Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138{
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140}
141
142const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143{
144 return rcu_dereference_rtnl(wiphy->regd);
145}
146
147static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148{
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160}
161
162enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163{
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183out:
184 return regd->dfs_region;
185}
186
187static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188{
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192}
193
194static struct regulatory_request *get_last_request(void)
195{
196 return rcu_dereference_rtnl(last_request);
197}
198
199/* Used to queue up regulatory hints */
200static LIST_HEAD(reg_requests_list);
201static spinlock_t reg_requests_lock;
202
203/* Used to queue up beacon hints for review */
204static LIST_HEAD(reg_pending_beacons);
205static spinlock_t reg_pending_beacons_lock;
206
207/* Used to keep track of processed beacon hints */
208static LIST_HEAD(reg_beacon_list);
209
210struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213};
214
215static void reg_check_chans_work(struct work_struct *work);
216static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218static void reg_todo(struct work_struct *work);
219static DECLARE_WORK(reg_work, reg_todo);
220
221/* We keep a static world regulatory domain in case of the absence of CRDA */
222static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259};
260
261/* protected by RTNL */
262static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265static char *ieee80211_regdom = "00";
266static char user_alpha2[2];
267static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269module_param(ieee80211_regdom, charp, 0444);
270MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272static void reg_free_request(struct regulatory_request *request)
273{
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279}
280
281static void reg_free_last_request(void)
282{
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287}
288
289static void reg_update_last_request(struct regulatory_request *request)
290{
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299}
300
301static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303{
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328}
329
330/*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
334static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335{
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345}
346
347bool is_world_regdom(const char *alpha2)
348{
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352}
353
354static bool is_alpha2_set(const char *alpha2)
355{
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359}
360
361static bool is_unknown_alpha2(const char *alpha2)
362{
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370}
371
372static bool is_intersected_alpha2(const char *alpha2)
373{
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382}
383
384static bool is_an_alpha2(const char *alpha2)
385{
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389}
390
391static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392{
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396}
397
398static bool regdom_changes(const char *alpha2)
399{
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405}
406
407/*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
412static bool is_user_regdom_saved(void)
413{
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424}
425
426static const struct ieee80211_regdomain *
427reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428{
429 struct ieee80211_regdomain *regd;
430 int size_of_regd;
431 unsigned int i;
432
433 size_of_regd =
434 sizeof(struct ieee80211_regdomain) +
435 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436
437 regd = kzalloc(size_of_regd, GFP_KERNEL);
438 if (!regd)
439 return ERR_PTR(-ENOMEM);
440
441 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442
443 for (i = 0; i < src_regd->n_reg_rules; i++)
444 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
445 sizeof(struct ieee80211_reg_rule));
446
447 return regd;
448}
449
450static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
451{
452 ASSERT_RTNL();
453
454 if (!IS_ERR(cfg80211_user_regdom))
455 kfree(cfg80211_user_regdom);
456 cfg80211_user_regdom = reg_copy_regd(rd);
457}
458
459struct reg_regdb_apply_request {
460 struct list_head list;
461 const struct ieee80211_regdomain *regdom;
462};
463
464static LIST_HEAD(reg_regdb_apply_list);
465static DEFINE_MUTEX(reg_regdb_apply_mutex);
466
467static void reg_regdb_apply(struct work_struct *work)
468{
469 struct reg_regdb_apply_request *request;
470
471 rtnl_lock();
472
473 mutex_lock(®_regdb_apply_mutex);
474 while (!list_empty(®_regdb_apply_list)) {
475 request = list_first_entry(®_regdb_apply_list,
476 struct reg_regdb_apply_request,
477 list);
478 list_del(&request->list);
479
480 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
481 kfree(request);
482 }
483 mutex_unlock(®_regdb_apply_mutex);
484
485 rtnl_unlock();
486}
487
488static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
489
490static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
491{
492 struct reg_regdb_apply_request *request;
493
494 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495 if (!request) {
496 kfree(regdom);
497 return -ENOMEM;
498 }
499
500 request->regdom = regdom;
501
502 mutex_lock(®_regdb_apply_mutex);
503 list_add_tail(&request->list, ®_regdb_apply_list);
504 mutex_unlock(®_regdb_apply_mutex);
505
506 schedule_work(®_regdb_work);
507 return 0;
508}
509
510#ifdef CONFIG_CFG80211_CRDA_SUPPORT
511/* Max number of consecutive attempts to communicate with CRDA */
512#define REG_MAX_CRDA_TIMEOUTS 10
513
514static u32 reg_crda_timeouts;
515
516static void crda_timeout_work(struct work_struct *work);
517static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
518
519static void crda_timeout_work(struct work_struct *work)
520{
521 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
522 rtnl_lock();
523 reg_crda_timeouts++;
524 restore_regulatory_settings(true, false);
525 rtnl_unlock();
526}
527
528static void cancel_crda_timeout(void)
529{
530 cancel_delayed_work(&crda_timeout);
531}
532
533static void cancel_crda_timeout_sync(void)
534{
535 cancel_delayed_work_sync(&crda_timeout);
536}
537
538static void reset_crda_timeouts(void)
539{
540 reg_crda_timeouts = 0;
541}
542
543/*
544 * This lets us keep regulatory code which is updated on a regulatory
545 * basis in userspace.
546 */
547static int call_crda(const char *alpha2)
548{
549 char country[12];
550 char *env[] = { country, NULL };
551 int ret;
552
553 snprintf(country, sizeof(country), "COUNTRY=%c%c",
554 alpha2[0], alpha2[1]);
555
556 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
557 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
558 return -EINVAL;
559 }
560
561 if (!is_world_regdom((char *) alpha2))
562 pr_debug("Calling CRDA for country: %c%c\n",
563 alpha2[0], alpha2[1]);
564 else
565 pr_debug("Calling CRDA to update world regulatory domain\n");
566
567 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
568 if (ret)
569 return ret;
570
571 queue_delayed_work(system_power_efficient_wq,
572 &crda_timeout, msecs_to_jiffies(3142));
573 return 0;
574}
575#else
576static inline void cancel_crda_timeout(void) {}
577static inline void cancel_crda_timeout_sync(void) {}
578static inline void reset_crda_timeouts(void) {}
579static inline int call_crda(const char *alpha2)
580{
581 return -ENODATA;
582}
583#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
584
585/* code to directly load a firmware database through request_firmware */
586static const struct fwdb_header *regdb;
587
588struct fwdb_country {
589 u8 alpha2[2];
590 __be16 coll_ptr;
591 /* this struct cannot be extended */
592} __packed __aligned(4);
593
594struct fwdb_collection {
595 u8 len;
596 u8 n_rules;
597 u8 dfs_region;
598 /* no optional data yet */
599 /* aligned to 2, then followed by __be16 array of rule pointers */
600} __packed __aligned(4);
601
602enum fwdb_flags {
603 FWDB_FLAG_NO_OFDM = BIT(0),
604 FWDB_FLAG_NO_OUTDOOR = BIT(1),
605 FWDB_FLAG_DFS = BIT(2),
606 FWDB_FLAG_NO_IR = BIT(3),
607 FWDB_FLAG_AUTO_BW = BIT(4),
608};
609
610struct fwdb_wmm_ac {
611 u8 ecw;
612 u8 aifsn;
613 __be16 cot;
614} __packed;
615
616struct fwdb_wmm_rule {
617 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
618 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
619} __packed;
620
621struct fwdb_rule {
622 u8 len;
623 u8 flags;
624 __be16 max_eirp;
625 __be32 start, end, max_bw;
626 /* start of optional data */
627 __be16 cac_timeout;
628 __be16 wmm_ptr;
629} __packed __aligned(4);
630
631#define FWDB_MAGIC 0x52474442
632#define FWDB_VERSION 20
633
634struct fwdb_header {
635 __be32 magic;
636 __be32 version;
637 struct fwdb_country country[];
638} __packed __aligned(4);
639
640static int ecw2cw(int ecw)
641{
642 return (1 << ecw) - 1;
643}
644
645static bool valid_wmm(struct fwdb_wmm_rule *rule)
646{
647 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
648 int i;
649
650 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
651 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
652 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
653 u8 aifsn = ac[i].aifsn;
654
655 if (cw_min >= cw_max)
656 return false;
657
658 if (aifsn < 1)
659 return false;
660 }
661
662 return true;
663}
664
665static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
666{
667 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
668
669 if ((u8 *)rule + sizeof(rule->len) > data + size)
670 return false;
671
672 /* mandatory fields */
673 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
674 return false;
675 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
676 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
677 struct fwdb_wmm_rule *wmm;
678
679 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
680 return false;
681
682 wmm = (void *)(data + wmm_ptr);
683
684 if (!valid_wmm(wmm))
685 return false;
686 }
687 return true;
688}
689
690static bool valid_country(const u8 *data, unsigned int size,
691 const struct fwdb_country *country)
692{
693 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
694 struct fwdb_collection *coll = (void *)(data + ptr);
695 __be16 *rules_ptr;
696 unsigned int i;
697
698 /* make sure we can read len/n_rules */
699 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
700 return false;
701
702 /* make sure base struct and all rules fit */
703 if ((u8 *)coll + ALIGN(coll->len, 2) +
704 (coll->n_rules * 2) > data + size)
705 return false;
706
707 /* mandatory fields must exist */
708 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
709 return false;
710
711 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
712
713 for (i = 0; i < coll->n_rules; i++) {
714 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
715
716 if (!valid_rule(data, size, rule_ptr))
717 return false;
718 }
719
720 return true;
721}
722
723#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
724static struct key *builtin_regdb_keys;
725
726static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
727{
728 const u8 *end = p + buflen;
729 size_t plen;
730 key_ref_t key;
731
732 while (p < end) {
733 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
734 * than 256 bytes in size.
