Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Based on arch/arm/include/asm/memory.h
3 *
4 * Copyright (C) 2000-2002 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * Note: this file should not be included by non-asm/.h files
20 */
21#ifndef __ASM_MEMORY_H
22#define __ASM_MEMORY_H
23
24#include <linux/compiler.h>
25#include <linux/const.h>
26#include <linux/types.h>
27#include <asm/bug.h>
28#include <asm/page-def.h>
29#include <asm/sizes.h>
30
31/*
32 * Size of the PCI I/O space. This must remain a power of two so that
33 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
34 */
35#define PCI_IO_SIZE SZ_16M
36
37/*
38 * VMEMMAP_SIZE - allows the whole linear region to be covered by
39 * a struct page array
40 */
41#define VMEMMAP_SIZE (UL(1) << (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT))
42
43/*
44 * PAGE_OFFSET - the virtual address of the start of the linear map (top
45 * (VA_BITS - 1))
46 * KIMAGE_VADDR - the virtual address of the start of the kernel image
47 * VA_BITS - the maximum number of bits for virtual addresses.
48 * VA_START - the first kernel virtual address.
49 */
50#define VA_BITS (CONFIG_ARM64_VA_BITS)
51#define VA_START (UL(0xffffffffffffffff) - \
52 (UL(1) << VA_BITS) + 1)
53#define PAGE_OFFSET (UL(0xffffffffffffffff) - \
54 (UL(1) << (VA_BITS - 1)) + 1)
55#define KIMAGE_VADDR (MODULES_END)
56#define BPF_JIT_REGION_START (VA_START + KASAN_SHADOW_SIZE)
57#define BPF_JIT_REGION_SIZE (SZ_128M)
58#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
59#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
60#define MODULES_VADDR (BPF_JIT_REGION_END)
61#define MODULES_VSIZE (SZ_128M)
62#define VMEMMAP_START (PAGE_OFFSET - VMEMMAP_SIZE)
63#define PCI_IO_END (VMEMMAP_START - SZ_2M)
64#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
65#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
66
67#define KERNEL_START _text
68#define KERNEL_END _end
69
70#ifdef CONFIG_ARM64_USER_VA_BITS_52
71#define MAX_USER_VA_BITS 52
72#else
73#define MAX_USER_VA_BITS VA_BITS
74#endif
75
76/*
77 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
78 * address space for the shadow region respectively. They can bloat the stack
79 * significantly, so double the (minimum) stack size when they are in use.
80 */
81#ifdef CONFIG_KASAN
82#define KASAN_SHADOW_SIZE (UL(1) << (VA_BITS - KASAN_SHADOW_SCALE_SHIFT))
83#define KASAN_THREAD_SHIFT 1
84#else
85#define KASAN_SHADOW_SIZE (0)
86#define KASAN_THREAD_SHIFT 0
87#endif
88
89#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
90
91/*
92 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
93 * stacks are a multiple of page size.
94 */
95#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
96#define THREAD_SHIFT PAGE_SHIFT
97#else
98#define THREAD_SHIFT MIN_THREAD_SHIFT
99#endif
100
101#if THREAD_SHIFT >= PAGE_SHIFT
102#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
103#endif
104
105#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
106
107/*
108 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
109 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
110 * assembly.
111 */
112#ifdef CONFIG_VMAP_STACK
113#define THREAD_ALIGN (2 * THREAD_SIZE)
114#else
115#define THREAD_ALIGN THREAD_SIZE
116#endif
117
118#define IRQ_STACK_SIZE THREAD_SIZE
119
120#define OVERFLOW_STACK_SIZE SZ_4K
121
122/*
123 * Alignment of kernel segments (e.g. .text, .data).
124 */
125#if defined(CONFIG_DEBUG_ALIGN_RODATA)
126/*
127 * 4 KB granule: 1 level 2 entry
128 * 16 KB granule: 128 level 3 entries, with contiguous bit
129 * 64 KB granule: 32 level 3 entries, with contiguous bit
130 */
131#define SEGMENT_ALIGN SZ_2M
132#else
133/*
134 * 4 KB granule: 16 level 3 entries, with contiguous bit
135 * 16 KB granule: 4 level 3 entries, without contiguous bit
136 * 64 KB granule: 1 level 3 entry
137 */
138#define SEGMENT_ALIGN SZ_64K
139#endif
140
141/*
142 * Memory types available.
143 */
144#define MT_DEVICE_nGnRnE 0
145#define MT_DEVICE_nGnRE 1
146#define MT_DEVICE_GRE 2
147#define MT_NORMAL_NC 3
148#define MT_NORMAL 4
149#define MT_NORMAL_WT 5
150
151/*
152 * Memory types for Stage-2 translation
153 */
154#define MT_S2_NORMAL 0xf
155#define MT_S2_DEVICE_nGnRE 0x1
156
157/*
158 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
159 * Stage-2 enforces Normal-WB and Device-nGnRE
160 */
161#define MT_S2_FWB_NORMAL 6
162#define MT_S2_FWB_DEVICE_nGnRE 1
163
164#ifdef CONFIG_ARM64_4K_PAGES
165#define IOREMAP_MAX_ORDER (PUD_SHIFT)
166#else
167#define IOREMAP_MAX_ORDER (PMD_SHIFT)
168#endif
169
170#ifndef __ASSEMBLY__
171
172#include <linux/bitops.h>
173#include <linux/mmdebug.h>
174
175extern s64 memstart_addr;
176/* PHYS_OFFSET - the physical address of the start of memory. */
177#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
178
179/* the virtual base of the kernel image (minus TEXT_OFFSET) */
180extern u64 kimage_vaddr;
181
182/* the offset between the kernel virtual and physical mappings */
183extern u64 kimage_voffset;
184
185static inline unsigned long kaslr_offset(void)
186{
187 return kimage_vaddr - KIMAGE_VADDR;
188}
189
190/* the actual size of a user virtual address */
191extern u64 vabits_user;
192
193/*
194 * Allow all memory at the discovery stage. We will clip it later.
