sp->dead);
393}
394
395/*
396 * Called by the TTY driver when there's room for more data. If we have
397 * more packets to send, we send them here.
398 */
399static void sixpack_write_wakeup(struct tty_struct *tty)
400{
401 struct sixpack *sp = sp_get(tty);
402 int actual;
403
404 if (!sp)
405 return;
406 if (sp->xleft <= 0) {
407 /* Now serial buffer is almost free & we can start
408 * transmission of another packet */
409 sp->dev->stats.tx_packets++;
410 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
411 sp->tx_enable = 0;
412 netif_wake_queue(sp->dev);
413 goto out;
414 }
415
416 if (sp->tx_enable) {
417 actual = tty->ops->write(tty, sp->xhead, sp->xleft);
418 sp->xleft -= actual;
419 sp->xhead += actual;
420 }
421
422out:
423 sp_put(sp);
424}
425
426/* ----------------------------------------------------------------------- */
427
428/*
429 * Handle the 'receiver data ready' interrupt.
430 * This function is called by the tty module in the kernel when
431 * a block of 6pack data has been received, which can now be decapsulated
432 * and sent on to some IP layer for further processing.
433 */
434static void sixpack_receive_buf(struct tty_struct *tty,
435 const unsigned char *cp, char *fp, int count)
436{
437 struct sixpack *sp;
438 int count1;
439
440 if (!count)
441 return;
442
443 sp = sp_get(tty);
444 if (!sp)
445 return;
446
447 /* Read the characters out of the buffer */
448 count1 = count;
449 while (count) {
450 count--;
451 if (fp && *fp++) {
452 if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
453 sp->dev->stats.rx_errors++;
454 continue;
455 }
456 }
457 sixpack_decode(sp, cp, count1);
458
459 sp_put(sp);
460 tty_unthrottle(tty);
461}
462
463/*
464 * Try to resync the TNC. Called by the resync timer defined in
465 * decode_prio_command
466 */
467
468#define TNC_UNINITIALIZED 0
469#define TNC_UNSYNC_STARTUP 1
470#define TNC_UNSYNCED 2
471#define TNC_IN_SYNC 3
472
473static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
474{
475 char *msg;
476
477 switch (new_tnc_state) {
478 default: /* gcc oh piece-o-crap ... */
479 case TNC_UNSYNC_STARTUP:
480 msg = "Synchronizing with TNC";
481 break;
482 case TNC_UNSYNCED:
483 msg = "Lost synchronization with TNC\n";
484 break;
485 case TNC_IN_SYNC:
486 msg = "Found TNC";
487 break;
488 }
489
490 sp->tnc_state = new_tnc_state;
491 printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
492}
493
494static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
495{
496 int old_tnc_state = sp->tnc_state;
497
498 if (old_tnc_state != new_tnc_state)
499 __tnc_set_sync_state(sp, new_tnc_state);
500}
501
502static void resync_tnc(struct timer_list *t)
503{
504 struct sixpack *sp = from_timer(sp, t, resync_t);
505 static char resync_cmd = 0xe8;
506
507 /* clear any data that might have been received */
508
509 sp->rx_count = 0;
510 sp->rx_count_cooked = 0;
511
512 /* reset state machine */
513
514 sp->status = 1;
515 sp->status1 = 1;
516 sp->status2 = 0;
517
518 /* resync the TNC */
519
520 sp->led_state = 0x60;
521 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
522 sp->tty->ops->write(sp->tty, &resync_cmd, 1);
523
524
525 /* Start resync timer again -- the TNC might be still absent */
526 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
527}
528
529static inline int tnc_init(struct sixpack *sp)
530{
531 unsigned char inbyte = 0xe8;
532
533 tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
534
535 sp->tty->ops->write(sp->tty, &inbyte, 1);
536
537 mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
538
539 return 0;
540}
541
542/*
543 * Open the high-level part of the 6pack channel.
544 * This function is called by the TTY module when the
545 * 6pack line discipline is called for. Because we are
546 * sure the tty line exists, we only have to link it to
547 * a free 6pcack channel...