735 */
736 if (end - p < 4)
737 goto dodgy_cert;
738 if (p[0] != 0x30 &&
739 p[1] != 0x82)
740 goto dodgy_cert;
741 plen = (p[2] << 8) | p[3];
742 plen += 4;
743 if (plen > end - p)
744 goto dodgy_cert;
745
746 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
747 "asymmetric", NULL, p, plen,
748 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
749 KEY_USR_VIEW | KEY_USR_READ),
750 KEY_ALLOC_NOT_IN_QUOTA |
751 KEY_ALLOC_BUILT_IN |
752 KEY_ALLOC_BYPASS_RESTRICTION);
753 if (IS_ERR(key)) {
754 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
755 PTR_ERR(key));
756 } else {
757 pr_notice("Loaded X.509 cert '%s'\n",
758 key_ref_to_ptr(key)->description);
759 key_ref_put(key);
760 }
761 p += plen;
762 }
763
764 return;
765
766dodgy_cert:
767 pr_err("Problem parsing in-kernel X.509 certificate list\n");
768}
769
770static int __init load_builtin_regdb_keys(void)
771{
772 builtin_regdb_keys =
773 keyring_alloc(".builtin_regdb_keys",
774 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
775 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
776 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
777 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
778 if (IS_ERR(builtin_regdb_keys))
779 return PTR_ERR(builtin_regdb_keys);
780
781 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
782
783#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
784 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
785#endif
786#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
787 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
788 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
789#endif
790
791 return 0;
792}
793
794static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
795{
796 const struct firmware *sig;
797 bool result;
798
799 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
800 return false;
801
802 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
803 builtin_regdb_keys,
804 VERIFYING_UNSPECIFIED_SIGNATURE,
805 NULL, NULL) == 0;
806
807 release_firmware(sig);
808
809 return result;
810}
811
812static void free_regdb_keyring(void)
813{
814 key_put(builtin_regdb_keys);
815}
816#else
817static int load_builtin_regdb_keys(void)
818{
819 return 0;
820}
821
822static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
823{
824 return true;
825}
826
827static void free_regdb_keyring(void)
828{
829}
830#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
831
832static bool valid_regdb(const u8 *data, unsigned int size)
833{
834 const struct fwdb_header *hdr = (void *)data;
835 const struct fwdb_country *country;
836
837 if (size < sizeof(*hdr))
838 return false;
839
840 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
841 return false;
842
843 if (hdr->version != cpu_to_be32(FWDB_VERSION))
844 return false;
845
846 if (!regdb_has_valid_signature(data, size))
847 return false;
848
849 country = &hdr->country[0];
850 while ((u8 *)(country + 1) <= data + size) {
851 if (!country->coll_ptr)
852 break;
853 if (!valid_country(data, size, country))
854 return false;
855 country++;
856 }
857
858 return true;
859}
860
861static void set_wmm_rule(const struct fwdb_header *db,
862 const struct fwdb_country *country,
863 const struct fwdb_rule *rule,
864 struct ieee80211_reg_rule *rrule)
865{
866 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
867 struct fwdb_wmm_rule *wmm;
868 unsigned int i, wmm_ptr;
869
870 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
871 wmm = (void *)((u8 *)db + wmm_ptr);
872
873 if (!valid_wmm(wmm)) {
874 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
875 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
876 country->alpha2[0], country->alpha2[1]);
877 return;
878 }
879
880 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
881 wmm_rule->client[i].cw_min =
882 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
883 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
884 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
885 wmm_rule->client[i].cot =
886 1000 * be16_to_cpu(wmm->client[i].cot);
887 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
888 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
889 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
890 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
891 }
892
893 rrule->has_wmm = true;
894}
895
896static int __regdb_query_wmm(const struct fwdb_header *db,
897 const struct fwdb_country *country, int freq,
898 struct ieee80211_reg_rule *rrule)
899{
900 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
901 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
902 int i;
903
904 for (i = 0; i < coll->n_rules; i++) {
905 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
906 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
907 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
908
909 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
910 continue;
911
912 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
913 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
914 set_wmm_rule(db, country, rule, rrule);
915 return 0;
916 }
917 }
918
919 return -ENODATA;
920}
921
922int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
923{
924 const struct fwdb_header *hdr = regdb;
925 const struct fwdb_country *country;
926
927 if (!regdb)
928 return -ENODATA;
929
930 if (IS_ERR(regdb))
931 return PTR_ERR(regdb);
932
933 country = &hdr->country[0];
934 while (country->coll_ptr) {
935 if (alpha2_equal(alpha2, country->alpha2))
936 return __regdb_query_wmm(regdb, country, freq, rule);
937
938 country++;
939 }
940
941 return -ENODATA;
942}
943EXPORT_SYMBOL(reg_query_regdb_wmm);
944
945static int regdb_query_country(const struct fwdb_header *db,
946 const struct fwdb_country *country)
947{
948 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
949 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
950 struct ieee80211_regdomain *regdom;
951 unsigned int size_of_regd, i;
952
953 size_of_regd = sizeof(struct ieee80211_regdomain) +
954 coll->n_rules * sizeof(struct ieee80211_reg_rule);
955
956 regdom = kzalloc(size_of_regd, GFP_KERNEL);
957 if (!regdom)
958 return -ENOMEM;
959
960 regdom->n_reg_rules = coll->n_rules;
961 regdom->alpha2[0] = country->alpha2[0];
962 regdom->alpha2[1] = country->alpha2[1];
963 regdom->dfs_region = coll->dfs_region;
964
965 for (i = 0; i < regdom->n_reg_rules; i++) {
966 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
967 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
968 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
969 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
970
971 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
972 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
973 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
974
975 rrule->power_rule.max_antenna_gain = 0;
976 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
977
978 rrule->flags = 0;
979 if (rule->flags & FWDB_FLAG_NO_OFDM)
980 rrule->flags |= NL80211_RRF_NO_OFDM;
981 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
982 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
983 if (rule->flags & FWDB_FLAG_DFS)
984 rrule->flags |= NL80211_RRF_DFS;
985 if (rule->flags & FWDB_FLAG_NO_IR)
986 rrule->flags |= NL80211_RRF_NO_IR;
987 if (rule->flags & FWDB_FLAG_AUTO_BW)
988 rrule->flags |= NL80211_RRF_AUTO_BW;
989
990 rrule->dfs_cac_ms = 0;
991
992 /* handle optional data */
993 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
994 rrule->dfs_cac_ms =
995 1000 * be16_to_cpu(rule->cac_timeout);
996 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
997 set_wmm_rule(db, country, rule, rrule);
998 }
999
1000 return reg_schedule_apply(regdom);
1001}
1002
1003static int query_regdb(const char *alpha2)
1004{
1005 const struct fwdb_header *hdr = regdb;
1006 const struct fwdb_country *country;
1007
1008 ASSERT_RTNL();
1009
1010 if (IS_ERR(regdb))
1011 return PTR_ERR(regdb);
1012
1013 country = &hdr->country[0];
1014 while (country->coll_ptr) {
1015 if (alpha2_equal(alpha2, country->alpha2))
1016 return regdb_query_country(regdb, country);
1017 country++;
1018 }
1019
1020 return -ENODATA;
1021}
1022
1023static void regdb_fw_cb(const struct firmware *fw, void *context)
1024{
1025 int set_error = 0;
1026 bool restore = true;
1027 void *db;
1028
1029 if (!fw) {
1030 pr_info("failed to load regulatory.db\n");
1031 set_error = -ENODATA;
1032 } else if (!valid_regdb(fw->data, fw->size)) {
1033 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1034 set_error = -EINVAL;
1035 }
1036
1037 rtnl_lock();
1038 if (regdb && !IS_ERR(regdb)) {
1039 /* negative case - a bug
1040 * positive case - can happen due to race in case of multiple cb's in
1041 * queue, due to usage of asynchronous callback
1042 *
1043 * Either case, just restore and free new db.
1044 */
1045 } else if (set_error) {
1046 regdb = ERR_PTR(set_error);
1047 } else if (fw) {
1048 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1049 if (db) {
1050 regdb = db;
1051 restore = context && query_regdb(context);
1052 } else {
1053 restore = true;
1054 }
1055 }
1056
1057 if (restore)
1058 restore_regulatory_settings(true, false);
1059
1060 rtnl_unlock();
1061
1062 kfree(context);
1063
1064 release_firmware(fw);
1065}
1066
1067static int query_regdb_file(const char *alpha2)
1068{
1069 ASSERT_RTNL();
1070
1071 if (regdb)
1072 return query_regdb(alpha2);
1073
1074 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075 if (!alpha2)
1076 return -ENOMEM;
1077
1078 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079 ®_pdev->dev, GFP_KERNEL,
1080 (void *)alpha2, regdb_fw_cb);
1081}
1082
1083int reg_reload_regdb(void)
1084{
1085 const struct firmware *fw;
1086 void *db;
1087 int err;
1088
1089 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1090 if (err)
1091 return err;
1092
1093 if (!valid_regdb(fw->data, fw->size)) {
1094 err = -ENODATA;
1095 goto out;
1096 }
1097
1098 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099 if (!db) {
1100 err = -ENOMEM;
1101 goto out;
1102 }
1103
1104 rtnl_lock();
1105 if (!IS_ERR_OR_NULL(regdb))
1106 kfree(regdb);
1107 regdb = db;
1108 rtnl_unlock();
1109
1110 out:
1111 release_firmware(fw);
1112 return err;
1113}
1114
1115static bool reg_query_database(struct regulatory_request *request)
1116{
1117 if (query_regdb_file(request->alpha2) == 0)
1118 return true;
1119
1120 if (call_crda(request->alpha2) == 0)
1121 return true;
1122
1123 return false;
1124}
1125
1126bool reg_is_valid_request(const char *alpha2)
1127{
1128 struct regulatory_request *lr = get_last_request();
1129
1130 if (!lr || lr->processed)
1131 return false;
1132
1133 return alpha2_equal(lr->alpha2, alpha2);
1134}
1135
1136static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137{
1138 struct regulatory_request *lr = get_last_request();
1139
1140 /*
1141 * Follow the driver's regulatory domain, if present, unless a country
1142 * IE has been processed or a user wants to help complaince further
1143 */
1144 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146 wiphy->regd)
1147 return get_wiphy_regdom(wiphy);
1148
1149 return get_cfg80211_regdom();
1150}
1151
1152static unsigned int
1153reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154 const struct ieee80211_reg_rule *rule)
1155{
1156 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157 const struct ieee80211_freq_range *freq_range_tmp;
1158 const struct ieee80211_reg_rule *tmp;
1159 u32 start_freq, end_freq, idx, no;
1160
1161 for (idx = 0; idx < rd->n_reg_rules; idx++)
1162 if (rule == &rd->reg_rules[idx])
1163 break;
1164
1165 if (idx == rd->n_reg_rules)
1166 return 0;
1167
1168 /* get start_freq */
1169 no = idx;
1170
1171 while (no) {
1172 tmp = &rd->reg_rules[--no];
1173 freq_range_tmp = &tmp->freq_range;
1174
1175 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176 break;
1177
1178 freq_range = freq_range_tmp;
1179 }
1180
1181 start_freq = freq_range->start_freq_khz;
1182
1183 /* get end_freq */
1184 freq_range = &rule->freq_range;
1185 no = idx;
1186
1187 while (no < rd->n_reg_rules - 1) {
1188 tmp = &rd->reg_rules[++no];
1189 freq_range_tmp = &tmp->freq_range;
1190
1191 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192 break;
1193
1194 freq_range = freq_range_tmp;
1195 }
1196
1197 end_freq = freq_range->end_freq_khz;
1198
1199 return end_freq - start_freq;
1200}
1201
1202unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203 const struct ieee80211_reg_rule *rule)
1204{
1205 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206
1207 if (rule->flags & NL80211_RRF_NO_160MHZ)
1208 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209 if (rule->flags & NL80211_RRF_NO_80MHZ)
1210 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211
1212 /*
1213 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214 * are not allowed.
1215 */
1216 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217 rule->flags & NL80211_RRF_NO_HT40PLUS)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219
1220 return bw;
1221}
1222
1223/* Sanity check on a regulatory rule */
1224static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225{
1226 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227 u32 freq_diff;
1228
1229 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230 return false;
1231
1232 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233 return false;
1234
1235 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236
1237 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238 freq_range->max_bandwidth_khz > freq_diff)
1239 return false;
1240
1241 return true;
1242}
1243
1244static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245{
1246 const struct ieee80211_reg_rule *reg_rule = NULL;
1247 unsigned int i;
1248
1249 if (!rd->n_reg_rules)
1250 return false;
1251
1252 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253 return false;
1254
1255 for (i = 0; i < rd->n_reg_rules; i++) {
1256 reg_rule = &rd->reg_rules[i];
1257 if (!is_valid_reg_rule(reg_rule))
1258 return false;
1259 }
1260
1261 return true;
1262}
1263
1264/**
1265 * freq_in_rule_band - tells us if a frequency is in a frequency band
1266 * @freq_range: frequency rule we want to query
1267 * @freq_khz: frequency we are inquiring about
1268 *
1269 * This lets us know if a specific frequency rule is or is not relevant to
1270 * a specific frequency's band. Bands are device specific and artificial
1271 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272 * however it is safe for now to assume that a frequency rule should not be
1273 * part of a frequency's band if the start freq or end freq are off by more
1274 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275 * 60 GHz band.
1276 * This resolution can be lowered and should be considered as we add
1277 * regulatory rule support for other "bands".
1278 **/
1279static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280 u32 freq_khz)
1281{
1282#define ONE_GHZ_IN_KHZ 1000000
1283 /*
1284 * From 802.11ad: directional multi-gigabit (DMG):
1285 * Pertaining to operation in a frequency band containing a channel
1286 * with the Channel starting frequency above 45 GHz.
1287 */
1288 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291 return true;
1292 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293 return true;
1294 return false;
1295#undef ONE_GHZ_IN_KHZ
1296}
1297
1298/*
1299 * Later on we can perhaps use the more restrictive DFS
1300 * region but we don't have information for that yet so
1301 * for now simply disallow conflicts.
1302 */
1303static enum nl80211_dfs_regions
1304reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305 const enum nl80211_dfs_regions dfs_region2)
1306{
1307 if (dfs_region1 != dfs_region2)
1308 return NL80211_DFS_UNSET;
1309 return dfs_region1;
1310}
1311
1312static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1313 const struct ieee80211_wmm_ac *wmm_ac2,
1314 struct ieee80211_wmm_ac *intersect)
1315{
1316 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1317 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1318 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1319 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1320}
1321
1322/*
1323 * Helper for regdom_intersect(), this does the real
1324 * mathematical intersection fun
1325 */
1326static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1327 const struct ieee80211_regdomain *rd2,
1328 const struct ieee80211_reg_rule *rule1,
1329 const struct ieee80211_reg_rule *rule2,
1330 struct ieee80211_reg_rule *intersected_rule)
1331{
1332 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1333 struct ieee80211_freq_range *freq_range;
1334 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1335 struct ieee80211_power_rule *power_rule;
1336 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1337 struct ieee80211_wmm_rule *wmm_rule;
1338 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1339
1340 freq_range1 = &rule1->freq_range;
1341 freq_range2 = &rule2->freq_range;
1342 freq_range = &intersected_rule->freq_range;
1343
1344 power_rule1 = &rule1->power_rule;
1345 power_rule2 = &rule2->power_rule;
1346 power_rule = &intersected_rule->power_rule;
1347
1348 wmm_rule1 = &rule1->wmm_rule;
1349 wmm_rule2 = &rule2->wmm_rule;
1350 wmm_rule = &intersected_rule->wmm_rule;
1351
1352 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1353 freq_range2->start_freq_khz);
1354 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1355 freq_range2->end_freq_khz);
1356
1357 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1358 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1359
1360 if (rule1->flags & NL80211_RRF_AUTO_BW)
1361 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1362 if (rule2->flags & NL80211_RRF_AUTO_BW)
1363 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1364
1365 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1366
1367 intersected_rule->flags = rule1->flags | rule2->flags;
1368
1369 /*
1370 * In case NL80211_RRF_AUTO_BW requested for both rules
1371 * set AUTO_BW in intersected rule also. Next we will
1372 * calculate BW correctly in handle_channel function.
