Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48{
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76{
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return 2484;
85 else if (chan < 14)
86 return 2407 + chan * 5;
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return 4000 + chan * 5;
91 else
92 return 5000 + chan * 5;
93 break;
94 case NL80211_BAND_60GHZ:
95 if (chan < 7)
96 return 56160 + chan * 2160;
97 break;
98 default:
99 ;
100 }
101 return 0; /* not supported */
102}
103EXPORT_SYMBOL(ieee80211_channel_to_frequency);
104
105int ieee80211_frequency_to_channel(int freq)
106{
107 /* see 802.11 17.3.8.3.2 and Annex J */
108 if (freq == 2484)
109 return 14;
110 else if (freq < 2484)
111 return (freq - 2407) / 5;
112 else if (freq >= 4910 && freq <= 4980)
113 return (freq - 4000) / 5;
114 else if (freq <= 45000) /* DMG band lower limit */
115 return (freq - 5000) / 5;
116 else if (freq >= 58320 && freq <= 70200)
117 return (freq - 56160) / 2160;
118 else
119 return 0;
120}
121EXPORT_SYMBOL(ieee80211_frequency_to_channel);
122
123struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
124{
125 enum nl80211_band band;
126 struct ieee80211_supported_band *sband;
127 int i;
128
129 for (band = 0; band < NUM_NL80211_BANDS; band++) {
130 sband = wiphy->bands[band];
131
132 if (!sband)
133 continue;
134
135 for (i = 0; i < sband->n_channels; i++) {
136 if (sband->channels[i].center_freq == freq)
137 return &sband->channels[i];
138 }
139 }
140
141 return NULL;
142}
143EXPORT_SYMBOL(ieee80211_get_channel);
144
145static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
146{
147 int i, want;
148
149 switch (sband->band) {
150 case NL80211_BAND_5GHZ:
151 want = 3;
152 for (i = 0; i < sband->n_bitrates; i++) {
153 if (sband->bitrates[i].bitrate == 60 ||
154 sband->bitrates[i].bitrate == 120 ||
155 sband->bitrates[i].bitrate == 240) {
156 sband->bitrates[i].flags |=
157 IEEE80211_RATE_MANDATORY_A;
158 want--;
159 }
160 }
161 WARN_ON(want);
162 break;
163 case NL80211_BAND_2GHZ:
164 want = 7;
165 for (i = 0; i < sband->n_bitrates; i++) {
166 switch (sband->bitrates[i].bitrate) {
167 case 10:
168 case 20:
169 case 55:
170 case 110:
171 sband->bitrates[i].flags |=
172 IEEE80211_RATE_MANDATORY_B |
173 IEEE80211_RATE_MANDATORY_G;
174 want--;
175 break;
176 case 60:
177 case 120:
178 case 240:
179 sband->bitrates[i].flags |=
180 IEEE80211_RATE_MANDATORY_G;
181 want--;
182 /* fall through */
183 default:
184 sband->bitrates[i].flags |=
185 IEEE80211_RATE_ERP_G;
186 break;
187 }
188 }
189 WARN_ON(want != 0 && want != 3);
190 break;
191 case NL80211_BAND_60GHZ:
192 /* check for mandatory HT MCS 1..4 */
193 WARN_ON(!sband->ht_cap.ht_supported);
194 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
195 break;
196 case NUM_NL80211_BANDS:
197 default:
198 WARN_ON(1);
199 break;
200 }
201}
202
203void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
204{
205 enum nl80211_band band;
206
207 for (band = 0; band < NUM_NL80211_BANDS; band++)
208 if (wiphy->bands[band])
209 set_mandatory_flags_band(wiphy->bands[band]);
210}
211
212bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
213{
214 int i;
215 for (i = 0; i < wiphy->n_cipher_suites; i++)
216 if (cipher == wiphy->cipher_suites[i])
217 return true;
218 return false;
219}
220
221int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
222 struct key_params *params, int key_idx,
223 bool pairwise, const u8 *mac_addr)
224{
225 if (key_idx < 0 || key_idx > 5)
226 return -EINVAL;
227
228 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
229 return -EINVAL;
230
231 if (pairwise && !mac_addr)
232 return -EINVAL;
233
234 switch (params->cipher) {
235 case WLAN_CIPHER_SUITE_TKIP:
236 case WLAN_CIPHER_SUITE_CCMP:
237 case WLAN_CIPHER_SUITE_CCMP_256:
238 case WLAN_CIPHER_SUITE_GCMP:
239 case WLAN_CIPHER_SUITE_GCMP_256:
240 /* Disallow pairwise keys with non-zero index unless it's WEP
241 * or a vendor specific cipher (because current deployments use
242 * pairwise WEP keys with non-zero indices and for vendor
243 * specific ciphers this should be validated in the driver or
244 * hardware level - but 802.11i clearly specifies to use zero)
245 */
246 if (pairwise && key_idx)
247 return -EINVAL;
248 break;
249 case WLAN_CIPHER_SUITE_AES_CMAC:
250 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
251 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
252 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
253 /* Disallow BIP (group-only) cipher as pairwise cipher */
254 if (pairwise)
255 return -EINVAL;
256 if (key_idx < 4)
257 return -EINVAL;
258 break;
259 case WLAN_CIPHER_SUITE_WEP40:
260 case WLAN_CIPHER_SUITE_WEP104:
261 if (key_idx > 3)
262 return -EINVAL;
263 default:
264 break;
265 }
266
267 switch (params->cipher) {
268 case WLAN_CIPHER_SUITE_WEP40:
269 if (params->key_len != WLAN_KEY_LEN_WEP40)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_TKIP:
273 if (params->key_len != WLAN_KEY_LEN_TKIP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP:
277 if (params->key_len != WLAN_KEY_LEN_CCMP)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_CCMP_256:
281 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP:
285 if (params->key_len != WLAN_KEY_LEN_GCMP)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_GCMP_256:
289 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_WEP104:
293 if (params->key_len != WLAN_KEY_LEN_WEP104)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_AES_CMAC:
297 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
301 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
306 return -EINVAL;
307 break;
308 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
309 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
310 return -EINVAL;
311 break;
312 default:
313 /*
314 * We don't know anything about this algorithm,
315 * allow using it -- but the driver must check
316 * all parameters! We still check below whether
317 * or not the driver supports this algorithm,
318 * of course.