195 */
196#define MIN_MEMBLOCK_ADDR 0
197#define MAX_MEMBLOCK_ADDR U64_MAX
198
199/*
200 * PFNs are used to describe any physical page; this means
201 * PFN 0 == physical address 0.
202 *
203 * This is the PFN of the first RAM page in the kernel
204 * direct-mapped view. We assume this is the first page
205 * of RAM in the mem_map as well.
206 */
207#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
208
209/*
210 * When dealing with data aborts, watchpoints, or instruction traps we may end
211 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
212 * pass on to access_ok(), for instance.
213 */
214#define untagged_addr(addr) \
215 ((__typeof__(addr))sign_extend64((u64)(addr), 55))
216
217#ifdef CONFIG_KASAN_SW_TAGS
218#define __tag_shifted(tag) ((u64)(tag) << 56)
219#define __tag_set(addr, tag) (__typeof__(addr))( \
220 ((u64)(addr) & ~__tag_shifted(0xff)) | __tag_shifted(tag))
221#define __tag_reset(addr) untagged_addr(addr)
222#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
223#else
224#define __tag_set(addr, tag) (addr)
225#define __tag_reset(addr) (addr)
226#define __tag_get(addr) 0
227#endif
228
229/*
230 * Physical vs virtual RAM address space conversion. These are
231 * private definitions which should NOT be used outside memory.h
232 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
233 */
234
235
236/*
237 * The linear kernel range starts in the middle of the virtual adddress
238 * space. Testing the top bit for the start of the region is a
239 * sufficient check.
240 */
241#define __is_lm_address(addr) (!!((addr) & BIT(VA_BITS - 1)))
242
243#define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET)
244#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
245
246#define __virt_to_phys_nodebug(x) ({ \
247 phys_addr_t __x = (phys_addr_t)(x); \
248 __is_lm_address(__x) ? __lm_to_phys(__x) : \
249 __kimg_to_phys(__x); \
250})
251
252#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
253
254#ifdef CONFIG_DEBUG_VIRTUAL
255extern phys_addr_t __virt_to_phys(unsigned long x);
256extern phys_addr_t __phys_addr_symbol(unsigned long x);
257#else
258#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
259#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
260#endif
261
262#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET)
263#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
264
265/*
266 * Convert a page to/from a physical address
267 */
268#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
269#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
270
271/*
272 * Note: Drivers should NOT use these. They are the wrong
273 * translation for translating DMA addresses. Use the driver
274 * DMA support - see dma-mapping.h.
275 */
276#define virt_to_phys virt_to_phys
277static inline phys_addr_t virt_to_phys(const volatile void *x)
278{
279 return __virt_to_phys((unsigned long)(x));
280}
281
282#define phys_to_virt phys_to_virt
283static inline void *phys_to_virt(phys_addr_t x)
284{
285 return (void *)(__phys_to_virt(x));
286}
287
288/*
289 * Drivers should NOT use these either.
290 */
291#define __pa(x) __virt_to_phys((unsigned long)(x))
292#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
293#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
294#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
295#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
296#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
297#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
298
299/*
300 * virt_to_page(k) convert a _valid_ virtual address to struct page *
301 * virt_addr_valid(k) indicates whether a virtual address is valid
302 */
303#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
304
305#ifndef CONFIG_SPARSEMEM_VMEMMAP
306#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
307#define _virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT)
308#else
309#define __virt_to_pgoff(kaddr) (((u64)(kaddr) & ~PAGE_OFFSET) / PAGE_SIZE * sizeof(struct page))
310#define __page_to_voff(kaddr) (((u64)(kaddr) & ~VMEMMAP_START) * PAGE_SIZE / sizeof(struct page))
311
312#define page_to_virt(page) ({ \
313 unsigned long __addr = \
314 ((__page_to_voff(page)) | PAGE_OFFSET); \
315 unsigned long __addr_tag = \
316 __tag_set(__addr, page_kasan_tag(page)); \
317 ((void *)__addr_tag); \
318})
319
320#define virt_to_page(vaddr) ((struct page *)((__virt_to_pgoff(vaddr)) | VMEMMAP_START))
321
322#define _virt_addr_valid(kaddr) pfn_valid((((u64)(kaddr) & ~PAGE_OFFSET) \
323 + PHYS_OFFSET) >> PAGE_SHIFT)
324#endif
325#endif
326
327#define _virt_addr_is_linear(kaddr) \
328 (__tag_reset((u64)(kaddr)) >= PAGE_OFFSET)
329#define virt_addr_valid(kaddr) \
330 (_virt_addr_is_linear(kaddr) && _virt_addr_valid(kaddr))
331
332/*
333 * Given that the GIC architecture permits ITS implementations that can only be
334 * configured with a LPI table address once, GICv3 systems with many CPUs may
335 * end up reserving a lot of different regions after a kexec for their LPI
336 * tables (one per CPU), as we are forced to reuse the same memory after kexec
337 * (and thus reserve it persistently with EFI beforehand)
338 */
339#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
340# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
341#endif
342
343#include <asm-generic/memory_model.h>
344
345#endif