1373 * In other case remove AUTO_BW flag while we calculate
1374 * maximum bandwidth correctly and auto calculation is
1375 * not required.
1376 */
1377 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1378 (rule2->flags & NL80211_RRF_AUTO_BW))
1379 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1380 else
1381 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1382
1383 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1384 if (freq_range->max_bandwidth_khz > freq_diff)
1385 freq_range->max_bandwidth_khz = freq_diff;
1386
1387 power_rule->max_eirp = min(power_rule1->max_eirp,
1388 power_rule2->max_eirp);
1389 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1390 power_rule2->max_antenna_gain);
1391
1392 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1393 rule2->dfs_cac_ms);
1394
1395 if (rule1->has_wmm && rule2->has_wmm) {
1396 u8 ac;
1397
1398 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1399 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1400 &wmm_rule2->client[ac],
1401 &wmm_rule->client[ac]);
1402 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1403 &wmm_rule2->ap[ac],
1404 &wmm_rule->ap[ac]);
1405 }
1406
1407 intersected_rule->has_wmm = true;
1408 } else if (rule1->has_wmm) {
1409 *wmm_rule = *wmm_rule1;
1410 intersected_rule->has_wmm = true;
1411 } else if (rule2->has_wmm) {
1412 *wmm_rule = *wmm_rule2;
1413 intersected_rule->has_wmm = true;
1414 } else {
1415 intersected_rule->has_wmm = false;
1416 }
1417
1418 if (!is_valid_reg_rule(intersected_rule))
1419 return -EINVAL;
1420
1421 return 0;
1422}
1423
1424/* check whether old rule contains new rule */
1425static bool rule_contains(struct ieee80211_reg_rule *r1,
1426 struct ieee80211_reg_rule *r2)
1427{
1428 /* for simplicity, currently consider only same flags */
1429 if (r1->flags != r2->flags)
1430 return false;
1431
1432 /* verify r1 is more restrictive */
1433 if ((r1->power_rule.max_antenna_gain >
1434 r2->power_rule.max_antenna_gain) ||
1435 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436 return false;
1437
1438 /* make sure r2's range is contained within r1 */
1439 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441 return false;
1442
1443 /* and finally verify that r1.max_bw >= r2.max_bw */
1444 if (r1->freq_range.max_bandwidth_khz <
1445 r2->freq_range.max_bandwidth_khz)
1446 return false;
1447
1448 return true;
1449}
1450
1451/* add or extend current rules. do nothing if rule is already contained */
1452static void add_rule(struct ieee80211_reg_rule *rule,
1453 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454{
1455 struct ieee80211_reg_rule *tmp_rule;
1456 int i;
1457
1458 for (i = 0; i < *n_rules; i++) {
1459 tmp_rule = ®_rules[i];
1460 /* rule is already contained - do nothing */
1461 if (rule_contains(tmp_rule, rule))
1462 return;
1463
1464 /* extend rule if possible */
1465 if (rule_contains(rule, tmp_rule)) {
1466 memcpy(tmp_rule, rule, sizeof(*rule));
1467 return;
1468 }
1469 }
1470
1471 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1472 (*n_rules)++;
1473}
1474
1475/**
1476 * regdom_intersect - do the intersection between two regulatory domains
1477 * @rd1: first regulatory domain
1478 * @rd2: second regulatory domain
1479 *
1480 * Use this function to get the intersection between two regulatory domains.
1481 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482 * as no one single alpha2 can represent this regulatory domain.
1483 *
1484 * Returns a pointer to the regulatory domain structure which will hold the
1485 * resulting intersection of rules between rd1 and rd2. We will
1486 * kzalloc() this structure for you.
1487 */
1488static struct ieee80211_regdomain *
1489regdom_intersect(const struct ieee80211_regdomain *rd1,
1490 const struct ieee80211_regdomain *rd2)
1491{
1492 int r, size_of_regd;
1493 unsigned int x, y;
1494 unsigned int num_rules = 0;
1495 const struct ieee80211_reg_rule *rule1, *rule2;
1496 struct ieee80211_reg_rule intersected_rule;
1497 struct ieee80211_regdomain *rd;
1498
1499 if (!rd1 || !rd2)
1500 return NULL;
1501
1502 /*
1503 * First we get a count of the rules we'll need, then we actually
1504 * build them. This is to so we can malloc() and free() a
1505 * regdomain once. The reason we use reg_rules_intersect() here
1506 * is it will return -EINVAL if the rule computed makes no sense.
1507 * All rules that do check out OK are valid.
1508 */
1509
1510 for (x = 0; x < rd1->n_reg_rules; x++) {
1511 rule1 = &rd1->reg_rules[x];
1512 for (y = 0; y < rd2->n_reg_rules; y++) {
1513 rule2 = &rd2->reg_rules[y];
1514 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515 &intersected_rule))
1516 num_rules++;
1517 }
1518 }
1519
1520 if (!num_rules)
1521 return NULL;
1522
1523 size_of_regd = sizeof(struct ieee80211_regdomain) +
1524 num_rules * sizeof(struct ieee80211_reg_rule);
1525
1526 rd = kzalloc(size_of_regd, GFP_KERNEL);
1527 if (!rd)
1528 return NULL;
1529
1530 for (x = 0; x < rd1->n_reg_rules; x++) {
1531 rule1 = &rd1->reg_rules[x];
1532 for (y = 0; y < rd2->n_reg_rules; y++) {
1533 rule2 = &rd2->reg_rules[y];
1534 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1535 &intersected_rule);
1536 /*
1537 * No need to memset here the intersected rule here as
1538 * we're not using the stack anymore
1539 */
1540 if (r)
1541 continue;
1542
1543 add_rule(&intersected_rule, rd->reg_rules,
1544 &rd->n_reg_rules);
1545 }
1546 }
1547
1548 rd->alpha2[0] = '9';
1549 rd->alpha2[1] = '8';
1550 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1551 rd2->dfs_region);
1552
1553 return rd;
1554}
1555
1556/*
1557 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558 * want to just have the channel structure use these
1559 */
1560static u32 map_regdom_flags(u32 rd_flags)
1561{
1562 u32 channel_flags = 0;
1563 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1564 channel_flags |= IEEE80211_CHAN_NO_IR;
1565 if (rd_flags & NL80211_RRF_DFS)
1566 channel_flags |= IEEE80211_CHAN_RADAR;
1567 if (rd_flags & NL80211_RRF_NO_OFDM)
1568 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1569 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1570 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1571 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1572 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1573 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1574 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1576 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1577 if (rd_flags & NL80211_RRF_NO_80MHZ)
1578 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1579 if (rd_flags & NL80211_RRF_NO_160MHZ)
1580 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1581 return channel_flags;
1582}
1583
1584static const struct ieee80211_reg_rule *
1585freq_reg_info_regd(u32 center_freq,
1586 const struct ieee80211_regdomain *regd, u32 bw)
1587{
1588 int i;
1589 bool band_rule_found = false;
1590 bool bw_fits = false;
1591
1592 if (!regd)
1593 return ERR_PTR(-EINVAL);
1594
1595 for (i = 0; i < regd->n_reg_rules; i++) {
1596 const struct ieee80211_reg_rule *rr;
1597 const struct ieee80211_freq_range *fr = NULL;
1598
1599 rr = ®d->reg_rules[i];
1600 fr = &rr->freq_range;
1601
1602 /*
1603 * We only need to know if one frequency rule was
1604 * was in center_freq's band, that's enough, so lets
1605 * not overwrite it once found
1606 */
1607 if (!band_rule_found)
1608 band_rule_found = freq_in_rule_band(fr, center_freq);
1609
1610 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1611
1612 if (band_rule_found && bw_fits)
1613 return rr;
1614 }
1615
1616 if (!band_rule_found)
1617 return ERR_PTR(-ERANGE);
1618
1619 return ERR_PTR(-EINVAL);
1620}
1621
1622static const struct ieee80211_reg_rule *
1623__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1624{
1625 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1626 const struct ieee80211_reg_rule *reg_rule = NULL;
1627 u32 bw;
1628
1629 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1630 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631 if (!IS_ERR(reg_rule))
1632 return reg_rule;
1633 }
1634
1635 return reg_rule;
1636}
1637
1638const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639 u32 center_freq)
1640{
1641 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1642}
1643EXPORT_SYMBOL(freq_reg_info);
1644
1645const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1646{
1647 switch (initiator) {
1648 case NL80211_REGDOM_SET_BY_CORE:
1649 return "core";
1650 case NL80211_REGDOM_SET_BY_USER:
1651 return "user";
1652 case NL80211_REGDOM_SET_BY_DRIVER:
1653 return "driver";
1654 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1655 return "country element";
1656 default:
1657 WARN_ON(1);
1658 return "bug";
1659 }
1660}
1661EXPORT_SYMBOL(reg_initiator_name);
1662
1663static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1664 const struct ieee80211_reg_rule *reg_rule,
1665 const struct ieee80211_channel *chan)
1666{
1667 const struct ieee80211_freq_range *freq_range = NULL;
1668 u32 max_bandwidth_khz, bw_flags = 0;
1669
1670 freq_range = ®_rule->freq_range;
1671
1672 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1673 /* Check if auto calculation requested */
1674 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1675 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1676
1677 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1678 if (!cfg80211_does_bw_fit_range(freq_range,
1679 MHZ_TO_KHZ(chan->center_freq),
1680 MHZ_TO_KHZ(10)))
1681 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682 if (!cfg80211_does_bw_fit_range(freq_range,
1683 MHZ_TO_KHZ(chan->center_freq),
1684 MHZ_TO_KHZ(20)))
1685 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1686
1687 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1688 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1689 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1690 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1691 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1692 bw_flags |= IEEE80211_CHAN_NO_HT40;
1693 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1694 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1695 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1696 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1697 return bw_flags;
1698}
1699
1700/*
1701 * Note that right now we assume the desired channel bandwidth
1702 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703 * per channel, the primary and the extension channel).
1704 */
1705static void handle_channel(struct wiphy *wiphy,
1706 enum nl80211_reg_initiator initiator,
1707 struct ieee80211_channel *chan)
1708{
1709 u32 flags, bw_flags = 0;
1710 const struct ieee80211_reg_rule *reg_rule = NULL;
1711 const struct ieee80211_power_rule *power_rule = NULL;
1712 struct wiphy *request_wiphy = NULL;
1713 struct regulatory_request *lr = get_last_request();
1714 const struct ieee80211_regdomain *regd;
1715
1716 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1717
1718 flags = chan->orig_flags;
1719
1720 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1721 if (IS_ERR(reg_rule)) {
1722 /*
1723 * We will disable all channels that do not match our
1724 * received regulatory rule unless the hint is coming
1725 * from a Country IE and the Country IE had no information
1726 * about a band. The IEEE 802.11 spec allows for an AP
1727 * to send only a subset of the regulatory rules allowed,
1728 * so an AP in the US that only supports 2.4 GHz may only send
1729 * a country IE with information for the 2.4 GHz band
1730 * while 5 GHz is still supported.
1731 */
1732 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733 PTR_ERR(reg_rule) == -ERANGE)
1734 return;
1735
1736 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1737 request_wiphy && request_wiphy == wiphy &&
1738 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1739 pr_debug("Disabling freq %d MHz for good\n",
1740 chan->center_freq);
1741 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742 chan->flags = chan->orig_flags;
1743 } else {
1744 pr_debug("Disabling freq %d MHz\n",
1745 chan->center_freq);
1746 chan->flags |= IEEE80211_CHAN_DISABLED;
1747 }
1748 return;
1749 }
1750
1751 regd = reg_get_regdomain(wiphy);
1752
1753 power_rule = ®_rule->power_rule;
1754 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1755
1756 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1757 request_wiphy && request_wiphy == wiphy &&
1758 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1759 /*
1760 * This guarantees the driver's requested regulatory domain
1761 * will always be used as a base for further regulatory
1762 * settings
1763 */
1764 chan->flags = chan->orig_flags =
1765 map_regdom_flags(reg_rule->flags) | bw_flags;
1766 chan->max_antenna_gain = chan->orig_mag =
1767 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1768 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1769 (int) MBM_TO_DBM(power_rule->max_eirp);
1770
1771 if (chan->flags & IEEE80211_CHAN_RADAR) {
1772 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1773 if (reg_rule->dfs_cac_ms)
1774 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1775 }
1776
1777 return;
1778 }
1779
1780 chan->dfs_state = NL80211_DFS_USABLE;
1781 chan->dfs_state_entered = jiffies;
1782
1783 chan->beacon_found = false;
1784 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1785 chan->max_antenna_gain =
1786 min_t(int, chan->orig_mag,
1787 MBI_TO_DBI(power_rule->max_antenna_gain));
1788 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1789
1790 if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 if (reg_rule->dfs_cac_ms)
1792 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1793 else
1794 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795 }
1796
1797 if (chan->orig_mpwr) {
1798 /*
1799 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800 * will always follow the passed country IE power settings.