319 */
320 break;
321 }
322
323 if (params->seq) {
324 switch (params->cipher) {
325 case WLAN_CIPHER_SUITE_WEP40:
326 case WLAN_CIPHER_SUITE_WEP104:
327 /* These ciphers do not use key sequence */
328 return -EINVAL;
329 case WLAN_CIPHER_SUITE_TKIP:
330 case WLAN_CIPHER_SUITE_CCMP:
331 case WLAN_CIPHER_SUITE_CCMP_256:
332 case WLAN_CIPHER_SUITE_GCMP:
333 case WLAN_CIPHER_SUITE_GCMP_256:
334 case WLAN_CIPHER_SUITE_AES_CMAC:
335 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
336 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
337 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
338 if (params->seq_len != 6)
339 return -EINVAL;
340 break;
341 }
342 }
343
344 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
345 return -EINVAL;
346
347 return 0;
348}
349
350unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
351{
352 unsigned int hdrlen = 24;
353
354 if (ieee80211_is_data(fc)) {
355 if (ieee80211_has_a4(fc))
356 hdrlen = 30;
357 if (ieee80211_is_data_qos(fc)) {
358 hdrlen += IEEE80211_QOS_CTL_LEN;
359 if (ieee80211_has_order(fc))
360 hdrlen += IEEE80211_HT_CTL_LEN;
361 }
362 goto out;
363 }
364
365 if (ieee80211_is_mgmt(fc)) {
366 if (ieee80211_has_order(fc))
367 hdrlen += IEEE80211_HT_CTL_LEN;
368 goto out;
369 }
370
371 if (ieee80211_is_ctl(fc)) {
372 /*
373 * ACK and CTS are 10 bytes, all others 16. To see how
374 * to get this condition consider
375 * subtype mask: 0b0000000011110000 (0x00F0)
376 * ACK subtype: 0b0000000011010000 (0x00D0)
377 * CTS subtype: 0b0000000011000000 (0x00C0)
378 * bits that matter: ^^^ (0x00E0)
379 * value of those: 0b0000000011000000 (0x00C0)
380 */
381 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
382 hdrlen = 10;
383 else
384 hdrlen = 16;
385 }
386out:
387 return hdrlen;
388}
389EXPORT_SYMBOL(ieee80211_hdrlen);
390
391unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
392{
393 const struct ieee80211_hdr *hdr =
394 (const struct ieee80211_hdr *)skb->data;
395 unsigned int hdrlen;
396
397 if (unlikely(skb->len < 10))
398 return 0;
399 hdrlen = ieee80211_hdrlen(hdr->frame_control);
400 if (unlikely(hdrlen > skb->len))
401 return 0;
402 return hdrlen;
403}
404EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
405
406static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
407{
408 int ae = flags & MESH_FLAGS_AE;
409 /* 802.11-2012, 8.2.4.7.3 */
410 switch (ae) {
411 default:
412 case 0:
413 return 6;
414 case MESH_FLAGS_AE_A4:
415 return 12;
416 case MESH_FLAGS_AE_A5_A6:
417 return 18;
418 }
419}
420
421unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
422{
423 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
424}
425EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
426
427int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
428 const u8 *addr, enum nl80211_iftype iftype,
429 u8 data_offset)
430{
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
432 struct {
433 u8 hdr[ETH_ALEN] __aligned(2);
434 __be16 proto;
435 } payload;
436 struct ethhdr tmp;
437 u16 hdrlen;
438 u8 mesh_flags = 0;
439
440 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
441 return -1;
442
443 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
444 if (skb->len < hdrlen + 8)
445 return -1;
446
447 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
448 * header
449 * IEEE 802.11 address fields:
450 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
451 * 0 0 DA SA BSSID n/a
452 * 0 1 DA BSSID SA n/a
453 * 1 0 BSSID SA DA n/a
454 * 1 1 RA TA DA SA
455 */
456 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
457 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
458
459 if (iftype == NL80211_IFTYPE_MESH_POINT)
460 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
461
462 mesh_flags &= MESH_FLAGS_AE;
463
464 switch (hdr->frame_control &
465 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
466 case cpu_to_le16(IEEE80211_FCTL_TODS):
467 if (unlikely(iftype != NL80211_IFTYPE_AP &&
468 iftype != NL80211_IFTYPE_AP_VLAN &&
469 iftype != NL80211_IFTYPE_P2P_GO))
470 return -1;
471 break;
472 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
473 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
474 iftype != NL80211_IFTYPE_MESH_POINT &&
475 iftype != NL80211_IFTYPE_AP_VLAN &&
476 iftype != NL80211_IFTYPE_STATION))
477 return -1;
478 if (iftype == NL80211_IFTYPE_MESH_POINT) {
479 if (mesh_flags == MESH_FLAGS_AE_A4)
480 return -1;
481 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
482 skb_copy_bits(skb, hdrlen +
483 offsetof(struct ieee80211s_hdr, eaddr1),
484 tmp.h_dest, 2 * ETH_ALEN);
485 }
486 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
487 }
488 break;
489 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
490 if ((iftype != NL80211_IFTYPE_STATION &&
491 iftype != NL80211_IFTYPE_P2P_CLIENT &&
492 iftype != NL80211_IFTYPE_MESH_POINT) ||
493 (is_multicast_ether_addr(tmp.h_dest) &&
494 ether_addr_equal(tmp.h_source, addr)))
495 return -1;
496 if (iftype == NL80211_IFTYPE_MESH_POINT) {
497 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
498 return -1;
499 if (mesh_flags == MESH_FLAGS_AE_A4)
500 skb_copy_bits(skb, hdrlen +
501 offsetof(struct ieee80211s_hdr, eaddr1),
502 tmp.h_source, ETH_ALEN);
503 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
504 }
505 break;
506 case cpu_to_le16(0):
507 if (iftype != NL80211_IFTYPE_ADHOC &&
508 iftype != NL80211_IFTYPE_STATION &&
509 iftype != NL80211_IFTYPE_OCB)
510 return -1;
511 break;
512 }
513
514 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
515 tmp.h_proto = payload.proto;
516
517 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
518 tmp.h_proto != htons(ETH_P_AARP) &&
519 tmp.h_proto != htons(ETH_P_IPX)) ||
520 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
521 /* remove RFC1042 or Bridge-Tunnel encapsulation and
522 * replace EtherType */
523 hdrlen += ETH_ALEN + 2;
524 else
525 tmp.h_proto = htons(skb->len - hdrlen);
526
527 pskb_pull(skb, hdrlen);
528
529 if (!ehdr)
530 ehdr = skb_push(skb, sizeof(struct ethhdr));
531 memcpy(ehdr, &tmp, sizeof(tmp));
532
533 return 0;
534}
535EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
536
537static void
538__frame_add_frag(struct sk_buff *skb, struct page *page,
539 void *ptr, int len, int size)
540{
541 struct skb_shared_info *sh = skb_shinfo(skb);
542 int page_offset;
543
544 page_ref_inc(page);
545 page_offset = ptr - page_address(page);
546 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
547}
548
549static void
550__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
551 int offset, int len)
552{
553 struct skb_shared_info *sh = skb_shinfo(skb);
554 const skb_frag_t *frag = &sh->frags[0];
555 struct page *frag_page;
556 void *frag_ptr;
557 int frag_len, frag_size;
558 int head_size = skb->len - skb->data_len;
559 int cur_len;
560
561 frag_page = virt_to_head_page(skb->head);
562 frag_ptr = skb->data;
563 frag_size = head_size;
564
565 while (offset >= frag_size) {
566 offset -= frag_size;
567 frag_page = skb_frag_page(frag);
568 frag_ptr = skb_frag_address(frag);
569 frag_size = skb_frag_size(frag);
570 frag++;
571 }
572
573 frag_ptr += offset;
574 frag_len = frag_size - offset;
575
576 cur_len = min(len, frag_len);
577
578 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
579 len -= cur_len;
580
581 while (len > 0) {
582 frag_len = skb_frag_size(frag);
583 cur_len = min(len, frag_len);
584 __frame_add_frag(frame, skb_frag_page(frag),
585 skb_frag_address(frag), cur_len, frag_len);
586 len -= cur_len;
587 frag++;
588 }
589}
590
591static struct sk_buff *
592__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
593 int offset, int len, bool reuse_frag)
594{
595 struct sk_buff *frame;
596 int cur_len = len;
597
598 if (skb->len - offset < len)
599 return NULL;
600
601 /*
602 * When reusing framents, copy some data to the head to simplify
603 * ethernet header handling and speed up protocol header processing
604 * in the stack later.
