at v5.1 345 lines 11 kB view raw
1/* 2 * Based on arch/arm/include/asm/memory.h 3 * 4 * Copyright (C) 2000-2002 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 * 19 * Note: this file should not be included by non-asm/.h files 20 */ 21#ifndef __ASM_MEMORY_H 22#define __ASM_MEMORY_H 23 24#include <linux/compiler.h> 25#include <linux/const.h> 26#include <linux/types.h> 27#include <asm/bug.h> 28#include <asm/page-def.h> 29#include <asm/sizes.h> 30 31/* 32 * Size of the PCI I/O space. This must remain a power of two so that 33 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 34 */ 35#define PCI_IO_SIZE SZ_16M 36 37/* 38 * VMEMMAP_SIZE - allows the whole linear region to be covered by 39 * a struct page array 40 */ 41#define VMEMMAP_SIZE (UL(1) << (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)) 42 43/* 44 * PAGE_OFFSET - the virtual address of the start of the linear map (top 45 * (VA_BITS - 1)) 46 * KIMAGE_VADDR - the virtual address of the start of the kernel image 47 * VA_BITS - the maximum number of bits for virtual addresses. 48 * VA_START - the first kernel virtual address. 49 */ 50#define VA_BITS (CONFIG_ARM64_VA_BITS) 51#define VA_START (UL(0xffffffffffffffff) - \ 52 (UL(1) << VA_BITS) + 1) 53#define PAGE_OFFSET (UL(0xffffffffffffffff) - \ 54 (UL(1) << (VA_BITS - 1)) + 1) 55#define KIMAGE_VADDR (MODULES_END) 56#define BPF_JIT_REGION_START (VA_START + KASAN_SHADOW_SIZE) 57#define BPF_JIT_REGION_SIZE (SZ_128M) 58#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 59#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 60#define MODULES_VADDR (BPF_JIT_REGION_END) 61#define MODULES_VSIZE (SZ_128M) 62#define VMEMMAP_START (PAGE_OFFSET - VMEMMAP_SIZE) 63#define PCI_IO_END (VMEMMAP_START - SZ_2M) 64#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 65#define FIXADDR_TOP (PCI_IO_START - SZ_2M) 66 67#define KERNEL_START _text 68#define KERNEL_END _end 69 70#ifdef CONFIG_ARM64_USER_VA_BITS_52 71#define MAX_USER_VA_BITS 52 72#else 73#define MAX_USER_VA_BITS VA_BITS 74#endif 75 76/* 77 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 78 * address space for the shadow region respectively. They can bloat the stack 79 * significantly, so double the (minimum) stack size when they are in use. 80 */ 81#ifdef CONFIG_KASAN 82#define KASAN_SHADOW_SIZE (UL(1) << (VA_BITS - KASAN_SHADOW_SCALE_SHIFT)) 83#define KASAN_THREAD_SHIFT 1 84#else 85#define KASAN_SHADOW_SIZE (0) 86#define KASAN_THREAD_SHIFT 0 87#endif 88 89#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 90 91/* 92 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 93 * stacks are a multiple of page size. 94 */ 95#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 96#define THREAD_SHIFT PAGE_SHIFT 97#else 98#define THREAD_SHIFT MIN_THREAD_SHIFT 99#endif 100 101#if THREAD_SHIFT >= PAGE_SHIFT 102#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 103#endif 104 105#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 106 107/* 108 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 109 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 110 * assembly. 111 */ 112#ifdef CONFIG_VMAP_STACK 113#define THREAD_ALIGN (2 * THREAD_SIZE) 114#else 115#define THREAD_ALIGN THREAD_SIZE 116#endif 117 118#define IRQ_STACK_SIZE THREAD_SIZE 119 120#define OVERFLOW_STACK_SIZE SZ_4K 121 122/* 123 * Alignment of kernel segments (e.g. .text, .data). 124 */ 125#if defined(CONFIG_DEBUG_ALIGN_RODATA) 126/* 127 * 4 KB granule: 1 level 2 entry 128 * 16 KB granule: 128 level 3 entries, with contiguous bit 129 * 64 KB granule: 32 level 3 entries, with contiguous bit 130 */ 131#define SEGMENT_ALIGN SZ_2M 132#else 133/* 134 * 4 KB granule: 16 level 3 entries, with contiguous bit 135 * 16 KB granule: 4 level 3 entries, without contiguous bit 136 * 64 KB granule: 1 level 3 entry 137 */ 138#define SEGMENT_ALIGN SZ_64K 139#endif 140 141/* 142 * Memory types available. 143 */ 144#define MT_DEVICE_nGnRnE 0 145#define MT_DEVICE_nGnRE 1 146#define MT_DEVICE_GRE 2 147#define MT_NORMAL_NC 3 148#define MT_NORMAL 4 149#define MT_NORMAL_WT 5 150 151/* 152 * Memory types for Stage-2 translation 153 */ 154#define MT_S2_NORMAL 0xf 155#define MT_S2_DEVICE_nGnRE 0x1 156 157/* 158 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 159 * Stage-2 enforces Normal-WB and Device-nGnRE 160 */ 161#define MT_S2_FWB_NORMAL 6 162#define MT_S2_FWB_DEVICE_nGnRE 1 163 164#ifdef CONFIG_ARM64_4K_PAGES 165#define IOREMAP_MAX_ORDER (PUD_SHIFT) 166#else 167#define IOREMAP_MAX_ORDER (PMD_SHIFT) 168#endif 169 170#ifndef __ASSEMBLY__ 171 172#include <linux/bitops.h> 173#include <linux/mmdebug.h> 174 175extern s64 memstart_addr; 176/* PHYS_OFFSET - the physical address of the start of memory. */ 177#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 178 179/* the virtual base of the kernel image (minus TEXT_OFFSET) */ 180extern u64 kimage_vaddr; 181 182/* the offset between the kernel virtual and physical mappings */ 183extern u64 kimage_voffset; 184 185static inline unsigned long kaslr_offset(void) 186{ 187 return kimage_vaddr - KIMAGE_VADDR; 188} 189 190/* the actual size of a user virtual address */ 191extern u64 vabits_user; 192 193/* 194 * Allow all memory at the discovery stage. We will clip it later. 