1801 */
1802 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1803 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1804 chan->max_power = chan->max_reg_power;
1805 else
1806 chan->max_power = min(chan->orig_mpwr,
1807 chan->max_reg_power);
1808 } else
1809 chan->max_power = chan->max_reg_power;
1810}
1811
1812static void handle_band(struct wiphy *wiphy,
1813 enum nl80211_reg_initiator initiator,
1814 struct ieee80211_supported_band *sband)
1815{
1816 unsigned int i;
1817
1818 if (!sband)
1819 return;
1820
1821 for (i = 0; i < sband->n_channels; i++)
1822 handle_channel(wiphy, initiator, &sband->channels[i]);
1823}
1824
1825static bool reg_request_cell_base(struct regulatory_request *request)
1826{
1827 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1828 return false;
1829 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1830}
1831
1832bool reg_last_request_cell_base(void)
1833{
1834 return reg_request_cell_base(get_last_request());
1835}
1836
1837#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838/* Core specific check */
1839static enum reg_request_treatment
1840reg_ignore_cell_hint(struct regulatory_request *pending_request)
1841{
1842 struct regulatory_request *lr = get_last_request();
1843
1844 if (!reg_num_devs_support_basehint)
1845 return REG_REQ_IGNORE;
1846
1847 if (reg_request_cell_base(lr) &&
1848 !regdom_changes(pending_request->alpha2))
1849 return REG_REQ_ALREADY_SET;
1850
1851 return REG_REQ_OK;
1852}
1853
1854/* Device specific check */
1855static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856{
1857 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1858}
1859#else
1860static enum reg_request_treatment
1861reg_ignore_cell_hint(struct regulatory_request *pending_request)
1862{
1863 return REG_REQ_IGNORE;
1864}
1865
1866static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1867{
1868 return true;
1869}
1870#endif
1871
1872static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1873{
1874 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1875 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1876 return true;
1877 return false;
1878}
1879
1880static bool ignore_reg_update(struct wiphy *wiphy,
1881 enum nl80211_reg_initiator initiator)
1882{
1883 struct regulatory_request *lr = get_last_request();
1884
1885 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1886 return true;
1887
1888 if (!lr) {
1889 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890 reg_initiator_name(initiator));
1891 return true;
1892 }
1893
1894 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1895 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1896 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897 reg_initiator_name(initiator));
1898 return true;
1899 }
1900
1901 /*
1902 * wiphy->regd will be set once the device has its own
1903 * desired regulatory domain set
1904 */
1905 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1906 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1907 !is_world_regdom(lr->alpha2)) {
1908 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909 reg_initiator_name(initiator));
1910 return true;
1911 }
1912
1913 if (reg_request_cell_base(lr))
1914 return reg_dev_ignore_cell_hint(wiphy);
1915
1916 return false;
1917}
1918
1919static bool reg_is_world_roaming(struct wiphy *wiphy)
1920{
1921 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1922 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1923 struct regulatory_request *lr = get_last_request();
1924
1925 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1926 return true;
1927
1928 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1929 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1930 return true;
1931
1932 return false;
1933}
1934
1935static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1936 struct reg_beacon *reg_beacon)
1937{
1938 struct ieee80211_supported_band *sband;
1939 struct ieee80211_channel *chan;
1940 bool channel_changed = false;
1941 struct ieee80211_channel chan_before;
1942
1943 sband = wiphy->bands[reg_beacon->chan.band];
1944 chan = &sband->channels[chan_idx];
1945
1946 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1947 return;
1948
1949 if (chan->beacon_found)
1950 return;
1951
1952 chan->beacon_found = true;
1953
1954 if (!reg_is_world_roaming(wiphy))
1955 return;
1956
1957 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1958 return;
1959
1960 chan_before = *chan;
1961
1962 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1963 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1964 channel_changed = true;
1965 }
1966
1967 if (channel_changed)
1968 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1969}
1970
1971/*
1972 * Called when a scan on a wiphy finds a beacon on
1973 * new channel
1974 */
1975static void wiphy_update_new_beacon(struct wiphy *wiphy,
1976 struct reg_beacon *reg_beacon)
1977{
1978 unsigned int i;
1979 struct ieee80211_supported_band *sband;
1980
1981 if (!wiphy->bands[reg_beacon->chan.band])
1982 return;
1983
1984 sband = wiphy->bands[reg_beacon->chan.band];
1985
1986 for (i = 0; i < sband->n_channels; i++)
1987 handle_reg_beacon(wiphy, i, reg_beacon);
1988}
1989
1990/*
1991 * Called upon reg changes or a new wiphy is added
1992 */
1993static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1994{
1995 unsigned int i;
1996 struct ieee80211_supported_band *sband;
1997 struct reg_beacon *reg_beacon;
1998
1999 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2000 if (!wiphy->bands[reg_beacon->chan.band])
2001 continue;
2002 sband = wiphy->bands[reg_beacon->chan.band];
2003 for (i = 0; i < sband->n_channels; i++)
2004 handle_reg_beacon(wiphy, i, reg_beacon);
2005 }
2006}
2007
2008/* Reap the advantages of previously found beacons */
2009static void reg_process_beacons(struct wiphy *wiphy)
2010{
2011 /*
2012 * Means we are just firing up cfg80211, so no beacons would
2013 * have been processed yet.
2014 */
2015 if (!last_request)
2016 return;
2017 wiphy_update_beacon_reg(wiphy);
2018}
2019
2020static bool is_ht40_allowed(struct ieee80211_channel *chan)
2021{
2022 if (!chan)
2023 return false;
2024 if (chan->flags & IEEE80211_CHAN_DISABLED)
2025 return false;
2026 /* This would happen when regulatory rules disallow HT40 completely */
2027 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2028 return false;
2029 return true;
2030}
2031
2032static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2033 struct ieee80211_channel *channel)
2034{
2035 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2036 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2037 const struct ieee80211_regdomain *regd;
2038 unsigned int i;
2039 u32 flags;
2040
2041 if (!is_ht40_allowed(channel)) {
2042 channel->flags |= IEEE80211_CHAN_NO_HT40;
2043 return;
2044 }
2045
2046 /*
2047 * We need to ensure the extension channels exist to
2048 * be able to use HT40- or HT40+, this finds them (or not)
2049 */
2050 for (i = 0; i < sband->n_channels; i++) {
2051 struct ieee80211_channel *c = &sband->channels[i];
2052
2053 if (c->center_freq == (channel->center_freq - 20))
2054 channel_before = c;
2055 if (c->center_freq == (channel->center_freq + 20))
2056 channel_after = c;
2057 }
2058
2059 flags = 0;
2060 regd = get_wiphy_regdom(wiphy);
2061 if (regd) {
2062 const struct ieee80211_reg_rule *reg_rule =
2063 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2064 regd, MHZ_TO_KHZ(20));
2065
2066 if (!IS_ERR(reg_rule))
2067 flags = reg_rule->flags;
2068 }
2069
2070 /*
2071 * Please note that this assumes target bandwidth is 20 MHz,
2072 * if that ever changes we also need to change the below logic
2073 * to include that as well.
2074 */
2075 if (!is_ht40_allowed(channel_before) ||
2076 flags & NL80211_RRF_NO_HT40MINUS)
2077 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2078 else
2079 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2080
2081 if (!is_ht40_allowed(channel_after) ||
2082 flags & NL80211_RRF_NO_HT40PLUS)
2083 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2084 else
2085 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2086}
2087
2088static void reg_process_ht_flags_band(struct wiphy *wiphy,
2089 struct ieee80211_supported_band *sband)
2090{
2091 unsigned int i;
2092
2093 if (!sband)
2094 return;
2095
2096 for (i = 0; i < sband->n_channels; i++)
2097 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2098}
2099
2100static void reg_process_ht_flags(struct wiphy *wiphy)
2101{
2102 enum nl80211_band band;
2103
2104 if (!wiphy)
2105 return;
2106
2107 for (band = 0; band < NUM_NL80211_BANDS; band++)
2108 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2109}
2110
2111static void reg_call_notifier(struct wiphy *wiphy,
2112 struct regulatory_request *request)
2113{
2114 if (wiphy->reg_notifier)
2115 wiphy->reg_notifier(wiphy, request);
2116}
2117
2118static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2119{
2120 struct cfg80211_chan_def chandef;
2121 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2122 enum nl80211_iftype iftype;
2123
2124 wdev_lock(wdev);
2125 iftype = wdev->iftype;
2126
2127 /* make sure the interface is active */
2128 if (!wdev->netdev || !netif_running(wdev->netdev))
2129 goto wdev_inactive_unlock;
2130
2131 switch (iftype) {
2132 case NL80211_IFTYPE_AP:
2133 case NL80211_IFTYPE_P2P_GO:
2134 if (!wdev->beacon_interval)
2135 goto wdev_inactive_unlock;
2136 chandef = wdev->chandef;
2137 break;
2138 case NL80211_IFTYPE_ADHOC:
2139 if (!wdev->ssid_len)
2140 goto wdev_inactive_unlock;
2141 chandef = wdev->chandef;
2142 break;
2143 case NL80211_IFTYPE_STATION:
2144 case NL80211_IFTYPE_P2P_CLIENT:
2145 if (!wdev->current_bss ||
2146 !wdev->current_bss->pub.channel)
2147 goto wdev_inactive_unlock;
2148
2149 if (!rdev->ops->get_channel ||
2150 rdev_get_channel(rdev, wdev, &chandef))
2151 cfg80211_chandef_create(&chandef,
2152 wdev->current_bss->pub.channel,
2153 NL80211_CHAN_NO_HT);
2154 break;
2155 case NL80211_IFTYPE_MONITOR:
2156 case NL80211_IFTYPE_AP_VLAN:
2157 case NL80211_IFTYPE_P2P_DEVICE:
2158 /* no enforcement required */
2159 break;
2160 default:
2161 /* others not implemented for now */
2162 WARN_ON(1);
2163 break;
2164 }
2165
2166 wdev_unlock(wdev);
2167
2168 switch (iftype) {
2169 case NL80211_IFTYPE_AP:
2170 case NL80211_IFTYPE_P2P_GO:
2171 case NL80211_IFTYPE_ADHOC:
2172 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2173 case NL80211_IFTYPE_STATION:
2174 case NL80211_IFTYPE_P2P_CLIENT:
2175 return cfg80211_chandef_usable(wiphy, &chandef,
2176 IEEE80211_CHAN_DISABLED);
2177 default:
2178 break;
2179 }
2180
2181 return true;
2182
2183wdev_inactive_unlock:
2184 wdev_unlock(wdev);
2185 return true;
2186}
2187
2188static void reg_leave_invalid_chans(struct wiphy *wiphy)
2189{
2190 struct wireless_dev *wdev;
2191 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2192
2193 ASSERT_RTNL();
2194
2195 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2196 if (!reg_wdev_chan_valid(wiphy, wdev))
2197 cfg80211_leave(rdev, wdev);
2198}
2199
2200static void reg_check_chans_work(struct work_struct *work)
2201{
2202 struct cfg80211_registered_device *rdev;
2203
2204 pr_debug("Verifying active interfaces after reg change\n");
2205 rtnl_lock();
2206
2207 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2208 if (!(rdev->wiphy.regulatory_flags &
2209 REGULATORY_IGNORE_STALE_KICKOFF))
2210 reg_leave_invalid_chans(&rdev->wiphy);
2211
2212 rtnl_unlock();
2213}
2214
2215static void reg_check_channels(void)
2216{
2217 /*
2218 * Give usermode a chance to do something nicer (move to another
2219 * channel, orderly disconnection), before forcing a disconnection.
2220 */
2221 mod_delayed_work(system_power_efficient_wq,
2222 ®_check_chans,
2223 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2224}
2225
2226static void wiphy_update_regulatory(struct wiphy *wiphy,
2227 enum nl80211_reg_initiator initiator)
2228{
2229 enum nl80211_band band;
2230 struct regulatory_request *lr = get_last_request();
2231
2232 if (ignore_reg_update(wiphy, initiator)) {
2233 /*
2234 * Regulatory updates set by CORE are ignored for custom
2235 * regulatory cards. Let us notify the changes to the driver,
2236 * as some drivers used this to restore its orig_* reg domain.