605 */
606 if (reuse_frag)
607 cur_len = min_t(int, len, 32);
608
609 /*
610 * Allocate and reserve two bytes more for payload
611 * alignment since sizeof(struct ethhdr) is 14.
612 */
613 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
614 if (!frame)
615 return NULL;
616
617 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
618 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
619
620 len -= cur_len;
621 if (!len)
622 return frame;
623
624 offset += cur_len;
625 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
626
627 return frame;
628}
629
630void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
631 const u8 *addr, enum nl80211_iftype iftype,
632 const unsigned int extra_headroom,
633 const u8 *check_da, const u8 *check_sa)
634{
635 unsigned int hlen = ALIGN(extra_headroom, 4);
636 struct sk_buff *frame = NULL;
637 u16 ethertype;
638 u8 *payload;
639 int offset = 0, remaining;
640 struct ethhdr eth;
641 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
642 bool reuse_skb = false;
643 bool last = false;
644
645 while (!last) {
646 unsigned int subframe_len;
647 int len;
648 u8 padding;
649
650 skb_copy_bits(skb, offset, ð, sizeof(eth));
651 len = ntohs(eth.h_proto);
652 subframe_len = sizeof(struct ethhdr) + len;
653 padding = (4 - subframe_len) & 0x3;
654
655 /* the last MSDU has no padding */
656 remaining = skb->len - offset;
657 if (subframe_len > remaining)
658 goto purge;
659
660 offset += sizeof(struct ethhdr);
661 last = remaining <= subframe_len + padding;
662
663 /* FIXME: should we really accept multicast DA? */
664 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
665 !ether_addr_equal(check_da, eth.h_dest)) ||
666 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
667 offset += len + padding;
668 continue;
669 }
670
671 /* reuse skb for the last subframe */
672 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
673 skb_pull(skb, offset);
674 frame = skb;
675 reuse_skb = true;
676 } else {
677 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
678 reuse_frag);
679 if (!frame)
680 goto purge;
681
682 offset += len + padding;
683 }
684
685 skb_reset_network_header(frame);
686 frame->dev = skb->dev;
687 frame->priority = skb->priority;
688
689 payload = frame->data;
690 ethertype = (payload[6] << 8) | payload[7];
691 if (likely((ether_addr_equal(payload, rfc1042_header) &&
692 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
693 ether_addr_equal(payload, bridge_tunnel_header))) {
694 eth.h_proto = htons(ethertype);
695 skb_pull(frame, ETH_ALEN + 2);
696 }
697
698 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
699 __skb_queue_tail(list, frame);
700 }
701
702 if (!reuse_skb)
703 dev_kfree_skb(skb);
704
705 return;
706
707 purge:
708 __skb_queue_purge(list);
709 dev_kfree_skb(skb);
710}
711EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
712
713/* Given a data frame determine the 802.1p/1d tag to use. */
714unsigned int cfg80211_classify8021d(struct sk_buff *skb,
715 struct cfg80211_qos_map *qos_map)
716{
717 unsigned int dscp;
718 unsigned char vlan_priority;
719 unsigned int ret;
720
721 /* skb->priority values from 256->263 are magic values to
722 * directly indicate a specific 802.1d priority. This is used
723 * to allow 802.1d priority to be passed directly in from VLAN
724 * tags, etc.
725 */
726 if (skb->priority >= 256 && skb->priority <= 263) {
727 ret = skb->priority - 256;
728 goto out;
729 }
730
731 if (skb_vlan_tag_present(skb)) {
732 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
733 >> VLAN_PRIO_SHIFT;
734 if (vlan_priority > 0) {
735 ret = vlan_priority;
736 goto out;
737 }
738 }
739
740 switch (skb->protocol) {
741 case htons(ETH_P_IP):
742 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
743 break;
744 case htons(ETH_P_IPV6):
745 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
746 break;
747 case htons(ETH_P_MPLS_UC):
748 case htons(ETH_P_MPLS_MC): {
749 struct mpls_label mpls_tmp, *mpls;
750
751 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
752 sizeof(*mpls), &mpls_tmp);
753 if (!mpls)
754 return 0;
755
756 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
757 >> MPLS_LS_TC_SHIFT;
758 goto out;
759 }
760 case htons(ETH_P_80221):
761 /* 802.21 is always network control traffic */
762 return 7;
763 default:
764 return 0;
765 }
766
767 if (qos_map) {
768 unsigned int i, tmp_dscp = dscp >> 2;
769
770 for (i = 0; i < qos_map->num_des; i++) {
771 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
772 ret = qos_map->dscp_exception[i].up;
773 goto out;
774 }
775 }
776
777 for (i = 0; i < 8; i++) {
778 if (tmp_dscp >= qos_map->up[i].low &&
779 tmp_dscp <= qos_map->up[i].high) {
780 ret = i;
781 goto out;
782 }
783 }
784 }
785
786 ret = dscp >> 5;
787out:
788 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
789}
790EXPORT_SYMBOL(cfg80211_classify8021d);
791
792const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
793{
794 const struct cfg80211_bss_ies *ies;
795
796 ies = rcu_dereference(bss->ies);
797 if (!ies)
798 return NULL;
799
800 return cfg80211_find_elem(id, ies->data, ies->len);
801}
802EXPORT_SYMBOL(ieee80211_bss_get_elem);
803
804void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
805{
806 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
807 struct net_device *dev = wdev->netdev;
808 int i;
809
810 if (!wdev->connect_keys)
811 return;
812
813 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
814 if (!wdev->connect_keys->params[i].cipher)
815 continue;
816 if (rdev_add_key(rdev, dev, i, false, NULL,
817 &wdev->connect_keys->params[i])) {
818 netdev_err(dev, "failed to set key %d\n", i);
819 continue;
820 }
821 if (wdev->connect_keys->def == i &&
822 rdev_set_default_key(rdev, dev, i, true, true)) {
823 netdev_err(dev, "failed to set defkey %d\n", i);
824 continue;
825 }
826 }
827
828 kzfree(wdev->connect_keys);
829 wdev->connect_keys = NULL;
830}
831
832void cfg80211_process_wdev_events(struct wireless_dev *wdev)
833{
834 struct cfg80211_event *ev;
835 unsigned long flags;
836
837 spin_lock_irqsave(&wdev->event_lock, flags);
838 while (!list_empty(&wdev->event_list)) {
839 ev = list_first_entry(&wdev->event_list,
840 struct cfg80211_event, list);
841 list_del(&ev->list);
842 spin_unlock_irqrestore(&wdev->event_lock, flags);
843
844 wdev_lock(wdev);
845 switch (ev->type) {
846 case EVENT_CONNECT_RESULT:
847 __cfg80211_connect_result(
848 wdev->netdev,
849 &ev->cr,
850 ev->cr.status == WLAN_STATUS_SUCCESS);
851 break;
852 case EVENT_ROAMED:
853 __cfg80211_roamed(wdev, &ev->rm);
854 break;
855 case EVENT_DISCONNECTED:
856 __cfg80211_disconnected(wdev->netdev,
857 ev->dc.ie, ev->dc.ie_len,
858 ev->dc.reason,
859 !ev->dc.locally_generated);
860 break;
861 case EVENT_IBSS_JOINED:
862 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
863 ev->ij.channel);
864 break;
865 case EVENT_STOPPED:
866 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
867 break;
868 case EVENT_PORT_AUTHORIZED:
869 __cfg80211_port_authorized(wdev, ev->pa.bssid);
870 break;
871 }
872 wdev_unlock(wdev);
873
874 kfree(ev);
875
876 spin_lock_irqsave(&wdev->event_lock, flags);
877 }
878 spin_unlock_irqrestore(&wdev->event_lock, flags);
879}
880
881void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
882{
883 struct wireless_dev *wdev;
884
885 ASSERT_RTNL();
886
887 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
888 cfg80211_process_wdev_events(wdev);
889}
890
891int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
892 struct net_device *dev, enum nl80211_iftype ntype,
893 struct vif_params *params)
894{
895 int err;
896 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
897
898 ASSERT_RTNL();
899
900 /* don't support changing VLANs, you just re-create them */
901 if (otype == NL80211_IFTYPE_AP_VLAN)
902 return -EOPNOTSUPP;
903
904 /* cannot change into P2P device or NAN */
905 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
906 ntype == NL80211_IFTYPE_NAN)
907 return -EOPNOTSUPP;
908
909 if (!rdev->ops->change_virtual_intf ||
910 !(rdev->wiphy.interface_modes & (1 << ntype)))
911 return -EOPNOTSUPP;
912
913 /* if it's part of a bridge, reject changing type to station/ibss */
914 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
915 (ntype == NL80211_IFTYPE_ADHOC ||
916 ntype == NL80211_IFTYPE_STATION ||
917 ntype == NL80211_IFTYPE_P2P_CLIENT))
918 return -EBUSY;
919
920 if (ntype != otype) {
921 dev->ieee80211_ptr->use_4addr = false;
922 dev->ieee80211_ptr->mesh_id_up_len = 0;
923 wdev_lock(dev->ieee80211_ptr);
924 rdev_set_qos_map(rdev, dev, NULL);
925 wdev_unlock(dev->ieee80211_ptr);
926
927 switch (otype) {
928 case NL80211_IFTYPE_AP:
929 cfg80211_stop_ap(rdev, dev, true);
930 break;
931 case NL80211_IFTYPE_ADHOC:
932 cfg80211_leave_ibss(rdev, dev, false);
933 break;
934 case NL80211_IFTYPE_STATION:
935 case NL80211_IFTYPE_P2P_CLIENT:
936 wdev_lock(dev->ieee80211_ptr);
937 cfg80211_disconnect(rdev, dev,
938 WLAN_REASON_DEAUTH_LEAVING, true);
939 wdev_unlock(dev->ieee80211_ptr);
940 break;
941 case NL80211_IFTYPE_MESH_POINT:
942 /* mesh should be handled? */
943 break;
944 default:
945 break;
946 }
947
948 cfg80211_process_rdev_events(rdev);
949 }
950
951 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
952
953 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
954
955 if (!err && params && params->use_4addr != -1)
956 dev->ieee80211_ptr->use_4addr = params->use_4addr;
957
958 if (!err) {
959 dev->priv_flags &= ~IFF_DONT_BRIDGE;
960 switch (ntype) {
961 case NL80211_IFTYPE_STATION:
962 if (dev->ieee80211_ptr->use_4addr)
963 break;
964 /* fall through */
965 case NL80211_IFTYPE_OCB:
966 case NL80211_IFTYPE_P2P_CLIENT:
967 case NL80211_IFTYPE_ADHOC:
968 dev->priv_flags |= IFF_DONT_BRIDGE;
969 break;
970 case NL80211_IFTYPE_P2P_GO:
971 case NL80211_IFTYPE_AP:
972 case NL80211_IFTYPE_AP_VLAN:
973 case NL80211_IFTYPE_WDS:
974 case NL80211_IFTYPE_MESH_POINT:
975 /* bridging OK */
976 break;
977 case NL80211_IFTYPE_MONITOR:
978 /* monitor can't bridge anyway */
979 break;
980 case NL80211_IFTYPE_UNSPECIFIED:
981 case NUM_NL80211_IFTYPES:
982 /* not happening */
983 break;
984 case NL80211_IFTYPE_P2P_DEVICE:
985 case NL80211_IFTYPE_NAN:
986 WARN_ON(1);
987 break;
988 }
989 }
990
991 if (!err && ntype != otype && netif_running(dev)) {
992 cfg80211_update_iface_num(rdev, ntype, 1);
993 cfg80211_update_iface_num(rdev, otype, -1);
994 }
995
996 return err;
997}
998
999static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1000{
1001 int modulation, streams, bitrate;
1002
1003 /* the formula below does only work for MCS values smaller than 32 */
1004 if (WARN_ON_ONCE(rate->mcs >= 32))
1005 return 0;
1006
1007 modulation = rate->mcs & 7;
1008 streams = (rate->mcs >> 3) + 1;
1009
1010 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1011
1012 if (modulation < 4)
1013 bitrate *= (modulation + 1);
1014 else if (modulation == 4)
1015 bitrate *= (modulation + 2);
1016 else
1017 bitrate *= (modulation + 3);
1018
1019 bitrate *= streams;
1020
1021 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1022 bitrate = (bitrate / 9) * 10;
1023
1024 /* do NOT round down here */
1025 return (bitrate + 50000) / 100000;
1026}
1027
1028static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1029{
1030 static const u32 __mcs2bitrate[] = {
1031 /* control PHY */
1032 [0] = 275,
1033 /* SC PHY */
1034 [1] = 3850,
1035 [2] = 7700,
1036 [3] = 9625,
1037 [4] = 11550,
1038 [5] = 12512, /* 1251.25 mbps */
1039 [6] = 15400,
1040 [7] = 19250,
1041 [8] = 23100,
1042 [9] = 25025,
1043 [10] = 30800,
1044 [11] = 38500,
1045 [12] = 46200,
1046 /* OFDM PHY */
1047 [13] = 6930,
1048 [14] = 8662, /* 866.25 mbps */
1049 [15] = 13860,
1050 [16] = 17325,
1051 [17] = 20790,
1052 [18] = 27720,
1053 [19] = 34650,
1054 [20] = 41580,
1055 [21] = 45045,
1056 [22] = 51975,
1057 [23] = 62370,
1058 [24] = 67568, /* 6756.75 mbps */
1059 /* LP-SC PHY */
1060 [25] = 6260,
1061 [26] = 8340,
1062 [27] = 11120,
1063 [28] = 12510,
1064 [29] = 16680,
1065 [30] = 22240,
1066 [31] = 25030,
1067 };
1068
1069 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1070 return 0;
1071
1072 return __mcs2bitrate[rate->mcs];
1073}
1074
1075static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1076{
1077 static const u32 base[4][10] = {
1078 { 6500000,
1079 13000000,
1080 19500000,
1081 26000000,
1082 39000000,
1083 52000000,
1084 58500000,
1085 65000000,
1086 78000000,
1087 /* not in the spec, but some devices use this: */
1088 86500000,
1089 },
1090 { 13500000,
1091 27000000,
1092 40500000,
1093 54000000,
1094 81000000,
1095 108000000,
1096 121500000,
1097 135000000,
1098 162000000,
1099 180000000,
1100 },
1101 { 29300000,
1102 58500000,
1103 87800000,
1104 117000000,
1105 175500000,
1106 234000000,
1107 263300000,
1108 292500000,
1109 351000000,
1110 390000000,
1111 },
1112 { 58500000,
1113 117000000,
1114 175500000,
1115 234000000,
1116 351000000,
1117 468000000,
1118 526500000,
1119 585000000,
1120 702000000,
1121 780000000,
1122 },
1123 };
1124 u32 bitrate;
1125 int idx;
1126
1127 if (rate->mcs > 9)