548 */
549static int sixpack_open(struct tty_struct *tty)
550{
551 char *rbuff = NULL, *xbuff = NULL;
552 struct net_device *dev;
553 struct sixpack *sp;
554 unsigned long len;
555 int err = 0;
556
557 if (!capable(CAP_NET_ADMIN))
558 return -EPERM;
559 if (tty->ops->write == NULL)
560 return -EOPNOTSUPP;
561
562 dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
563 sp_setup);
564 if (!dev) {
565 err = -ENOMEM;
566 goto out;
567 }
568
569 sp = netdev_priv(dev);
570 sp->dev = dev;
571
572 spin_lock_init(&sp->lock);
573 refcount_set(&sp->refcnt, 1);
574 init_completion(&sp->dead);
575
576 /* !!! length of the buffers. MTU is IP MTU, not PACLEN! */
577
578 len = dev->mtu * 2;
579
580 rbuff = kmalloc(len + 4, GFP_KERNEL);
581 xbuff = kmalloc(len + 4, GFP_KERNEL);
582
583 if (rbuff == NULL || xbuff == NULL) {
584 err = -ENOBUFS;
585 goto out_free;
586 }
587
588 spin_lock_bh(&sp->lock);
589
590 sp->tty = tty;
591
592 sp->rbuff = rbuff;
593 sp->xbuff = xbuff;
594
595 sp->mtu = AX25_MTU + 73;
596 sp->buffsize = len;
597 sp->rcount = 0;
598 sp->rx_count = 0;
599 sp->rx_count_cooked = 0;
600 sp->xleft = 0;
601
602 sp->flags = 0; /* Clear ESCAPE & ERROR flags */
603
604 sp->duplex = 0;
605 sp->tx_delay = SIXP_TXDELAY;
606 sp->persistence = SIXP_PERSIST;
607 sp->slottime = SIXP_SLOTTIME;
608 sp->led_state = 0x60;
609 sp->status = 1;
610 sp->status1 = 1;
611 sp->status2 = 0;
612 sp->tx_enable = 0;
613
614 netif_start_queue(dev);
615
616 timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
617
618 timer_setup(&sp->resync_t, resync_tnc, 0);
619
620 spin_unlock_bh(&sp->lock);
621
622 /* Done. We have linked the TTY line to a channel. */
623 tty->disc_data = sp;
624 tty->receive_room = 65536;
625
626 /* Now we're ready to register. */
627 err = register_netdev(dev);
628 if (err)
629 goto out_free;
630
631 tnc_init(sp);
632
633 return 0;
634
635out_free:
636 kfree(xbuff);
637 kfree(rbuff);
638
639 free_netdev(dev);
640
641out:
642 return err;
643}
644
645
646/*
647 * Close down a 6pack channel.
648 * This means flushing out any pending queues, and then restoring the
649 * TTY line discipline to what it was before it got hooked to 6pack
650 * (which usually is TTY again).
651 */
652static void sixpack_close(struct tty_struct *tty)
653{
654 struct sixpack *sp;
655
656 write_lock_bh(&disc_data_lock);
657 sp = tty->disc_data;
658 tty->disc_data = NULL;
659 write_unlock_bh(&disc_data_lock);
660 if (!sp)
661 return;
662
663 /*
664 * We have now ensured that nobody can start using ap from now on, but
665 * we have to wait for all existing users to finish.
666 */
667 if (!refcount_dec_and_test(&sp->refcnt))
668 wait_for_completion(&sp->dead);
669
670 /* We must stop the queue to avoid potentially scribbling
671 * on the free buffers. The sp->dead completion is not sufficient
672 * to protect us from sp->xbuff access.