2237 */
2238 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2239 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2240 !(wiphy->regulatory_flags &
2241 REGULATORY_WIPHY_SELF_MANAGED))
2242 reg_call_notifier(wiphy, lr);
2243 return;
2244 }
2245
2246 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2247
2248 for (band = 0; band < NUM_NL80211_BANDS; band++)
2249 handle_band(wiphy, initiator, wiphy->bands[band]);
2250
2251 reg_process_beacons(wiphy);
2252 reg_process_ht_flags(wiphy);
2253 reg_call_notifier(wiphy, lr);
2254}
2255
2256static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2257{
2258 struct cfg80211_registered_device *rdev;
2259 struct wiphy *wiphy;
2260
2261 ASSERT_RTNL();
2262
2263 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2264 wiphy = &rdev->wiphy;
2265 wiphy_update_regulatory(wiphy, initiator);
2266 }
2267
2268 reg_check_channels();
2269}
2270
2271static void handle_channel_custom(struct wiphy *wiphy,
2272 struct ieee80211_channel *chan,
2273 const struct ieee80211_regdomain *regd)
2274{
2275 u32 bw_flags = 0;
2276 const struct ieee80211_reg_rule *reg_rule = NULL;
2277 const struct ieee80211_power_rule *power_rule = NULL;
2278 u32 bw;
2279
2280 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2281 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2282 regd, bw);
2283 if (!IS_ERR(reg_rule))
2284 break;
2285 }
2286
2287 if (IS_ERR(reg_rule)) {
2288 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2289 chan->center_freq);
2290 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2291 chan->flags |= IEEE80211_CHAN_DISABLED;
2292 } else {
2293 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2294 chan->flags = chan->orig_flags;
2295 }
2296 return;
2297 }
2298
2299 power_rule = ®_rule->power_rule;
2300 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2301
2302 chan->dfs_state_entered = jiffies;
2303 chan->dfs_state = NL80211_DFS_USABLE;
2304
2305 chan->beacon_found = false;
2306
2307 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2308 chan->flags = chan->orig_flags | bw_flags |
2309 map_regdom_flags(reg_rule->flags);
2310 else
2311 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2312
2313 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2314 chan->max_reg_power = chan->max_power =
2315 (int) MBM_TO_DBM(power_rule->max_eirp);
2316
2317 if (chan->flags & IEEE80211_CHAN_RADAR) {
2318 if (reg_rule->dfs_cac_ms)
2319 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2320 else
2321 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2322 }
2323
2324 chan->max_power = chan->max_reg_power;
2325}
2326
2327static void handle_band_custom(struct wiphy *wiphy,
2328 struct ieee80211_supported_band *sband,
2329 const struct ieee80211_regdomain *regd)
2330{
2331 unsigned int i;
2332
2333 if (!sband)
2334 return;
2335
2336 for (i = 0; i < sband->n_channels; i++)
2337 handle_channel_custom(wiphy, &sband->channels[i], regd);
2338}
2339
2340/* Used by drivers prior to wiphy registration */
2341void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2342 const struct ieee80211_regdomain *regd)
2343{
2344 enum nl80211_band band;
2345 unsigned int bands_set = 0;
2346
2347 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2348 "wiphy should have REGULATORY_CUSTOM_REG\n");
2349 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2350
2351 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2352 if (!wiphy->bands[band])
2353 continue;
2354 handle_band_custom(wiphy, wiphy->bands[band], regd);
2355 bands_set++;
2356 }
2357
2358 /*
2359 * no point in calling this if it won't have any effect
2360 * on your device's supported bands.
2361 */
2362 WARN_ON(!bands_set);
2363}
2364EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2365
2366static void reg_set_request_processed(void)
2367{
2368 bool need_more_processing = false;
2369 struct regulatory_request *lr = get_last_request();
2370
2371 lr->processed = true;
2372
2373 spin_lock(®_requests_lock);
2374 if (!list_empty(®_requests_list))
2375 need_more_processing = true;
2376 spin_unlock(®_requests_lock);
2377
2378 cancel_crda_timeout();
2379
2380 if (need_more_processing)
2381 schedule_work(®_work);
2382}
2383
2384/**
2385 * reg_process_hint_core - process core regulatory requests
2386 * @pending_request: a pending core regulatory request
2387 *
2388 * The wireless subsystem can use this function to process
2389 * a regulatory request issued by the regulatory core.
2390 */
2391static enum reg_request_treatment
2392reg_process_hint_core(struct regulatory_request *core_request)
2393{
2394 if (reg_query_database(core_request)) {
2395 core_request->intersect = false;
2396 core_request->processed = false;
2397 reg_update_last_request(core_request);
2398 return REG_REQ_OK;
2399 }
2400
2401 return REG_REQ_IGNORE;
2402}
2403
2404static enum reg_request_treatment
2405__reg_process_hint_user(struct regulatory_request *user_request)
2406{
2407 struct regulatory_request *lr = get_last_request();
2408
2409 if (reg_request_cell_base(user_request))
2410 return reg_ignore_cell_hint(user_request);
2411
2412 if (reg_request_cell_base(lr))
2413 return REG_REQ_IGNORE;
2414
2415 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2416 return REG_REQ_INTERSECT;
2417 /*
2418 * If the user knows better the user should set the regdom
2419 * to their country before the IE is picked up
2420 */
2421 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2422 lr->intersect)
2423 return REG_REQ_IGNORE;
2424 /*
2425 * Process user requests only after previous user/driver/core
2426 * requests have been processed
2427 */
2428 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2429 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2430 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2431 regdom_changes(lr->alpha2))
2432 return REG_REQ_IGNORE;
2433
2434 if (!regdom_changes(user_request->alpha2))
2435 return REG_REQ_ALREADY_SET;
2436
2437 return REG_REQ_OK;
2438}
2439
2440/**
2441 * reg_process_hint_user - process user regulatory requests
2442 * @user_request: a pending user regulatory request
2443 *
2444 * The wireless subsystem can use this function to process
2445 * a regulatory request initiated by userspace.
2446 */
2447static enum reg_request_treatment
2448reg_process_hint_user(struct regulatory_request *user_request)
2449{
2450 enum reg_request_treatment treatment;
2451
2452 treatment = __reg_process_hint_user(user_request);
2453 if (treatment == REG_REQ_IGNORE ||
2454 treatment == REG_REQ_ALREADY_SET)
2455 return REG_REQ_IGNORE;
2456
2457 user_request->intersect = treatment == REG_REQ_INTERSECT;
2458 user_request->processed = false;
2459
2460 if (reg_query_database(user_request)) {
2461 reg_update_last_request(user_request);
2462 user_alpha2[0] = user_request->alpha2[0];
2463 user_alpha2[1] = user_request->alpha2[1];
2464 return REG_REQ_OK;
2465 }
2466
2467 return REG_REQ_IGNORE;
2468}
2469
2470static enum reg_request_treatment
2471__reg_process_hint_driver(struct regulatory_request *driver_request)
2472{
2473 struct regulatory_request *lr = get_last_request();
2474
2475 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2476 if (regdom_changes(driver_request->alpha2))
2477 return REG_REQ_OK;
2478 return REG_REQ_ALREADY_SET;
2479 }
2480
2481 /*
2482 * This would happen if you unplug and plug your card
2483 * back in or if you add a new device for which the previously
2484 * loaded card also agrees on the regulatory domain.
2485 */
2486 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2487 !regdom_changes(driver_request->alpha2))
2488 return REG_REQ_ALREADY_SET;
2489
2490 return REG_REQ_INTERSECT;
2491}
2492
2493/**
2494 * reg_process_hint_driver - process driver regulatory requests
2495 * @driver_request: a pending driver regulatory request
2496 *
2497 * The wireless subsystem can use this function to process
2498 * a regulatory request issued by an 802.11 driver.
2499 *
2500 * Returns one of the different reg request treatment values.
2501 */
2502static enum reg_request_treatment
2503reg_process_hint_driver(struct wiphy *wiphy,
2504 struct regulatory_request *driver_request)
2505{
2506 const struct ieee80211_regdomain *regd, *tmp;
2507 enum reg_request_treatment treatment;
2508
2509 treatment = __reg_process_hint_driver(driver_request);
2510
2511 switch (treatment) {
2512 case REG_REQ_OK:
2513 break;
2514 case REG_REQ_IGNORE:
2515 return REG_REQ_IGNORE;
2516 case REG_REQ_INTERSECT:
2517 case REG_REQ_ALREADY_SET:
2518 regd = reg_copy_regd(get_cfg80211_regdom());
2519 if (IS_ERR(regd))
2520 return REG_REQ_IGNORE;
2521
2522 tmp = get_wiphy_regdom(wiphy);
2523 rcu_assign_pointer(wiphy->regd, regd);
2524 rcu_free_regdom(tmp);
2525 }
2526
2527
2528 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2529 driver_request->processed = false;
2530
2531 /*
2532 * Since CRDA will not be called in this case as we already
2533 * have applied the requested regulatory domain before we just
2534 * inform userspace we have processed the request
2535 */
2536 if (treatment == REG_REQ_ALREADY_SET) {
2537 nl80211_send_reg_change_event(driver_request);
2538 reg_update_last_request(driver_request);
2539 reg_set_request_processed();
2540 return REG_REQ_ALREADY_SET;
2541 }
2542
2543 if (reg_query_database(driver_request)) {
2544 reg_update_last_request(driver_request);
2545 return REG_REQ_OK;
2546 }
2547
2548 return REG_REQ_IGNORE;
2549}
2550
2551static enum reg_request_treatment
2552__reg_process_hint_country_ie(struct wiphy *wiphy,
2553 struct regulatory_request *country_ie_request)
2554{
2555 struct wiphy *last_wiphy = NULL;
2556 struct regulatory_request *lr = get_last_request();
2557
2558 if (reg_request_cell_base(lr)) {
2559 /* Trust a Cell base station over the AP's country IE */
2560 if (regdom_changes(country_ie_request->alpha2))
2561 return REG_REQ_IGNORE;
2562 return REG_REQ_ALREADY_SET;
2563 } else {
2564 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2565 return REG_REQ_IGNORE;
2566 }
2567
2568 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2569 return -EINVAL;
2570
2571 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2572 return REG_REQ_OK;
2573
2574 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2575
2576 if (last_wiphy != wiphy) {
2577 /*
2578 * Two cards with two APs claiming different
2579 * Country IE alpha2s. We could
2580 * intersect them, but that seems unlikely
2581 * to be correct. Reject second one for now.
2582 */
2583 if (regdom_changes(country_ie_request->alpha2))
2584 return REG_REQ_IGNORE;
2585 return REG_REQ_ALREADY_SET;
2586 }
2587
2588 if (regdom_changes(country_ie_request->alpha2))
2589 return REG_REQ_OK;
2590 return REG_REQ_ALREADY_SET;
2591}
2592
2593/**
2594 * reg_process_hint_country_ie - process regulatory requests from country IEs
2595 * @country_ie_request: a regulatory request from a country IE
2596 *
2597 * The wireless subsystem can use this function to process
2598 * a regulatory request issued by a country Information Element.
2599 *
2600 * Returns one of the different reg request treatment values.
2601 */
2602static enum reg_request_treatment
2603reg_process_hint_country_ie(struct wiphy *wiphy,
2604 struct regulatory_request *country_ie_request)
2605{
2606 enum reg_request_treatment treatment;
2607
2608 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2609
2610 switch (treatment) {
2611 case REG_REQ_OK:
2612 break;
2613 case REG_REQ_IGNORE:
2614 return REG_REQ_IGNORE;
2615 case REG_REQ_ALREADY_SET:
2616 reg_free_request(country_ie_request);
2617 return REG_REQ_ALREADY_SET;
2618 case REG_REQ_INTERSECT:
2619 /*
2620 * This doesn't happen yet, not sure we
2621 * ever want to support it for this case.
2622 */
2623 WARN_ONCE(1, "Unexpected intersection for country elements");
2624 return REG_REQ_IGNORE;
2625 }
2626
2627 country_ie_request->intersect = false;
2628 country_ie_request->processed = false;
2629
2630 if (reg_query_database(country_ie_request)) {
2631 reg_update_last_request(country_ie_request);
2632 return REG_REQ_OK;
2633 }
2634
2635 return REG_REQ_IGNORE;
2636}
2637
2638bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2639{
2640 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2641 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2642 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2643 bool dfs_domain_same;
2644
2645 rcu_read_lock();
2646
2647 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2648 wiphy1_regd = rcu_dereference(wiphy1->regd);
2649 if (!wiphy1_regd)
2650 wiphy1_regd = cfg80211_regd;
2651
2652 wiphy2_regd = rcu_dereference(wiphy2->regd);
2653 if (!wiphy2_regd)
2654 wiphy2_regd = cfg80211_regd;
2655
2656 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2657
2658 rcu_read_unlock();
2659
2660 return dfs_domain_same;
2661}
2662
2663static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2664 struct ieee80211_channel *src_chan)
2665{
2666 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2667 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2668 return;
2669
2670 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2671 src_chan->flags & IEEE80211_CHAN_DISABLED)
2672 return;
2673
2674 if (src_chan->center_freq == dst_chan->center_freq &&
2675 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2676 dst_chan->dfs_state = src_chan->dfs_state;
2677 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2678 }
2679}
2680
2681static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2682 struct wiphy *src_wiphy)
2683{
2684 struct ieee80211_supported_band *src_sband, *dst_sband;
2685 struct ieee80211_channel *src_chan, *dst_chan;
2686 int i, j, band;
2687
2688 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2689 return;
2690
2691 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2692 dst_sband = dst_wiphy->bands[band];
2693 src_sband = src_wiphy->bands[band];
2694 if (!dst_sband || !src_sband)
2695 continue;
2696
2697 for (i = 0; i < dst_sband->n_channels; i++) {
2698 dst_chan = &dst_sband->channels[i];
2699 for (j = 0; j < src_sband->n_channels; j++) {
2700 src_chan = &src_sband->channels[j];
2701 reg_copy_dfs_chan_state(dst_chan, src_chan);
2702 }
2703 }
2704 }
2705}
2706
2707static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2708{
2709 struct cfg80211_registered_device *rdev;
2710
2711 ASSERT_RTNL();
2712
2713 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2714 if (wiphy == &rdev->wiphy)
2715 continue;
2716 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2717 }
2718}
2719
2720/* This processes *all* regulatory hints */
2721static void reg_process_hint(struct regulatory_request *reg_request)
2722{
2723 struct wiphy *wiphy = NULL;
2724 enum reg_request_treatment treatment;
2725 enum nl80211_reg_initiator initiator = reg_request->initiator;
2726
2727 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2728 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2729
2730 switch (initiator) {
2731 case NL80211_REGDOM_SET_BY_CORE:
2732 treatment = reg_process_hint_core(reg_request);
2733 break;
2734 case NL80211_REGDOM_SET_BY_USER:
2735 treatment = reg_process_hint_user(reg_request);
2736 break;
2737 case NL80211_REGDOM_SET_BY_DRIVER:
2738 if (!wiphy)
2739 goto out_free;
2740 treatment = reg_process_hint_driver(wiphy, reg_request);
2741 break;
2742 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2743 if (!wiphy)
2744 goto out_free;
2745 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2746 break;
2747 default:
2748 WARN(1, "invalid initiator %d\n", initiator);
2749 goto out_free;
2750 }
2751
2752 if (treatment == REG_REQ_IGNORE)
2753 goto out_free;
2754
2755 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2756 "unexpected treatment value %d\n", treatment);
2757
2758 /* This is required so that the orig_* parameters are saved.