1128 goto warn;
1129
1130 switch (rate->bw) {
1131 case RATE_INFO_BW_160:
1132 idx = 3;
1133 break;
1134 case RATE_INFO_BW_80:
1135 idx = 2;
1136 break;
1137 case RATE_INFO_BW_40:
1138 idx = 1;
1139 break;
1140 case RATE_INFO_BW_5:
1141 case RATE_INFO_BW_10:
1142 default:
1143 goto warn;
1144 case RATE_INFO_BW_20:
1145 idx = 0;
1146 }
1147
1148 bitrate = base[idx][rate->mcs];
1149 bitrate *= rate->nss;
1150
1151 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1152 bitrate = (bitrate / 9) * 10;
1153
1154 /* do NOT round down here */
1155 return (bitrate + 50000) / 100000;
1156 warn:
1157 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1158 rate->bw, rate->mcs, rate->nss);
1159 return 0;
1160}
1161
1162static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1163{
1164#define SCALE 2048
1165 u16 mcs_divisors[12] = {
1166 34133, /* 16.666666... */
1167 17067, /* 8.333333... */
1168 11378, /* 5.555555... */
1169 8533, /* 4.166666... */
1170 5689, /* 2.777777... */
1171 4267, /* 2.083333... */
1172 3923, /* 1.851851... */
1173 3413, /* 1.666666... */
1174 2844, /* 1.388888... */
1175 2560, /* 1.250000... */
1176 2276, /* 1.111111... */
1177 2048, /* 1.000000... */
1178 };
1179 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1180 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1181 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1182 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1183 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1184 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1185 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1186 u64 tmp;
1187 u32 result;
1188
1189 if (WARN_ON_ONCE(rate->mcs > 11))
1190 return 0;
1191
1192 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1193 return 0;
1194 if (WARN_ON_ONCE(rate->he_ru_alloc >
1195 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1196 return 0;
1197 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1198 return 0;
1199
1200 if (rate->bw == RATE_INFO_BW_160)
1201 result = rates_160M[rate->he_gi];
1202 else if (rate->bw == RATE_INFO_BW_80 ||
1203 (rate->bw == RATE_INFO_BW_HE_RU &&
1204 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1205 result = rates_969[rate->he_gi];
1206 else if (rate->bw == RATE_INFO_BW_40 ||
1207 (rate->bw == RATE_INFO_BW_HE_RU &&
1208 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1209 result = rates_484[rate->he_gi];
1210 else if (rate->bw == RATE_INFO_BW_20 ||
1211 (rate->bw == RATE_INFO_BW_HE_RU &&
1212 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1213 result = rates_242[rate->he_gi];
1214 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1215 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1216 result = rates_106[rate->he_gi];
1217 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1218 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1219 result = rates_52[rate->he_gi];
1220 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1221 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1222 result = rates_26[rate->he_gi];
1223 else {
1224 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1225 rate->bw, rate->he_ru_alloc);
1226 return 0;
1227 }
1228
1229 /* now scale to the appropriate MCS */
1230 tmp = result;
1231 tmp *= SCALE;
1232 do_div(tmp, mcs_divisors[rate->mcs]);
1233 result = tmp;
1234
1235 /* and take NSS, DCM into account */
1236 result = (result * rate->nss) / 8;
1237 if (rate->he_dcm)
1238 result /= 2;
1239
1240 return result;
1241}
1242
1243u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1244{
1245 if (rate->flags & RATE_INFO_FLAGS_MCS)
1246 return cfg80211_calculate_bitrate_ht(rate);
1247 if (rate->flags & RATE_INFO_FLAGS_60G)
1248 return cfg80211_calculate_bitrate_60g(rate);
1249 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1250 return cfg80211_calculate_bitrate_vht(rate);
1251 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1252 return cfg80211_calculate_bitrate_he(rate);
1253
1254 return rate->legacy;
1255}
1256EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1257
1258int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1259 enum ieee80211_p2p_attr_id attr,
1260 u8 *buf, unsigned int bufsize)
1261{
1262 u8 *out = buf;
1263 u16 attr_remaining = 0;
1264 bool desired_attr = false;
1265 u16 desired_len = 0;
1266
1267 while (len > 0) {
1268 unsigned int iedatalen;
1269 unsigned int copy;
1270 const u8 *iedata;
1271
1272 if (len < 2)
1273 return -EILSEQ;
1274 iedatalen = ies[1];
1275 if (iedatalen + 2 > len)
1276 return -EILSEQ;
1277
1278 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1279 goto cont;
1280
1281 if (iedatalen < 4)
1282 goto cont;
1283
1284 iedata = ies + 2;
1285
1286 /* check WFA OUI, P2P subtype */
1287 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1288 iedata[2] != 0x9a || iedata[3] != 0x09)
1289 goto cont;
1290
1291 iedatalen -= 4;
1292 iedata += 4;
1293
1294 /* check attribute continuation into this IE */
1295 copy = min_t(unsigned int, attr_remaining, iedatalen);
1296 if (copy && desired_attr) {
1297 desired_len += copy;
1298 if (out) {
1299 memcpy(out, iedata, min(bufsize, copy));
1300 out += min(bufsize, copy);
1301 bufsize -= min(bufsize, copy);
1302 }
1303
1304
1305 if (copy == attr_remaining)
1306 return desired_len;
1307 }
1308
1309 attr_remaining -= copy;
1310 if (attr_remaining)
1311 goto cont;
1312
1313 iedatalen -= copy;
1314 iedata += copy;
1315
1316 while (iedatalen > 0) {
1317 u16 attr_len;
1318
1319 /* P2P attribute ID & size must fit */
1320 if (iedatalen < 3)
1321 return -EILSEQ;
1322 desired_attr = iedata[0] == attr;
1323 attr_len = get_unaligned_le16(iedata + 1);
1324 iedatalen -= 3;
1325 iedata += 3;
1326
1327 copy = min_t(unsigned int, attr_len, iedatalen);
1328
1329 if (desired_attr) {
1330 desired_len += copy;
1331 if (out) {
1332 memcpy(out, iedata, min(bufsize, copy));
1333 out += min(bufsize, copy);
1334 bufsize -= min(bufsize, copy);
1335 }
1336
1337 if (copy == attr_len)
1338 return desired_len;
1339 }
1340
1341 iedata += copy;
1342 iedatalen -= copy;
1343 attr_remaining = attr_len - copy;
1344 }
1345
1346 cont:
1347 len -= ies[1] + 2;
1348 ies += ies[1] + 2;
1349 }
1350
1351 if (attr_remaining && desired_attr)
1352 return -EILSEQ;
1353
1354 return -ENOENT;
1355}
1356EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1357
1358static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1359{
1360 int i;
1361
1362 /* Make sure array values are legal */
1363 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1364 return false;