673 */
674 netif_stop_queue(sp->dev);
675
676 del_timer_sync(&sp->tx_t);
677 del_timer_sync(&sp->resync_t);
678
679 /* Free all 6pack frame buffers. */
680 kfree(sp->rbuff);
681 kfree(sp->xbuff);
682
683 unregister_netdev(sp->dev);
684}
685
686/* Perform I/O control on an active 6pack channel. */
687static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
688 unsigned int cmd, unsigned long arg)
689{
690 struct sixpack *sp = sp_get(tty);
691 struct net_device *dev;
692 unsigned int tmp, err;
693
694 if (!sp)
695 return -ENXIO;
696 dev = sp->dev;
697
698 switch(cmd) {
699 case SIOCGIFNAME:
700 err = copy_to_user((void __user *) arg, dev->name,
701 strlen(dev->name) + 1) ? -EFAULT : 0;
702 break;
703
704 case SIOCGIFENCAP:
705 err = put_user(0, (int __user *) arg);
706 break;
707
708 case SIOCSIFENCAP:
709 if (get_user(tmp, (int __user *) arg)) {
710 err = -EFAULT;
711 break;
712 }
713
714 sp->mode = tmp;
715 dev->addr_len = AX25_ADDR_LEN;
716 dev->hard_header_len = AX25_KISS_HEADER_LEN +
717 AX25_MAX_HEADER_LEN + 3;
718 dev->type = ARPHRD_AX25;
719
720 err = 0;
721 break;
722
723 case SIOCSIFHWADDR: {
724 char addr[AX25_ADDR_LEN];
725
726 if (copy_from_user(&addr,
727 (void __user *) arg, AX25_ADDR_LEN)) {
728 err = -EFAULT;
729 break;
730 }
731
732 netif_tx_lock_bh(dev);
733 memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
734 netif_tx_unlock_bh(dev);
735
736 err = 0;
737 break;
738 }
739
740 default:
741 err = tty_mode_ioctl(tty, file, cmd, arg);
742 }
743
744 sp_put(sp);
745
746 return err;
747}
748
749static struct tty_ldisc_ops sp_ldisc = {
750 .owner = THIS_MODULE,
751 .magic = TTY_LDISC_MAGIC,
752 .name = "6pack",
753 .open = sixpack_open,
754 .close = sixpack_close,
755 .ioctl = sixpack_ioctl,
756 .receive_buf = sixpack_receive_buf,
757 .write_wakeup = sixpack_write_wakeup,
758};
759
760/* Initialize 6pack control device -- register 6pack line discipline */
761
762static const char msg_banner[] __initconst = KERN_INFO \
763 "AX.25: 6pack driver, " SIXPACK_VERSION "\n";
764static const char msg_regfail[] __initconst = KERN_ERR \
765 "6pack: can't register line discipline (err = %d)\n";
766
767static int __init sixpack_init_driver(void)
768{
769 int status;
770
771 printk(msg_banner);
772
773 /* Register the provided line protocol discipline */
774 if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
775 printk(msg_regfail, status);
776
777 return status;
778}
779
780static const char msg_unregfail[] = KERN_ERR \
781 "6pack: can't unregister line discipline (err = %d)\n";
782
783static void __exit sixpack_exit_driver(void)
784{
785 int ret;
786
787 if ((ret = tty_unregister_ldisc(N_6PACK)))
788 printk(msg_unregfail, ret);
789}
790
791/* encode an AX.25 packet into 6pack */
792
793static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
794 int length, unsigned char tx_delay)
795{
796 int count = 0;
797 unsigned char checksum = 0, buf[400];
798 int raw_count = 0;
799
800 tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
801 tx_buf_raw[raw_count++] = SIXP_SEOF;
802
803 buf[0] = tx_delay;
804 for (count = 1; count < length; count++)
805 buf[count] = tx_buf[count];
806
807 for (count = 0; count < length; count++)
808 checksum += buf[count];
809 buf[length] = (unsigned char) 0xff - checksum;
810
811 for (count = 0; count <= length; count++) {
812 if ((count % 3) == 0) {
813 tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
814 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
815 } else if ((count % 3) == 1) {
816 tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
817 tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x3c);
818 } else {
819 tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
820 tx_buf_raw[raw_count++] = (buf[count] >> 2);
821 }
822 }
823 if ((length % 3) != 2)
824 raw_count++;
825 tx_buf_raw[raw_count++] = SIXP_SEOF;
826 return raw_count;
827}
828
829/* decode 4 sixpack-encoded bytes into 3 data bytes */
830
831static void decode_data(struct sixpack *sp, unsigned char inbyte)
832{
833 unsigned char *buf;
834
835 if (sp->rx_count != 3) {
836 sp->raw_buf[sp->rx_count++] = inbyte;
837
838 return;
839 }
840
841 buf = sp->raw_buf;
842 sp->cooked_buf[sp->rx_count_cooked++] =