2759 * NOTE: treatment must be set for any case that reaches here!
2760 */
2761 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2762 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2763 wiphy_update_regulatory(wiphy, initiator);
2764 wiphy_all_share_dfs_chan_state(wiphy);
2765 reg_check_channels();
2766 }
2767
2768 return;
2769
2770out_free:
2771 reg_free_request(reg_request);
2772}
2773
2774static void notify_self_managed_wiphys(struct regulatory_request *request)
2775{
2776 struct cfg80211_registered_device *rdev;
2777 struct wiphy *wiphy;
2778
2779 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780 wiphy = &rdev->wiphy;
2781 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2782 request->initiator == NL80211_REGDOM_SET_BY_USER)
2783 reg_call_notifier(wiphy, request);
2784 }
2785}
2786
2787/*
2788 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2789 * Regulatory hints come on a first come first serve basis and we
2790 * must process each one atomically.
2791 */
2792static void reg_process_pending_hints(void)
2793{
2794 struct regulatory_request *reg_request, *lr;
2795
2796 lr = get_last_request();
2797
2798 /* When last_request->processed becomes true this will be rescheduled */
2799 if (lr && !lr->processed) {
2800 reg_process_hint(lr);
2801 return;
2802 }
2803
2804 spin_lock(®_requests_lock);
2805
2806 if (list_empty(®_requests_list)) {
2807 spin_unlock(®_requests_lock);
2808 return;
2809 }
2810
2811 reg_request = list_first_entry(®_requests_list,
2812 struct regulatory_request,
2813 list);
2814 list_del_init(®_request->list);
2815
2816 spin_unlock(®_requests_lock);
2817
2818 notify_self_managed_wiphys(reg_request);
2819
2820 reg_process_hint(reg_request);
2821
2822 lr = get_last_request();
2823
2824 spin_lock(®_requests_lock);
2825 if (!list_empty(®_requests_list) && lr && lr->processed)
2826 schedule_work(®_work);
2827 spin_unlock(®_requests_lock);
2828}
2829
2830/* Processes beacon hints -- this has nothing to do with country IEs */
2831static void reg_process_pending_beacon_hints(void)
2832{
2833 struct cfg80211_registered_device *rdev;
2834 struct reg_beacon *pending_beacon, *tmp;
2835
2836 /* This goes through the _pending_ beacon list */
2837 spin_lock_bh(®_pending_beacons_lock);
2838
2839 list_for_each_entry_safe(pending_beacon, tmp,
2840 ®_pending_beacons, list) {
2841 list_del_init(&pending_beacon->list);
2842
2843 /* Applies the beacon hint to current wiphys */
2844 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2845 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2846
2847 /* Remembers the beacon hint for new wiphys or reg changes */
2848 list_add_tail(&pending_beacon->list, ®_beacon_list);
2849 }
2850
2851 spin_unlock_bh(®_pending_beacons_lock);
2852}
2853
2854static void reg_process_self_managed_hints(void)
2855{
2856 struct cfg80211_registered_device *rdev;
2857 struct wiphy *wiphy;
2858 const struct ieee80211_regdomain *tmp;
2859 const struct ieee80211_regdomain *regd;
2860 enum nl80211_band band;
2861 struct regulatory_request request = {};
2862
2863 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2864 wiphy = &rdev->wiphy;
2865
2866 spin_lock(®_requests_lock);
2867 regd = rdev->requested_regd;
2868 rdev->requested_regd = NULL;
2869 spin_unlock(®_requests_lock);
2870
2871 if (regd == NULL)
2872 continue;
2873
2874 tmp = get_wiphy_regdom(wiphy);
2875 rcu_assign_pointer(wiphy->regd, regd);
2876 rcu_free_regdom(tmp);
2877
2878 for (band = 0; band < NUM_NL80211_BANDS; band++)
2879 handle_band_custom(wiphy, wiphy->bands[band], regd);
2880
2881 reg_process_ht_flags(wiphy);
2882
2883 request.wiphy_idx = get_wiphy_idx(wiphy);
2884 request.alpha2[0] = regd->alpha2[0];
2885 request.alpha2[1] = regd->alpha2[1];
2886 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2887
2888 nl80211_send_wiphy_reg_change_event(&request);
2889 }
2890
2891 reg_check_channels();
2892}
2893
2894static void reg_todo(struct work_struct *work)
2895{
2896 rtnl_lock();
2897 reg_process_pending_hints();
2898 reg_process_pending_beacon_hints();
2899 reg_process_self_managed_hints();
2900 rtnl_unlock();
2901}
2902
2903static void queue_regulatory_request(struct regulatory_request *request)
2904{
2905 request->alpha2[0] = toupper(request->alpha2[0]);
2906 request->alpha2[1] = toupper(request->alpha2[1]);
2907
2908 spin_lock(®_requests_lock);
2909 list_add_tail(&request->list, ®_requests_list);
2910 spin_unlock(®_requests_lock);
2911
2912 schedule_work(®_work);
2913}
2914
2915/*
2916 * Core regulatory hint -- happens during cfg80211_init()
2917 * and when we restore regulatory settings.
2918 */
2919static int regulatory_hint_core(const char *alpha2)
2920{
2921 struct regulatory_request *request;
2922
2923 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2924 if (!request)
2925 return -ENOMEM;
2926
2927 request->alpha2[0] = alpha2[0];
2928 request->alpha2[1] = alpha2[1];
2929 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2930 request->wiphy_idx = WIPHY_IDX_INVALID;
2931
2932 queue_regulatory_request(request);
2933
2934 return 0;
2935}
2936
2937/* User hints */
2938int regulatory_hint_user(const char *alpha2,
2939 enum nl80211_user_reg_hint_type user_reg_hint_type)
2940{
2941 struct regulatory_request *request;
2942
2943 if (WARN_ON(!alpha2))
2944 return -EINVAL;
2945
2946 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2947 if (!request)
2948 return -ENOMEM;
2949
2950 request->wiphy_idx = WIPHY_IDX_INVALID;
2951 request->alpha2[0] = alpha2[0];
2952 request->alpha2[1] = alpha2[1];
2953 request->initiator = NL80211_REGDOM_SET_BY_USER;
2954 request->user_reg_hint_type = user_reg_hint_type;
2955
2956 /* Allow calling CRDA again */
2957 reset_crda_timeouts();
2958
2959 queue_regulatory_request(request);
2960
2961 return 0;
2962}
2963
2964int regulatory_hint_indoor(bool is_indoor, u32 portid)
2965{
2966 spin_lock(®_indoor_lock);
2967
2968 /* It is possible that more than one user space process is trying to
2969 * configure the indoor setting. To handle such cases, clear the indoor
2970 * setting in case that some process does not think that the device
2971 * is operating in an indoor environment. In addition, if a user space
2972 * process indicates that it is controlling the indoor setting, save its
2973 * portid, i.e., make it the owner.
2974 */
2975 reg_is_indoor = is_indoor;
2976 if (reg_is_indoor) {
2977 if (!reg_is_indoor_portid)
2978 reg_is_indoor_portid = portid;
2979 } else {
2980 reg_is_indoor_portid = 0;
2981 }
2982
2983 spin_unlock(®_indoor_lock);
2984
2985 if (!is_indoor)
2986 reg_check_channels();
2987
2988 return 0;
2989}
2990
2991void regulatory_netlink_notify(u32 portid)
2992{
2993 spin_lock(®_indoor_lock);
2994
2995 if (reg_is_indoor_portid != portid) {
2996 spin_unlock(®_indoor_lock);
2997 return;
2998 }
2999
3000 reg_is_indoor = false;
3001 reg_is_indoor_portid = 0;
3002
3003 spin_unlock(®_indoor_lock);
3004
3005 reg_check_channels();
3006}
3007
3008/* Driver hints */
3009int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3010{
3011 struct regulatory_request *request;
3012
3013 if (WARN_ON(!alpha2 || !wiphy))
3014 return -EINVAL;
3015
3016 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3017
3018 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3019 if (!request)
3020 return -ENOMEM;
3021
3022 request->wiphy_idx = get_wiphy_idx(wiphy);
3023
3024 request->alpha2[0] = alpha2[0];
3025 request->alpha2[1] = alpha2[1];
3026 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3027
3028 /* Allow calling CRDA again */
3029 reset_crda_timeouts();
3030
3031 queue_regulatory_request(request);
3032
3033 return 0;
3034}
3035EXPORT_SYMBOL(regulatory_hint);
3036
3037void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3038 const u8 *country_ie, u8 country_ie_len)
3039{
3040 char alpha2[2];
3041 enum environment_cap env = ENVIRON_ANY;
3042 struct regulatory_request *request = NULL, *lr;
3043
3044 /* IE len must be evenly divisible by 2 */
3045 if (country_ie_len & 0x01)
3046 return;
3047
3048 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3049 return;
3050
3051 request = kzalloc(sizeof(*request), GFP_KERNEL);
3052 if (!request)
3053 return;
3054
3055 alpha2[0] = country_ie[0];
3056 alpha2[1] = country_ie[1];
3057
3058 if (country_ie[2] == 'I')
3059 env = ENVIRON_INDOOR;
3060 else if (country_ie[2] == 'O')
3061 env = ENVIRON_OUTDOOR;
3062
3063 rcu_read_lock();
3064 lr = get_last_request();
3065
3066 if (unlikely(!lr))
3067 goto out;
3068
3069 /*
3070 * We will run this only upon a successful connection on cfg80211.
3071 * We leave conflict resolution to the workqueue, where can hold
3072 * the RTNL.
3073 */
3074 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3075 lr->wiphy_idx != WIPHY_IDX_INVALID)
3076 goto out;
3077
3078 request->wiphy_idx = get_wiphy_idx(wiphy);
3079 request->alpha2[0] = alpha2[0];
3080 request->alpha2[1] = alpha2[1];
3081 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3082 request->country_ie_env = env;
3083
3084 /* Allow calling CRDA again */
3085 reset_crda_timeouts();
3086
3087 queue_regulatory_request(request);
3088 request = NULL;
3089out:
3090 kfree(request);
3091 rcu_read_unlock();
3092}
3093
3094static void restore_alpha2(char *alpha2, bool reset_user)
3095{
3096 /* indicates there is no alpha2 to consider for restoration */
3097 alpha2[0] = '9';
3098 alpha2[1] = '7';
3099
3100 /* The user setting has precedence over the module parameter */
3101 if (is_user_regdom_saved()) {
3102 /* Unless we're asked to ignore it and reset it */
3103 if (reset_user) {
3104 pr_debug("Restoring regulatory settings including user preference\n");
3105 user_alpha2[0] = '9';
3106 user_alpha2[1] = '7';
3107
3108 /*
3109 * If we're ignoring user settings, we still need to
3110 * check the module parameter to ensure we put things
3111 * back as they were for a full restore.