1365
1366 i = 0;
1367 while (i < n_ids) {
1368 if (ids[i] == WLAN_EID_EXTENSION) {
1369 if (id_ext && (ids[i + 1] == id))
1370 return true;
1371
1372 i += 2;
1373 continue;
1374 }
1375
1376 if (ids[i] == id && !id_ext)
1377 return true;
1378
1379 i++;
1380 }
1381 return false;
1382}
1383
1384static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1385{
1386 /* we assume a validly formed IEs buffer */
1387 u8 len = ies[pos + 1];
1388
1389 pos += 2 + len;
1390
1391 /* the IE itself must have 255 bytes for fragments to follow */
1392 if (len < 255)
1393 return pos;
1394
1395 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1396 len = ies[pos + 1];
1397 pos += 2 + len;
1398 }
1399
1400 return pos;
1401}
1402
1403size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1404 const u8 *ids, int n_ids,
1405 const u8 *after_ric, int n_after_ric,
1406 size_t offset)
1407{
1408 size_t pos = offset;
1409
1410 while (pos < ielen) {
1411 u8 ext = 0;
1412
1413 if (ies[pos] == WLAN_EID_EXTENSION)
1414 ext = 2;
1415 if ((pos + ext) >= ielen)
1416 break;
1417
1418 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1419 ies[pos] == WLAN_EID_EXTENSION))
1420 break;
1421
1422 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1423 pos = skip_ie(ies, ielen, pos);
1424
1425 while (pos < ielen) {
1426 if (ies[pos] == WLAN_EID_EXTENSION)
1427 ext = 2;
1428 else
1429 ext = 0;
1430
1431 if ((pos + ext) >= ielen)
1432 break;
1433
1434 if (!ieee80211_id_in_list(after_ric,
1435 n_after_ric,
1436 ies[pos + ext],
1437 ext == 2))
1438 pos = skip_ie(ies, ielen, pos);
1439 else
1440 break;
1441 }
1442 } else {
1443 pos = skip_ie(ies, ielen, pos);
1444 }
1445 }
1446
1447 return pos;
1448}
1449EXPORT_SYMBOL(ieee80211_ie_split_ric);
1450
1451bool ieee80211_operating_class_to_band(u8 operating_class,
1452 enum nl80211_band *band)
1453{
1454 switch (operating_class) {
1455 case 112:
1456 case 115 ... 127:
1457 case 128 ... 130:
1458 *band = NL80211_BAND_5GHZ;
1459 return true;
1460 case 81:
1461 case 82:
1462 case 83:
1463 case 84:
1464 *band = NL80211_BAND_2GHZ;
1465 return true;
1466 case 180:
1467 *band = NL80211_BAND_60GHZ;
1468 return true;
1469 }
1470
1471 return false;
1472}
1473EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1474
1475bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1476 u8 *op_class)
1477{
1478 u8 vht_opclass;
1479 u32 freq = chandef->center_freq1;
1480
1481 if (freq >= 2412 && freq <= 2472) {
1482 if (chandef->width > NL80211_CHAN_WIDTH_40)
1483 return false;
1484
1485 /* 2.407 GHz, channels 1..13 */
1486 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1487 if (freq > chandef->chan->center_freq)
1488 *op_class = 83; /* HT40+ */
1489 else
1490 *op_class = 84; /* HT40- */
1491 } else {
1492 *op_class = 81;
1493 }
1494
1495 return true;
1496 }
1497
1498 if (freq == 2484) {
1499 if (chandef->width > NL80211_CHAN_WIDTH_40)
1500 return false;
1501
1502 *op_class = 82; /* channel 14 */
1503 return true;
1504 }
1505
1506 switch (chandef->width) {
1507 case NL80211_CHAN_WIDTH_80:
1508 vht_opclass = 128;
1509 break;
1510 case NL80211_CHAN_WIDTH_160:
1511 vht_opclass = 129;
1512 break;
1513 case NL80211_CHAN_WIDTH_80P80:
1514 vht_opclass = 130;
1515 break;
1516 case NL80211_CHAN_WIDTH_10:
1517 case NL80211_CHAN_WIDTH_5:
1518 return false; /* unsupported for now */
1519 default:
1520 vht_opclass = 0;
1521 break;
1522 }
1523
1524 /* 5 GHz, channels 36..48 */
1525 if (freq >= 5180 && freq <= 5240) {
1526 if (vht_opclass) {
1527 *op_class = vht_opclass;
1528 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1529 if (freq > chandef->chan->center_freq)
1530 *op_class = 116;
1531 else
1532 *op_class = 117;
1533 } else {
1534 *op_class = 115;
1535 }
1536
1537 return true;
1538 }
1539
1540 /* 5 GHz, channels 52..64 */
1541 if (freq >= 5260 && freq <= 5320) {
1542 if (vht_opclass) {
1543 *op_class = vht_opclass;
1544 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1545 if (freq > chandef->chan->center_freq)
1546 *op_class = 119;
1547 else
1548 *op_class = 120;
1549 } else {
1550 *op_class = 118;
1551 }
1552
1553 return true;
1554 }
1555
1556 /* 5 GHz, channels 100..144 */
1557 if (freq >= 5500 && freq <= 5720) {
1558 if (vht_opclass) {
1559 *op_class = vht_opclass;
1560 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1561 if (freq > chandef->chan->center_freq)
1562 *op_class = 122;
1563 else
1564 *op_class = 123;
1565 } else {
1566 *op_class = 121;
1567 }
1568
1569 return true;
1570 }
1571
1572 /* 5 GHz, channels 149..169 */
1573 if (freq >= 5745 && freq <= 5845) {
1574 if (vht_opclass) {
1575 *op_class = vht_opclass;
1576 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1577 if (freq > chandef->chan->center_freq)
1578 *op_class = 126;
1579 else
1580 *op_class = 127;
1581 } else if (freq <= 5805) {
1582 *op_class = 124;
1583 } else {
1584 *op_class = 125;
1585 }
1586
1587 return true;
1588 }
1589
1590 /* 56.16 GHz, channel 1..4 */
1591 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1592 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1593 return false;
1594
1595 *op_class = 180;
1596 return true;
1597 }
1598
1599 /* not supported yet */
1600 return false;
1601}
1602EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1603
1604static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1605 u32 *beacon_int_gcd,
1606 bool *beacon_int_different)
1607{
1608 struct wireless_dev *wdev;
1609
1610 *beacon_int_gcd = 0;
1611 *beacon_int_different = false;
1612
1613 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1614 if (!wdev->beacon_interval)
1615 continue;
1616
1617 if (!*beacon_int_gcd) {
1618 *beacon_int_gcd = wdev->beacon_interval;
1619 continue;
1620 }
1621
1622 if (wdev->beacon_interval == *beacon_int_gcd)
1623 continue;
1624
1625 *beacon_int_different = true;
1626 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1627 }
1628
1629 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1630 if (*beacon_int_gcd)
1631 *beacon_int_different = true;
1632 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1633 }
1634}
1635
1636int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1637 enum nl80211_iftype iftype, u32 beacon_int)
1638{
1639 /*
1640 * This is just a basic pre-condition check; if interface combinations
1641 * are possible the driver must already be checking those with a call
1642 * to cfg80211_check_combinations(), in which case we'll validate more
1643 * through the cfg80211_calculate_bi_data() call and code in
1644 * cfg80211_iter_combinations().