843 buf[0] | ((buf[1] << 2) & 0xc0);
844 sp->cooked_buf[sp->rx_count_cooked++] =
845 (buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
846 sp->cooked_buf[sp->rx_count_cooked++] =
847 (buf[2] & 0x03) | (inbyte << 2);
848 sp->rx_count = 0;
849}
850
851/* identify and execute a 6pack priority command byte */
852
853static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
854{
855 int actual;
856
857 if ((cmd & SIXP_PRIO_DATA_MASK) != 0) { /* idle ? */
858
859 /* RX and DCD flags can only be set in the same prio command,
860 if the DCD flag has been set without the RX flag in the previous
861 prio command. If DCD has not been set before, something in the
862 transmission has gone wrong. In this case, RX and DCD are
863 cleared in order to prevent the decode_data routine from
864 reading further data that might be corrupt. */
865
866 if (((sp->status & SIXP_DCD_MASK) == 0) &&
867 ((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
868 if (sp->status != 1)
869 printk(KERN_DEBUG "6pack: protocol violation\n");
870 else
871 sp->status = 0;
872 cmd &= ~SIXP_RX_DCD_MASK;
873 }
874 sp->status = cmd & SIXP_PRIO_DATA_MASK;
875 } else { /* output watchdog char if idle */
876 if ((sp->status2 != 0) && (sp->duplex == 1)) {
877 sp->led_state = 0x70;
878 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
879 sp->tx_enable = 1;
880 actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
881 sp->xleft -= actual;
882 sp->xhead += actual;
883 sp->led_state = 0x60;
884 sp->status2 = 0;
885
886 }
887 }
888
889 /* needed to trigger the TNC watchdog */
890 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
891
892 /* if the state byte has been received, the TNC is present,
893 so the resync timer can be reset. */
894
895 if (sp->tnc_state == TNC_IN_SYNC)
896 mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
897
898 sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
899}
900
901/* identify and execute a standard 6pack command byte */
902
903static void decode_std_command(struct sixpack *sp, unsigned char cmd)
904{
905 unsigned char checksum = 0, rest = 0;
906 short i;
907
908 switch (cmd & SIXP_CMD_MASK) { /* normal command */
909 case SIXP_SEOF:
910 if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
911 if ((sp->status & SIXP_RX_DCD_MASK) ==
912 SIXP_RX_DCD_MASK) {
913 sp->led_state = 0x68;
914 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
915 }
916 } else {
917 sp->led_state = 0x60;
918 /* fill trailing bytes with zeroes */
919 sp->tty->ops->write(sp->tty, &sp->led_state, 1);
920 rest = sp->rx_count;
921 if (rest != 0)
922 for (i = rest; i <= 3; i++)
923 decode_data(sp, 0);
924 if (rest == 2)
925 sp->rx_count_cooked -= 2;
926 else if (rest == 3)
927 sp->rx_count_cooked -= 1;
928 for (i = 0; i < sp->rx_count_cooked; i++)
929 checksum += sp->cooked_buf[i];
930 if (checksum != SIXP_CHKSUM) {
931 printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
932 } else {
933 sp->rcount = sp->rx_count_cooked-2;
934 sp_bump(sp, 0);
935 }
936 sp->rx_count_cooked = 0;
937 }
938 break;
939 case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
940 break;
941 case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
942 break;
943 case SIXP_RX_BUF_OVL:
944 printk(KERN_DEBUG "6pack: RX buffer overflow\n");
945 }
946}
947
948/* decode a 6pack packet */
949
950static void
951sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
952{
953 unsigned char inbyte;
954 int count1;
955
956 for (count1 = 0; count1 < count; count1++) {
957 inbyte = pre_rbuff[count1];
958 if (inbyte == SIXP_FOUND_TNC) {
959 tnc_set_sync_state(sp, TNC_IN_SYNC);
960 del_timer(&sp->resync_t);
961 }
962 if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
963 decode_prio_command(sp, inbyte);
964 else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
965 decode_std_command(sp, inbyte);
966 else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
967 decode_data(sp, inbyte);
968 }
969}
970
971MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
972MODULE_DESCRIPTION("6pack driver for AX.25");
973MODULE_LICENSE("GPL");
974MODULE_ALIAS_LDISC(N_6PACK);
975
976module_init(sixpack_init_driver);
977module_exit(sixpack_exit_driver);