3112 */
3113 if (!is_world_regdom(ieee80211_regdom)) {
3114 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3115 ieee80211_regdom[0], ieee80211_regdom[1]);
3116 alpha2[0] = ieee80211_regdom[0];
3117 alpha2[1] = ieee80211_regdom[1];
3118 }
3119 } else {
3120 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3121 user_alpha2[0], user_alpha2[1]);
3122 alpha2[0] = user_alpha2[0];
3123 alpha2[1] = user_alpha2[1];
3124 }
3125 } else if (!is_world_regdom(ieee80211_regdom)) {
3126 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3127 ieee80211_regdom[0], ieee80211_regdom[1]);
3128 alpha2[0] = ieee80211_regdom[0];
3129 alpha2[1] = ieee80211_regdom[1];
3130 } else
3131 pr_debug("Restoring regulatory settings\n");
3132}
3133
3134static void restore_custom_reg_settings(struct wiphy *wiphy)
3135{
3136 struct ieee80211_supported_band *sband;
3137 enum nl80211_band band;
3138 struct ieee80211_channel *chan;
3139 int i;
3140
3141 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3142 sband = wiphy->bands[band];
3143 if (!sband)
3144 continue;
3145 for (i = 0; i < sband->n_channels; i++) {
3146 chan = &sband->channels[i];
3147 chan->flags = chan->orig_flags;
3148 chan->max_antenna_gain = chan->orig_mag;
3149 chan->max_power = chan->orig_mpwr;
3150 chan->beacon_found = false;
3151 }
3152 }
3153}
3154
3155/*
3156 * Restoring regulatory settings involves ingoring any
3157 * possibly stale country IE information and user regulatory
3158 * settings if so desired, this includes any beacon hints
3159 * learned as we could have traveled outside to another country
3160 * after disconnection. To restore regulatory settings we do
3161 * exactly what we did at bootup:
3162 *
3163 * - send a core regulatory hint
3164 * - send a user regulatory hint if applicable
3165 *
3166 * Device drivers that send a regulatory hint for a specific country
3167 * keep their own regulatory domain on wiphy->regd so that does does
3168 * not need to be remembered.
3169 */
3170static void restore_regulatory_settings(bool reset_user, bool cached)
3171{
3172 char alpha2[2];
3173 char world_alpha2[2];
3174 struct reg_beacon *reg_beacon, *btmp;
3175 LIST_HEAD(tmp_reg_req_list);
3176 struct cfg80211_registered_device *rdev;
3177
3178 ASSERT_RTNL();
3179
3180 /*
3181 * Clear the indoor setting in case that it is not controlled by user
3182 * space, as otherwise there is no guarantee that the device is still
3183 * operating in an indoor environment.
3184 */
3185 spin_lock(®_indoor_lock);
3186 if (reg_is_indoor && !reg_is_indoor_portid) {
3187 reg_is_indoor = false;
3188 reg_check_channels();
3189 }
3190 spin_unlock(®_indoor_lock);
3191
3192 reset_regdomains(true, &world_regdom);
3193 restore_alpha2(alpha2, reset_user);
3194
3195 /*
3196 * If there's any pending requests we simply
3197 * stash them to a temporary pending queue and
3198 * add then after we've restored regulatory
3199 * settings.
3200 */
3201 spin_lock(®_requests_lock);
3202 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3203 spin_unlock(®_requests_lock);
3204
3205 /* Clear beacon hints */
3206 spin_lock_bh(®_pending_beacons_lock);
3207 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3208 list_del(®_beacon->list);
3209 kfree(reg_beacon);
3210 }
3211 spin_unlock_bh(®_pending_beacons_lock);
3212
3213 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3214 list_del(®_beacon->list);
3215 kfree(reg_beacon);
3216 }
3217
3218 /* First restore to the basic regulatory settings */
3219 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3220 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3221
3222 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3223 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3224 continue;
3225 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3226 restore_custom_reg_settings(&rdev->wiphy);
3227 }
3228
3229 if (cached && (!is_an_alpha2(alpha2) ||
3230 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3231 reset_regdomains(false, cfg80211_world_regdom);
3232 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3233 print_regdomain(get_cfg80211_regdom());
3234 nl80211_send_reg_change_event(&core_request_world);
3235 reg_set_request_processed();
3236
3237 if (is_an_alpha2(alpha2) &&
3238 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3239 struct regulatory_request *ureq;
3240
3241 spin_lock(®_requests_lock);
3242 ureq = list_last_entry(®_requests_list,
3243 struct regulatory_request,
3244 list);
3245 list_del(&ureq->list);
3246 spin_unlock(®_requests_lock);
3247
3248 notify_self_managed_wiphys(ureq);
3249 reg_update_last_request(ureq);
3250 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3251 REGD_SOURCE_CACHED);
3252 }
3253 } else {
3254 regulatory_hint_core(world_alpha2);
3255
3256 /*
3257 * This restores the ieee80211_regdom module parameter
3258 * preference or the last user requested regulatory
3259 * settings, user regulatory settings takes precedence.
3260 */
3261 if (is_an_alpha2(alpha2))
3262 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3263 }
3264
3265 spin_lock(®_requests_lock);
3266 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3267 spin_unlock(®_requests_lock);
3268
3269 pr_debug("Kicking the queue\n");
3270
3271 schedule_work(®_work);
3272}
3273
3274static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3275{
3276 struct cfg80211_registered_device *rdev;
3277 struct wireless_dev *wdev;
3278
3279 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3280 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3281 wdev_lock(wdev);
3282 if (!(wdev->wiphy->regulatory_flags & flag)) {
3283 wdev_unlock(wdev);
3284 return false;
3285 }
3286 wdev_unlock(wdev);
3287 }
3288 }
3289
3290 return true;
3291}
3292
3293void regulatory_hint_disconnect(void)
3294{
3295 /* Restore of regulatory settings is not required when wiphy(s)
3296 * ignore IE from connected access point but clearance of beacon hints
3297 * is required when wiphy(s) supports beacon hints.
3298 */
3299 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3300 struct reg_beacon *reg_beacon, *btmp;
3301
3302 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3303 return;
3304
3305 spin_lock_bh(®_pending_beacons_lock);
3306 list_for_each_entry_safe(reg_beacon, btmp,
3307 ®_pending_beacons, list) {
3308 list_del(®_beacon->list);
3309 kfree(reg_beacon);
3310 }
3311 spin_unlock_bh(®_pending_beacons_lock);
3312
3313 list_for_each_entry_safe(reg_beacon, btmp,
3314 ®_beacon_list, list) {
3315 list_del(®_beacon->list);
3316 kfree(reg_beacon);
3317 }
3318
3319 return;
3320 }
3321
3322 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3323 restore_regulatory_settings(false, true);
3324}
3325
3326static bool freq_is_chan_12_13_14(u32 freq)
3327{
3328 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3329 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3330 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3331 return true;
3332 return false;
3333}
3334
3335static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3336{
3337 struct reg_beacon *pending_beacon;
3338
3339 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3340 if (beacon_chan->center_freq ==
3341 pending_beacon->chan.center_freq)
3342 return true;
3343 return false;
3344}
3345
3346int regulatory_hint_found_beacon(struct wiphy *wiphy,
3347 struct ieee80211_channel *beacon_chan,
3348 gfp_t gfp)
3349{
3350 struct reg_beacon *reg_beacon;
3351 bool processing;
3352
3353 if (beacon_chan->beacon_found ||
3354 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3355 (beacon_chan->band == NL80211_BAND_2GHZ &&
3356 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3357 return 0;
3358
3359 spin_lock_bh(®_pending_beacons_lock);
3360 processing = pending_reg_beacon(beacon_chan);
3361 spin_unlock_bh(®_pending_beacons_lock);
3362
3363 if (processing)
3364 return 0;
3365
3366 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3367 if (!reg_beacon)
3368 return -ENOMEM;
3369
3370 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3371 beacon_chan->center_freq,
3372 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3373 wiphy_name(wiphy));
3374
3375 memcpy(®_beacon->chan, beacon_chan,
3376 sizeof(struct ieee80211_channel));
3377
3378 /*
3379 * Since we can be called from BH or and non-BH context
3380 * we must use spin_lock_bh()
3381 */
3382 spin_lock_bh(®_pending_beacons_lock);
3383 list_add_tail(®_beacon->list, ®_pending_beacons);
3384 spin_unlock_bh(®_pending_beacons_lock);
3385
3386 schedule_work(®_work);
3387
3388 return 0;
3389}
3390
3391static void print_rd_rules(const struct ieee80211_regdomain *rd)
3392{
3393 unsigned int i;
3394 const struct ieee80211_reg_rule *reg_rule = NULL;
3395 const struct ieee80211_freq_range *freq_range = NULL;
3396 const struct ieee80211_power_rule *power_rule = NULL;
3397 char bw[32], cac_time[32];
3398
3399 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3400
3401 for (i = 0; i < rd->n_reg_rules; i++) {
3402 reg_rule = &rd->reg_rules[i];
3403 freq_range = ®_rule->freq_range;
3404 power_rule = ®_rule->power_rule;
3405
3406 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3407 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3408 freq_range->max_bandwidth_khz,
3409 reg_get_max_bandwidth(rd, reg_rule));
3410 else
3411 snprintf(bw, sizeof(bw), "%d KHz",
3412 freq_range->max_bandwidth_khz);
3413
3414 if (reg_rule->flags & NL80211_RRF_DFS)
3415 scnprintf(cac_time, sizeof(cac_time), "%u s",
3416 reg_rule->dfs_cac_ms/1000);
3417 else
3418 scnprintf(cac_time, sizeof(cac_time), "N/A");
3419
3420
3421 /*
3422 * There may not be documentation for max antenna gain
3423 * in certain regions
3424 */
3425 if (power_rule->max_antenna_gain)
3426 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3427 freq_range->start_freq_khz,
3428 freq_range->end_freq_khz,
3429 bw,
3430 power_rule->max_antenna_gain,
3431 power_rule->max_eirp,
3432 cac_time);
3433 else
3434 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3435 freq_range->start_freq_khz,
3436 freq_range->end_freq_khz,
3437 bw,
3438 power_rule->max_eirp,
3439 cac_time);
3440 }
3441}
3442
3443bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3444{
3445 switch (dfs_region) {
3446 case NL80211_DFS_UNSET:
3447 case NL80211_DFS_FCC:
3448 case NL80211_DFS_ETSI:
3449 case NL80211_DFS_JP:
3450 return true;
3451 default:
3452 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3453 return false;
3454 }
3455}
3456
3457static void print_regdomain(const struct ieee80211_regdomain *rd)
3458{
3459 struct regulatory_request *lr = get_last_request();
3460
3461 if (is_intersected_alpha2(rd->alpha2)) {
3462 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3463 struct cfg80211_registered_device *rdev;
3464 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3465 if (rdev) {
3466 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3467 rdev->country_ie_alpha2[0],
3468 rdev->country_ie_alpha2[1]);
3469 } else
3470 pr_debug("Current regulatory domain intersected:\n");
3471 } else
3472 pr_debug("Current regulatory domain intersected:\n");
3473 } else if (is_world_regdom(rd->alpha2)) {
3474 pr_debug("World regulatory domain updated:\n");
3475 } else {
3476 if (is_unknown_alpha2(rd->alpha2))
3477 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3478 else {
3479 if (reg_request_cell_base(lr))
3480 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3481 rd->alpha2[0], rd->alpha2[1]);
3482 else
3483 pr_debug("Regulatory domain changed to country: %c%c\n",
3484 rd->alpha2[0], rd->alpha2[1]);
3485 }
3486 }
3487
3488 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3489 print_rd_rules(rd);
3490}
3491
3492static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3493{
3494 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3495 print_rd_rules(rd);
3496}
3497
3498static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3499{
3500 if (!is_world_regdom(rd->alpha2))
3501 return -EINVAL;
3502 update_world_regdomain(rd);
3503 return 0;
3504}
3505
3506static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3507 struct regulatory_request *user_request)
3508{
3509 const struct ieee80211_regdomain *intersected_rd = NULL;
3510
3511 if (!regdom_changes(rd->alpha2))
3512 return -EALREADY;
3513
3514 if (!is_valid_rd(rd)) {
3515 pr_err("Invalid regulatory domain detected: %c%c\n",
3516 rd->alpha2[0], rd->alpha2[1]);
3517 print_regdomain_info(rd);
3518 return -EINVAL;
3519 }
3520
3521 if (!user_request->intersect) {
3522 reset_regdomains(false, rd);
3523 return 0;
3524 }
3525
3526 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3527 if (!intersected_rd)
3528 return -EINVAL;
3529
3530 kfree(rd);
3531 rd = NULL;
3532 reset_regdomains(false, intersected_rd);
3533
3534 return 0;
3535}
3536
3537static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3538 struct regulatory_request *driver_request)
3539{
3540 const struct ieee80211_regdomain *regd;
3541 const struct ieee80211_regdomain *intersected_rd = NULL;
3542 const struct ieee80211_regdomain *tmp;
3543 struct wiphy *request_wiphy;
3544
3545 if (is_world_regdom(rd->alpha2))
3546 return -EINVAL;
3547
3548 if (!regdom_changes(rd->alpha2))
3549 return -EALREADY;
3550
3551 if (!is_valid_rd(rd)) {
3552 pr_err("Invalid regulatory domain detected: %c%c\n",
3553 rd->alpha2[0], rd->alpha2[1]);
3554 print_regdomain_info(rd);
3555 return -EINVAL;
3556 }
3557
3558 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3559 if (!request_wiphy)
3560 return -ENODEV;
3561
3562 if (!driver_request->intersect) {
3563 if (request_wiphy->regd)
3564 return -EALREADY;
3565
3566 regd = reg_copy_regd(rd);
3567 if (IS_ERR(regd))
3568 return PTR_ERR(regd);
3569
3570 rcu_assign_pointer(request_wiphy->regd, regd);
3571 reset_regdomains(false, rd);
3572 return 0;
3573 }
3574
3575 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3576 if (!intersected_rd)
3577 return -EINVAL;
3578
3579 /*
3580 * We can trash what CRDA provided now.