1645 */
1646
1647 if (beacon_int < 10 || beacon_int > 10000)
1648 return -EINVAL;
1649
1650 return 0;
1651}
1652
1653int cfg80211_iter_combinations(struct wiphy *wiphy,
1654 struct iface_combination_params *params,
1655 void (*iter)(const struct ieee80211_iface_combination *c,
1656 void *data),
1657 void *data)
1658{
1659 const struct ieee80211_regdomain *regdom;
1660 enum nl80211_dfs_regions region = 0;
1661 int i, j, iftype;
1662 int num_interfaces = 0;
1663 u32 used_iftypes = 0;
1664 u32 beacon_int_gcd;
1665 bool beacon_int_different;
1666
1667 /*
1668 * This is a bit strange, since the iteration used to rely only on
1669 * the data given by the driver, but here it now relies on context,
1670 * in form of the currently operating interfaces.
1671 * This is OK for all current users, and saves us from having to
1672 * push the GCD calculations into all the drivers.
1673 * In the future, this should probably rely more on data that's in
1674 * cfg80211 already - the only thing not would appear to be any new
1675 * interfaces (while being brought up) and channel/radar data.
1676 */
1677 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1678 &beacon_int_gcd, &beacon_int_different);
1679
1680 if (params->radar_detect) {
1681 rcu_read_lock();
1682 regdom = rcu_dereference(cfg80211_regdomain);
1683 if (regdom)
1684 region = regdom->dfs_region;
1685 rcu_read_unlock();
1686 }
1687
1688 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1689 num_interfaces += params->iftype_num[iftype];
1690 if (params->iftype_num[iftype] > 0 &&
1691 !(wiphy->software_iftypes & BIT(iftype)))
1692 used_iftypes |= BIT(iftype);
1693 }
1694
1695 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1696 const struct ieee80211_iface_combination *c;
1697 struct ieee80211_iface_limit *limits;
1698 u32 all_iftypes = 0;
1699
1700 c = &wiphy->iface_combinations[i];
1701
1702 if (num_interfaces > c->max_interfaces)
1703 continue;
1704 if (params->num_different_channels > c->num_different_channels)
1705 continue;
1706
1707 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1708 GFP_KERNEL);
1709 if (!limits)
1710 return -ENOMEM;
1711
1712 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1713 if (wiphy->software_iftypes & BIT(iftype))
1714 continue;
1715 for (j = 0; j < c->n_limits; j++) {
1716 all_iftypes |= limits[j].types;
1717 if (!(limits[j].types & BIT(iftype)))
1718 continue;
1719 if (limits[j].max < params->iftype_num[iftype])
1720 goto cont;
1721 limits[j].max -= params->iftype_num[iftype];
1722 }
1723 }
1724
1725 if (params->radar_detect !=
1726 (c->radar_detect_widths & params->radar_detect))
1727 goto cont;
1728
1729 if (params->radar_detect && c->radar_detect_regions &&
1730 !(c->radar_detect_regions & BIT(region)))
1731 goto cont;
1732
1733 /* Finally check that all iftypes that we're currently
1734 * using are actually part of this combination. If they
1735 * aren't then we can't use this combination and have
1736 * to continue to the next.
1737 */
1738 if ((all_iftypes & used_iftypes) != used_iftypes)
1739 goto cont;
1740
1741 if (beacon_int_gcd) {
1742 if (c->beacon_int_min_gcd &&
1743 beacon_int_gcd < c->beacon_int_min_gcd)
1744 goto cont;
1745 if (!c->beacon_int_min_gcd && beacon_int_different)
1746 goto cont;
1747 }
1748
1749 /* This combination covered all interface types and
1750 * supported the requested numbers, so we're good.
1751 */
1752
1753 (*iter)(c, data);
1754 cont:
1755 kfree(limits);
1756 }
1757
1758 return 0;
1759}
1760EXPORT_SYMBOL(cfg80211_iter_combinations);
1761
1762static void
1763cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1764 void *data)
1765{
1766 int *num = data;
1767 (*num)++;
1768}
1769
1770int cfg80211_check_combinations(struct wiphy *wiphy,
1771 struct iface_combination_params *params)
1772{
1773 int err, num = 0;
1774
1775 err = cfg80211_iter_combinations(wiphy, params,
1776 cfg80211_iter_sum_ifcombs, &num);
1777 if (err)
1778 return err;
1779 if (num == 0)
1780 return -EBUSY;
1781
1782 return 0;
1783}
1784EXPORT_SYMBOL(cfg80211_check_combinations);
1785
1786int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1787 const u8 *rates, unsigned int n_rates,
1788 u32 *mask)
1789{
1790 int i, j;
1791
1792 if (!sband)
1793 return -EINVAL;
1794
1795 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1796 return -EINVAL;
1797
1798 *mask = 0;
1799
1800 for (i = 0; i < n_rates; i++) {
1801 int rate = (rates[i] & 0x7f) * 5;
1802 bool found = false;
1803
1804 for (j = 0; j < sband->n_bitrates; j++) {
1805 if (sband->bitrates[j].bitrate == rate) {
1806 found = true;
1807 *mask |= BIT(j);
1808 break;
1809 }
1810 }
1811 if (!found)
1812 return -EINVAL;
1813 }
1814
1815 /*
1816 * mask must have at least one bit set here since we
1817 * didn't accept a 0-length rates array nor allowed
1818 * entries in the array that didn't exist
1819 */
1820
1821 return 0;
1822}
1823
1824unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1825{
1826 enum nl80211_band band;
1827 unsigned int n_channels = 0;
1828
1829 for (band = 0; band < NUM_NL80211_BANDS; band++)
1830 if (wiphy->bands[band])
1831 n_channels += wiphy->bands[band]->n_channels;
1832
1833 return n_channels;
1834}
1835EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1836
1837int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1838 struct station_info *sinfo)
1839{
1840 struct cfg80211_registered_device *rdev;
1841 struct wireless_dev *wdev;
1842
1843 wdev = dev->ieee80211_ptr;
1844 if (!wdev)
1845 return -EOPNOTSUPP;
1846
1847 rdev = wiphy_to_rdev(wdev->wiphy);
1848 if (!rdev->ops->get_station)
1849 return -EOPNOTSUPP;
1850
1851 memset(sinfo, 0, sizeof(*sinfo));
1852
1853 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1854}
1855EXPORT_SYMBOL(cfg80211_get_station);
1856
1857void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1858{
1859 int i;
1860
1861 if (!f)
1862 return;
1863
1864 kfree(f->serv_spec_info);