195 */ 196#define MIN_MEMBLOCK_ADDR 0 197#define MAX_MEMBLOCK_ADDR U64_MAX 198 199/* 200 * PFNs are used to describe any physical page; this means 201 * PFN 0 == physical address 0. 202 * 203 * This is the PFN of the first RAM page in the kernel 204 * direct-mapped view. We assume this is the first page 205 * of RAM in the mem_map as well. 206 */ 207#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 208 209/* 210 * When dealing with data aborts, watchpoints, or instruction traps we may end 211 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 212 * pass on to access_ok(), for instance. 213 */ 214#define untagged_addr(addr) \ 215 ((__typeof__(addr))sign_extend64((u64)(addr), 55)) 216 217#ifdef CONFIG_KASAN_SW_TAGS 218#define __tag_shifted(tag) ((u64)(tag) << 56) 219#define __tag_set(addr, tag) (__typeof__(addr))( \ 220 ((u64)(addr) & ~__tag_shifted(0xff)) | __tag_shifted(tag)) 221#define __tag_reset(addr) untagged_addr(addr) 222#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 223#else 224#define __tag_set(addr, tag) (addr) 225#define __tag_reset(addr) (addr) 226#define __tag_get(addr) 0 227#endif 228 229/* 230 * Physical vs virtual RAM address space conversion. These are 231 * private definitions which should NOT be used outside memory.h 232 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 233 */ 234 235 236/* 237 * The linear kernel range starts in the middle of the virtual adddress 238 * space. Testing the top bit for the start of the region is a 239 * sufficient check. 240 */ 241#define __is_lm_address(addr) (!!((addr) & BIT(VA_BITS - 1))) 242 243#define __lm_to_phys(addr) (((addr) & ~PAGE_OFFSET) + PHYS_OFFSET) 244#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 245 246#define __virt_to_phys_nodebug(x) ({ \ 247 phys_addr_t __x = (phys_addr_t)(x); \ 248 __is_lm_address(__x) ? __lm_to_phys(__x) : \ 249 __kimg_to_phys(__x); \ 250}) 251 252#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 253 254#ifdef CONFIG_DEBUG_VIRTUAL 255extern phys_addr_t __virt_to_phys(unsigned long x); 256extern phys_addr_t __phys_addr_symbol(unsigned long x); 257#else 258#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 259#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 260#endif 261 262#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 263#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 264 265/* 266 * Convert a page to/from a physical address 267 */ 268#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 269#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 270 271/* 272 * Note: Drivers should NOT use these. They are the wrong 273 * translation for translating DMA addresses. Use the driver 274 * DMA support - see dma-mapping.h. 275 */ 276#define virt_to_phys virt_to_phys 277static inline phys_addr_t virt_to_phys(const volatile void *x) 278{ 279 return __virt_to_phys((unsigned long)(x)); 280} 281 282#define phys_to_virt phys_to_virt 283static inline void *phys_to_virt(phys_addr_t x) 284{ 285 return (void *)(__phys_to_virt(x)); 286} 287 288/* 289 * Drivers should NOT use these either. 290 */ 291#define __pa(x) __virt_to_phys((unsigned long)(x)) 292#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 293#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 294#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 295#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 296#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 297#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 298 299/* 300 * virt_to_page(k) convert a _valid_ virtual address to struct page * 301 * virt_addr_valid(k) indicates whether a virtual address is valid 302 */ 303#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 304 305#ifndef CONFIG_SPARSEMEM_VMEMMAP 306#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT) 307#define _virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT) 308#else 309#define __virt_to_pgoff(kaddr) (((u64)(kaddr) & ~PAGE_OFFSET) / PAGE_SIZE * sizeof(struct page)) 310#define __page_to_voff(kaddr) (((u64)(kaddr) & ~VMEMMAP_START) * PAGE_SIZE / sizeof(struct page)) 311 312#define page_to_virt(page) ({ \ 313 unsigned long __addr = \ 314 ((__page_to_voff(page)) | PAGE_OFFSET); \ 315 unsigned long __addr_tag = \ 316 __tag_set(__addr, page_kasan_tag(page)); \ 317 ((void *)__addr_tag); \ 318}) 319 320#define virt_to_page(vaddr) ((struct page *)((__virt_to_pgoff(vaddr)) | VMEMMAP_START)) 321 322#define _virt_addr_valid(kaddr) pfn_valid((((u64)(kaddr) & ~PAGE_OFFSET) \ 323 + PHYS_OFFSET) >> PAGE_SHIFT) 324#endif 325#endif 326 327#define _virt_addr_is_linear(kaddr) \ 328 (__tag_reset((u64)(kaddr)) >= PAGE_OFFSET) 329#define virt_addr_valid(kaddr) \ 330 (_virt_addr_is_linear(kaddr) && _virt_addr_valid(kaddr)) 331 332/* 333 * Given that the GIC architecture permits ITS implementations that can only be 334 * configured with a LPI table address once, GICv3 systems with many CPUs may 335 * end up reserving a lot of different regions after a kexec for their LPI 336 * tables (one per CPU), as we are forced to reuse the same memory after kexec 337 * (and thus reserve it persistently with EFI beforehand) 338 */ 339#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 340# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 341#endif 342 343#include <asm-generic/memory_model.h> 344 345#endif