3581 * However if a driver requested this specific regulatory
3582 * domain we keep it for its private use
3583 */
3584 tmp = get_wiphy_regdom(request_wiphy);
3585 rcu_assign_pointer(request_wiphy->regd, rd);
3586 rcu_free_regdom(tmp);
3587
3588 rd = NULL;
3589
3590 reset_regdomains(false, intersected_rd);
3591
3592 return 0;
3593}
3594
3595static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3596 struct regulatory_request *country_ie_request)
3597{
3598 struct wiphy *request_wiphy;
3599
3600 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3601 !is_unknown_alpha2(rd->alpha2))
3602 return -EINVAL;
3603
3604 /*
3605 * Lets only bother proceeding on the same alpha2 if the current
3606 * rd is non static (it means CRDA was present and was used last)
3607 * and the pending request came in from a country IE
3608 */
3609
3610 if (!is_valid_rd(rd)) {
3611 pr_err("Invalid regulatory domain detected: %c%c\n",
3612 rd->alpha2[0], rd->alpha2[1]);
3613 print_regdomain_info(rd);
3614 return -EINVAL;
3615 }
3616
3617 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3618 if (!request_wiphy)
3619 return -ENODEV;
3620
3621 if (country_ie_request->intersect)
3622 return -EINVAL;
3623
3624 reset_regdomains(false, rd);
3625 return 0;
3626}
3627
3628/*
3629 * Use this call to set the current regulatory domain. Conflicts with
3630 * multiple drivers can be ironed out later. Caller must've already
3631 * kmalloc'd the rd structure.
3632 */
3633int set_regdom(const struct ieee80211_regdomain *rd,
3634 enum ieee80211_regd_source regd_src)
3635{
3636 struct regulatory_request *lr;
3637 bool user_reset = false;
3638 int r;
3639
3640 if (IS_ERR_OR_NULL(rd))
3641 return -ENODATA;
3642
3643 if (!reg_is_valid_request(rd->alpha2)) {
3644 kfree(rd);
3645 return -EINVAL;
3646 }
3647
3648 if (regd_src == REGD_SOURCE_CRDA)
3649 reset_crda_timeouts();
3650
3651 lr = get_last_request();
3652
3653 /* Note that this doesn't update the wiphys, this is done below */
3654 switch (lr->initiator) {
3655 case NL80211_REGDOM_SET_BY_CORE:
3656 r = reg_set_rd_core(rd);
3657 break;
3658 case NL80211_REGDOM_SET_BY_USER:
3659 cfg80211_save_user_regdom(rd);
3660 r = reg_set_rd_user(rd, lr);
3661 user_reset = true;
3662 break;
3663 case NL80211_REGDOM_SET_BY_DRIVER:
3664 r = reg_set_rd_driver(rd, lr);
3665 break;
3666 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3667 r = reg_set_rd_country_ie(rd, lr);
3668 break;
3669 default:
3670 WARN(1, "invalid initiator %d\n", lr->initiator);
3671 kfree(rd);
3672 return -EINVAL;
3673 }
3674
3675 if (r) {
3676 switch (r) {
3677 case -EALREADY:
3678 reg_set_request_processed();
3679 break;
3680 default:
3681 /* Back to world regulatory in case of errors */
3682 restore_regulatory_settings(user_reset, false);
3683 }
3684
3685 kfree(rd);
3686 return r;
3687 }
3688
3689 /* This would make this whole thing pointless */
3690 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3691 return -EINVAL;
3692
3693 /* update all wiphys now with the new established regulatory domain */
3694 update_all_wiphy_regulatory(lr->initiator);
3695
3696 print_regdomain(get_cfg80211_regdom());
3697
3698 nl80211_send_reg_change_event(lr);
3699
3700 reg_set_request_processed();
3701
3702 return 0;
3703}
3704
3705static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3706 struct ieee80211_regdomain *rd)
3707{
3708 const struct ieee80211_regdomain *regd;
3709 const struct ieee80211_regdomain *prev_regd;
3710 struct cfg80211_registered_device *rdev;
3711
3712 if (WARN_ON(!wiphy || !rd))
3713 return -EINVAL;
3714
3715 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3716 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3717 return -EPERM;
3718
3719 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3720 print_regdomain_info(rd);
3721 return -EINVAL;
3722 }
3723
3724 regd = reg_copy_regd(rd);
3725 if (IS_ERR(regd))
3726 return PTR_ERR(regd);
3727
3728 rdev = wiphy_to_rdev(wiphy);
3729
3730 spin_lock(®_requests_lock);
3731 prev_regd = rdev->requested_regd;
3732 rdev->requested_regd = regd;
3733 spin_unlock(®_requests_lock);
3734
3735 kfree(prev_regd);
3736 return 0;
3737}
3738
3739int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3740 struct ieee80211_regdomain *rd)
3741{
3742 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3743
3744 if (ret)
3745 return ret;
3746
3747 schedule_work(®_work);
3748 return 0;
3749}
3750EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3751
3752int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3753 struct ieee80211_regdomain *rd)
3754{
3755 int ret;
3756
3757 ASSERT_RTNL();
3758
3759 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3760 if (ret)
3761 return ret;
3762
3763 /* process the request immediately */
3764 reg_process_self_managed_hints();
3765 return 0;
3766}
3767EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3768
3769void wiphy_regulatory_register(struct wiphy *wiphy)
3770{
3771 struct regulatory_request *lr = get_last_request();
3772
3773 /* self-managed devices ignore beacon hints and country IE */
3774 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3775 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3776 REGULATORY_COUNTRY_IE_IGNORE;
3777
3778 /*
3779 * The last request may have been received before this
3780 * registration call. Call the driver notifier if
3781 * initiator is USER and user type is CELL_BASE.
3782 */
3783 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3784 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3785 reg_call_notifier(wiphy, lr);
3786 }
3787
3788 if (!reg_dev_ignore_cell_hint(wiphy))
3789 reg_num_devs_support_basehint++;
3790
3791 wiphy_update_regulatory(wiphy, lr->initiator);
3792 wiphy_all_share_dfs_chan_state(wiphy);
3793}
3794
3795void wiphy_regulatory_deregister(struct wiphy *wiphy)
3796{
3797 struct wiphy *request_wiphy = NULL;
3798 struct regulatory_request *lr;
3799
3800 lr = get_last_request();
3801
3802 if (!reg_dev_ignore_cell_hint(wiphy))
3803 reg_num_devs_support_basehint--;
3804
3805 rcu_free_regdom(get_wiphy_regdom(wiphy));
3806 RCU_INIT_POINTER(wiphy->regd, NULL);
3807
3808 if (lr)
3809 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3810
3811 if (!request_wiphy || request_wiphy != wiphy)
3812 return;
3813
3814 lr->wiphy_idx = WIPHY_IDX_INVALID;
3815 lr->country_ie_env = ENVIRON_ANY;
3816}
3817
3818/*
3819 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3820 * UNII band definitions
3821 */
3822int cfg80211_get_unii(int freq)
3823{
3824 /* UNII-1 */
3825 if (freq >= 5150 && freq <= 5250)
3826 return 0;
3827
3828 /* UNII-2A */
3829 if (freq > 5250 && freq <= 5350)
3830 return 1;
3831
3832 /* UNII-2B */
3833 if (freq > 5350 && freq <= 5470)
3834 return 2;
3835
3836 /* UNII-2C */
3837 if (freq > 5470 && freq <= 5725)
3838 return 3;
3839
3840 /* UNII-3 */
3841 if (freq > 5725 && freq <= 5825)
3842 return 4;
3843
3844 return -EINVAL;
3845}
3846
3847bool regulatory_indoor_allowed(void)
3848{
3849 return reg_is_indoor;
3850}
3851
3852bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3853{
3854 const struct ieee80211_regdomain *regd = NULL;
3855 const struct ieee80211_regdomain *wiphy_regd = NULL;
3856 bool pre_cac_allowed = false;
3857
3858 rcu_read_lock();
3859
3860 regd = rcu_dereference(cfg80211_regdomain);
3861 wiphy_regd = rcu_dereference(wiphy->regd);
3862 if (!wiphy_regd) {
3863 if (regd->dfs_region == NL80211_DFS_ETSI)
3864 pre_cac_allowed = true;
3865
3866 rcu_read_unlock();
3867
3868 return pre_cac_allowed;
3869 }
3870
3871 if (regd->dfs_region == wiphy_regd->dfs_region &&
3872 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3873 pre_cac_allowed = true;
3874
3875 rcu_read_unlock();
3876
3877 return pre_cac_allowed;
3878}
3879
3880void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3881 struct cfg80211_chan_def *chandef,
3882 enum nl80211_dfs_state dfs_state,
3883 enum nl80211_radar_event event)
3884{
3885 struct cfg80211_registered_device *rdev;
3886
3887 ASSERT_RTNL();
3888
3889 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3890 return;
3891
3892 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3893 if (wiphy == &rdev->wiphy)
3894 continue;
3895
3896 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3897 continue;
3898
3899 if (!ieee80211_get_channel(&rdev->wiphy,
3900 chandef->chan->center_freq))
3901 continue;
3902
3903 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3904
3905 if (event == NL80211_RADAR_DETECTED ||
3906 event == NL80211_RADAR_CAC_FINISHED)
3907 cfg80211_sched_dfs_chan_update(rdev);
3908
3909 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3910 }
3911}
3912
3913static int __init regulatory_init_db(void)
3914{
3915 int err;
3916
3917 /*
3918 * It's possible that - due to other bugs/issues - cfg80211
3919 * never called regulatory_init() below, or that it failed;
3920 * in that case, don't try to do any further work here as
3921 * it's doomed to lead to crashes.
3922 */
3923 if (IS_ERR_OR_NULL(reg_pdev))
3924 return -EINVAL;
3925
3926 err = load_builtin_regdb_keys();
3927 if (err)
3928 return err;
3929
3930 /* We always try to get an update for the static regdomain */
3931 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3932 if (err) {
3933 if (err == -ENOMEM) {
3934 platform_device_unregister(reg_pdev);
3935 return err;
3936 }
3937 /*
3938 * N.B. kobject_uevent_env() can fail mainly for when we're out
3939 * memory which is handled and propagated appropriately above
3940 * but it can also fail during a netlink_broadcast() or during
3941 * early boot for call_usermodehelper(). For now treat these
3942 * errors as non-fatal.
3943 */
3944 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3945 }
3946
3947 /*
3948 * Finally, if the user set the module parameter treat it
3949 * as a user hint.
3950 */
3951 if (!is_world_regdom(ieee80211_regdom))
3952 regulatory_hint_user(ieee80211_regdom,
3953 NL80211_USER_REG_HINT_USER);
3954
3955 return 0;
3956}
3957#ifndef MODULE
3958late_initcall(regulatory_init_db);
3959#endif
3960
3961int __init regulatory_init(void)
3962{
3963 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3964 if (IS_ERR(reg_pdev))
3965 return PTR_ERR(reg_pdev);
3966
3967 spin_lock_init(®_requests_lock);
3968 spin_lock_init(®_pending_beacons_lock);
3969 spin_lock_init(®_indoor_lock);
3970
3971 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3972
3973 user_alpha2[0] = '9';
3974 user_alpha2[1] = '7';
3975
3976#ifdef MODULE
3977 return regulatory_init_db();
3978#else
3979 return 0;
3980#endif
3981}
3982
3983void regulatory_exit(void)
3984{
3985 struct regulatory_request *reg_request, *tmp;
3986 struct reg_beacon *reg_beacon, *btmp;
3987
3988 cancel_work_sync(®_work);
3989 cancel_crda_timeout_sync();
3990 cancel_delayed_work_sync(®_check_chans);
3991
3992 /* Lock to suppress warnings */
3993 rtnl_lock();
3994 reset_regdomains(true, NULL);
3995 rtnl_unlock();
3996
3997 dev_set_uevent_suppress(®_pdev->dev, true);
3998
3999 platform_device_unregister(reg_pdev);
4000
4001 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4002 list_del(®_beacon->list);
4003 kfree(reg_beacon);
4004 }
4005
4006 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4007 list_del(®_beacon->list);
4008 kfree(reg_beacon);
4009 }
4010
4011 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4012 list_del(®_request->list);
4013 kfree(reg_request);
4014 }
4015
4016 if (!IS_ERR_OR_NULL(regdb))
4017 kfree(regdb);
4018 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4019 kfree(cfg80211_user_regdom);
4020
4021 free_regdb_keyring();
4022}