1865 kfree(f->srf_bf);
1866 kfree(f->srf_macs);
1867 for (i = 0; i < f->num_rx_filters; i++)
1868 kfree(f->rx_filters[i].filter);
1869
1870 for (i = 0; i < f->num_tx_filters; i++)
1871 kfree(f->tx_filters[i].filter);
1872
1873 kfree(f->rx_filters);
1874 kfree(f->tx_filters);
1875 kfree(f);
1876}
1877EXPORT_SYMBOL(cfg80211_free_nan_func);
1878
1879bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1880 u32 center_freq_khz, u32 bw_khz)
1881{
1882 u32 start_freq_khz, end_freq_khz;
1883
1884 start_freq_khz = center_freq_khz - (bw_khz / 2);
1885 end_freq_khz = center_freq_khz + (bw_khz / 2);
1886
1887 if (start_freq_khz >= freq_range->start_freq_khz &&
1888 end_freq_khz <= freq_range->end_freq_khz)
1889 return true;
1890
1891 return false;
1892}
1893
1894int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1895{
1896 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1897 sizeof(*(sinfo->pertid)),
1898 gfp);
1899 if (!sinfo->pertid)
1900 return -ENOMEM;
1901
1902 return 0;
1903}
1904EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1905
1906/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1907/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1908const unsigned char rfc1042_header[] __aligned(2) =
1909 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1910EXPORT_SYMBOL(rfc1042_header);
1911
1912/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1913const unsigned char bridge_tunnel_header[] __aligned(2) =
1914 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1915EXPORT_SYMBOL(bridge_tunnel_header);
1916
1917/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1918struct iapp_layer2_update {
1919 u8 da[ETH_ALEN]; /* broadcast */
1920 u8 sa[ETH_ALEN]; /* STA addr */
1921 __be16 len; /* 6 */
1922 u8 dsap; /* 0 */
1923 u8 ssap; /* 0 */
1924 u8 control;
1925 u8 xid_info[3];
1926} __packed;
1927
1928void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1929{
1930 struct iapp_layer2_update *msg;
1931 struct sk_buff *skb;
1932
1933 /* Send Level 2 Update Frame to update forwarding tables in layer 2
1934 * bridge devices */
1935
1936 skb = dev_alloc_skb(sizeof(*msg));
1937 if (!skb)
1938 return;
1939 msg = skb_put(skb, sizeof(*msg));
1940
1941 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1942 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1943
1944 eth_broadcast_addr(msg->da);
1945 ether_addr_copy(msg->sa, addr);
1946 msg->len = htons(6);
1947 msg->dsap = 0;
1948 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
1949 msg->control = 0xaf; /* XID response lsb.1111F101.
1950 * F=0 (no poll command; unsolicited frame) */
1951 msg->xid_info[0] = 0x81; /* XID format identifier */
1952 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
1953 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
1954
1955 skb->dev = dev;
1956 skb->protocol = eth_type_trans(skb, dev);
1957 memset(skb->cb, 0, sizeof(skb->cb));
1958 netif_rx_ni(skb);
1959}
1960EXPORT_SYMBOL(cfg80211_send_layer2_update);
1961
1962int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1963 enum ieee80211_vht_chanwidth bw,
1964 int mcs, bool ext_nss_bw_capable)
1965{
1966 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1967 int max_vht_nss = 0;
1968 int ext_nss_bw;
1969 int supp_width;
1970 int i, mcs_encoding;
1971
1972 if (map == 0xffff)
1973 return 0;
1974
1975 if (WARN_ON(mcs > 9))
1976 return 0;
1977 if (mcs <= 7)
1978 mcs_encoding = 0;
1979 else if (mcs == 8)
1980 mcs_encoding = 1;
1981 else
1982 mcs_encoding = 2;
1983
1984 /* find max_vht_nss for the given MCS */
1985 for (i = 7; i >= 0; i--) {
1986 int supp = (map >> (2 * i)) & 3;
1987
1988 if (supp == 3)
1989 continue;
1990
1991 if (supp >= mcs_encoding) {
1992 max_vht_nss = i;
1993 break;
1994 }
1995 }
1996
1997 if (!(cap->supp_mcs.tx_mcs_map &
1998 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
1999 return max_vht_nss;
2000
2001 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2002 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2003 supp_width = le32_get_bits(cap->vht_cap_info,
2004 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2005
2006 /* if not capable, treat ext_nss_bw as 0 */
2007 if (!ext_nss_bw_capable)
2008 ext_nss_bw = 0;
2009
2010 /* This is invalid */
2011 if (supp_width == 3)
2012 return 0;
2013
2014 /* This is an invalid combination so pretend nothing is supported */
2015 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2016 return 0;
2017
2018 /*
2019 * Cover all the special cases according to IEEE 802.11-2016
2020 * Table 9-250. All other cases are either factor of 1 or not
2021 * valid/supported.
2022 */
2023 switch (bw) {
2024 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2025 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2026 if ((supp_width == 1 || supp_width == 2) &&
2027 ext_nss_bw == 3)
2028 return 2 * max_vht_nss;
2029 break;
2030 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2031 if (supp_width == 0 &&
2032 (ext_nss_bw == 1 || ext_nss_bw == 2))
2033 return max_vht_nss / 2;
2034 if (supp_width == 0 &&
2035 ext_nss_bw == 3)
2036 return (3 * max_vht_nss) / 4;
2037 if (supp_width == 1 &&
2038 ext_nss_bw == 3)
2039 return 2 * max_vht_nss;
2040 break;
2041 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2042 if (supp_width == 0 && ext_nss_bw == 1)
2043 return 0; /* not possible */
2044 if (supp_width == 0 &&
2045 ext_nss_bw == 2)
2046 return max_vht_nss / 2;
2047 if (supp_width == 0 &&
2048 ext_nss_bw == 3)
2049 return (3 * max_vht_nss) / 4;
2050 if (supp_width == 1 &&
2051 ext_nss_bw == 0)
2052 return 0; /* not possible */
2053 if (supp_width == 1 &&
2054 ext_nss_bw == 1)
2055 return max_vht_nss / 2;
2056 if (supp_width == 1 &&
2057 ext_nss_bw == 2)
2058 return (3 * max_vht_nss) / 4;
2059 break;
2060 }
2061
2062 /* not covered or invalid combination received */
2063 return max_vht_nss;
2064}
2065EXPORT_SYMBOL(ieee80211_get_vht_max_nss);